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L'APPLICATION A LA PRATIQUE DES COEFFICIENTS

DE RAIDEUR DU SOL

par J. VERDEYEN, professeur à l'Université de Bruxelles,

directeur du Laboratoire de mécanique des sols, ingénieur-conseil.

1. Généralités

On suppose que la transmission des charges au sol

se fait par l'intermédiaire de massifs de fondation
élastiques qui se déforment lorsque le sol tasse, sous l'effet
des contraintes de compression qui s'y développent.

Ce cas se présente pour les semelles de fondation en

béton armé de faible raideur et pour les poutres de

grande longueur, reposant sur des sols déformables. On

envisage également, parfois, des ensembles reposanl sur
semelles ou radiers pour lesquels l'influence de la raideur
de la superstructure est à prendre en considération.

Pour mettre le problème en équation, on fait l'hypothèse

que le sol se déforme proportionnellement à la

pression qui s'y développe. Ceci revient à étudier le

comportement d'une poutre, chargée par des forces

1 (Conférence donnée cleviint les membres de !:i Société suisse des

mécaniques des sols et des travaux de fondation, à Fribourg, le 24 avril
1 964 (RM.).

quelconques, reposant sur un appui continu élastique,
c'est-à-dire sur une infinité de ressorts verticaux (fig. 1).

2. Théorie générale

On considère (fig. 2) une poutre sollicitée par des

charges quelconques verticales et reposant sur un sol

donnant lieu à des réactions verticales a par unité de

surface. On choisit un axe A horizontal, confondu avec
l'a-xe de la poutre, et un axe Z vertical.
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Fig. 1.
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Si on note, en un point quelconque, ct la contrainte
de compression verticale sur l'appui, w l'enfoncement
correspondant, on peut écrire, en faisant l'hypothèse
que l'appui est élastique et se déforme proportionnellement

à la pression qui s'y développe, que :

a=K (i)

Le coefficient de proportionnalité K est le coefficient
de raideur de l'appui continu. L'homogénéité de la
formule exige que K soit exprimé en kg/cm3. La formule (1)
revient à supposer que la poutre flotte sur un liquide
ayant pour poids spécifique la valeur attribuée à K.
Plus l'appui continu est indéformable, plus K est grand.
On dira que l'appui continu est uniformément élastique
lorsque le coefficient de raideur K est le même sur
toute l'étendue de l'appui recouverte par la poutre.

On discutera, au numéro 3, dans quelle mesure cette
hypothèse est applicable aux sols de fondation et l'on
indiquera les valeurs que l'on peut attribuer à K dans
la pratique.

Si on note I, b et p respectivement le moment d'inertie

d'une section transversale de la poutre, la largeur
d'appui de cette section et la charge extérieure qui y
est appliquée, on sait que :

>¦'¦£-»
dM
dx

T

_____
dx a ¦ b

(2)

(3)

(4)

En dérivant deux fois la relation (2) et en tenant
compte des relations (1), (3) et (4), on obtient :

d2

dx2 E-I d2w\ Kbw (5)

ce qui est l'équation différentielle de l'élastique de la
poutre sur l'appui continu élastique, sous sa forme la
plus générale.

3. Le coefficient de raideur K

L'hypothèse fondamentale, qui est à la base de la
théorie qui vient d'être exposée, suppose qu'il y a

proportionnalité entre les déformations et les contraintes,

le coefficient de proportionnalité étant le coefficient de
raideur de l'appui que l'on a noté K. On a :

w
(6)

On a montré que cela revenait, en fait, à admettre
que la poutre reposait sur une infinité de ressorts
verticaux. On peut se demander si une telle hypothèse
est applicable aux sols de fondation, qui ne sont pas
des ressorts et qui présentent comme caractéristiques
principales d'avoir un angle de frottement et une cohésion

variables.
On remarque que, s'il existe dans le sol (fîg. 3) des

couches compressibles s'étendant sous une partie seulement

de la poutre de fondation, il est évident que les
déformations n'obéiront pas à la loi de proportionnalité
énoncée. La couche compressible, argile ou tourbe, se

déformera plus que la partie peu compressible, argile
ou sable compact. Comme c'est le cas général, l'hypothèse

est fausse et ne peut tout au plus être appliquée
qu'à des fondations de dimensions assez réduites, reposant

sur un sol homogène.
Le coefficient de raideur du sol a été introduit pour

la première fois en 1867 par Winkler et appliquée par
Zimmerman (1888) à l'étude de la sollicitation des
traverses de chemins de fer. Il a été ensuite généralisé par
des ingénieurs théoriciens à l'étude des fondations. Les
essais de compression du sol, faits en laboratoire et sur
le terrain en place, avec des petites surfaces, semblent
en effet indiquer que les déformations sont proportionnelles

aux efforts appliqués, tant que la charge d'essai
ne dépasse pas une certaine limite. La relation (6) ne
peut donc être appliquée que lorsque l'on a de faibles ¦

charges provoquant de faibles déformations. On sait,
de plus, que le tassement d'une grande fondation est
très différent de celui constaté pour une petite surface
d'essai et on peut en conclure que la généralisation de

l'hypothèse faite est approximative et ne devra être
appliquée qu'avec prudence et discernement. En fait,
il n'existe pas de proportionnalité entre les déformations
et les pressions du sol, puisque les modules œdométri-
ques des sols augmentent avec les pressions appliquées
et ne sont pas constants. De plus, la relation (6) suppose
que chaque point de la poutre, déposée sur le sol, se

comporte indépendamment des charges existantes dans
les environs. Or on sait, par l'étude des déformations
des sols, que le tassement des différents points d'une
fondation n'est pas simplement proportionnel à la pression

qui se produit sous la surface de contact sol-
fondation, mais dépend de la répartition des pressions
dans le sol, sous l'influence des différentes charges appliquées

à la surface.

L'expérience a démontré, par exemple, que la partie
centrale d'un radier d'un grand réservoir d'huile fondé
sur du sable s'est tassée plus que les bords, bien que,
sous la charge, des pressions uniformes s'étaient
produites. Le coefficient de raideur était donc plus petit
au centre que sur les bords, alors que les propriétés du
sol étaient les mêmes dans toute l'étendue du massif
considéré. Si la fondation avait été réalisée sur de l'argile
plastique, c'est l'inverse qui se serait produit : les bords
se seraient plus enfoncés que le centre et le coefficient
de raideur aurait été plus grand au centre qu'au bord.



En d'autres termes, le coefficient de raideur dépend
de nombreux paramètres, parmi lesquels :

— l'intensité de l'effort appliqué ; suivant que les charges
sont faibles ou fortes, le coefficient de raideur peut
prendre des valeurs différentes ;

— la vitesse et la durée d'application des charges : par
exemple, pour un sol susceptible de consolider, les
déformations augmentent au cours du temps, afors que
les pressions appliquées sur le sol restent constantes,
par conséquent, K diminue ;

— la répétition des charges : si une charge est appliquée
plusieurs fois, les déformations augmentent avec le
nombre d'application de la charge, par conséquent le
coefficient K diminue ;

— les vibrations au voisinage de l'endroit où est considéré
le coefficient K : dans les sables, ce phénomène est à

prendre en considération el peut provoquer des
déformations appréciables et, par conséquent, des diminutions

de K ;

— l'immersion ou non du sol : dans un sol immergé, le
coefficient de raideur K est moindre ; il vaut alors un
peu plus de la moitié du coefficient de raideur K d'un
sol sec ou humide. Cette réduction correspondant à la
diminution du poids spécifique du sol immergé.

Il est évidemment impossible de tenir compte de tous
ces faits si l'on désire énoncer une hypothèse simple,
se prêtant à une mise en équation permettant des

calculs pratiques. C'est pour cette raison que l'on simplifie
le problème à l'extrême en admettant que l'hypothèse
exprimée par la relation (6) soit applicable dans certains
cas déterminés. Le praticien ne doit cependant pas
oublier que la définition du coefficient de raideur néglige
l'effet de facteurs importants.

Cela étant, on peut, d'une façon générale, admettre
que le coefficient de raideur d'un sol de fondation est
d'autant plus petit que la pression est grande et que
la surface de fondation est importante. En pratique,
K peut varier de 0,5 à 12 kg/cm3.

Divers auteurs ont essayé de donner des formules
approximatives permettant de se faire une idée de l'ordre
de grandeur du coefficient K dans chaque cas particulier.

a) L'ingénieur italien Straub a proposé comme loi générale

:

K C ¦ *-<* o-ß

formule dans laquelle d est le diamètre moyen de la surface
chargée, a la pression moyenne de la surface chargée, C0 un
coefficient dépendant de la nature du terrain et de la
profondeur de la fondation (on le détermine en faisant d 1

et a 1 dans la formule), enfin a et ß des coefficients qui
dépendent de la nature du sol et qui varient entre a 0,75 ;

ß 0,25 pour un sol cohérent compressible et a 0,25 ;

ß 0,75 pour un sol pulvérulent peu compressible.
b) Kögler et Scheidig ont cherché, au moyen de formules

approchées, à établir une relation entre le coefficient de
raideur K et le module œdométrique E0 des sols, déterminé
en laboratoire. Ils ont ainsi trouvé :

1) pour une surface de grandeur infinie, z étant l'épaisseur
de la couche compressible, on peut admettre que :

2) pour des surfaces circulaires ou carrées, on aurait :

<x-E„K
d

d étant-Ie diamètre de la surface circulaire ou le côté
de la surface carrée et a étant un coefficient variant
avec l'épaisseur de la couche compressible, de 3

(pour z d) à 2 (pour z oo) ;

P2

Pi

P2

Coupe dans le sol

Sable compact

Argile compressible
^^ ou tourbe_

Fig. 3.

3) pour une bande de longueur infinie et de largeur b :

avec ß variant, avec l'épaisseur de la couche considérée,
de 1,82 (pour z b) à 0,54 (pour z 20-6).

Si on introduit cette valeur de A" dans l'expression
donnant la longueur élastique de la poutre, dont il sera
question plus loin, on a :

4 El
fY0

et si on remarque que ß intervient par sa racine
quatrième, cpii a pour valeur moyenne 1, on a :

4 El
l-Sj-im-

c) Enfin, Vogt a indiqué les formules suivantes, pour
des valeurs moyennes du coefficient de raideur :

1) Plaque circulaire:

K 1,392
Eo

£_ étant la surface de la plaque

2) Plaque rectangulaire :

K 1,33
Fu

V3 6» a

b étant la largeur de la plaque et a sa longueur.



