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I’APPLICATION A LA PRATIQUE DES COEFFICIENTS

DE RAIDEUR DU SOL'

par ]. VERDEYEN, professeur a l'Université de Bruxelles,

directeur du Laboratoire de mécanique des sols, ingénieur-conseil.

1. Généralités

On suppose que la transmission des charges au sol
se fait par U'intermédiaire de massifs de fondation élas-
tiques qui se déforment lorsque le sol tasse, sous Ieffet
des contraintes de compression qui s’y développent.

Ce cas se présente pour les semelles de fondation en
béton armé de faible raideur et pour les poutres de
orande longueur, reposant sur des sols déformables. On
(:nvisa;_.rc également, parfois, des ensembles reposant sur
semelles ou radiers pour lesquels 'influence de la raideur
de la superstructure est a prendre en considération.

Pour mettre le probléme en équation, on fait I'hypo-
these que le sol se déforme proportionnellement a la
pression qui s’y développe. Ceci revient a étudier le
comportement d’une poutre, chargée par des forces

! Conférence donnée devant les membres de la Sociélté suisse des
mécaniques des sols el des travaux de fondation, i Fribourg, le 24 avril

1964 (Réd.).

quelconques, reposant sur un appui continu élastique,
¢’est-a-dire sur une infinité de ressorts verticaux (fig. 1).

2. Théorie générale

On considére (fig. 2) une poutre sollicitée par des
charges quelconques verticales et reposant sur un sol
donnant lieu a des réactions verticales o par unité de
surface. On choisit un axe X horizontal, confondu avec
'axe de la poutre, et un axe Z vertical.
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Si on note, en un point quelconque, o la contrainte
de compression verticale sur I'appui, & I'enfoncement
correspondant, on peut écrire, en faisant I’hypotheése
que I'appui est élastique et se déforme proportionnelle-
ment a la pression qui s’y développe, que : ;

co=K . - w (1)

Le coeflicient de proportionnalité K est le coellicient
de raideur de I'appui continu. L’homogénéité de la for-
mule exige que K soit exprimé en kg/em?. La formule (1)
revient a supposer que la poutre flotte sur un liquide
ayant pour poids spécifique la valeur attribuée a K.
Plus 'appui continu est indéformable, plus K est grand.
On dira que I'appuil continu est uniformément élastique
lorsque le coefficient de raideur K est le méme sur
toute I'étendue de I'appui recouverte par la poutre.

On discutera, au numéro 3, dans quelle mesure cette
hypothése est applicable aux sols de fondation et I'on
indiquera les valeurs que I'on peut attribuer a4 K dans
la pratique.

Si on note /, b et p respectivement le moment d’iner-
tie d’une section transversale de la poutre, la largeur
d’appui de cette section et la charge extérieure qui y
est appliquée, on sait que :

12
E.I. %_,_ZM (2)
M
=1 (3)
dT
==p—0-b (4)

En dérivant deux fois la relation (2) et en tenant
compte des relations (1), (3) et (4), on obtient :

d? d?w
W(E.I.W)ZP_K.I).W (5)

ce qui est I'équation différentielle de I'élastique de la
poutre sur 'appui continu élastique, sous sa forme la
plus générale.

3. Le coefficient de raideur K

L’hypotheése fondamentale, qui est a la base de la

théorie qui vient d’étre exposée, suppose qu’il y a pro-

portionnalité entre les déformations et les contraintes,

2

le coefficient de proportionnalité étant le coefficient de
raideur de I'appul que I'on a noté K. On a:

K=— (6)

On a montré que cela revenait, en fait, 2 admettre
que la poutre reposait sur une infinité de ressorts ver-
ticaux. On peut se demander si une telle hypothése
est applicable aux sols de fondation, qui ne sont pas
des ressorts et qui présentent comme caractéristiques
principales d’avoir un angle de {rottement et une cohé-
sion variables.

On remarque que, s'il existe dans le sol (fig. 3) des
couches compressibles s’étendant sous une partie seule-
ment de la poutre de fondation, il est évident que les
déformations n’obéiront pas a la loi de proportionnalité
énoncée. La couche compressible, argile ou tourbe, se
déformera plus que la partie peu compressible, argile
ou sable compact. Comme c’est le cas général, 'hypo-
these est fausse et ne peut tout au plus étre appliquée
qu’a des fondations de dimensions assez réduites, repo-
sant sur un sol homogeéne.

Le coeflicient de raideur du sol a été introduit pour
la premiere fois en 1867 par Winkler et appliquée par
Zimmerman (1888) a I’étude de la sollicitation des tra-
verses de chemins de fer. Il a été ensuite généralisé par
des ingénieurs théoriciens a I'étude des fondations. Les
essais de compression du sol, faits en laboratoire et sur
le terrain en place, avec des petites surfaces, semblent
en effet indiquer que les déformations sont proportion-
nelles aux efforts appliqués, tant que la charge d’essai
ne dépasse pas une certaine limite. La relation (6) ne
peut donc étre appliquée que lorsque 'on a de faibles
charges provoquant de faibles déformations. On sait,
de plus, que le tassement d’'une grande fondation est
trés différent de celui constaté pour une petite surface
d’essai et on peut en conclure que la généralisation de
I'hypothése faite est approximative et ne devra étre
appliquée qu’avec prudence et discernement. En fait,
il n’existe pas de proportionnalité entre les déformations
et les pressions du sol, puisque les modules cedométri-
ques des sols augmentent avec les pressions appliquées
et ne sont pas constants. De plus, la relation (6) suppose
que chaque point de la poutre, déposée sur le sol, se
comporte indépendamment des charges existantes dans
les environs. Or on sait, par I'étude des déformations
des sols, que le tassement des différents points d’une
fondation n’est pas simplement proportionnel a la pres-
sion qui se produit sous la surface de contact sol-
fondation, mais dépend de la répartition des pressions
dans le sol, sous I'influence des différentes charges appli-
quées a la surface.

L’expérience a démontré, par exemple, que la partie
centrale d'un radier d’un grand réservoir d’huile fondé
sur du sable s’est tassée plus que les bords, bien que,
sous la charge, des pressions uniformes s’étaient pro-
duites. Le coeflicient de raideur était donc plus petit
au centre que sur les bords, alors que les propriétés du
sol étaient les mémes dans toute I'étendue du massif
considéré. Si la fondation avait été réalisée sur de I'argile
plastique, ¢’est 'inverse qui se serait produit : les bords
se seraient plus enfoneés que le centre et le coeflicient
de raideur aurait été plus grand au centre qu’au bord.




En d’autres termes, le coeflicient de raideur dépend
de nombreux parameétres, parmi lesquels :

— Dintensité de Ueffort appliqué ; suivant que les charges
sont faibles ou fortes, le coefficient de raideur peut
prendre des valeurs différentes ;

— la vitesse et la durée d’application des charges: par
exemple, pour un sol susceptible de consolider, les
déformations augmentent au cours du temps, alors que
les pressions appliquées sur le sol restent constantes,
par conséquent, K diminue ;

— la répétition des charges : si une charge est appliquée
plusieurs fois, les déformations augmentent avec le
nombre d’application de la charge, par conséquent le
coeflicient /K diminue ;

— les vibrations au voisinage de I'endroit ou est considéré
le coefficient K : dans les sables, ce phénomene est a
prendre en considération et peut provoquer des défor-
mations appréciables et, par conséquent, des diminu-
tions de K ;

— I'immersion ou non du sol: dans un sol immergé, le
coefficient de raideur /K est moindre ; il vaut alors un
peu plus de la moitié¢ du coefficient de raideur K d’un
sol sec ou humide. Cette réduction correspondant a la
diminution du poids spécifique du sol immergé.

I est évidemment impossible de tenir compte de tous
ces faits si I'on désire énoncer une hypothése simple,
se prétant 4 une mise en équation permettant des cal-
culs pratiques. C’est pour cette raison que I'on simplifie
le probléeme a 'extréme en admettant que '’hypothése
exprimée par la relation (G) soit applicable dans certains
cas déterminés. Le praticien ne doit cependant pas
oublier que la définition du coellicient de raideur néglige
I'effet de facteurs importants.

Cela étant, on peut, d'une facon générale, admettre
que le coeflicient de raideur d’'un sol de fondation est
d’autant plus petit que la pression est grande et que
la surface de fondation est importante. En pratique,
K peut varier de 0,5 4 12 kg/cm3.

Divers auteurs ont essayé de donner des formules
approximatives permettant de se faire une idée de I'ordre
de grandeur du coeflicient A dans chaque cas particu-
lier.

a) L’ingénieur italien Straub a proposé comme loi géné-
rale :

K=C, d< .-0o—P

formule dans laquelle d est le diamétre moyen de la surface
chargée, o la pression moyenne de la surface chargée, Cp un
coefficient dépendant de la nature du terrain et de la pro-
fondeur de la fondation (on le détermine en faisant d =1
et 0 =1 dans la formule), enfin o et B des coefficients qui
dépendent de la nature du sol et qui varient entre a = 0,75 ;
B = 0,25 pour un sol cohérent compressible et o = 0,25 ;
B = 0,75 pour un sol pulvérulent peu compressible.

o'~

b) Kagler et Scheidig ont cherché, au moyen de formules
approchées, a établir une relation entre le coeflicient de
raideur /{ et le module cedométrique £, des sols, déterminé
en laboratoire. Ils ont ainsi trouvé :

1) pour une surface de grandeur infinie, z étant I'épaisseur
de la couche compressible, on peut admettre que :

Lk,

K =

)
2) pour des surfaces circulaires ou carrées, on aurait :

o F,

K =
- d

d étant-le diamétre de la surlace circulaire ou le ecoté
de la surface carrée et o étant un coeflicient variant
avec l'¢paisseur de la couche compressible, de 3
(pour z =d) a 2 (pour z = o0} ;

P2
P1
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Coupe dans le sol

Sable compécf "

Argile compressible
I— ou tourbe ——

Fig. 3.

