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AUTOROUTE GENEVE -LAUSANNE '

AUTOROUTE ET CALCUL ELECTRONIQUE

par P. BESSON, mathématicien, chef du centre de calcul électronique des autoroutes vaudoises

La construction d’une autoroute est une des activités
de la technique moderne ou les méthodes de calcul
électronique trouvent un champ d’application de plus
en plus étendu. Ce développement constant reflete la
nécessité de fournir des résultats numériques toujours
plus nombreux, plus précis et plus rapides. Cette ten-
dance n’est pas leffet de la recherche d’un luxe de
détails dont on pourrait se passer, mais résulte au
contraire de la nécessité de produire des projets satis-
faisant & des criteres d’optimalisation du cott et de la
durée de la construction. Or il est claic qu’une telle
recherche de la solution optimum, qui releve des
méthodes de la recherche opérationnelle (en particulier
de la stmulation), ne peut se concevoir sans I'évaluation
d’une grande quantité de variables numériques pour un
grand nombre de variantes possibles d’un méme projet.
Un tel travail ne peut raisonnablement se faire sans
utilisation  d’une machine a  calculer électronique
moderne, dont la caractéristique principale est précisé-
ment la possibilité de traiter un grand nombre de

données dans un laps de temps trés court. En fait, il
existe sur le marché mondial des ordinateurs électro-
niques un grand nombre de machines dont les carac-
téristiques sont compatibles avec les exigences cou-
rantes en matiére de calcul de routes. Il n’y a cepen-
dant aucune lmitation dans I'usage de machines de
plus en plus complexes et plus rapides ; en effet, dans
quelques années les taches requises de ces puissants
instruments seront tellement importantes que seules
conviendront les machines & grande capacité de mémoire
et grandes vitesses de calcul, d’entrée et de sortie. Les
petites machines actuellement utilisées trouveront une
application trés utile en qualité de chevaliers servants
de ces grands monstres. Cette politique d’utilisation de
I"électronique se trouve déja remarquablement mise en
pratique dans certains pays voisins de la Suisse 2.

' Voir en outre les Bulletin technique des 5 novembre 1960 et
28 décembre 1963, (Réd.).

? En France, la firme 1BM exploite & Paris un important Centre

de caleul doté d'une machine IBM 7094 utilisant plusicurs autres
ordinateurs du type 1401 ou 1620 comme machines périphériques,
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Le Centre de calcul du Bureau de construction des
autoroutes vaudoises est équipé depuis le mois de sep-
tembre 1961 d’un ordinateur IBM 1620 dont la mémoire
s’étend a 20 000 caractéres et dont les unités périphé-
riques d’entrée-sortie se composent d’une machine &
écrire ordinaire, d’un perforateur et d’un lecteur de
bandes papier. Les taches confiées a cet ensemble élec-
tronique sont de natures trés diverses. Au stade actuel,
on peut considérer les cing catégories suivantes :

a) Exploitation des mesures faites dans le terrain par
les géometres et caleul des coordonnées de nombreux
points identifiés sur place.

b) Evaluation numérique détaillée des grandeurs fixées
globalement par les projeteurs (situation, profil en
long, dévers, profil-type, ete.).

¢) Calcul des éléments numériques a remettre aux géo-
meétres chargés de I'implantation de la route (éléments
d’implantation).

d) Calculs géotechniques.

e) Analyses de plannings de construction.

L’analyse détaillée de chaque catégorie d’application
ci-dessus sortirait largement du cadre de cet article.
Nous nous bornerons donc a donner un apergu des
méthodes numériques mises en ceuvre dans le calcul de
Uaze horizontal d’une route. Clest en effet dans ce
domaine que nos travaux ont été poussés le plus loin
a ce jour et nous atteignons désormais le degré d'auto-
matisme désiré pour permettre a chaque projeteur de
concevoir rapidement un projet d’axe avee un minimum
de calculs préliminaires. Cet automatisme est aussi la
condition nécessaire 4 la mise en ceuvre de programmes
d’évaluation de quantités de remblais-déblais par notre
Centre de calculs. Cette étape, qui sera franchic pro-
chainement, exploitera largement les possibilités des res-
tituteurs stéréographiques modernes el permettra une
évaluation complétement automatique des quantités
désirées (remblais-déblais, emprise, surfaces-murs, sur-
faces de revétement, ete.), ¢’est-a-dire avec un matériel
numérique de données complétement fourni par la
machine électronique elle-méme.