Les formules ci-dessus sont applicables à des fondations

isolées, de surface connue ; lorsque l'on doit considérer

la fondation comme un tout, formé de plusieurs
semelles, on peut introduire dans les formules les dimensions

totales de la fondation.
C'est Terzaghi (1883-1963) qui a publié l'étude la plus

complète sur les valeurs des coefficients de raideur. Cet
auteur (1955) ne donne pas seulement les coefficients
de raideur verticaux pour une poutre horizontale, mais
aussi les coefficients de raideur horizontaux pour des

ouvrages verticaux tels que des pieux ou palplanches.
A cet effet, il introduit, pour les argiles, la notion de

bulbe de pression, qu'il définit comme étant la zone
du sol soumise à des efforts de compression sous l'effet
d'une pression p appliquée de l'extérieur.

Si b est la dimension d'une plaque appuyée sur le sol.
il définit un bulbe de pression dont l'influence se fait
sentir jusqu'à une profondeur y. Si, ensuite, on considère
une plaque de dimensions B n b, le bulbe de pression
a une profondeur maximale de ny. Dans le premier cas,

on a un coefficient ks — et dans le second cas, ce
y

coefficient vaut—• On a donc
"</

ka(b)
B

b
ks(B).

Si on admet que B 1 pied ou 32,48 cm, on peut écrire :

1

ks j ¦ ks (i).

En fait, ks est un coefficient relatif à une plaque de
largeur b et de longueur /, tandis que A\s(i) est le coefficient de
réaction d'un sol pour une plaque de largeur 1 pied et de
longueur l. Terzaghi admet donc que pour les argiles, le
coefficient de raideur vertical des sols est inyèrsement
proportionnel à la dimension b de la plaque transmettant les
efforts au sol, et cela, quelle que soit la'profondeur
considérée.

Il propose ensuite une formule permettant de relier le
coefficient A\s(l) au coefficient de réaction fo(i)pour une plaque

carrée de côté 1 pied. Cette formule est la suivante :

fe(l) ks(l)
1 + 0,5

1,5-.
;

toute substitution faite, on obtient :

fa A_a> + 0,5

1,5-1

l (m) 0,30 1 5 10 20

b (m)

0,30 '.,8 3,68 3,3 3,25 3,25

1 1,45 1,1 1 1 1

5 0,29 0,22 0,2 0,2 0,2

10 0,145 0,11 0,1 0,1 0,1

20 0,072 0,055 0,05 0,05 0,05

Si l'argile est consistante, il faut multiplier ces valeurs
par 0,5.

Si l'argile est dure, il faut multiplier ces valeurs par 2.

Pour les sables, Terzaghi estime que le coefficient de

raideur ks pour une plaque de dimensions — est relié au

coefficient ks(l) pour une plaque de dimensions -—, par
la relation suivante :

ks fe(i)
b +1
2.

dans cette expression, b doit s'exprimer en pied.
Terzaghi estime que le coefficient fa(l) est égal au coefficient

fe(l) pour une plaque carrée de 1 pied de côté. On est
donc conduit à la formule résultante :

ks (i)
T\2

26

où fa(i) peut prendre les valeurs suivantes :

1) pour un sable peu compact et peu dense, humide ou
sec, fa(i) 1,3 kg/cm3.;

2) pour un sable moyennement compact et moyennement
dense, humide ou sec, ks 4,2 kg/cm3 ;

3) pour un sable compact et dense, humide ou sec,
ks 16 kg/cm3.

Si le sable est immergé, les valeurs ci-dessus deviennent
respectivement :

0,8 kg/cm3 pour un sable peu compact ;
2,6 kg/cm3 pour un sable moyennement compact ;

9,6 kg/cm3 pour un sable compact.

Les formules ci-dessus conduisent, pour un sable moyennement
compact, sec ou humide, aux valeurs ci-après :

Si Z est grand par rapport à b, on a :

ks fa(l)
1,5 ¦ ft

Terzaghi propose pour fa(i) les valeurs suivantes:

1) pour les argiles consistantes, 2,4 kg/cm3;
2) pour les argiles 1res consistantes, 4,8 kg/cm3 ;

3) pour les argiles dures, 9,6 kg/cm3.

J_es formules ci-dessus conduisent, pour les argiles très
consistantes, aux valeurs ci-après de As en kg 'cm3 :

ks (kg/cm3) b (m)

4,15 0,3
2,66 0,5
1,76 1

1,16 5

1,04 10
1,04 20

Si le sable est peu compact, il faut multiplier par 0,4.
Si le sable est très compact, il faul multiplier par 2,6.
Si le sable est immergé, ü faut multiplier par 0,6 environ.



Terzaghi envisage également le coefficient de réaction
horizontal kh.

1
Dans le cas des argiles, l'auteur propose kh kh, ¦ — ou

kh, est le coefficient de réaction horizontal pour une
plaque de 1 pied de largeur et où ft est la largeur en pied
de la plaque étudiée. Terzaghi estime que kh, est
approximativement égal à fa,. En reprenant la valeur de As, admise
précédemment, on est conduit à la formule :

kh fa,
1

T,

l +0,5
1,5 ¦ l

On obtient les valeurs de A en kg/cm3 du tableau de la
page 4, pour les argiles très consistantes, en fonction de l
et de 6.

Pour les sables, tous les auteurs sont d'accord pour admettre

que le coefficient de réaction horizontal augmente avec
la profondeur. Certains admettent une variation de Aa

parabolique en fonction de z ; d'autres, exponentielle, et d'autres
encore, linéaire. Terzaghi admet une variation linéaire, et il
donne :

fa

où l est la largeur de la plaque verticale considérée ;

z la profondeur du point où on évalue fa ;

ni, un coefficient qui vaut :

1) 0,22 kg/cm3 pour les sables peu compacts, secs
ou humides ;

2) 0,67 kg/cm3 pour les sables moyennement com¬
pacts, secs ou humides ;

3) 1,80 kg/cm3 pour les sables compacts, secs ou
humides.

Si le sable est immergé, ces valeurs deviennent respectivement
0,13, 0,45 et 1,1 kg/cm3.

On obtient les valeurs suivantes, en kg/cm3, pour un sable
sec ou humide moyennement compact :

ft (m) 0,3 1

z (m)

0,3 0,67 0,205

1 2,23 0,68

10 22,3 6,8

Si le sable est peu compact, il faut multiplier par 0,4.
Si le sable est très compact, il faut multiplier par 2,6.
Si le sable est immergé, il faut multiplier par 0,6 environ.

Terzaghi obtient ces valeurs de nii en exprimant que

m, A • ys,T,35

où A est une constante rpii dépend de la densité du sable
et où y,s s'exprime en T/pied3.

A vaut en moyenne 200 pour un sable peu compact ;

600 pour un sable moyennement
compact ;

1500 pour un sable très compact.

Dans certains cas, lorsque la chose est possible, le

coefficient de raideur du sol est déterminé par comparaison

avec des ouvrages existants. Ceci a été fait en

Italie, lors de la construction d'une grande cale sèche,
fondée sur un terrain sablonneux à Naples. Dans ce

but, on s'est servi d'une cale sèche construite à Venise,
qui présentait des dimensions semblables à celle de

Naples et qui reposait, comme elle, sur un terrain
sablonneux. Les mouvements de la cale sèche de Venise
furent mesurés, au cours de remplissages et vidanges
répétés, en cinq points à l'aide d'un niveau télescope
agrandissant 80 fois et placé à une distance suffisante

pour ne pas être influencé par les mouvements du sol.

Les coefficients de raideur du sol, déduits de ces mesures,
oscillaient entre 0,55 et 0,95 kg/cm3. La valeur adoptée

pour les calculs de la cale sèche de Naples a été prise
égale à 0,75 kg/cm3.

Il y a lieu de noter enfin que, dans les calculs
pratiques, le coefficient K intervient, comme on le montrera,
par la valeur le, longueur élastique de la poutre, sous
forme d'une racine quatrième, dans laquelle on trouve,
au dénominateur, le coefficient K multiplié par la largeur
de la poutre, et, au numérateur, le moment d'inertie
et le module d'élasticité de la poutre de fondation.

Ces faits expliquent que les erreurs commises lors du
choix de K ont relativement peu d'influence sur les

calculs qui doivent du reste, pour les raisons exposées,
être appliquées avec beaucoup de réserve, en admettant
qu'ils sont seulement susceptibles de donner des ordres
de grandeur.

4. Calculs pratiques

Afin de résoudre les problèmes qui se posent en
pratique, on va, dans ce qui suit, indiquer les méthodes

générales permettant de calculer les poutres de sections

constantes reposant sur appuis continus uniformément
élastiques [K constante), de longueurs finies et
sollicités par des charges quelconques.

Les calculs qui seront faits sont tout à fait généraux.
Ils supposent que les réactions entre le terrain et la

poutre puissent être indifféremment des compressions
ou des tractions. En pratique, il ne peut en être ainsi,
puisque la poutre n'est pas liée au sol. Cependant,
comme les calculs ne tiennent pas compte du poids

propre de la poutre, qui est directement équilibré par
les contraintes de compression uniforme qu'il produit
sur le sol, on pourra superposer l'effet de ces compressions

avec les tractions. Les compressions dues au poids

peuvent être diminuées des tractions dues à l'effet de

la charge. Cela n'est évidemment applicable que pour
autant que les compressions dues au poids soient
supérieures aux tractions dues aux charges.

Aucun autre auteur n'a, à notre connaissance, public
d'une manière aussi complète des valeurs de coefficient
de réaction des sols. On trouve cependant assez souvent,
dans la littérature, des valeurs de K établies pour des

cas particuliers. Chaque fois, on constate une concordance

suffisante, en ce qui concerne l'ordre de grandeur,
avec les valeurs de Terzaghi.