3) pour une bande de longueur infinie et de largeur b:

L

#
- b

avec B variant, avec I’épaisseur de la couche considérée,
de 1,82 (pour z = b) a 0,54 (pour z = 20-b).

Si on introduit cette valeur de /A dans l'expression
donnant la longueur élastique de la poutre, dont il sera
question plus loin, on a :

4 EI

k=\/ 5z,

et si on remarque que B intervient par sa racine qua-
trieme, qui a pour valeur moyenne 1, on a:

" ‘/E
\ E,

¢) Enfin, Vogt a indiqué les formules suivantes, pour
des valeurs moyennes du coeflicient de raideur :

1) Plaque circulaire :

K—=1,302. 2
Vo

Q étant la surface de la plaque.
2) Plaque rectangulaire :

K=1,33":

b ¢tant la largeur de la plaque et a sa longueur.




Les formules ci-dessus sont applicables a des fonda-
tions isolées, de surface connue ; lorsque 'on doit consi-
dérer la fondation comme un tout, formé de plusieurs
semelles, on peut introduire dans les formules les dimen-
sions totales de la fondation.

(’est Terzaghi (1883-1963) qui a publié I’étude la plus
complete sur les valeurs des coeflicients de raideur. Cet
auteur (1955) ne donne pas seulement les coeflicients
de raideur verticaux pour une poutre horizontale, mais
aussi les coeflicients de raideur horizontaux pour des
ouvrages verticaux tels que des pieux ou palplanches.

A cet effet, il introduit, pour les argiles, la notion de
bulbe de pression, qu’il définit comme étant la zone
du sol soumise a des efforts de compression sous Peffet
d’une pression p appliquée de I'extérieur.

Si b est la dimension d’une plaque appuyée sur le sol,
il définit un bulbe de pression dont I'influence se fait
sentir jusqu’a une profondeur y. Si, ensuite, on considére
une plaque de dimensions B = n b, le bulbe de pression
a une profondeur maximale de ny. Dans le premier cas,

. J
on a un coeflicient ky = P et dans le second cas, ce
Y

. z
coefficient vaut =+ On a donc :

ny

B

ka(b) = & + ks(B).
b
Si on admet que B =1 pied ou 32,48 cm, on peut écrire :
1
ks = F - ks 1)-

En fait, ks est un coeflicient relatif a4 une plaque de lar-
geur b et de longueur [, tandis que ks1y est le coeflicient de
réaction d'un sol pour une plaque de largeur 1 pied et de
longueur [. Terzaghi admet donc que pour les argiles, le
coefficient de raideur vertical des sols est inversement pro-
portionnel a la dimension b de la plaque- transmettant les
efforts au sol, et cela, quelle que soit la’ profondeur consi-
dérce.

Il propose ensuite une formule permettant de relier le
coefficient kg (1) au coefficient de réaction ks (1) pour une pla-
que carrée de coté 1 pied. Cette formule est la suivante :

1405

ksq) = /Zv(l)- 151 °

toute substitution faite, on obtient :

1+ 0,5

ks = EY(I) 2 T; W

Si [ est grand par rapport & b, on a:

- 1
]\'s = /\‘.v(]) ) ﬁ ¢

L . o .
T'erzaghi propose pour kg1y les valeurs suivantes :
g (1)

1) pour les argiles consistantes, 2,4 kg/em?;

2) pour les argiles trés consistantes, 4,8 kg/em3
3) pour les argiles dures, 9,6 kg/cm3.

Les formules ci-dessus conduisent, pour les argiles trés
consistantes, aux valeurs ci-apres de kg en kg/em?

4

[ (m) 0,30 1 B 10 20
b (m)

0,30 4,8 3,68 3,3 3,25 3,25
1 1,45 1% ) 1 1 1

5 0,29 0,22 0,2 0,2 0,2
10 0,145 0,11 0,1 0,1 0,1
20 0,072 0,055 0,05 0,05 0,05

Si l'argile est consistante, il faut multiplier ces valeurs
par 0,5.
Si l'argile est dure, il faut multiplier ces valeurs par 2.

Pour les sables, Terzaghi estime que le coefficient de

raideur ks pour une plaque de dimensions T est relié au

: ] . 1 1
coefficient %s(1) pour une plaque de dimensions Ll , par

la relation suivante :

b 4 1\2
]l'x:I\'s(l)'< j; );

dans cette expression, b doit s’exprimer en pied.
Terzaghi estime que le coefficient ks(1) est égal au coeffi-

cient ks(1) pour une plaque carrée de 1 pied de coté. On est
done conduit a la formule résultante :

ou kg(1y peut prendre les valeurs suivantes :

1) pour un sable peu compact et peu dense, humide ou
sec, ks1) = 1,3 kg/em?;

2) pour un sable moyennement compact et moyennement
dense, humide ou sec, ks = 4,2 kg/cm3 ;

3) pour un sable compact et dense, humide ou sec,
ks = 16 kg/cm3.

Si le sable est immergé, les valeurs ci-dessus deviennent
respectivement :

0,8 kg/em?® pour un sable peu compact :

£ ;
2,6 kg/em® pour un sable moyennement compact ;
9,6 kg/em? pour un sable compact.

Les formules ci-dessus conduisent, pour un sable moyenne-
ment compacl, sec ou humide, aux valeurs ci-apres :

ks (kg/em?) b (m)
4,15 0,3
2,66 0,5
1,76 1
116 5
1,04 10
1,04 20

Si le sable est peu compact, il faut multiplier par 0,4.
Si le sable est tres compact, il faut multiplier par 2,6.
Sile sable est immergé, il faut multiplier par 0,6 environ.




Terzaghi envisage ¢galement le coeflicient de réaction
horizontal k.

; S ik o
Dans le cas des argiles, 'auteur propose ky = ka, - i ou

kn, est le coefficient de réaction horizontal pour une
plaque de 1 pied de largeur et ol b est la largeur en pied
de la plaque ¢tudiée. Terzaghi estime que kn, est approxi-
mativement égal a ks,. En reprenant la valeur de ks, admise
précédemment, on est conduit a la formule :

On obtient les valeurs de k en kg/em?® du tableau de la
page 4, pour les argiles trées consistantes, en fonction de [
et de b.

Pour les sables, tous les auteurs sont d’accord pour admet-
tre que le coeflicient de réaction horizontal augmente avec
la profondeur. Certains admettent une variation de k; para-
bolique en fonction de z ; d’autres, exponentielle, et d’autres
encore, linéaire. Terzaghi admet une variation linéaire, et il
donne :

kn = ny - %

ou | est la largeur de la plaque verticale considérée ;
z la profondeur du point ot on évalue ky ;
n; un coeflicient qui vaut :

1) 0,22 kg/em?® pour les sables peu compacts, secs
ou humides ;

2) 0,67 kg/em? pour les sables moyennement com-
pacts, secs ou humides ;

3) 1,80 kg/em?® pour les sables compacts, secs ou
humides.

Si le sable est immergé, ces valeurs deviennent respective-
ment 0,13, 0,45 et 1,1 kg/cm3.

On obtient les valeurs suivantes, en kg/cm?, pour un sable
sec ou humide moyennement compact :

b (m) 0,3 1
z (m)
0,3 0,67 0,205
1 2.23 0,68
10 99,8 6,8

Si le sable est peu compact, il faut multiplier par 0,4.
Si le sable est tres compact, 1l faut multiplier par 2,6.
Si le sable est immergé, il faut multiplier par 0,6 environ.

Terzaghi obtient ces valeurs de nj en exprimant que
np = A - ys/1,35

ou A est une constante qui dépend de la densité du sable
et ou ys s’exprime en 7T'/pied?®.

A vaut en moyenne 200 pour un sable peu compact ;

600 pour un sable moyennement
compact ;
1500 pour un sable trés compact.

Aucun autre auteur n’a, a notre connaissance, publié
d’une maniére aussi complete des valeurs de coeflicient
de réaction des sols. On trouve cependant assez souvent,
dans la littérature, des valeurs de K établies pour des
cas particuliers. Chaque fois, on constate une concor-
dance suflisante, en ce qui concerne 'ordre de grandeur,

avec les valeurs de Terzaghi.

Dans certains cas, lorsque la chose est possible, le
coefficient de raideur du sol est déterminé par compa-
raison avec des ouvrages existants. Cect a été fait en
Italie, lors de la construction d’une grande cale séche,
fondée sur un terrain sablonneux a Naples. Dans ce
but, on s’est servi d'une cale séche construite 4 Venise,
qui présentait des dimensions semblables a celle de
Naples et qui reposait, comme elle, sur un terrain sa-
blonneux. Les mouvements de la cale séche de Venise
furent mesurés, au cours de remplissages et vidanges
répétés, en cing points a I'aide d’un niveau télescope
agrandissant 80 fois et placé & une distance suffisante
pour ne pas étre influencé par les mouvements du sol.
Les coeflicients de raideur du sol, déduits de ces mesures,
oscillaient entre 0,55 et 0,95 kg/em?®. La valeur adoptée
pour les calculs de la cale séche de Naples a été prise
égale a 0,75 kg/em3.