1. Généralités

L’axe d’une route est généralement constitué d’une
succession d’arcs de cercles ou de segments de droites
raccordés entre eux par des courbes de transition.

On entend par caleul de Uaxe horizontal d’une route
I'ensemble des opérations qui permettent de fournir une
liste des coordonnées planes de divers points de cet
axe (points a des distances données d’une origine fixée,
intersections, ecte.). Cet ensemble d’opérations dépend
essentiellement des moyens techniques a disposition.
Nous nous plagons ici dans le cas de I'utilisation d’un
ordinateur électronique du type scientifique usuel
(IBM 1620, par exemple). Il en résulte une grande puis-
sance quant aux moyens de calcul (rapidité, exactitude),
mais inversement une grande complexité quant a 1’éla-
boration des méthodes. Iusage de tables de fonctions
n’est pas possible et toutes les opérations numériques
doivent étre concues sous forme de combinaisons d’opé-
rations arithmétiques élémentaires (addition, soustrac-
tion, multiplication, division). Ajoutons encore que
Iopération de division n’étant pas automatique (succes-
sion programmée d’additions, soustractions et multipli-
cations) dans certaines machines, nous avons cherche
a Déviter dans la mesure du possible. Lobjet de la
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suite de cet article est de mettre en évidence les méthodes
numériques que nous avons développées pour le calcul
d’axes de routes. Nous nous sommes efforcés de rendre
les solutions rapides et économiques tout en conservant
le maximum de généralité aux problemes.

2. Clothoide

Les arcs de cercle ou segments de droite d’un axe
seront désignés désormais sous le nom d’éléments prin-
cipaux. Le calcul de ces éléments n’offre aucune diffi-
culté, cependant ils sont en général raccordés entre eux
par des courbes de transition, dont la définition ana-
lytique n’a pas toujours été clairement fixée. On a
entre autres utilisé jusqu’ici la parabole cubique et la
lemniscate. Dans la technique routiére moderne, il est
désormais admis qu'une courbe de transition doit étre
un arc de clothoide.

La clothoide ou spirale de Cornu (intervenant aussi
dans I’étude des phénomeénes de diffraction en optique)
est définie par I'équation Intrinseque

p-s=p? (2.1)

ot p = rayon de courbure, s = arc, p = constante =
= paramétre de la clothoide.

Cette équation (2.1) exprime le fait que la courbure
de la clothoide est proportionnelle a I'arc déerit.

Cherchons une solution de cette équation. On sait
en effet que toutes les autres solutions s’en déduiront
par déplacement plan accompagné éventuellement de
retournement. Choisissons un systéme d’axes rectan-
gulaires 20y quelconque et désignons par o I'angle de
la tangente en un point de la clothoide avee Oz. Comme,

da

) T ds’

prend la forme différentielle s ds = p*da. D’otu, en

har définition I’équation intrinséque (2.1)
I ) 1 q )

intégrant,

+ Cste. (2.2)

dx dy
Or — cos §. =
ds cos & gs

son expression (2.2) et en intégrant, il vient

= sin . En remplacant « par

- vste) ds

/

y = | sl 27’2 + csl(‘) ds.

Si on se fixe les conditions initiales a =@ =y = 0
pour s = 0, la solution générale précédente prend la
forme particuliére suivante :

s

2
u- 1
T = COS 5 du
. 2p?

0

(2.3)
§
T
y = | sin 5— du.
Y I 2p?
4}
5 . . /e
Faisons le changement de variable w=+/2py¢,

du = \/5[) dy.