5. Poutres sollicitées par des charges concentrées

L'équation générale de l'élastique (5) se simplifie et

peut s'écrire :

PVrf4,v /¦ ;
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pour x 0

dw
dx

T

pour x oo :

Fig. 4.

et sa solution générale est :

w Cx- ch y ¦ cos -.—\- C2 • ch -y ¦ sin y-

+ C3 ¦ sh y ¦ cos y X Ci ¦ sh y ¦ sin -r •

t. le le le

M 0 ; 7' 0

Ces quatre conditions permettent de déterminer les

quatre constantes des équations générales qui valent :

Cj Cj

On trouve alors :

c3 C" ~ 2KBL

Dans cette expression :

iE- I
K ¦ b

X x
cos — + sin —

P le le P
¦U

IX

26/, x 2bl [le

le

s'appelle la longueur élastique de la poutre et a

effectivement les dimensions d'une longueur. Elle ne dépend
que des caractéristiques de la poutre et de son appui
continu.

C1; C2, C3 et C4 sont des constantes à déterminer
dans chaque cas particulier.

On peut, à partir de l'équation de l'élastique, déterminer

la pression ct sur l'appui, le moment fléchissant
et l'effort tranchant au droit de chaque section de la

poutre. On trouve ainsi :

x X X X
CT K \C1- ch y ¦ cos y -f tj • c/i r ¦ sin =-

r=ô P
9

M

Mt

X X

„, Sin -r COS-r
Pie le h Pie :— U

IX
4 x U

X X X X
-f- C3 - sh y ¦ cos j- -\- 64 • sh =- ¦ sin Tie te te ig

M ——~ \ — Cx • sh— • sin — + C2 ¦ sh ~— ¦ cos ~
-1 \ le le 'e le

Ct i X ' x /~, -, X X
3 • sn — ¦ sin — -j- C4 • en — • cos —

la la l/. Ip

Kble / x x xT =-- — —s— (Cj — C4) sh y ¦ cos y + (Ci + Q) • ch y •

Â \ le le 'e

X XX X V \
sin -r- +(C2+C3) sh y ¦ si" T" — {C3—C2) ch y 'cos 7")'

le le le le le /

On constate que pour résoudre un problème donné,
il faut connaître le coefficient de raideur K et déterminer

les quatre constantes Clt C2, C3, C4.

Les trois fonctions/a (-r)'/r (y et /j/ (y) dépendent

seulement du rapport y qui est un nombre abstrait.
le

On peut donc tracer des courbes qui donnent directe-
able M T

ment les valeurs de —p— > de p et p correspondant

aux valeurs numériques des fonctions,
indépendamment des autres données du problème particulier
envisagé (fig. 5).

La sollicitation de la poutre est entièrement connue
dès que l'on s'est fixé sa longueur élastique le. On

remarque que CT, M et T s'annulent respectivement aux
x

points ayant comme abscisses des valeurs de y données
le

par I n y) TT, I ?i + -yl TT el I n + -^1 TT, n étant un

nombre entier positif.

6. Poutre de longueur infinie sollicitée par une seule
charge concentrée

Ce cas, qui esl théorique, esl à la base de l'étude de

la poutre de longueur finie.
On considère une poutre horizontale de longueur infinie

chargée par une force verticale P (fig. 4). On place
l'origine de l'axe des x au droit de la force. On constate
facilement que dans ces conditions on a :

7. Lignes d'influence de a, T et M en un point quel¬

conque de la poutre de longueur infinie sollicitée
par une charge concentrée

Il est facile de voir que les courbes représentatives
des trois fonctions fa, fu et fT sont, à une certaine
échelle, les lignes d'influence de ct, M ci T en un point
quelconque de la poutre.

6
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En effet (fig. 4 et 5), si on considère, par exemple,
la courbe représentative de fa, on constate qu'une charge
placée en O produit en un point .-1 une pression qui

vaut, à une certaine échelle, /air)' alors que si la charge

se trouvait en A elle produirait en 0, à une certaine
(x\

paréchelle, une pression qui vaudrait également /_¦

simple décalage de la courbe considérée initialement.
Un raisonnement analogue peut être fait pour les

courbes représentatives des fonctions /y et /j/.
L'échelle des lignes d'influence est obtenue pour les

pressions en multipliant les ordonnées du diagramme
P

correspondant par -yy ; pour les moments fléchissants,
Ole

en multipliant les ordonnées du diagramme correspondant

par Ple, et pour les efforts tranchants en multipliant

les ordonnées du diagramme correspondant par P.

8. Poutre de longueur infinie sollicitée par un couple
appliqué en un point quelconque de la poutre

On suppose que la poutre de longueur infinie est
sollicitée en un point quelconque par un couple C et on
recherche les lignes d'influence de ct, T et M dues à

ce couple, supposées mobiles. En dehors de l'intérêt
pratique que peut présenter la solution de ce problème
dans certains cas particuliers, on verra qu'elle peut
servir à l'étude de la poutre de longueur finie, sollicitée

par des charges quelconques.
Les lignes d'influence, pour un couple, sont obtenues

très simplement à partir de celles qui ont été tracées
précédemment pour une charge concentrée, par
application de la propriété générale suivante, démontrée dans
les cours de stabilité de construction :

La ligne d'influence d'un élément quelconque, pour
un couple mobile, a comme ordonnées les dérivées par
rapport à l'abscisse de la section en laquelle se trouve
le couplé des ordonnées de la ligne d'influence du même
clément, sous l'effet d'une charge verticale mobile.

L'application de cette propriété permet donc de dire

que : la ligne d'influence des M de la poutre sollicitée

par un couple mobile est, à une certaine échelle, la ligne
d'influence des T de la poutre sollicitée par une charge
verticale mobile ; la ligne d'influence des T de la poutre
sollicitée par un couple mobile est à une certaine échelle
la ligne d'influence des ct de la poutre sollicitée par une
charge verticale mobile ; enfin, la ligne d'influence des CT

de la poutre sollicitée par un couple mobile est, à une
certaine échelle, la dérivée de la ligne d'influence des ct

de la poutre sollicitée par une charge verticale mobile.
En d'autres termes, par dérivation des équations

établies pour la charge verticale, ou aura :

C ixM s- • /, ler
T- 2l "MJ;

CT
_C_

bl\ x
le

C_ '(î

ct blr M
Les courbes représentatives de —y— i yr et

sont données à la figure 5.

Tie
C

9. Poutre de longueur finie sollicitée par des charges
quelconques

a) Méthode générale
En pratique, il n'existe pas de poutre de longueur

infinie mais bien des poutres de longueur finie. C'est ce

problème qui doit être résolu et qui a fait l'objet, dans

ces dernières années, de diverses recherches.
La méthode mathématique directe, qui consiste à

déterminer les constantes d'intégration des équations
générales en tenant compte des conditions aux
extrémités, donne lieu à un nombre excessif de relations
lorsque l'on veut traiter le cas général de la poutre
sollicitée par plusieurs charges. Il faut donc résoudre le

problème plus simplement. C'est ce qui a été fait par
divers auteurs qui ont cherché à se servir des lignes
d'influence de la poutre de longueur infinie. On va
résumer les diverses méthodes qui permettent, par des

procédés simples, de résoudre facilement le cas de la

poutre de longueur finie.

b) Méthode de Bleich
On considère une poutre de longueur finie AB sollicitée

par des charges quelconques Plt P2, (fig. 6).
On calcule d'abord la poutre de longueur infinie et

on trouve en A et en B des moments fléchissants et des

efforts tranchants Mj ct 7'j, Mb ct Tb-
On détermine ensuite des forces T7,, F2, F3 et Ft qui,

appliquées à la poutre de longueur infinie, donnent en

superposant leurs effets à ceux de Pv P2, des
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moments fléchissants et des efforts tranchants en A et B,
égaux à 0 ; ce qui correspond aux conditions d'extrémités

de la poutre de longueur finie.
Pour obtenir, par exemple, Ma 0, on considère la

ligne d'influence des M en un point quelconque O de
la poutre infinie. On y superpose la poutre finie AB,
en mettant A au droit de O : le point B vient à une

_ l
distance de l'origine O égale à y •

te

On peut placer les forces auxiliaires F d'une façon
arbitraire, mais les calculs se simplifient en choisissant
des positions particulières telles que les lignes d'influence
aient certaines ordonnées nulles. Bleich place les forces
auxiliaires F de telle façon que l'abscisse de F1 soit

TT TT

— Y le cl celle de F2, — -7 le ; F3 et Ft occupent des

positions symétriques par rapport à AB.
On exprime, ensuite, que Ma 0 et Mb 0 en

faisant la somme des efforts dus aux charges.
Si on considère, ensuite, la ligne d'influence de T en O,

on peut écrire de la même façon les équations exprimant
que 7T.i 0 et TB 0.

Les quatre équations ainsi obtenues permettent de
déterminer Fx, F2, F3 et F4, et le problème est résolu.
Le tronçon AB de la poutre infinie, chargée des forces P
et F, est identique à la poutre finie AB chargée des
forces P.

On remarque, par l'examen des lignes d'influence de
la poutre de longueur infinie, représentée à la figure 5,

que, lorsque > 3le environ, il y a, dans chacune des

équations, des ternies négligeables parce que l'effet des
forces auxiliaires devient faible aux extrémités opposées

; elles se réduisent alors à :

Fi -

F.

1 MA
0,052

'
le

1

2~ 0,1.5Î2 ' Ta

¦ T3 " r 0,1612
" ' B

4 0,052
"

lc

c) Méthode du professeur Magnel (1889-1955)
Le professeur Magnel, de l'Université de Gand, a

appliqué (1938) la méthode de Bleich à la recherche
des lignes d'influence en tons les points d'une poutre
qui n'est infinie que dans une seule direction. L'usage
de ces lignes d'influence permet de simplifier la méthode
de Bleich. En effet, devant traiter le cas de la poutre AB

(fig. 7), il suffit de l'assimiler à un tronçon de poutre
infinie dans un sens, à laquelle on ajoute deux forces
F3 et F4 placées arbitrairement.

On placera de préférence F3 en un point où la ligne
d'influence de M en B a une ordonnée nulle et F4 en
un point où la ligne d'influence des T en B a une
ordonnée nulle.