Il y a lieu de noter enfin que, dans les calculs pra-
tiques, le coellicient K intervient, comme on le montrera,
par la valeur [, longueur élastique de la poutre, sous
forme d’une racine quatriéme, dans laquelle on trouve,
au dénominateur, le coellicient K multiplié par lalargeur
de la poutre, et, au numérateur, le moment d’inertie
et le module d’¢lasticité de la poutre de fondation.

Ces faits expliquent que les erreurs commises lors du
choix de K ont relativement peu d’influence sur les cal-
culs qui doivent du reste, pour les raisons exposées,
étre appliquées avec beaucoup de réserve, en admettant
qu’ils sont seulement susceptibles de donner des ordres
de grandeur.

4. Calculs pratiques

Afin de résoudre les problémes qui se posent en pra-
tique, on va, dans ce qui suit, indiquer les méthodes
générales permettant de calculer les poutres de sections
constantes reposant sur appuis continus uniformément
élastiques (K = constante), de longueurs finies et sol-
licités par des charges quelconques.

Les calculs qui seront faits sont tout a fait généraux.
IIs supposent que les réactions entre le terrain et la
poutre puissent &tre indifféremment des compressions
ou des tractions. En pratique, il ne peut en &tre ainsi,
puisque la poutre n’est pas liée au sol. Cependant,
comme les calculs ne tiennent pas compte du poids
propre de la poutre, qui est directement équilibré par
les contraintes de compression uniforme qu'il produit
sur le sol, on pourra superposer l'effet de ces compres-
sions avec les tractions. Les compressions dues au poids
peuvent étre diminuées des tractions dues a Ueffet de
la charge. Cela n’est évidemment applicable que pour
autant que les compressions dues au poids soient supé-
rieures aux tractions dues aux charges.

5. Poutres sollicitées par des charges concentrées

[’équation générale de D'élastique (5) se simplifie et

heul s’éerire :
I

1w
E1’(1,—lfj:—1(.1,.;" . ()



Fig. &.

et sa solution générale est :

w=Cl~ch£-005£—}—C2-ch£ ~sini—{—
le le L Le
—’;—C;,-shlE -cos% +C4-slz%-si11%-

Dans cette expression:

L J&Ed
=V T2

s’appelle la longueur élastique de la poutre et a effec-
tivement les dimensions d’une longueur. Elle ne dépend
que des caractéristiques de la poutre et de son appui
continu.

Cy, Cy, Cy et Cy sont des constantes a déterminer
dans chaque cas particulier.

On peut, a partir de I'équation de I'élastique, déter-
miner la pression o sur I'appui, le moment fléchissant
et Ieffort tranchant au droit de chaque section de la
poutre. On trouve ainsi :

cr:K(C1~chlE ~cosi—r+6'2~clz; ~sinlE

7 x . & T
+C3~shlfe -cosl:+64-shl; ~sml:>

M= ‘(—CposhZ - sinZ 4+ Cpsh i cosZ
e A l

e €

—C'3~s]lg . sing +C4-ch%-cos;—f>

x Kbl, z & z
T=— 5 ((CI—C4) Shl—e - cos E+(CI+C4)~chZ .
siné—t +(Cy+Cy) sh i -sin %—(Ca—CE) ch %mos %)

On constate que pour résoudre un probléeme donné,
il faut connaitre le coeflicient de raideur K et déter-
miner les quatre constantes Cy, C,, Cy, C,.

6. Poutre de longueur infinie sollicitée par une seule
charge concentrée

Ce cas, qui est théorique, est a la base de 'étude de
la poutre de longueur finie.

On considére une poutre horizontale de longueur infi-
nie chargée par une force verticale P (lig. 4). On place
Iorigine de I'axe des @ au droit de la force. On constate
facilement que dans ces conditions on a :
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pour z =0 :

dsy . P

& =0 =3
pour x = oo

M=0; T=0

Ces quatre conditions permettent de déterminer les

quatre constantes des équations générales qui valent :

5 P
b =ly=—Cy==—Oi= s
On trouve alors :
p cos % -+ sin :Tz p ”
C=2%, P =20, “(E)
1
e
P cos Te P
T = 3 == fr (T)
T
e
sin w10 cosE
v — Pl, le l Pl x
M 2 1 ()
L

Les trois fonctions o (%): fr (Ii) et far (li) dépendent

L

x . .
seulement du rapport 7, qui est un nombre abstrait.
e
On peut donc tracer des courbes qui donnent directe-

o-b-l M T

ment les valeurs de =p de Pl et 5 correspon-
dant aux valeurs numériques des fonctions, indépen-
damment des autres données du probleme particulier
envisagé (fig. 5).

La sollicitation de la poutre est entiérement connue
dés que l'on s’est fixé sa longueur élastique [,. On
remarque que o, M et 7" s’annulent respectivement aux

points ayant comme abscisses des valeurs de + données

le
1 1 1 s
par (n *—Z> T, (n 4+ 7}) T et (n + —2) ™, n étant un

nombre entier positif.

1. Lignes d’influence de o, T et M en un point quel-
conque de la poutre de longueur infinie sollicitée
par une charge concentrée

Il est facile de voir que les courbes roprésentatives
des trois fonctions [, far et fp sont, 4 une certaine
échelle, les lignes d’influence de o, M et 7 en un point
quelconque de la poutre,
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En effet (fig. 4 et 5), st on considére, par exemple,
la courbe représentative de fg, on constate qu'une charge
placée en O produit en un point A une pression qui
vaut, a une certaine échelle, o (i)x alors quesi la charge
se trouvait en A elle produirait en O, a une certaine
échelle, une pression qui vaudrait également fq <l1) » par

e
simple décalage de la courbe considérée initialement.

Un raisonnement analogue peut étre fait pour les
courbes représentatives des fonctions [p et fi.

Iéchelle des lignes d’influence est obtenue pour les
pressions en multipliant les ordonnées du diagramme

P ;
correspondant par b_lg; pour les moments fléchissants,
en multipliant les ordonnées du diagramme correspon-
dant par Pl et pour les efforts tranchants en multi-
pliant les ordonnées du diagramme correspondant par P.

8. Poutre de longueur infinie sollicitée par un couple
appliqué en un point quelconque de la poutre

On suppose que la poutre de longueur infinie est sol-
licitée en un point quelconque par un couple C et on
recherche les lignes d’influence de o, 7" et M dues a
ce couple, supposées mobiles. En dehors de l'intérét
pratique que peut présenter la solution de ce probléme
dans certains cas particuliers, on verra qu’elle peut
servir 4 I'étude de la poutre de longueur finie, sollicitée
par des charges quelconques.

Les lignes d’influence, pour un couple, sont obtenues
trés simplement a partir de celles qui ont été tracées
précédemment pour une charge concentrée, par appli-
cation de la propriété générale suivante, démontrée dans
les cours de stabilité de construction :

La ligne d’influence d’un élément quelconque, pour
un couple mobile, a comme ordonnées les dérivées par
rapport a I'abscisse de la section en laquelle se trouve
le couplé des ordonnées de la ligne d’influence du méme
élément, sous I'effet d’une charge verticale mobile.

L’application de cette propriété permet donc de dire
que : la ligne d’influence des M de la poutre sollicitée
par un couple mobile est, & une certaine échelle, la ligne
d’influence des 7' de la poutre sollicitée par une charge
verticale mobile ; la ligne d’influence des 7" de la poutre
sollicitée par un couple mobile est & une certaine échelle
la ligne d'influence des o de la poutre sollicitée par une
charge verticale mobile ; enfin, la ligne d'influence des o

P2
Py f3
Fi  F2 F3  F4
______ 1 __1__ A B v __t____
nle nle
4 l 4
nle nle
2 2

Fig. 6.

de la poutre sollicitée par un couple mobile est, 4 une
certaine échelle, la dérivée de la ligne d’influence des o
de la poutre sollicitée par une charge verticale mobile.

En d’autres termes, par dérivation des équations éta-
blies pour la charge verticale, ou aura :

C sy
M=gir(7);

2z B\
Le
: : obl; M Tl
Les courbes représentatives de c ' T C

sont données a la figure 5.

9. Poutre de longueur finie sollicitée par des charges
quelconques

a) Meéthode générale

En pratique, 1l n’existe pas de poutre de longueur
infinie mais bien des poutres de longueur finie. C’est ce
probléme qui doit étre résolu et qui a fait I'objet, dans
ces derniéres années, de diverses recherches.

La méthode mathématique directe, qui consiste a
déterminer les constantes d’intégration des équations
générales en tenant compte des conditions aux extré-
mités, donne liew & un nombre excessif de relations
lorsque I'on veut traiter le cas général de la poutre sol-
licitée par plusieurs charges. Il faut donc résoudre le
probléme plus simplement. C’est ce qui a été fait par
divers auteurs qui ont cherché a se servir des lignes
d’influence de la poutre de longueur infinie. On va
résumer les diverses méthodes qui permettent, par des
procédés simples, de résoudre facilement le cas de la
poutre de longueur finie.

b) Méthode de Bleich

On considére une poutre de longueur finie AB solli-
citée par des charges quelconques Py, Py, ... (fig. 6).

On calcule d’abord la poutre de longueur infinie et
on trouve en A et en B des moments fléchissants et des
efforts tranchants My et T4, Mp et Tp.