Les relations (2.3) deviennent alors




Vep
:cz'\/ip fcosvzdv
0
s (2.4)
Vep
y = \/‘jp fsin v dy.
0
= S P
Posons t=Alo= ——— =—= et (2.5)
V2p  V2p
t
Jy(t) = fcos u? du
0
t
Iy (t) = fsin u? du.
0
Les relations (2.4) s’écrivent aussi
~ 1
e=1/2pJi(t) =5 ; J1(0),
= 1
y=V2pht)=s- ),
ou encore, finalement
1
il
z=s§(t) §(t):?fcos u? du
0
avec : , (2 . 6)
y = s1n(t) n(t) = = fsin u? du.
0

La courbe définie par les équations paramétriques
(2.6) est la clothoide de base de paramétre p. Elle passe
par l'origine des coordonnées et admet ce point comme
centre de symétrie, elle y est de plus tangente a I'axe
Oz et y présente un point d’inflexion (en vertu de la
symétrie). Toutes les autres clothoides de méme para-
meétre s’en déduisent par déplacement plan accompagné
éventuellement de retournement (autour de l'axe Oz
par exemple).

Dans la pratique, I'angle o ne dépasse jamais la
valeur 1r, t = '\/; n'exceéde donc pas \/1; En vertu
de la symétrie de la courbe, on peut se limiter au cas
t > 0. On constate donc que le calcul d’un point de
la clothoide revient & trouver une bonne méthode d’éva-
luation des fonctions E(t) et m(t) pour lintervalle

0=1t= \/1—r Ce sera I'objet du paragraphe 7.

3. Centre de courbure

Par définition, le centre de courbure est le centre
du cercle osculateur a la courbe en un point. Lorsqu’on
connait des expressions de z, y, p et a, cette détermi-
nation du centre revient au calcul de I'extrémité d’un
vecleur

[ T, =x—p sin &
|

Ye =1y + pcosa.

et oo =1it%;

s
Dans notre cas, 2 = s§, y = sm, p = T

donc
s .
2= $iE — o sin t2
s 2
yczsn-{—ﬂ.zcost.

Effectuons Dartifice de calcul qui consiste a ajouter

S .
a 'expression de y. la quantité nulle p — TR 11 vient

1.
T =15 (§ — 5 SID t2)

il
yc=P+S[Tl+ Zz(costz—i)]-

Ou encore
{ Ze == s E(t)
Ye =p + sne(t)
E (1) =¢€(t) — 721?2 sin ¢2 (3.1)
avec

1
] n:(t) = n(t) + 5p (cos 12 —1).

Le calcul des coordonnées du centre de courbure se
raméne donc au calcul des fonctions &(t) et n(t) pour
intervalle 0 = ¢ = 4/7r. Nous verrons au paragraphe 7
comment nous avons procédé.

4. Relations différentielles entre les fonctions €, 1, &, Ne.

Les fonctions §, m, &, ne n’ont pas été introduites
au hasard ; en réalité elles satisfont a4 des relations
différentielles remarquables qui trouveront une appli-
cation au paragraphe suivant.

Il résulte immédiatement de la définition des fonec-

tions § et n (relations 2.6) que

(t&)" = cos 2
4 o) (4. 1)
(tn)" = sin ¢
De méme
sin 12\
(tgc)' i (t§)' = (5”211 ) = cos &
sin (2 ’ sin 2
o —Cos lf = — -
2. ’ *
(tne)” = (tn)" + (ms 121 1) .
cos t2—1 ) 1— Gog i
92 — sin 2 = 5
Enfin
2¢\/ ; sin 2
(€)' = ((t&) + 1§ = —o + 1§ —
sin 2 = ¢§
. (4.3)
' ' 1 — cos t2
(Bne)’ = tftne)’ + tne = —o— +m +
cos 2 —1
—T- =1n.

Ces relations importantes seront utilisées dans les
paragraphes suivants.
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5. Raccordement de deux éléments principaux donnés

Etant donnés deux éléments principaux (cercle ou
droite) bien définis, il n’existe qu’une seule clothoide
les raccordant. Dans ce paragraphe, nous indiquons une
méthode itérative de détermination du parametre de
cette clothoide. Nous nous sommes efforcés de limiter
au maximum le nombre d’itérations conduisant au
résultat tout en rendant minimum le nombre d’opéra-
tions arithmétiques effectuées dans chaque itération.

a) Cas cercle-cercle

Dans le cas ou deux cercles doivent étre raccordés
par une clothoide, la donnée du probleme est constituée
par la distance des centres ), le rayon du premier
cercle R, et le rayon du second cercle R,. Ces rayons
sont donnés avec un signe indiquant dans quel sens
de rotation le cheminement a lieu sur les cercles (signe +
— rotation dans le sens trigonométrique positif ;
signe — = rotation en sens contraire). Moyennant cette
convention, on démontre que les relations développées
ci-dessous sont valables aussi bien pour les raccorde-
ments du type en S (rayons de signes opposés) que ceux
du type en ovale (rayons de méme signe). Soit p le
paramétre de la clothoide raccordant les deux cercles.