Dans ces conditions, on écrit facilement les deux
équations qui expriment MB 0 et TB 0, et chacune
de ces équations ne renferme qu'une inconnue ; on a

donc la solution exacte explicitement.
On trouve aux tableaux I, II et III les valeurs des

coefficients d'influence calculés par le professeur Magnel.

d) Méthode par annulation directe des efforts d'extrémités
M. E. Decarpentrie, ingénieur à la Société d'Etudes

Verdeyen & Mœnœrt, a étudié la sollicitation de la

poutre de longueur finie sollicitée à une de ses extrémités

par une charge concentrée ou par un couple
(fig. 8a et b) ; ces deux cas sont très simples et peuvent
être facilement résolus à partir de l'expression générale
de la déformation w, solution de l'équation différentielle
(5) du paragraphe 2. Il suffit de déterminer les quatre
constantes d'intégration pour ces deux cas, grâce aux
conditions d'extrémités de la poutre, qui sont :

pour la charge concentrée à une extrémité :

x 0

x /
MA 0

MB 0

TA

Tb
P
0

pour un couple à une extrémité

.!• 0 Mj =~C Ta 0

x= l Mb 0 Tb 0

On obtient ainsi les coefficients d'influence /„, /.v et /Y
qui sont donnés dans les tableaux IV, Y et. VI en fone-

/ xtion de A y et de ce y'e '

Le calcul de la poutre de longueur finie peut alors
s'exécuter en deux étapes. La première consiste à

considérer la poutre de longueur semi-infinie sollicitée
par les mêmes charges verticales et d'en calculer les

diagrammes des u, .17 et T entre les points .4 et B
par la méthode Magnel. La seconde étape consiste à

superposer aux valeurs de ct, .1/ et T trouvées ci-dessus,
celles qui correspondent au couple Cb et à la force Fb
appliqués à l'extrémité />' de la poutre de longueur
finie / et qui annulent respectivement à celle extrémité
le moment fléchissant el l'effort tranchant, ce qui rétabli!

les conditions d'extrémités de la poutre de longueur
finie : Mb 0 et TB 0 (fig. 9).
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Tableau I

LIGNE D'INFLUENCE DE p AU POINT >

ax 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.4 1,6 1.8 2.0 2.2 2.4 2,6 2.8 3.0

LIGNE

DE

p

POUR

UNE

FORCE

UNITE

AU

POINT%

0 4.000 3.600 • 3.207 ?2.833 • 2,465 »2.127 1.812 •1.520 1.252 •0.796 .0.436 0,168 -0.024 -0.152 -0.224 -0.261 -0.267 -0.256 -0.226 -0.195
0.2 • 3.208 •2.952 •2.695 2.440 • 2.181 • 1 935 .1 697 • 1.471 »1,259 .0 884 .0.574 0.329 •0.142 0.003 -0.084 -0.138 -0.164 -0,174 -0.165 -0.151
0.4 2.458 • 2.327 2 182 2.039 •1.868 '1 732 • 1.576 • 1.418 »1.261 .0 969 • 0.708 • 0.486 • 0.308 0.168 .0.063 -0.013 -0.061 -0.090 -0.103 -0.106
0,6 • 1.812 • 1.753 •1.694 •1.639 • 1.574 ?1.506 • 1.431 1.343 ?1.247 .1.043 •0.837 • 0.644 •0.474 ?0.327 0.208 0.114 «0.045 -0.005 -0.037 -0.058
0.8 • 1.249 • 1.256 •1.259 • 1.261 • 1 261 1.258 • 1.247 ?1.227 1.196 • 1.091 ?0.948 • 0.791 • 0.633 • 0.487 ?0.356 • 0.245 • 0.156 0.084 0.033 -0.006
1.0 ?0.7.6 •0.840 •0.883 • 0.928 .0970 1.007 »1.042 ?1.072 ?1.090 .1.092 1.027 • 0.917 •0.784 0.642 »O.506 0.381 0.273 ?0.182 0.109 • 0.054
1.2 0.436 •0.505 .0.574 0 642 • 0.710 0.775 • 0.837 0.896 ?0.948 • 1.027 1.053 • 1.009 • 0.912 • 0.789 »0.653 • 0.521 0.398 0.289 0.197 • 0.122

1.4 ?0.168 • 0.249 • 0.328 0409 • 0.490 0567 • 0.64 4 •0.720 ?0.791 •0.917 ?1.009 1.044 • 1.006 • 0.915 »0.794 0.661 ?0.529 0.406 0.296 •0.203
1.6 -0.024 • 0.060 • 0.143 • 0.226 • 0.309 0.391 • 0.474 .0.554 0.633 •0.784 ?0.912 1.006 • 1.043 • 1.007 0.916 0.79 6 0.663 0.531 0.407 .0.297
1.8 -0.152 -0.072 •0.008 • 0.089 • 0.169 ?0.248 • 0.327 • 0.4 07 0.487 • 0.642 ?0.789 0.915 • 1.007 •1.042 ?1.005 0.914 0.794 0.660 0.529 •0.405
2.0 -0.224 -0.152 -0.083 -0.011 • 0.063 ?0.136 • 0.208 •0.282 0.356 .0.506 •0.654 •0.794 •0.916 •1.005 ?1.038 1.000 0.909 0.789 ?0.655 • 0.525
2.2 -0.260 -0.199 -0.136 -0.074 -0.012 ?0.050 •0.115 • 0.180 0.246 .0.381 • 0.521 •0.661 •0.796 • 0 914 1.000 1.032 0.994 0.902 0.782 •0.650
2.4 -0.268 -0.216 -0.164 -0.114 -0.060 -0.008 • 0.044 • 0.098 • 0.155 • 0.273 • 0.397 •0.529 • 0.662 ?0.794 ?0.903 • 0.994 •1.025 ?0.987 • 0.895 • 0.777
2.6 -0.256 -0.214 -0.173 -0.13 2 -0.090 -0.049 -0.005 0.039 • 0.084 • 0.182 •0.289 •0,40 5 • 0.531 • 0.660 •0.788 • 0.902 • 0.987 ?1.019 ?0.980 ?0.890
2.8 -0.228 -0.199 -0.164 -0.136 -0.104 -0.072 -0.038 -0.004 •0.032 .0.109 • 0.197 •0.296 • 0.407 •0.529 • 0.655 • 0.783 •0.896 0.980 • 1.012 »0.975
3.0 -0.196 -0.173 -0.151 -0.130 -0.107 -0.0 83 -0.058 -0,033 -0.005 .0.054 0.122 • 0.203 • 0.297 • 0.405 • 0.525 • 0.650 •0.777 0.890 ?0.975 ?1.00 8

3.2 •0.164 -0.147 -0.131 -0.116 -0.100 -0.085 -0.068 -0,060 -0.031 .0.013 0.065 •0.127 »0.204 • 0.296 •0.401 •0.520 •0.645 0.772 0.886 0.971
3.4 -0.111 -0.100 -0.090 -0,080 -0.069 -0.058 -0.04 6 -0.016 0.022 • 0.069 ?0.12» •0.203 •0.293 • 0.398 • 0.516 0,642 ?0.768 0.882
3.6 -0.07 8 -0,072 -0.066 -0.059 -0.052 -0.034 -0.009 •0.025 ?0.070 ?0.127 • 0.201 •0.290 0.395 0,513 •0.638 0,766
3.8 -0.060 -0.057 -0.053 -0.044 -0.029 -0.007 0.026 •0,069 0,126 • 0.199 ?0.288 0.393 •0.510 0,636
4.0 -0.0 51 - 0,047 -0,040 -0.027 -0.006 .0.026 0.068 • 0.124 0,197 ?0.286 • 0.391 0.508
4.2 -0047 -0,045 -0.039 -0.027 -0.007 0.025 .0.067 »0 123 0.196 •0.28 5 »0.389
4.4 rA U -0,045 -0.044 -0.039 -0.027 -0.007 .0.024 »0.066 0.123 •0,195 •0.284

E p EN 0

4.6

INFLUENCE D

VALEURS DU

-0.045 -0.04 4 -0,039 -0.027 -0007 .0.024 0.066 • 0.123 • 0.194
4.8 -0.045 -0,044 -0.039 -0.027 -0.007 0.024 .0.066 • 0.122
5.0 -0.045 -0.044 -0.039 -0.027 -0.007 »0.024 0.066
5.2 -0.045 -0.043 -0.038 -0.027 -0.007 •0.0 24
5.4 -0.044 -0.043 -0.039 -0.027 -0.007
5.6

COEFFICIENT Kp DANS ip=-|r-Kp -0,044 -0.043 -0.038 -0.027
5.8 -0,044 -0.043 -0.038
6.0 -0.044 -0.043
6.2 1 1 1 1 -0.044

Tableau II

LIGNE D'INFLUENCE DE T AU POINT>

ax 0 0.1 0.2 0,3 0,4 0,5 0.6 0.7 0,8 1,0 1.2 1.4 1,6 1.8 2.0 2,2 2,4 2,6 2,8 3,0

LIGNE

DE

T

POUR

UNE

FORCE

UNITE

AU

POINT>

0 g.000 ?1.620 ?1.2 80 • 0.978 •0.712 •0.482 • 0.2 86 .0.120 -0.018 -0222 -0.344 -0.402 -0,416 -0.39 8 -0.366 -0.310 -0.256 -0,204 -0.156 -0.112

0.2 0 -0.308 • 1,401
-0.692 .1,152 .0,921 •0.715 .0,533 .0.375 .0.240 .0.0 25 -0.119 -0.208 -0.2 54 -0.258 -0.260 -0.239 -0.206 -0.173 -0.139 -0,106

0.4 0 -0.24 0 -0.466 -0,676 •1.12»
-CLi>3 •0.945 .0.7 80 «0.631 .0.497 .0.274 0,107 -0.012 -0.092 -0.136 -0160 -0.166 -0.156 -0.141 -0.122 -0.101

0.6 0 -0178 -0,351 -0.518 -0.678 -0.832 -Mfô •0.861 .0.752 • 0.522 ?0.335 ?0.167 0.076 -0004 -0.067 -0.090 -0.104 -0.107 -0.103 -0.093
0.8 0 -0,125 -0.252 -0,377 -0.503 -0.630 -0,754 -087 8 1.000

-1.000 • 0.770 0.566 ?0,392 0.250 0.139 • 0.0 54 -0,006 -0.045 -0.069 -0.080 -0.062
1.0 0 -O.082 -0.168 -0,268 -0,353 -0.452 -0,664 -0.661 -0,768 tk% ?0.799 0.604 0.434 0.292 •0.177 • 0.088 • 0.024 -0.021 -0.055 -0.066
1.2 0 -0.047 -0,101 -0.162 -0.229 -0.304 -0,384 -0.470 -0,563 -0.761 :|dff ?0.822 0.629 • 0459 •0.314 • 0.197 • 0106 • Q038 -0 011 -0.043
1.4 -0.021 -0.060 -0.086 -0.152 -0184 -0.245 -0.313 -0.389 -0.559 -0.753 1,040