On détermine ensuite des forces Fy, Fy, Fy et Fy qui,
appliquées a la poutre de longueur infinie, donnent en
superposant leurs effets & ceux de P, Py, ..., des
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moments fléchissants et des efforts tranchants en A et B,
égaux a 0; ce qui correspond aux conditions d’extré-
mités de la poutre de longueur finie.

Pour obtenir, par exemple, M4 = 0, on considére la
ligne d’influence des M en un point quelconque O de
la poutre infinie. On y superpose la poutre finie AB,
en mettant A au droit de O; le point B vient a une
distance de Porigine O égale a TZ

e

On peut placer les forces auxiliaires F d’une fagon
arbitraire, mais les calculs se simplifient en choisissant
des positions particulieres telles que les lignes d’influence
aient certaines ordonnées nulles. Bleich place les forces
auxiliaires /' de telle facon que l'abscisse de F, soit
= g l, et celle de F2,—14-r l,; Iy et I7y occupent des
positions symétriques par rapport a AB.

On exprime, ensuite, que M, =0 et Mz =10 en
faisant la somme des efforts dus aux charges.

Si on considére, ensuite, la ligne d’influence de 7" en O,
on peut écrire de la méme facon les équations exprimant
que 74 =0et Ty = 0.

Les quatre équations ainsi obtenues permettent de
déterminer Iy, Iy, I’y et Fy, et le probléeme est résolu.
Le trongon A de la poutre infinie, chargée des forces P
et [7, est identique a la poutre finie AB chargée des
forces P.

On remarque, par 'examen des lignes d’influence de
la poutre de longueur infinie, représentée a la figure 5,
que, lorsque [ > 3l, environ, il y a, dans chacune des
équations, des termes négligeables parce que I'effet des
forces auxiliaires devient faible aux extrémités oppo-
sées ; elles se réduisent alors a :

A"[,[
F1=~0,05;- 1,
1 -
Fo=—t1612 " T4
. 1 .
o=t oo T
1 x‘[/;

Fo=— 0,002 T,

c) Méthode du professeur Magnel (1889-1955)

Le professeur Magnel, de I’Université de Gand, a
appliqué (1938) la méthode de Bleich a la recherche
des lignes d’influence en tous les points d’une poutre
qui n’est infinie que dans une seule direction. 1 usage
de ces lignes d’influence permet de simplifier la méthode
de Bleich. Iin eflet, devant traiter le cas de la poutre AB
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(fig. 7), il suffit de I'assimiler & un trongon de poutre
infinie dans un sens, & laquelle on ajoute deux forces
Fy et I'y placées arbitrairement.

On placera de préférence /'y en un point ou la ligne
d'influence de M en B a une ordonnée nulle et F, en
un point ou la ligne d’influence des 7" en B a une
ordonnée nulle.

Dans ces conditions, on écrit facilement les deux
équations qui expriment Mz = 0 et 75 = 0, et chacune
de ces équations ne renferme qu'une inconnue; on a
donc la solution exacte explicitement.

On trouve aux tableaux I, II et III les valeurs des
coeflicients d’influence calculés par le professeur Magnel.

d) Méthode par annulation directe des efforts d’extrémités

M. E. Decarpentrie, ingénieur a la Société d’Etudes
Verdeyen & Menart, a étudié la sollicitation de la
poutre de longueur finie sollicitée & une de ses extré-
mités par une charge concentrée ou par un couple
(fig. 8a et b) ; ces deux cas sont trés simples et peuvent
étre facilement résolus a partir de I’expression générale
de la déformation w, solution de I'équation différentielle
(5) du paragraphe 2. Il suflit de déterminer les quatre
constantes d’intégration pour ces deux cas, grice aux
conditions d’extrémités de la poutre, qui sont :

pour la charge concentrée a4 une extrémité :

T = i‘l;l == 0 TA = P

_1‘:] L][B:() T],':O
pour un couple a une extrémité :

r = .‘[J :*(‘ 7‘_1:0

r == Mp =20 Tp=20

On obtient ainsi les coellicients d’influence f,, fi et [r
qui sont donnés dans les tableaux IV, V et VI en fone-

. L @
tion de A = — et de o« =

Lo {

Le calcul de la poutre de longueur finie peut alors

s'exéeuter en deux étapes. La premiére consiste a
considérer la poutre de longueur semi-infinie sollicitée
par les mémes charges verticales et d’en calculer les
diagrammes des o, M et 7 entre les points A et B
par la méthode Magnel. La seconde étape consiste i
superposer aux valeurs de o, M et 7" trouvées ci-dessus,
celles qui correspondent au couple Cy et a la force Fy
appliqués a l'extrémité B de la poutre de longueur
finie [ et qui annulent respectivement a cetle extrémité
le moment fléchissant et P'effort tranchant, ce qui réta-
blit les conditions d’extrémités de la poutre de longueur

Mp=0 et Ty =0 (fig. 9).

finie :
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3 16 -0,002 [-0,012 [-0,030 [-0,057 [-0,092 [-0,135 [-0,187 [-0246 |-0388 0,558 |-0,750 |* Q%% [+0,837 |+0,643 [+0,472 [+0,324 |+0,208 [+0.114 | 0,044
1.8 +0011 [ +0,014 [ +0,009 [-0,004 [-0,024 [-0,053 |-0,099 [-0135 |-0247]-0,391 |-0,561 |-0,734 |5 319 <0833 [+0,641 [+0470 [+0,325 [+0,206 [+0,112
w20 +0,019 [+0,031 [+0,036 [+0,033 [+0,023[+0,006 |-0,019 [-0,051 |-0,137 |-0,253 |-0,398 |-0,569 |-0,762 |* 333 [+0,827 [+0,635 [+0,466 [+0,321 |+0,203
E 22 +0,023 [+0,040 [+0,050[+0,055 [+0,053 [40,045 |+0,030 [+0,008 |-0,054 |-0,144 |-0,262 |-0,408 |-0,597 |-0,771 |* 334 |+0,820(+0,630 [-0.461 |+0.318
% 24 +0,023 [+0,043 [+0,057 |+0,065 [+0,067 [+0,058 [+0,061 |+0,048 [+0005 |-0,061 [-0154 |-0,273 [-0419 |-0,589 |-0,780 |SLO0TE 120,814 [+0,625 |+0458
26 #0023 /0,043 [40,057 |+0.069 [+0076 |+0,078 [+0,077 | 40,071 |+0,045 |-0.002 |-0,071 |-0165 |-0,284 |-0,429[-0,598 |-0.788 |*}312 [+0.809 [+0,621
Wi 28 +0,021 |+0,040 [+0,055 [+0,067 [+0,076 [+0,081 [+0,083 [+0,082 [+0,068[+0,038 [-0,012 |-0,08 |-0.175 |-0,293-0,437 |-0,605|-0,793 |*}3%5 | +0.806
o EED +0.018 |+0,035 |+0049 [+0,051 [+0,070 [+0,077 [+0,082 [+0.084 [+0,079 |+0,062 |+0,030-0,020 |-0.090 |-0183 |-0.300 |-0.443 [-0,610 |-0,797 |*5303 |
Sl 3z +0,016 |+0,029 |+0,042 [+0,053 [+0,052 [+0,070 [+0,075 [+0,080 [+0,081 [+0,078 [+0,055 [+0,022 [-0,026 |-0,097 |-0,169 |-0,305 |-0.447 |-0,613 |-0.799
L [3z #0024 [+0,034 [+0,04% [+0,052 [+0,060 [+0,067 [+0,072 [+0,078 [0,077 |+0,068 |+0,049 [+0,015 |-0,033 |-0,102 |-0,193 |-0,309|-0450 |-0,615
w38 +0,035 [+0,042 [+0,049 [+0,055[+0,061 [+0,071 [+0,075 [+0073 [+0,064 [+0,04 [+0,012 |-0,037 |-0,105 |-0196 |-0.311 |-a451
AR +0,040 [+0,04£ [+0,050(+0,060 [+0,068 [+0,071 [+0070 [+0.060 [+Q.042 [+0,009 |-0,040 |-0,107 |-0,198 |-a312
20 +0,041 [+0,050 [+0,058 [ 40,066 [+0,069+0.067 [+0,058 +0,040 [+0,007 |-0,041 |-0.108 |-0.198
| ¢z +0,0£0{+0,049 | 40057 [+0,06 |+0,068 | +0,066 [ +0,057 [+0,009 [ +0,007 |-0,042]-0,109
D[z A [\ 40,039[+0,048 [+0,056 [+0,063 [+0.067 [+0.065 [ +0,056 [+0,038 [+0,006 |-0,042
& [s '\]0 +0,039 40,047 |+0,056 [+0,063 [+0,066 [+0,065 [+0,056 [+0,038 [+0,006
R T +0.039 |+0,047 [+0,056 [+0.063 [+0,066 [+0.065 [+0,056 [+0,038
o] INFLUENCE DE T eN o sonfoseaneosolsoul s o
Qe 40,040 [+0,048 [+0,056 | +0,064 |+0,067
W s6 - 40,040 |+0,049 [+0,057 [0,
S VALEURS DU COEFFICIENT Ky DANS 1T=-12-'KT e Trositooes
% 60 : +0041 [+0,049
&2 | [ [ [ T T T T T T T T 1 w0




TasrLeau III

LIGNE D'INFLUENCE DE M AU POINT : §
ax | 0 01 {C2 (03|04 (0506 (0,708 (10 [1,2 (1.4 [16 [1.8[20 2,224 2628 |30
~ 0 0 +0,360[+0,651 | +0,877 | +1,036 |+1,162 | +1,240[+1,280 [+1,287 [+1,241 [+1,125 +0,972 (+0,808 |+0,644 (+0,492 | +0,360 |+0,244 |+0,152 [+0,080 [+0,028
— .
= 0,2 0 -0.032 |-0,122 [ +0,135 | +0,336 | +0,504 [+0,630 | +0,720 [+0,780 [+0,833 [+0,811 [+0,745 |+0,651 +0,545 (+0,439 | +0,340 | +0,249 [+0,173 [+0,110 [+0,061
E 0,4 0 -0,025 |-0,095(-0,209 (-0,369 [-0,158 [+0.016 [ +0,156 |+0.268 +0.421 |+0,495 (40,513 (40,492 [+0,443 |+0,384 |+0,320 (0,252 [+0,193 [+0,120 [+0,096
0.6 0 [-0018 [-0071 |-0158 |-0,280 [-0429 [-0,610 [-0,420 [-0,256 |-Q002 |+0,167 |+0,270 |+0,322 +0,335|+0,322 {+0,294 [+0,253 [+0,210 [+0,168 [+0,128
2 0.8 0 [-00!13 |-0050 |-0.113 |-0,202 |-0,315 |-0.452 [-0,616 [-0,804 [-0,450 [-0,184 [-0,007 [+0.133 |+0,210 |+D,249 |+0,258 |+0,246 |+0,223|+0,192 |+0.160
1.0 0 -0.008 |-0,033 (-0,076 |-0,137 [-0.217 |-0,317 [-0,439 -0,581 [-0933 [-0,571 [-0.291 (-0,084 |+0,059+0,153 |+0,205 |+0,226 |+0,226 [+0,211 [+0,186
L 1.2 0 0,004 |-0.019 |-0,046 |-0,084 |-0,138 |-0,206(-0,291 |-0,395 |-0,659 |-1,006 [-0,635 |-0,346 |-0,129 |+0,024 |+0,127 +0,186 |+0,214 (+0,219 [+0,208
= 1.4 0 -0,002 |-0,008 [-0,022 |-0,044 |-0,075 |-0,118 (-0,174 |-0,244[-0,433 [-0,694 [-1,037 {-0,662 [-0,368 |-0,146 +0,012 |+0,117 [+0,180 [+0,210 [+0,217
% 1.6 0 0 -0.002 |-0,006 (-0,013 |-0,029|-0,051 [-0,084 |-0,126 [-0,253 [-0,441 [-0,696[-1,043 -0,667 [-0,371 (-0,149 [+0,009 [+0,116 |+0,179 |+0,210
1.8 0 +0,002 |+0,004 |+0,006(+0,007 [+0,004 (-0,003 |-0,017 {-0,039 [-0,115 [-0,241 [-0,404 |-0,693|-1,037 -0,661(-0,367 (-0,146 |+0,011 [+0,117 |+0,180
wJ 2.0 0 +0,002 (+0,007 |+0,014 [+0,022 [+0,026 [+0,029 |+0,028 (+0,022 [-0,016 [-0,093 [-0,221 -0,414-|1-0,679 (-1,026 (-0,653 (-0,361 [-0,143 [+0,013 [+0,118
&) 2,2 0 +0,003 |+0,009 [+0,018 |+0,030 [+0,040 [+0,049 |+0,067 [+0,061 (+0,052 [ +0,014 -0,067(-0,200|-0,396 |-0,665|-1,016 |-0,646(-1,002 [-0,638 |-0,353
o 2.4 0 +0,003 |+0,009 {+0,019 |+0,033 | +0,045 [+0,060 |+0,072 {40,083 [+0,094 [+0,084 [+0,0£2 -0,043(-0,180 |-0,381 |- 0,654 [-1,007 |-0,641 [-0,354(-0,138
L 2,6 0 +0,003 |+0,009 [+0,019 |+0,033 [+0,047 [+0,062|+0,078 [+0,093 [+0,116 (+0,125 [+0,112 [+0,065 -0,024 [-0,165 |-0,370 |-0,646 |-1,002 |-0,638 [-0,353
2,8 0 +0,002 (+0,008 |+0,018 [+0,031 |+0,044 |+0,060(+0,077 {+0,093 [+0,124 +0,145 |+0,151 |+0,133 [+0,083 |-0,010 |-0,155 |{-0,363 |-0,641 -0.999|-0,637
w 3.0 0 +0,002 1+0,007 [+0,016 |+0,029 [+0,040 |{+0,055 [+0,071 [+0,087 | +0,120 |+0,149 |+0,168 +0.170 | +0,149 [+0,095(-0,001 [-0.149 [-0.358 [-0,639 |-0,998
=z 3.2 0 +0002+0,006 [+0.013 |+0,023 |+0,034 [+0,048 |+0,062 [+0,078 [+0,110 [+0,141 [+0,168 |+0.184 |+0,183 |+0,159 |+0,103 |+0,00¢ -0,145 |-0,357 [-0,639
2
3.4 +0.005 |+0,011 |+0,019 [+0,028 |+0,039 |+0,052 [+0,066 |+0,096 [+0,127 [+0,157 [+0,181 [+0,195 |+0,191 |+0,166 |+0,107 |+0,007 -0,143 |-0,336
@ 3.6 +0,015 |+0,022 | +0,031 {+0,042 [+0,054|+0,081[+0,109 [+0,139 |+0,167 [+0,190 [+0,201 +0,196 [+0,169 |+0,109 | +0,008 |- 0,144
=} 3.8 40,025 |+0,033 |+0,042 40,064 |+0,091 | +0,118 |+0,147 [+0,173 |+0,194 [+0,205 [+0.199 +0,171 [+0,110 [+0,008
E 4.0 +0,032 |+0,050(+0,071 (40,097 [+0,124 [+0,151 [+0,175 [+0,197 [+0,207 {+0,200[+0,171 [+0,110
4.2 /\ +0,037 |+0,054+0,075 [+0,100 |+0,126 |+0,154 |+0,178 [+0,198 |+0,207 +0,200 | +0,171
s L4 A ! +0,040|+0,056 |+0,077 |+0,102 | +0,128 |+0,156 |+0,179 [+0,199 [+0,208]+0,201
4,6 o +0,041 {40,057 |+0,078{+0,102 +0.128 |+0,155 |+0,179 [+0,199 [+0,208
4,8 +0,041 [+0,057 |+0,078 |+0,102 [+0,128 |+0,155 |+0,179 |+0,199
w
=) 5.0 +0,041 |+0,057|+0.078 [+0,102 |+0,128 [+0.155 |+0.179
5,2 INFLUENCE DE M EN 0 +0,040 (40,057 [ +0,077 [+0,102 [+0,128 | +0,155
Lél 5.4 +0,040 | +0,056 [+0,077 | +0.102 | +0,128
5.6 s 1 +0,039 [+0,056 |+0,077 | +0,102
O - ol : ;| 0.
S VALEURS DU COEFFICIENT Ky DANS iy 25 K S
6.0 +0.039 |+0,056
62 7 T T F | T 1 T [T 7