-0.560 .0.634 0.641 • 0,470 • 0.324 • 0.209 «0.113 0.043 -0.007
1.6 -0.002 -0.012 -0030 -0.057 -0.092 -0,135 -0.187 -0.246 -0.388 -0.558 -0.750 îtfft 0.837 .0,643 • 0.472 •0,324 .0.206 .0114 0,044
1.8 •0,011 »0014 .0.009 -0004 -0.024 -0.063 -0.099 -0.135 -0.247 -0391 -0.561 -0.734 *t.au

- d.S60 • 0 833 •0641 • 0/70 • 0.325 .0,206 •0112

2.0 •0,019 '0.031 • 0036 •0,033 • 0023 •0.006 -0.019 -0.0 51 -0.137 -0.253 -0,398 -0.669 -0.762 • I.61S
-0.95} •0.827 •0635 • 0.466 .0321 0.203

2.2 •0,023 • 0.040 .0.050 .0.055 »0.053 .0.045 .0.030 .0.008 -0.054 -0,144 -0.262 -0.406 -0.597 -0.771 tbty 0.820 •0.630 •0461 0.318

2.4 »0,023 »0043 .0.067 .0.065 .0.067 .0.058 .0.061 •0.048 •0005 -0.061 -0.154 -0.273 -0.41 9 -0.589 -0,760 + 1.016
-0J.4 •0.814 «3,625 •0/58

2.6 »0.023 0.043 .0.057 • 0.069 .0.076 .0.078 .0.077 «O.071 •0.045 -0.002 -0.071 -0.165 -0.264 -0.429 -0.598 -0.788 -m •0,609 •0,621
2.8 •0.021 0.040 • 0.065 .0.067 .0.076 • 0.081 • 0.083 • 0.082 • 0.068 0.038 -0.012 -0.081 -0.175 -0.293 -0.437 -0.605 -0.793 J.,.ÏS •0.806
3.0 •0.018 •0.03 5 • 0,04 9 .0.051 • 0,070 ?O.077 •O.0B2 •0.084 •0.079 0,062 • 0,030 -0.020 -0090 -0.183 -0.300 -0.443 -0.610 -0.797 H.OOJ

--.-37
3.2 0.016 •0.029 .0.042 .0,053 •0.052 .0.070 .0.07 5 •0.080 •0.081 0.07 8 0.055 .0.022 -0.028 -0097 -0.169 -0.305 -0,447 -0.613 -0.799
3.4 •0024 .0.034 .0.044 •0.052 .0.060 .0.067 • 0.072 •0,076 .0.077 0.066 .0.04 9 • 0015 -0.033 -0.102 -0.193 -0.309 -0.450 -0.615
3.6 »0.035 «04 2 .0.049 .0.055 • 0061 • 0.071 • 0.075 .0.073 .0.064 .0.044 •0.012 -0.037 -0.105 -0.196 -0.311 -0451
3.8 .0.040 •0.044 .0.050 0.060 •0.066 .0,071 • 0070 • 0.060 • 0042 .0.009 -0.040 -0.107 -0.196 -0.312
4.0 • 0.041 0.050 .0.058 •0,066 • 0.069 • 0,067 ?0.056 •0.040 0.007 -0.041 -0.108 -0.196
4.2 .0 040 .0.049 .0.057 •0.064 •0,068 • 0.066 • 0.057 ?0.009 •0.007 -0.042 -0.109
4.4 /H ^ • 0.039 0.048 .0056 .0,063 • 0.067 • 0065 0.056 • 0.038 • 0.006 0,042
4.6 *~~~-~v. 0 ?0.039 .0.04 7 .0.056 •0.063 •0.066 0.065 • 0.056 •0.038 0.006
4,8

INFLUENCE DE T EN 0

• 0.039 •0.047 •0.056 0.063 ?0.066 • 0.065 • 0.056 .0038
5.0 • 0.039 • 0.046 • 0.056 .0 063 0.066 • 0.066 ?0.056
5.2 •0040 • 0.048 0.056 •0.063 • 0.067 0.065
5.4 »0.040 0.048 •0.056 •0.064 0.067
5.6

VALEURS DU COEFFICIENT KT DANS iy -^--KT •0.040 0.04 9 • 0.0 57 0.064
5.8 0.041 • 0.049 0.057
6.0 • 0.041 ?0.049
6.2 1 1 1 1 1 1 1 1 1 1 1 1

?0.041



Tableau III

LIGNE D'INFLUENCE DE M AU POINT :
%

ax 0 0.1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 1,0 1.2 1.4 1.6 1,8 2,0 2,2 2.4 2,6 2.8 3,0

LIGNE

DE

M

POUR

UNE

FORCE

UNITE

AU

POINT-»

0 0 0.360 •0.651 •0.877 • 1.036 •1.162 1.240 1.280 1.287 •1.241 1.125 ?0.972 •0.806 ?0.644 • 0.492 •0.360 •0.244 «1.152 0.080 • 0.028
0.2 0 -0.032 -0.122 •0.135 •0.336 •0.504 0.630 •0.720 ?0.780 •0.833 • 0.811 ?0.745 • 0.651 0.545 • 0.439 »0.340 •0.249 • 0.173 0.110 • 0.061
0.4 0 -0.025 -0.095 -0.209 -0.369 -0.158 ?0.016 ?0.156 ?0.268 •0.421 • 0.495 •0.513 •0.492 0.443 •0.384 •0.320 •0.252 • 0.193 •0.140 • 0.096
0.6 0 -0.016 -0.071 -0.156 -0.280 -0.429 -0.610 -0,420 -0.256 -0.002 •0.167 •0,270 •0.322 •0.335 0.322 •0.294 • 0.253 •0.210 • 0.168 •0.128
0.8 0 -0.013 -0.050 -0.113 -0.202 -0.315 -0.452 -0,616 -0.604 -0,450 -0.184 .0.007 •0.133 •0.210 • 0.249 •0.258 •0.246 • 0.223 0.192 •0.160
1.0 0 -0.008 -0.033 -0.076 -0.137 -0.217 -0.317 -0.439 -0.561 -0933 -0.571 -0.291 -0.084 • 0.059 • 0.153 •0.205 0.226 • 0.226 •0.211 ?0.186
1.2 0 -0.004 -0.019 -0.046 -0.084 -0,138 -0.206 -0.291 -0.395 -0.659 -1,006 -0.635 -0.346 -0.129 •0.024 ?0.127 •0.186 0.214 •0,219 •0.208
1.4 0 -0.002 -0.008 -0.022 -0.044 -0.075 -0.118 -0.174 -0.244 -0.433 -0,694 -1.037 -0,662 -0.368 -0,146 ?0.012 •0.117 •0.180 »0.210 •0.217
1.6 0 0 -0.002 -0.006 -0.013 -0.029 -0.051 -0.084 -0.126 -0.253 -0.441 -0.696 -1.043 -0.667 -0.371 -0.149 •0.009 •0.116 ?0.179 • 0.210
1.8 0 ?0.002 •0.004 ?0.006 •0.007 • 0.004 -0.003 -0.017 -0.039 -0.115 -0.241 -0.404 -0.693 -1.037 -0.661 -0.361 -0.14 6 • 0.011 ?0.117 • 0.180
2.0 0 ^0.002 • 0.007 ?0.014 •0.022 0.026 ?0.029 0.028 ?0.022 -0.016 -0.093 -0.221 -0.414 -0.679 -1,026 -0.653 -0.361 -0.14 3 ?0.013 •0.116
2.2 0 ?0.003 • 0.009 ?0,018 •0.030 0.040 ?0.049 0.067 0.061 •0,052 ?0.014 -0.067 -0.200 -0,396 -0.665 -1.016 -0.646 -1.002 -0.638 -0.353
2.4 0 0.003 • 0.009 •0,019 • 0.033 0,045 0.060 0,072 ?0.083 • 0.094 • 0.084 • 0.04 2 -0.043 -0.180 -0.381 -0.654 -1.007 -0.641 -0.3 54 -0.136
2.6 0 0,003 • 0.009 • 0,019 • 0.03 3 0,047 0.062 0,078 »0.093 •0.116 • 0.125 0.112 •0.065 -0.024 -0.166 -0.370 -0.646 -1.002 -0.638 -0.353
2.8 0 0.002 • 0.008 0.018 •0.031 0.044 • 0.060 •0.077 •0.093 •0.124 • 0.145 ?0.151 •0.133 • 0.083 -0.010 -0.155 -0.363 -0.641 -0.999 -0.637
3.0 0 •0.002 • 0.007 0.016 • 0.029 0.040 • 0.055 ?0.071 • 0.087 .0.120 •0.149 • 0.168 ?0.170 •0.149 • 0.095 -0.001 -0.149 -0.358 -0.639 -0.998
3.2 0 •0.002 • 0.006 ?O.013 •0.023 0.034 • 0.048 0.062 • 0.078 • 0.110 ?0.141 •0.168 0.184 • 0.183 • 0.159 0.103 • 0.004 -0.145 -0.357 -0.639
3.4 •0.005 • 0.011 •0.019 0.028 • 0.039 ?0.052 • 0.066 .0.096 0.127 0.157 ?0.161 •0.195 ?0.191 0.166 • 0.107 • 0.007 -0.143 -0.336
3.6 •0.015 0.022 0.031 0.042 •0.0 54 • 0.081 ?0.109 ?0.139 0.167 • 0.190 ?0.201 ?0.196 • 0.169 .0,109 0.008 -0.144
3.8 ?0.025 ?0.033 •0.042 • 0.064 ?0.091 ?0.118 • 0,147 • 0.173 0.194 ?0.205 •0.199 .0.171 0,110 0.008
4.0 •0.032 • 0.050 0.071 ?0.097 •0.124 •0.151 0.175 0.197 .0.207 • 0.200 0,171 0.110
4.2 • 0.037 0.054 0.075 •0.100 • 0.126 0.154 ?0.178 • 0.198 • 0.207 0.200 0,171
4.4 "^ 0.040 •0.056 0.077 • 0.102 0.128 ?0.156 •0.179 • 0.199 0.208 • 0.201
4.6 1 / o ~~