TasrLeav IV

POUTRE SUR SOL ELASTIQUE 5.2, L, ¢ (L
COEFFICIENT D'INFLUENCE DES PRESSIONS SUR LE SOL d.—:— A &
2| 0 [010 [0.20(0,30 [0,40 [0,50 0,60 [0,70 [0.80 0,90 |1,00
0 p#L,ﬂDO +3,400 |+2.800 |+2,200 [+1,600 [+1,000 |+0.400 | -0,200 | -0.800 |-1,400 - 2,000
< 6,000 -4.,800 |-3,600 ~2,400 | - 1,200 0 +1,200 |+2,400 |43.600 |+4.800 |+6,000
44,038 | 43,418 +2,800 +2,187 +1,583 +0.981 +0,386 | -0,206 -0,79¢ -1,383 -1,991
l -6,207 -4,879 [-3,590 «2.337 =111 +0.082 | 1,259 +2,422 |+3,577 | e¢727 +5.816
4,541 +3,650 |+2.801 +2,027 | #1293 |+0,%40 +0.199 |-0.285 [-0.735 [-1.168 -1,596
2 ~9.064 -5,940 |-3.428 -1.464 «0.036 +1,170 +2,030 2,700 +3,265 43,776 4,270
+6,038 | 44,285 |+2,755 | +1,512 +0,678 | +0098 |-0,256 |-0455 |-0,563 -0.627 |-0.679
3 -18.034 | -8.780 |-2.50¢ 1,158 +3282 +3,897 *3,746 +3,143 +2,498 *1,422 +0.506
+8,00¢4 [#4,704 +2,501 +0,863 - 0,063 -0.472 -0.570 -0.476 -0.320 |- 0.153 +0.032
‘ -32,000 |-11.360 | +0.351 +5.595 +6.595 +5,929 +5,024 [+2,525 | +0.955 | -0.440 -1,772
+10.019 | #5062 +1,987 +0.15¢ -0,571 -0.671 - 0,509 -0.295 |-0.110 +0.03¢ +0.167
5 ~50,085 |-12,092 |+5.553 |+10,369 | +9.025 +5,58¢ +2,894 +0.0889 -0.020 -0.885 =1,27%
12,000 | +5.,436 +1,310 -0.450 -0.803 -0.593 -0,298 -0,091 «0.01 +0.052 +0,073
6 =72.000 |- 10,281 [#12,333 |+14,256 |+9,388 | +£.032 |+0,864 [-0,432 |-0,691 - 0,468 |-0,099
+14,000 | +5.312 | +0.586 | -0,864 - 0,801 -0.395 |-0.103 |-0.019 |+0,042 | +0.026 |+0.,002
7 ~98,000 |- 5,860 419,629 [+16,366 | 7,595 +1,725 - 0,568 -0,833 -0.500 -0.127 -0,108
+16,000 [+4,990 |-0.093 |-1.066 -0.649 |-0,191 +0.001 +0,046 |+0.627 | +0,007 | -0,003
~128000( 1,181 +3,325 [+17,037 | +4.889 | -0.244 -1.139 -0.662 | -0,175 ) o
TaBreauv V
POUTRE SUR SOL ELASTIQUE Tpepip B L "=%-5' -
COEFFICIENT D'INFLUENCE DE L'EFFORT TRANCHANT 1:!: A=#
2 0 |010 (0,20 [0,30 |0,40 [0,50 [0,60 0,70 | 0,80 { 0,90 | 1,00
+1.000 | +0.630 |+0.320 |+0.070 |-0,120 |-0,250 [-0,320 [-0,330 |-0.260 |-0.170 0
0 0 +0,520 +0,960 41,260 +1,4L0 +1,500 +1.440 (#1260 +0,960 |+0,520 0
+1,000 |+0,627 |+0,316 +0,067 - 0,121 -0,250 -0.318 -0,326 |-0,276 |-0,168 0
' o +0,55¢ +0,977 +1,273 1,845 +1,497 1,429 1,229 40,945 | +0,525 0
+1,000 40,590 +0,268 40,027 -0,140 -0,244 - 0,290 -0,205 |-0,23¢ ~0,139 o
0 +0,743 +1.200 4,409 +1.516 +1.L5¢ +1,292 +1,05¢ +0,75¢ «0,402 0
+1,000 +0.L06 40,135 -0,069 -0.186 -0.223 -0,213 - 0,176 =0,135% - 0,065 0
3 0 L3N *1,8052 +1,89% *1,657 41,292 40,940 |[+0,559 [+0,206 |+0,098 0
+1,000 40,355 |-0,009 -0,170 -0,198 -0,175% - 0,145 -0,020 -0,029 -0,006 0
4 0 2,073 2,575 *2.238 +1,600 +1,000 +0,402 +0,086 | -0,087 =o.m 0
5 +1,000 00,242 ~0,111 - 0,207 -0,179 “0.n3 -0,053 -0.01¢ +0,007 #0,012 0
0 +2,908 |+3,09% 2,223 41,228 +0,5¢0 |+0,050 -0,09¢ -0,160 - 0,106 0
+1,000 +0,143 -0,171 -0,198 -0,130 -0.056 | -0,012 +0,006 + 0,009 | +0,006 0
6 L] +3.10 +3.369 [+1.928 +0,73¢ +0.08¢ |-0.143 | -0.15% -0,093 | -0,053 0
+1,000 40,059 [-0,200 -0,167 -0,078 <0,0176 | +0,006 40,008 | +0,005 |+0,001 0
7 0 vk, L69 43,395 *.L76 +0.20¢ -0.147 -0,182 -0.100 - 0,030 [«0.010 0
+1.000 -0,009 -0,2074 |-0.133 - 0,038 +0,002 +0,009 +0,005 +0,001 0 0
8 0 45,103 *3.101 +0,970 -0,037 -0,219 -0,128 -0.036 40,002 +0,006 0
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TasrLeau VI

POUTRE SUR SOL ELASTIQUE  mp:epiin Ehe weoic (b
COEFFICIENT D'INFLUENCE DU MOMENT FLECHISSANT s Ahl%_
2| 0 [0.10 |0.20 0,30 [0.40 [0,50 [0.60 [0.70 |0.80 | 0,90 [ 1,00
P o +0.081 +0.128 +0.147 | +0.144 | +0.125 40.096 | +0.063 | +0.032 | «0.009 0
0 C-I,ODD -0.972 | -0.869 |-0.784 -0.648 [-0.500 |-0.352 | -0.216 |-0.104 -0.028 0
0 +0.081 | +0.1274 | +0.1461 | +0,1428 [+0,1239 [+0,0951 | +0,0624 | +0.0316 0,009 0
1 -1.000 | -0.971 |-0.893 |-0.773 |-0.637 |-0.489 |-0,342 [-0,208 |-0,096 [-0.022 J
0 +0.0789 | +0,1208 |+0.1350 | +0,1287 | +0,1090 | +0,0813 | +0,0527 [ +0,0264 | +0,0073 [
2 -1.000 [-0.959 [-0.859 |-0.725 |-0.575 |-0.426 |-0.288 [-0,170 [-0,079 |-0.021 0
0 +0.0728 [+0.1025 |+0,1045 | +0,0906 |+0,0696 | +0,0476 | +0,0279 [ +0,0127 | +0,0032 L
3 -1,000 [-0,928 |-0,764 [-0,566 |-0,394 [-0.246 [-0.136 |[-0,06¢ | -0.022 =0.00¢ 0
0 40,0647 [+0,0804 [+0,0700 | +0,0504 |+0,0310 [+0,0156 | +0,0066 +0,0018 |+0,0002 0
4 -1,000 |-0.876 [-0.634 |-0,389 [-0,197 |-0072 [+0,018 | +0.019 |+0,017 [+0,006 0
5 0 +0.0581 |+0,0619 |+0,0444 | +0,0245 |+0,0120 |+0.0017 | -0.0007 |-0,0016 -0,0006 0
-1,000 -0.824 |-0,509 |-0,238 |-0,067 |+0,015 |+0,040 | +0,027 |+0.019 +0,006 0
5 0 40,0518 |+0,0468 |+0,0269 | +0,0102 [+0,0011 [-0,0020 |-0,0021 |-0.0012 |-0,0003 L
-1,000 |-0,761 -0,389 |-0,123 +0,008 | +0.042 | 0,036 |+0,020 [+0,008 |+0,002 0
0 +0,0456 | +0.03¢6 [+0,050 | +0,0029 [-0,0015 |-0,0018 |- 0.0010 | -0,0003 | +0,0001 0
7 -1.000 |-0.698 [-0.284 |-0,04¢ |+0,037 [+0,039 [+0,020 | +0,006 |«0,0002 +0,002 0
8 0 40,0399 |+0,0248 |+0,0076 | -0,0003 |- 0,0017 |-0,0010 |-0.0003 0 o 0
-1.000 |-0.63¢ |-0.,014 0 40,043 | +0,026 | +0,007 0 0 0 0
Py Pa Py
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Fig. 8.

On peut également utiliser les diagrammes de la
poutre de longueur infinie. On doit alors annuler les
efforts tranchants et les moments fléchissants aux deux
extrémités A et B de la poutre de longueur finie (fig. 10).




10. Cas particuliers

Les méthodes qui précédent sont générales et per-
mettent de résoudre n'importe quel cas pouvant se
présenter en pratique. On peut envisager des cas par-
ticuliers et dresser directement des tableaux ou gra-
phiques donnant leur résolution. Ce sont, entre autres,
les cas de la poutre infinie chargée d'une infinité de
charges concentrées P, égales et équidistantes, de la
poutre de longueur finie chargée en son centre par une
charge P, de la poutre de longueur finie chargée a ses
extrémités par deux charges valant P.

11. Influence de la superstructure sur la répartition
des pressions

a) Notions fondamentales

Dans ce qui préceéde, on a supposé que les forces qui
sollicitent la fondation sont libres de se déplacer les
unes par rapport aux autres. La superstructure est con-
sidérée comme parfaitement souple. En général, la rigi-
dité de la superstructure d’une construction doit se
combiner avec la rigidité de la fondation et la répar-
tition des contraintes sur le sol peut s’écarter appré-
ciablement de celle calculée par les théories exposées.

Soit une construction caractérisée par un systeme de
fondation S; de rigidité I; et une superstructure S de
rigidité I (fig. 11). Sous la semelle de fondation, il y

Fig. 11.

a lieu de considérer, suivant MM. les professeurs de Beer
et Krsmanovitch, deux types de répartition de con-
traintes :

— la répartition primaire pp conséeutive a I'action conju-
guée de la fondation et de la superstructure ;

— la répartition secondaire ps due aux flexions secon-
daires qui se manifestent dans les travées séparant
chaque appui et qui provoque une concentration des
contraintes au droit des appuis alliée a une réduction
en travée. Dans la plupart des cas pratiques, la fon-
dation est suffisamment rigide pour que l'on puisse
négliger ce phénomene.

Pour faire les calculs, on admet les hypothéses sui-
vantes :

1. La répartition des contraintes est uniforme dans toute
section transversale, c'est-d-dire que les déformations
transversales sont lm;lm‘oup moins imp()rlanlos que
les déformations longitudinales.

2. Les rigidités respectives de la fondation et de la super-
structure sont constantes sur toute la longueur de la

construction, et les matériaux constitutifs ont un
module d’élasticité constant.

3. Le module cedométrique du sol est constant, ce qui

permet de le considérer comme homogeéne et isotrope.

Les phénoménes plastiques (fluage) et les déformations

élastiques (raccourcissement des piliers) ne sont pas

pris en considération.