•0.041 0.057 0.078 0.102 ?0.126 • 0,155 • 0.179 0.199 • 0.208
4.8

INFLUENCE DE M EN 0

?0.041 0.057 0.078 ?0.102 • 0,128 • 0.15 5 0.179 •0.199
5.0 0.041 • 0.057 0.078 •0.102 • 0.128 •0 155 •0.179
5.2 • 0,040 ?0.057 •0.077 0.102 •0.128 ?0.155
5.4

0.040 • 0.056 0.077 0.102 ?0.128
5.6

VALEURS DU COEFFICIENT KM DANS iM ^T'KM •0.039 0.056 • 0.077 0.102
5,8

?0.039 • 0.056 îO.077
6.0

•0.039 0.056
6.2 1 1 1 1 1 1 1 1 1 1 1 1 1 0.039

Tableau IV Tableau VI

POUTRE SUR SOL ELASTIGUJE ?p,-SL. ip l___k_ p^ip (c—k—
COEFFICIENT D'INFLUENCE DE5 PRESSIONS SUR LE SOL d. :-ï- >.: -L-

V^ 0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0 90 1.00

0
^•4.000 • 3,400 • 2 800 •2.700 • 1 600 • 1.000 • 0 400 -0.700 -0.800 1 400 - 7 ooo
^6.000 -4.800 -3.600 -2.400 - 1.700 0 •1.200 • 2 400 • 3.600 • 4 800 •6.000

1
•4.038 • 3.418 • 2.800 •2.187 • 1.683 • 0.981 • 0.386 -0.206 ¦ 0 794 -1.383 - 1 991

-6.207 -4.679 -3.590 -2.337 ¦ 1 114 •0.082 • 1.759 • 2.427 • 3.577 «4 727 • 5.816

2
•4.S41 • 3 650 •2.801 • 2.077 * 1.293 •0 74 0 •0.199 -0 285 0 735 - 1.168 - l 59.
- 9,06* 5 940 -3.428 - 1.464 • 0.036 •1.170 •2.030 - 7 700 • 3.265 • 3.776 .4.270

3
• 6 038 • 4.285 •2.755 • 1.512 • 0.678 • 0 098 -0 256 -0.45S -0.563 - 0.627 - 0.679
- !8.03t -8.780 -2 504 • 1.158 • 3.242 • 3.897 •3.74 6 • 3.143 •2.498 •1422 • 0 506

4
• 8.004 • 4.704 •2.501 • 0 863 -0.063 -0.472 - 0.570 0 -76 -0.320 - 0.153 • 0 032

-31.000 ¦ Il 360 • 0.351 • 5 595 • 6.595 • 5.929 • 5 024 ' 2.525 •0 955 ¦ 0 440 ¦1.772

5
• 10 019 • 5.062 •1.987 • 0.154 -0.571 -0.671 -0.509 -0.295 -0.110 • 0 034 • 0 167

-50 085 -12.092 • _ .S3 • 10.369 • 9.025 • S .84 • 7 694 • 0 889 -0.020 ¦ 0.665 - 1 275

6
•11.000 • S,436 • 1310 -0.450 -0.803 0.593 0 298 -0.091 • o on •0 0S2 • 0 073

-72.000 - 10.281 •12 333 • 14 256 • 9.386 •4.032 • 0.864 - 0 4 3 2 -0.691 - 0.4 68 0 09 9

7
• 14.000 ¦ 312 • 0 586 -0.864 -0.801 - 0 395 -0.103 •0.019 • o 04 ; • 0026 ¦ 0 002
-98000 - 5 860 • 19 629 •16.366 •7.595 • 1.725 - 0.568 0 .3- -0.500 -0 127 - 0.108

8
• 16.000 • 4 990 -0093 -1 06b - 0, 649 -0.I9I • 0 001 .0 046 • 0.627 ¦0 007 -0.003
¦TïijMO • 1 tei • 3.325 •17037 • 4 869 - 0 244 1.139 - 0.667 -0.175 0 0

POUTRE SUR SOL ELASTICLUE m,:.pl„ ^->—
COEFFICIENT D'INFLUENCE OU MOMENT FLECHISSANT _(-_

rc L

b H_"X 0 0.10 0,20 0.30 0.40 0,50 0,60 0.70 0.80 0.90 1.00

0 j
p

0 .0.081 • 0.128 •0.147 • 0.144 •0.125 •0 096 •0 063 • 0.037 •0.009 0
c-1 000 ¦0.972 -0,869 ¦0.784 - 0.641 -0.500 ¦0.352 -0.216 ¦0.104 -0.0Ï8 0

1
0 • 0.011 •0.1274 •0.1461 •0 1(2! •0.1239 »0.0951 •0.0674 •0.0316 '0.009 0

-1.000 -0.971 -0.893 -0.777 -0.637 -0.419 ¦0.342 -0.208 -0,096 -0.027 0

2
0 •0.0789 • 0.1208 •01350 • 0.1287 •0.1090 ¦0,0819 • 0.0S27 • 0.0Î64 •0.00 73 0

- 1.000 -0.959 0.859 -0.775 -0.575 -0 426 -0.786 -0.170 -0.079 -0.021 0

3
0 •0.077« 0.1035 • 0.1045 • 0,0906 •0 0696 • 0.0476 •0.0279 •0.0127 •0.0032 0

- 1.000 -0.928 -0.764 -0.566 -0.394 -0.246 -0.136 -0.064 ¦0.012 -0.004 0

4
0 • 0.0647 • 0.0604 • 0.0700 .0.0504 •0 0310 • 0.0156 •0.0066 • 0.0018 • 0.0007 0

- 1.000 -0.876 -0.634 -0.389 ¦0.197 - 0 072 .0.018 •0.019 • 0.017 • 0.006 0

5
0 ¦0.0581 • 0.0619 • 0.0444 •0.0245 • OQïïO •0.0017 -0.0007 -00015 -0.0006 0

-1.000 -0.824 -0.509 •0.731 -0.067 • 0.015 •0.040 •0.027 • 0.019 • 0.006 0

6
0 • 0.0518 • 0.0466 • 0.0269 • 0.0102 • ooon -0.0020 -0.0021 -0.0012 -0 000 3 0

* 1.000 -0.761 -0.389 -0.17 3 • 0.008 •0 042 •0.036 •0.020 •0.006 •0.002 0

7
0 • 0.0456 •0,0346 •Q.OfSO • 0.0079 -0,0015 0 0018 - 0,0010 -0.0003 •0.0001 0

- 1 000 -0.696 -0.284 -0.044 • 0 037 • 0.039 •0.070 • 0.006 • 0.0007 • aoo: 0

8
0 •0.0399 •0.074 8 • 0.0076 -0.0003 - 0.0017 -0 0010 - 0.0003 0 a 0

- 1.000 -0.634 - 0.014 0 • 0.043 •0.026 '0.007 0 0 0 a

Tableau V

POUTRE SUR SOL ELASTICLUE r,:plTlp L n fr.T Cc ^

COEFFICIENT D'INFLUENCE OE L'EFFORT TRANCHANT <* : Jf- A=^y.

>£ 0 0.10 0.20 0.30 0.40 0.50 0,60 0.70 0,80 0,90 1.00

0
• 1.000 •0.630 • 0.320 • 0.070 -0.120 -0.250 -0.320 -0.330 ¦0.280 -0.170 0

0 •0.520 • 0.960 •1.260 • 1.440 • 1.500 • 1,440 •1.260 • 0,960 •0 520 0

1

•1.000 •0.677 •0.316 • 0.067 •0.121 -0.2 50 - 0.318 -0.326 -0.2 76 ¦0.168 0
0 • 0,554 •0 977 • 1.273 •1.445 • 1,497 •1.429 -t 779 • 0 94. •0.526 0

2
.1.000 • 0.590 • 0 268 • 0027 0.140 -0.244 - 0. 290 -0.785 ¦0.234 -0.139 0

0 • 0.743 • 1,101 '1.449 •1.516 • 1,454 • 1,292 • 1.054 • 0.754 • 0.402 0

3
• 1.000 • 0.486 •0.135 -0.069 -0.186 0.223 -0,213 - 0,176 -0.135 0 055 a

0 '1.311 • 1.642 •1.895 •1.657 • 1 292 • 0.940 ¦0 559 •0.286 • 0.098 0

4
• i.oao •0.3*5 -0.009 ¦0.170 -0.198 ¦0.175 -0.145 -0.070 0.029 -0.006 0

0 • 2.073 •2,675 •2.238 • 1.600 •1.000 •0.412 • 0 086 -0.067 o ni 0

5
«1.000 • 0.242 -0.111 - 0.207 ¦0.179 -0.113 -0053 0.014 •0.007 • a oi2 0

0 •2.908 •3.095 •2.723 .1 228 • 0.540 • 0.050 -0.094 -0.160 0 101, 0

6
• 1.000 •O.U3 - 0.171 0 198 -0.130 -0.056 -0.012 • 0.006 • 0.009 • 0.006 0

0 .3.731 • 3 369 • 1 928 •0.734 • 0.084 -0 143 ¦0 155 -0.093 -0.053 0

7
• 1 000 • 0.059 -0.200 -0.167 -0.078 00176 •0.O06 • 0.008 •0.005 • 0.001 0

0 .4.469 ¦J 195 • 1.476 • 0.284 -0.147 -0 182 -0,100 - 0.030 ¦ o oio 0

6
.1.000 -0.009 0 7074 -0.133 - 0 018 • 0.007 •0.009 • 0.005 • 0.001 0 0

0 • 5,103 »3.181 • 0.970 -0.037 o IIS -0.126 ¦0.03 6 • 0.007 • 0.006 0

Pi p2 P3

A B

UB Mr

X

1

Ma Fa

Ca Ta

Fig. 8.

On petit également utiliser les diagrammes de la
poutre de longueur infinie. On doit alors annuler les
efforts tranchants et les moments fléchissants aux deux
extrémités A et B de la poutre de longueur finie (fig. 10).
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10. Cas particuliers
Les méthodes qui précèdent sont générales et

permettent de résoudre n'importe quel cas pouvant se

présenter en pratique. On peut envisager des cas
particuliers et dresser directement des tableaux ou
graphiques donnant leur résolution. Ce sont, entre autres,
les cas de la poutre infinie chargée d'une infinité de

charges concentrées P, égales et équidistantes, de la

poutre de longueur finie chargée en son centre par une
charge P, de la poutre de longueur finie chargée à ses

extrémités par deux charges valant P.