5. La rigidité de la superstructure est telle que la concor-
dance entre la fondation et le sol reste assurée sur
toute la surface de contact ;

6. Les tassements différentiels du sol sont tels que la
fondation et la superstructure sont en état de les
suivre sans dommage. Pour les structures en béton
armé, se déformant lentement, les tassements de I'ordre
de 2 a4 49, des portées sont admissibles. En valeur
absolue, et pour des portées usuelles de 5 a 10 m entre
appuis, cela revient a des tassements différentiels de
2 em.

oS

7. La consolidation du sol est entiérement effectuée sous
I'action du poids propre de la construction elle-méme.
8. L’inertie des piliers peut étre considérée comme faible

par rapport a la rigidité des deux systemes en présence
Sy et Ss. On considere que les deux systémes sont
reliés par des articulations. On ne tient pas compte
du mode de fixation réel de la superstructure a la
fondation.

h) Rigidité de la superstructure

Les méthodes de calcul nécessitent la connaissance
de la rigidité de la superstructure. Si celle-ci n’est pas
parfaitement souple ou parfaitement rigide, son degré
de rigidité est toujours difficile & évaluer, car on ne
peut tenir compte de tous les éléments tels que portes,
fenétres, et autres.

On dispose cependant des formules de Meyerhoft
(1953) qui distinguent I'immeuble & ossature simple de
I'immeuble & ossature avec remplissage. Pour 'immeuble
4 ossature simple (fig. 12), la rigidité d'un étage, dalle

b .
t t 1
o
A1 |
x f."’
ﬂl
'
&7 %
T

Fig. 12,

- piliers, correspondante est donnée avec les notations
sulvantes :

£ = module d’élasticité du matériau de 1'ossature ;
E, = module d’élasticité du matériau de remplissage ;
I, = moment d’inertie des colonnes supérieures de
longueur h, ;
I, = moment d’inertie des colonnes intérieures de
longueur hy, ;
I, = moment d’inertie des poutres de longueur [;
nl = longueur totale de la construction ;
h = hauteur du remplissage ;
e = épaisseur du remplissage
par
EI = EI, (1 PR 2, o8 L (””2)
R.+~R,+ R, P
sios | Boil Bom 3t =
avel ,,—h—” ,,*,T; r%—lo
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La rigidité totale de 'ossature est donc :

(Eljo, = = EI.

étages

Le remplissage augmente la rigidité de

(nl)?
Ey - I )—)2
2h
’ . . e«hd
E, I, étant larigidité d'un remplissage, avec [, = 3

¢) Principes de calculs

L’étude de I'influence de la rigidité de la superstruc-
ture a été faite d'une fagon trés compléte par le pro-
fesseur Krsmanovitch (1955). On en trouve un résumé
ci-dessous.

On considére une superstructure S reliée a la fonda-
tion S; par des piliers articulés (fig. 13), les deux sys-
témes étant continus.

On calcule par une descente de charge, de haut en
bas, les efforts S4, Sp, S¢ ... dans les piliers.

On caleule la fondation S; par une des méthodes
indiquées précédemment en tenant compte du moment
d’inertie [; de la fondation et du moment /,, de la super-
structure, soit, pour l’ensemble de la construction
Ip e Ay = .

On obtient ainsi une répartition de pression p sous
la fondation et on peut déterminer les moments fléchis-
sants dans la fondation a partir des forces Sy, Sp,
Se,

On calcule les forces dans les piliers de bas en haut
a partir de la répartition p des pressions et on trouve
des forces R4, Rp, Re ... différentes de Sy, Sp, S¢ ...

Dans chaque pilier, 11 y a donec une différence de
force :

A = Ry — Sy , AB = Rg— S,

les unes positives, les autres négatives, mais l'on a
toujours :

Si+asA+Sg+aB+ S¢+aC...=Rs+Rp-+Re. ..

On répartit les forces pAd, aB, aC ... entre la fon-
dation S; et la superstructure S, dans le rapport de
leur moment d’inertie.

Les forces ainsi réparties provoquent des moments
fléchissants et des efforts tranchants dans la superstrue-
ture et dans la fondation, dont il y a lieu de tenir
compte. La répartition implique que le systéme continu
S; soit caleulé de bas en haut comme poutre de fonda-
tion soumise aux pressions s’exercant sur le sol et
compte tenu des déplacements relatifs des appuis. On
tient compte de ces déplacements relatifs dans le calcul
de la superstructure.

Iin résumé, si on suppose connue la rigidité de chacun
des deux systémes, on peut calculer la déformation Ah
et en déduire la répartition réelle des contraintes sous
la fondation, c¢’est-a-dire les réactions R4, Ry, Re
donc les forces aAd, aB, aAC ... et obtenir la sollicita-
tion des deux systémes par la répartition indiquée ci-
dessus.

Le professeur Krsmanovitch a également montré que
les moments augmentent dans une superstructure rigide
avee le moment d’inertie de la fondation. Ce qui confirme
qu’il y a mntérét a construire une structure rigide sur

une fondation souple.
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d) Analyse des cas possibles
Suivant le professeur Krsmanovitch, il y a lieu de

distinguer les différents cas représentés a la figure 14,
et que I'on va examiner successivement :

Cas 1

Etant donné que les moments d’inertie /; et Is sont petits
en valeur absolue, les systémes S; et Sy sont en état de
suivre les déformations du sol et de se déformer suivant les
exigences de ce dernier. Si les tassements différentiels s’ac-
croissent, par exemple sous 'effet d’une répartition défavo-
rable des forces extérieures, les systemes S; et Sp ne pos-
sedent pas la rigidité suffisante pour s’y opposer, et la cons-
truction subit des dommages.

Le calcul peut s’effectuer de deux maniéres :

1. Si le systeme Sy est assez rigide pour qu’on puisse
négliger les flexions secondaires dans le calcul de la
répartition des contraintes, on peut procéder comme
exposé au paragraphe précédent : considérer la fonda-
tion comme un systéeme de moment d’inertie [ : Iy + I,
rechercher la répartition des contraintes, calculer les
réactions réelles et les forces correctives, répartir ces
forces entre les deux systemes.

2. Si la rigidité de la fondation est si faible que I'on ne
puisse négliger les flexions secondaires, il faut procéder
par approximations successives :

— on consideére d’abord la rigidité totale I pour obtenir
les tassements dillérentiels ; il y correspond une
répartition « p’»;

— ensuite, on prend seulement en considération la
rigidité du systéeme Sy(I;) pour calculer la répar-
tition « p» des contraintes sous la fondation, en
tenant compte des flexions secondaires.

La différence entre les deux répartitions fournit les
forces correctives qui sont a répartir entre les deux
systemes, proportionnellement a leur inertie.

Dans certaines circonstances, les deux systémes, soit sépa-
rément, soit simultanément, peuvent étre discontinus
(fig. 15 a, b, ¢). C'est alors la partie du systéme dans laquelle
la continuité existe qui subit 'action entiére des tassements
différentie

Si la fondation est discontinue (fig. 15 b), on caleule en
premier lieu le tassement des semelles et on calcule ensuite
la superstructure, en tenant compte des tassements difléren-
tiels. On peut parfois réduire a zéro ces différences de tasse-
ment en modifiant les dimensions de certaines semelles, ce
qui revient a agir sur les contraintes régnant a la base des-
dites semelles. Sila superstructure est discontinue (fig. 15 ¢),
on recherche la répartition réelle des contraintes sous les
poutres continues de fondation et, a partir de cette répar-
tition, on caleule le systeme Sy,

g

P
8Py APy AP AP,

Fig. 16.

Cas II

La grande rigidité de la superstructure ne lui permet pas
de s’adapter aux déformations du sol. Clest cette rigidité
qui va déterminer les tassements différentiels au droit des
piliers. Entre les piliers, les déformations dans le systeme de
fondation sont conditionnées a la fois par la compressibilité
du sol et la rigidité Iy du systeme. »

Dans la superstructure naissent les forces nécessaires pour
imposer localement au sol des contraintes qui réduiront
éventuellement a zéro les tassements dillérentiels.

Le calcul d'une telle construction s’effectue de la maniére
suivante :

1. Sila fondation est assez rigide, et si I'on peut négliger

les flexions secondaires, on é¢tudie la fondation comme
une poutre rigide. Il y correspond une répartition « p’»
(fig. 16 a).

2. Si l'on désire prendre en considération les flexions
secondaires dans la fondation, il est nécessaire pour les
charges données de calculer d’abord la répartition « p »
(fig. 16 b), qui correspond a I’hypothése ou la rigidité
de la superstructure est nulle. On en déduit des tasse-
ments différentiels. On recherche alors la répartition
« p’» définie ci-dessus et qui correspond au cas ou les
tassements différentiels sont nuls.

La différence entre ces lignes de répartition donne les
forces AP, et AP,, que I’on admet — sans commettre d’erreur
importante, puisque le systeme Sy est suffisamment flexible
appliquées dans leur entiéreté au systeme Sg.

Cas 111
La rigidité de la superstructure Sy peut étre négligée, car
son action par rapport a la rigidité de la fondation S; est
tres faible. Le systéeme Sy détermine la maniére dont s’aflaisse
le sol et, comme ce systéeme est rigide, le sol s'allaisse égale-
ment en tous ses points. La compressibilité du sol ne fait
que déterminer la valeur de I'aflaissement.
On meéne alors les calculs de la maniére suivante :
1. On calcule la ligne de répartition des contraintes sous
le systeme S; considéré comme poutre rigide.
2. On caleule le systeme S; comme soumis aux réactions,
dirigées de bas en haut, déterminées au premier stade
et aux charges extérieures s’exercant de haut en bas,

Cas 1V

Les rigidités des deux systémes étant trés grandes et
ayant a peu pres la méme valeur, on peut admettre que les
tassements différentiels sont nuls. On recherche d’abord,
par un caleul effectué¢ de haut en bas, les ellorts dans les
piliers, dus aux charges de la superstructure. On recherche
ensuite la répartition des contraintes sur le sol pour le sys-
teme rigide Sy et on en déduit, par un caleul effectué de bas
en haut, les réactions dans les piliers.
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Les différences des réactions dans les piliers, obtenues par
ces deux méthodes, représentent les forces complémentaires
a répartir comme au cas [,

e) Conclusions

Des considérations précédentes et des caleuls qui ont
été effectués par le professeur Krsmanovitch, on peut
tirer les deux conclusions principales suivantes :

1. Dans les ossatures qui sont continues soit dans
leur fondation, soit dans leur superstructure, dont
la raideur est constante et qui sont appuyées sur
un sol dont le module de déformation est consi-
déré comme constant, les rigidités des deux sys-

témes constitutifs jouent un role important dans

I’évolution de la sollicitation de I'ossature.

2. Les moments parasites qui peuvent prendre nais-
sance dans les systéemes S; et Sy sont d’autant
plus réduits que la rigidité de -la fondation est
moindre. Il faut donc s’efforcer de réduire au
minimum acceptable la rigidité de la fondation.
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12. Calculs avec coefficients de raideur variables

Dans ce qui précede, on a admis que le coeflicient de
raideur K du sol était constant. Lorsque I'on a affaire
a des terrains hétérogenes, dont les déformations dépen-
dent de la compressibilité relative de diverses couches,
on ne peut plus admettre que le coeflicient de raideur K
est constant sur toute I'étendue de la fondation.

Le modeéle correspondant (fig. 17) est alors constitué
par une poutre reposant sur des ressorts de raideur
variable. L'introduction de coefficients de raideur varia-
bles dans I'équation différenticlle de la ligne élastique
conduit a des difficultés mathématiques telles que le
probléme est insoluble au point de vue pratique.

Divers auteurs ont proposé des méthodes par inté-
grations successives.

La méthode la plus simple est celle qui a été indiquée
par le DT ingénieur Heinz Grasshoff (1951) de Bremen,
en utilisant un procédé indiqué par Levinton (1947)
qui est analogue & un calcul par différences finies.

On en trouve un résumé ci-dessous.

On considére (fig. 18) une poutre de longueur [ et de
largeur b = 1, chargée par une charge quelconque ¢ et repo-
sant sur un sol quelconque dont les réactions donnent lieu
a des pressions p. Sous la charge, la poutre va tasser et on
suppose que le tassement total se produit successivement
de la fagon suivante :

— la poutre tasse sans se déformer et seules ses extré-
mités occupent leurs positions définitives, aprés avoir
tassé de y, et y,;

— on considere ensuite, les extrémités étant supposées
fixes, la poutre déformable sur deux appuis, soumise
aux charges ¢ et p et dont on calcule les déformées.
Les tassements dus aux charges ¢ portent 'indice b,
ceux dus a la charge p l'indice ¢ et ceux dus a la
poutre indéformable l'indice a.

. On divise la longueur [ de la poutre en un nombre égal
de parties a, par exemple trois, et on remplace la courbe
des pressions p par un polygone. L’aire du polygone peut
étre considérée comme composée de triangles, soit six dans
le cas considéré.

Le probléme a résoudre consiste a calculer les quatre
pressions py, ps, ps et p, inconnues.

A cet ellet, on dispose des équations suivantes: deux
équations d’équilibre de rotation autour des points L et R,
centres de gravité des triangles extrémes des pressions et
deux équations de déformation pour les points 2 et 3, soient :

SML=0 (1)
SMp=0 (2)
Y2 = Yag + Yoo — Yoo (3)
Y3 = Yaz + Ybs — Yes (4)

Lle moment par rapport 4 L s’éerit :

’ "
Pall @ palt patt 4 Ps paa 7

Mg — 5 '3 g @30 5 2a 5 a=0
ou

6-Mp

b

bpy +10ps + 7 py =

On trouve de méme, pour le moment par rapport a R :

6 Mg I
p1+ 10py + b4py = — (6)

2
as

avece

M = moment statique dans le sens des aiguilles d’une
montre autour de L, des charges extérieures ¢ solli-
citant la poutre ;

Mpg = moment statique dans le sens des aiguilles d’une
montre autour de B, des charges extérieures ¢ solli-
citant la poutre.




Les déformations ya, et yag sont facilement exprimées en
fonction de y et ys.
On a
9

1 2
Yag = 3 Yy + 5;’]1
et de méme pour ;.

Les déformations ye, et yeg peuvent étre exprimées en
fonction de py, ps, ps, ps en recherchant la déformée totale
d'une poutre sur deux appuis sollicitée successivement par
des charges triangulaires.

On trouve ainsi :

_ phat 429 at . 390 g 77 a, .
Y2 = 1080 E1P* T 1080 EI1 P* T 1080 E£17* T 1080 E1

et de méme pour e,
On pose
~ 1080 EI

ay

N

avec [£ module d’é¢lasticité de la poutre, et
I son moment d’inertie.

Enfin, les déformations ys, et yp; dépendent uniquement
de la charge extérieure g et se calculent en fonction de
celle-ci.

On pose

= A D2 — =

P
1 = g, =7

Y :2f2 Y = K, Y1 = K,

Ky, Ky, Kget Ky étant les coeflicients de raideur aux points 1,
2, 3 et 4 et on remplace dans les équations (3) et (4) les
valeurs des y en fonction des p.

On obtient finalement :

g1 ' -
Tt 2 g / ey 7
(9 3 R1) P1+ (129 + i 1\4) ps + 390 p; + )
A (7)
VRS T (R :
+ (//— 3T A\I) Ps = Nyb,
S N . 1
(/7+74—,4\ Py + 390 py + (429 + — N) py +
3 K K, 8

e .
+ <9/1~— 3R, A) Ps = N yug

Les quatre équations linéaires (5) (6) (7) et (8) permettent
de déterminer les quatre pressions py, py, ps et py.

Si la charge ¢ est symétrique, le nombre d’inconnues se
réduit a deux et on obtient les deux équations :
2P

D Py ——
P12 ps s

N ( N .
( ¢ — N
(’1.) K1> pr+ (91 + 1{) P2 = Nyb,
_ 120E]1

avee N —
alk

et 2P = somme de toutes les forces symétriques sur la
poutre.

Grasshofl a également effectué le calcul pour des sub-
divisions de la poutre en cing et en sept parties égales.
Au point de vue des applications a la pratique, la sub-
division en trois parties égales est en général suffisante.

Pour appliquer la méthode, on doit connaitre les
coefficients de raideur K, K,, K,; K, on peut déter-
miner ceux-ci en considérant une charge uniforme p,
de la méme longueur et largeur que la poutre et faire
le calcul des tassements correspondants, c’est-a-dire des
valeurs ;. Les valeurs des coeflicients de raideur sont
obtenues par la relation :

Ces coeflicients de raideur ne sont pas exacts, car on
a supposé une répartition uniforme des pressions. A
partir des coeflicients de raideur approximatifs ainsi
déterminés, on peut calculer la répartition des pres-
sions p par la méthode indiquée et 'on peut recom-
mencer un calcul de tassement & partir des pressions
trouvées, ce qui donnera des coeflicients de raideur plus
exacts. On peut continuer ainsi de suite.

Grasshoff a développé une méthode de détermination
des coeflicients de raideur basée sur la répartition des
pressions dans le sol et la détermination de la ligne
d’influence du tassement d’un point de la surface du sol.
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Postes a pourvoir

[’Organisation européenne de recherches spatiales
met” au concours les postes suivants d’assistants au
directeur adjoint de la Division de contrdle et de stabi-
lisation, a la Direction des recherches appliquées du
Centre européen de technologie spatiale de Delft :

Chef de la section des systemes de stabilisation par
variation du moment angulaire (poste TH 57).

Chef de la section des composants mécaniques
(poste TH 58).

Chef de la section des systémes de stabilisation par
jets de gaz (poste TH 56).

SOCIETE SUISSE DES INGENIEURS
ET DES ARCHITECTES

69¢ assemblée générale de la SIA!

En raison de difficultés de logement a la date primi-
tivement prévue, la 69¢ assemblée générale aura lieu
a Béle non pas du 18 au 20 juin, mais du 11 au 13 juin
1965.

! Communiqué du Secrétarial central.

LES CONGRES

2¢ symposium européen des agents inhibiteurs
de la corrosion

Ferrare (Italie), 24-26 septembre 1965

Ce symposium, organisé par le Centre d’études de la
corrosion Aldo Daccé de I'Institut de chimie de 1'Uni-
versité de Ferrare, est la 29¢ manifestation de la Fédé-
ration européenne de la corrosion.

Renseignements et inscriptions (jusqu’au 15 juin
1965) : Secrétariat du symposium 2 SEIC, Istituto di
Chimica, Universita, Via Scandiana 25, Ferrara (Italie).

CARNET DES CONCOURS

Concours d’idées pour I’aménagement
de la place du Marché a Montreux

Jugement
Le jury chargé d’examiner les projets présentés s’est
réuni les 26 novembre, 1r et 2 décembre 1964. 1l a
décerné les prix suivants :
1er prix, 7000 fr., & MM. Gampert et Hacin, architectes
SIA, a Geneve.
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