11. Influence de la superstructure sur la répartition
des pressions

a) Notions fondamentales
Dans ce qui précède, on a supposé que les forces qui

sollicitent la fondation sont libres de se déplacer les

unes par rapport aux autres. La superstructure est
considérée comme parfaitement souple. En général, la rigidité

de la superstructure d'une construction doit se

combiner avec la rigidité de la fondation et la répartition

des contraintes sur le sol peut s'écarter appré-
ciablement de celle calculée par les théories exposées.

Soit une construction caractérisée par un système de

fondation 5/ de rigidité If et une superstructure Ss de

rigidité Is (fig. 11). Sous la semelle de fondation, il y

Ss

V
c

Sf

RdRa

Ps

construction, et les matériaux constitutifs ont un
module d'élasticité constant.

3. Le module œdométrique du sol est constant, ce qui
permet de le considérer comme homogène et isotrope.

4. Les phénomènes plastiques (fluage) et les déformations
élastiques (raccourcissement des piliers) ne sont pas
pris en considération.

5. La rigidité de la superstructure est telle que la concor¬
dance entre la fondation et le sol reste assurée sur
toute la surface de contact ;

6. Les tassements différentiels du sol sont tels que la
fondation et la superstructure sont en état de les
suivre sans dommage. Pour les structures en béton
armé, se déformant lentement, les tassements de l'ordre
de 2 à 4 % des portées sont admissibles. En valeur
absolue, et pour des portées usuelles de 5 à 10 m entre
appuis, cela revient à des tassements différentiels de
2 cm.

7. La consolidation du sol est entièrement effectuée sous
l'action du poids propre de la construction elle-même.

8. L'inertie des piliers peut être considérée comme faible
par rapport à la rigidité des deux systèmes en présence
S/ et Ss- On considère que les deux systèmes sont
reliés par des articulations. On ne tient pas compte
du mode de fixation réel de la superstructure à la
fondation.

h) Rigidité de la superstructure
Les méthodes de calcul nécessitent la connaissance

de la rigidité de la superstructure. Si celle-ci n'est pas
parfaitement souple ou parfaitement rigide, son degré
de rigidité est toujours difficile à évaluer, car on ne

peut tenir compte de tous les éléments tels que portes,
fenêtres, et autres.

On dispose cependant des formules de Meyerhofï
(1953) qui distinguent l'immeuble à ossature simple de

l'immeuble à ossature avec remplissage. Pour l'immeuble
à ossature simple (fig. 12), la rigidité d'un étage, dalle

lola

Fig. 11.

y/A,'// i __j Vyyyyxm/////yym//y////W/77777A/^

Fig. 12.

a lieu de considérer, suivant MM. les professeurs de Beer

et Krsmanovitch, deux types de répartition de
contraintes :

— la répartition primaire pp consécutive à l'action conju¬
guée de la fondation et de la superstructure ;

— la répartition secondaire ps due aux flexions secon¬
daires qui se manifestent dans les travées séparant,
chaque appui et qui provoque une concentration des
contraintes au droit des appuis alliée à une réduction
en travée. Dans la plupart des cas pratiques, la
fondation est suffisamment rigide pour que l'on puisse
négliger ce phénomène.

Pour faire les calculs, on admet les hypothèses
suivantes :

1. La répartition des contraintes est uniforme dans toute
section transversale, c'est-à-dire que les déformations
transversales sont beaucoup moins importantes que
les déformations longitudinales.

2. Les rigidités respectives de la fondation et de la super¬
structure sont constantes sur toute la longueur de la

+ piliers, correspondante est donnée avec les notations
suivantes :

E module d'élasticité du matériau de l'ossature ;

Ep module d'élasticité du matériau de remplissage ;

/„ moment d'inertie des colonnes supérieures de

longueur h„ ;

I„ moment d'inertie des colonnes intérieure-s de

longueur h„ ;

//, moment d'inertie des poutres de longueur / ;

ni longueur totale de la construction ;

h hauteur du remplissage ;

e épaisseur du remplissage

par

FI El (l 1

R° + R" [ni?'il-hh\l 1

n+R+Rn P

h„ h0
Br
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4
i i

Sf

La rigidité totale de l'ossature est donc :

(£/)tot I El.
étages

Le remplissage augmente la rigidité de

F I -
ni)2
2A2

Eplp étant la rigidité d'un remplissage, avec Ip 13

WSŒMMMMM0W
Ah

Sf

f" 1 I î
I AB AC '

AD

Fig. 13.

Cas I

K\V.\\\\\\\V\S\V\\M |

k\WV\WW\WWWM (f

Cas I
Is —œ

i\\\^\\\\\^\\^^ lf

Cas HT

Is -^0

00

Cas m

Is —» oo

c) Principes de calculs
L'étude de l'influence de la rigidité de la superstructure

a été faite d'une façon très complète par le
professeur Krsmanovitch (1955). On en trouve un résumé
ci-dessous.

On considère une superstructure S, reliée à la fondation

S/ par des piliers articulés (fig. 13), les deux
systèmes étant continus.

On calcule par une descente de charge, de haut en
bas, les efforts Sa, Sb, Se ¦ ¦ ¦ dans les piliers.

On calcule la fondation 5/ par une des méthodes
indiquées précédemment en tenant compte du moment
d'inertie 7/ de la fondation et du moment Ip de la
superstructure, soit, pour l'ensemble de la construction
// + IP L

On obtient ainsi une répartition de pression p sous
la fondation et on peut déterminer les moments fléchissants

dans la fondation à partir des forces Sa, Sb,
Sa,

On calcule les forces dans les piliers de bas en haut
à partir de la répartition /; des pressions et on trouve
des forces Ra, Rb, Rc ¦ ¦ ¦ différentes de Sa, Sb, Se

Dans chaque pilier, il y a donc une différence de
force :

A-4 Ra aB RB — S,B

les unes positives, les autres négatives, mais l'on a

toujours :

Sa + aA + Sb + aB + Sc + aC. Ra + RbX Rc

Fig. 14.

On répartit les forces a', AÖ, aC entre la
fondation S/ et la superstructure Sp dans le rapport de

leur moment d'inertie.
Les forces ainsi réparties provoquent des moments

fléchissants et des efforts tranchants dans la superstructure
et dans la fondation, dont il y a lieu de tenir

compte. La répartition implique que le système continu
S/ soit calculé de bas en haut comme poutre de fondation

soumise aux pressions s'exerçant sur le sol et

compte tenu des déplacements relatifs des appuis. On
tient compte de ces déplacements relatifs dans le calcul
de la superstructure.

En résumé, si on suppose connue la rigidité de chacun
des deux systèmes, on peut, calculer la déformation A/i
et en déduire la répartition réelle des contraintes sous
la fondation, c'est-à-dire les réactions Ra, Rb, Rc ¦ ¦ ¦

donc les forces a_4, a''', aC et obtenir la sollicitation

des deux systèmes par la répartition indiquée ci-
dessus.

Le professeur Krsmanovitch a également montré que
les moments augmentent dans une superstructure rigide
avec le moment d'inertie de la fondation. Ce qui confirme
qu'il y a intérêt à construire une structure rigide sur
une fondation souple.
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d) Analyse des cas possibles
Suivant le professeur Krsmanovitch, il y a lieu de

distinguer les différents cas représentés à la figure 14,
et que l'on va examiner successivement :

Cas I
Etant donné que les moments d'inertie 1/ et Is sont petits

en valeur absolue, les systèmes S/ et Ss sont en état de
suivre les déformations du sol et de se déformer suivant les
exigences de ce dernier. Si les tassements différentiels
s'accroissent, par exemple sous l'effet d'une répartition défavorable

des forces extérieures, les systèmes S/ et Sp ne
possèdent pas la rigidité suffisante pour s'y opposer, et la
construction subit des dommages.

Le calcul peut s'effectuer de deux manières :

1. Si le système S/ est assez rigide pour qu'on puisse
négliger les flexions secondaires dans le calcul de la
répartition des contraintes, on peut procéder comme
exposé au paragraphe précédent : considérer la fondation

comme un système de moment d'inertie 1 : // -f- /,,,
rechercher la répartition des contraintes, calculer les
réactions réelles et les forces correctives, répartir ces
forces entre les deux systèmes.

2. Si la rigidité de la fondation est si faible que l'on ne
puisse négliger les flexions secondaires, il faut procéder
par approximations successives :

— on considère d'abord la rigidité totale I pour obtenir
les tassements différentiels ; il y correspond une
répartition « p' » ;

— ensuite, on prend seulement en considération la
rigidité du système S/(If) pour calculer la répartition

« p » des contraintes sous la fondation, en
tenant compte des flexions secondaires.

La différence entre les deux répartitions fournit les
forces correctives qui sont à répartir entre les deux
systèmes, proportionnellement à leur inertie.

Dans certaines circonstances, les deux systèmes, soit
séparément, soit simultanément, peuvent être discontinus
(tig. 15 a, b, c). C'est alors la partie du système dans laquelle
la continuité existe qui subit l'action entière des tassements
différentiels.

Si la fondation est discontinue (fig. 15 b), on calcule en
premier lieu le tassement des semelles el on calcule ensuite
la superstructure, en tenant compte des tassements différentiels.

On peut parfois réduire à zéro ces différences de tassement

en modifiant les dimensions de certaines semelles, ce
qui revient à agir sur les contraintes régnant à la base
desdites semelles. Si la superstructure est discontinue (fig. 15 c),
on recherche la répartition réelle des contraintes sous les
poutres continues de fondation el, à partir de celle
répartition, on calcule le système S/.

Cas II
La grande rigidité de la superstructure ne lui permet pas

de s'adapter aux déformations du sol. C'est cette rigidité
qui va déterminer les tassements différentiels au droit des

piliers. Entre les piliers, les déformations dans le système de
fondation sont conditionnées à la fois par la compressibilité
du sol et la rigidité // du système.

Dans la superstructure naissent les forces nécessaires pour
imposer localement au sol des contraintes qui réduiront
éventuellement à zéro les tassements différentiels.

Le calcul d'une telle construction s'effectue de la manière
suivante :

1. Si la fondation est assez rigide, et si l'on peut négliger
les flexions secondaires, on étudie la fondation comme
une poutre rigide. Il y correspond une répartition « p' »

(fig- 16a).
2. Si l'on désire prendre en considération les flexions

secondaires dans la fondation, il est nécessaire pour les
charges données de calculer d'abord la répartition « p »

(fig. 16 b), qui correspond à l'hypothèse où la rigidité
de la superstructure est nulle. On en déduit des
tassements différentiels. On recherche alors la répartition
« p' » définie ci-dessus et qui correspond au cas où les
tassements différentiels sont nuls.

La différence entre ces lignes de répartition donne les
forces APX el AP2, que l'on admet — sans commettre d'erreur
importante, puisque le système S/ est suffisamment flexible
— appliquées dans leur entièreté au système 5S.

Cas III
La rigidité de la superstructure St peut être négligée, car

son action par rapport à la rigidité de la fondation S/ est
très faible. Le système S/ détermine la manière dont s'affaisse
le sol et, comme ce système est rigide, le sol s'affaisse également

en tous ses points. La compressibilité du sol ne fait
que déterminer la valeur de l'affaissement.

On mène alors les calculs de la manière suivante :

1. On calcule la ligne de répartition des contraintes sous
le système S/ considéré comme poutre rigide.

2. On calcule le système Sj comme soumis aux réactions,
dirigées de bas en haut, déterminées au premier stade
el aux charges extérieures s'exerçant de haut en bas.

Cas IV
Les rigidités des deux systèmes étant très grandes et

ayant à peu près la même valeur, on peut admettre que les
tassements différentiels sonl nuls. On recherche d'abord,
par un calcul ell'ectué de haut en bas, les efforts dans les
piliers, dus aux charges de la superstructure. On recherche
ensuite la répartition des contraintes sur le sol pour le
système rigide S/ et, on en déduit, par un calcul effectué de bas
en haul, les réactions dans lei piliers.
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Les différences des réactions dans les piliers, obtenues par
ces deux méthodes, représentent les forces complémentaires
à répartir comme au cas I.

12. Calculs avec coefficients de raideur variables

Dans ce qui précède, on a admis que le coefficient de
raideur A" du sol était constant. Lorsque l'on a affaire
à des terrains hétérogènes, dont les déformations dépendent

de la compressibilité relative de diverses couches,
on ne peut plus admettre que le coefficient de raideur K
est constant sur toute l'étendue de la fondation.

Le modèle correspondant (fig. 17) est alors constitué
par une poutre reposant sur des ressorts de raideur
variable. L'introduction de coefficients de raideur variables

dans l'équation différentielle de la ligne élastique
conduit à des difficultés mathématiques telles que le
problème est insoluble au point de vue pratique.

Divers auteurs ont proposé des méthodes par
intégrations successives.

La méthode la plus simple est celle qui a été indiquée
par le Dr ingénieur Heinz Grasshoff (1951) de Bremen,
en utilisant un procédé indiqué par Levinton (1947)
qui est analogue à un calcul par différences finies.

On en trouve un résumé ci-dessous.

On considère (fig. 18) une poutre de longueur l et de
largeur 6 1, chargée par une charge quelconque g el reposant

sur un sol quelconque dont les réactions donnent lieu
à des pressions p. Sous la charge, la poutre va tasser et on
suppose que le tassement total se produit successivement
de la façon suivante :

— la poutre tasse sans se déformer et seules ses extré¬
mités occupent leurs positions définitives, après avoir
tassé de yx et y2 ;

— on considère ensuite, les extrémités étant supposées
fixes, la poutre déformable sur deux appuis, soumise
aux charges q et p et dont on calcule les déformées.
Les tassements dus aux charges q portent l'indice _,
ceux dus à la charge p l'indice c et ceux dus à la
poutre indéformable l'indice a.

On divise la longueur l de la poutre en un nombre égal
de parties a, par exemple trois, et on remplace la courbe
des pressions p par un polygone. L'aire du polygone peut
être considérée comme composée de triangles, soit six dans
le cas considéré.

Le problème à résoudre consiste à calculer les quatre
pressions pv p2, p3 et pi inconnues.

A cet effet, on dispose des équations suivantes : deux
équations d'équilibre de rotation autour des points L et B,
centres de gravité des triangles extrêmes des pressions et
deux équations de déformation pour les points 2 et 3, soient :

I Mr 0

2/2 2/«_ + Vh — 2/c_

2/3 2/«3 + 2/»3 — 2/«3

(1)

(2)

(3)

(4)

e) Conclusions
Des considérations précédentes et des calculs qui ont

été effectués par le professeur Krsmanovitch, on peut
tirer les deux conclusions principales suivantes :

1. Dans les ossatures qui sont continues soit dans
leur fondation, soit dans leur superstructure, dont
la raideur est constante et qui sont appuyées sur
un sol dont le module de déformation est considéré

comme constant, les rigidités des deux
systèmes constitutifs jouent un rôle important dans
l'évolution de la sollicitation de l'ossature.

2. Les moments parasites qui peuvent prendre nais¬

sance dans les systèmes 5/ et Ss sont d'autant
plus réduits que la rigidité de da fondation est
moindre. Il faut donc s'efforcer de réduire au
minimum acceptable la rigidité de la fondation.

Le moment par rapport à L s'écrit :

Ml p2a a p2a'~ '
3 2~'

Ps" 4
' 3""

Ih«

4/)2 + 10 pa + 7 pt
6- Ml

pta 1

(5)

On trouve de même, pour le moment par rapport à R :

6 Mb
Pi + 10/>2 + 4/>3 (6)

avec

ML

MB

moment statique dans le sens des aiguilles d'une
montre autour de L, des charges extérieures q
sollicitant la poutre ;

moment Statique dans le sens des aiguilles d'une
montre autour de B, des charges extérieures q
sollicitant la poutre.
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Les déformations ya.2 et ya3 sont facilement exprimées en
fonction de y et y3.

On a
1 2

2/»2 32/4 + 32/1

et de même pour y„3.

Les déformations j/C2 et yC3 peuvent être exprimées en
fonction de px, p2, p3, p4 en recherchant la déformée totale
d'une poutre sur deux appuis sollicitée successivement par
des charges triangulaires.

On trouve ainsi :

2A2
p 4 «4

:1080 Fl Pi +
429 ai

1080 El Pi
390

1080 El Pa
77 q4

1080 £7 P.

et de même pour i/C3.
On pose

1080 £7

avec 7. module d'élasticité de la poutre, et
I son moment d'inertie.

Enfin, les déformations yi,2 et yi,3 dépendent uniquement
de la charge extérieure q et se calculent en fonction de
celle-ci.

On pose

2/1
Pi
Ki y =2

P2
v SsJl K, 2/4

P±
KA

Klt K2, A"3 et Ki étant les coefficients de raideur aux points 1,
2, 3 et 4 et on remplace dans les équations (3) et (4) les
valeurs des y en fonction des p.

On obtient finalement :

2 J_
3 Wt

+ 77

Pi + 429

_
1

~ 3

1

N) p2 + 390 p3 +

N Pi .Yj/42

('7+|4iJv)p1 + 390Pa + (429+l_v)Pa
(8)

Les quatre équations linéaires (5) (6) (7) el (8) permettent
de déterminer les quatre pressions plt p2, p3 et p4.

Si la charge q est symétrique, le nombre d'inconnues se
réduit à deux et on obtient les deux équations :

IP
Pi + * Pa

1!)
N

avec N

Ki
120 El
mm

Pi 91
K, p2 A>2

et 5_P somme de toutes les forces symétriques sur la
poutre.

Grasshoff a également effectué le calcul pour des
subdivisions de la poutre en cinq et en sept parties égales.
Au point de vue des applications à la pratique, la
subdivision en trois parties égales est en général suffisante.

Pour appliquer la méthode, on doit connaître les
coefficients de raideur Kx, K2, K3, Kt on peut
déterminer ceux-ci en considérant une charge uniforme px
de la même longueur et largeur que la poutre et faire
le calcul des tassements correspondants, c'est-à-dire des

valeurs yv Les valeurs des coefficients de raideur sont
obtenues par la relation :

K El
2/1

Ces coefficients de raideur ne sont pas exacts, car on
a supposé une répartition uniforme des pressions. A
partir des coefficients de raideur approximatifs ainsi
déterminés, on peut calculer la répartition des pressions

p par la méthode indiquée et l'on peut
recommencer un calcul de tassement à partir des pressions
trouvées, ce qui donnera des coefficients de raideur plus
exacts. On peut continuer ainsi de suite.

Grasshoff a développé une méthode de détermination
des coefficients de raideur basée sur la répartition des

pressions dans le sol et la détermination de la ligne
d'influence du tassement d'un point de la surface du sol.

DIVERS
Postes à pourvoir

L'Organisation européenne de recherches spatiales
met au concours les postes suivants d'assistants au
directeur adjoint de la Division de contrôle et de
stabilisation, à la Direction des recherches appliquées du
Centre européen de technologie spatiale de Delft :

Chef de la section des systèmes de stabilisation par
variation du moment angulaire (poste TH 57).

Chef de la section des composants mécaniques
(poste TH 58).

Chef de la section des systèmes de stabilisation par
jets de gaz (poste TH 56).

SOCIETE SUISSE DES INGENIEURS
ET DES ARCHITECTES
69e assemblée générale de la SIA1

En raison de difficultés de logement à la date
primitivement prévue, la 09e assemblée générale aura heu
à Bâle non pas du 18 au 20 juin, mais du 11 au 13 juin
1965.

1 Communiqué du Secrétariat central.

LES CONGRES
2e symposium européen des agents inhibiteurs
de la corrosion

Ferrure (Italie), 24-26 septembre 1965

Ce symposium, organisé par le Centre d'études de la
corrosion Aldo Daccö de l'Institut de chimie de
l'Université de Ferrare, est la 29e manifestation de la
Fédération européenne de la corrosion.

Renseignements et inscriptions (jusqu'au 15 juin
1965) : Secrétariat du symposium 2 SEÎC, Istituto di
Chimica, Université, Via Scandiana 25, Ferrara (Italie).

CARNET DES CONCOURS
Concours d'idées pour l'aménagement
de la place du Marché à Montreux

Jugement
Le jury chargé d'examiner les projets présentés s'est

réuni les 26 novembre, Ier et 2 décembre 1964. Il a
décerné les prix suivants :

1er prix, 7000 fr., à MM. Gampert et Hacin, architectes
SIA, à Genève.
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