Posons t; =

et t, = . Le parametre

i -
V2R V2R,
p doit satisfaire & I'équation

1(p) =V [ (ta) — e ()] + [ye () — ye (8))2— D = 0.

Les fonctions z, et y, étant transcendantes, 1l serait

vain de chercher une solution de cette équation par
des méthodes algébriques. Nous avons donc cherché un
procédé itératif. Dans ce probleme, la méthode de
Newton-Raphson fournit de bons résultats tout en res-
tant d’application relativement simple.

Rappelons le principe de cette méthode. Soit une
fonction f(z) continue et dérivable deux fois en @ ; on
se propose de trouver la valeur de 2 rendant nulle cette
fonction. Etant donnée une valeur approchée @, de la
solution, on démontre‘que la quantité i1 = a, —

f ()

tion meilleure que a,, d’ott un procédé de récurrence.

est une nouvelle approximation de la solu-

Dans notre cas, la difficulté réside dans I’évaluation
de la dérivée de la fonction f(p) par rapport a p. Il
importe de connaitre d’abord les dérivées de ac(ty), x(ly),

_r

yelty), yelty) par rapport a p. Posons t = \/21} (pour
R=R,, t=t et pour R=R,, t=1,); alors
[l = sE() = 2REE(0);
| yet) = R+ sne() = R+ 2R 20 0),
et, en vertu des relations 4.3
’I“E f{.z:(. dt 1 —~ v

- — ,,,7:') 2 1_7777: ‘") :7
dp dt dp 2R(1*&) = 2E(1)

‘ dy, dy, dt ] : 1 - ‘ y
SO o S ) 2 ’, u_ ol 9 — 7.
dp — dt dp 2R () 3 \/“ tn (t)

Dés lors la dérivée de [(p) est facile a calculer et
nous trouvons I'expression suivante :
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]" (p> . (‘Tcz I zcl) (‘172 aia xl) + (yfz - ycl) <y2 - yl)
P \/ (1'02 T x"l)z e (yt‘g S ycx)z

Ces résultats nous ont conduits & introduire le pro-
cédé de calcul suivant :

1) Détermination d’une valeur approchée de la
solution p (voir paragraphe 6).

2
2) Calcul des fonctions zy, ¥y, T, Ye <31 = 1’;) .
1
p?
3) Calcul des fonctions @y, Ya, Tep Yoo (sz = H)
2

4) ap =1y — 1
Ay = Yo — Y15
g = Xy — Xy
Ay = Yoy — Yey 5
T 2 2
ay =4/ + a

ag = a5 —D.

5) Si |ag| est plus petit qu'une limite supérieure
fixée (par exemple 0,5 mm), la valeur p du para-
métre est considérée comme suflisante.

6) Dans le cas contraire, p est remplacé par
P % .

a3y + a0y

7) Retour a 2).

Les opérations arithmétiques du cycle 2) a 7) ci-

P—

dessus se composent du calcul de huit fonctions trans-
cendantes, d’une racine carrée, de huit additions ou
soustractions, de six multiplications et d’une division.
La durée de ce cycle n’exceéde pas 2 secondes sur notre
ordinateur ; on peut donc considérer cette méthode
comme trés satisfaisante et facile a programmer.

b) Cas droite-cercle

Dans ce cas, la donnée du probléeme est constituée
par la distance D du centre du cercle a la droite et
le rayon R du cercle. L’équation en p est alors f(p) =
—|y|—D=0.

Ou, en posant e = 1 si ye=0ecte= —1siy. <O,

f(p) =eye—D =0cetf(p)= s?y Le procédé de cal-
cul est alors trés simple :

1) Détermination d’une valeur approchée de la solu-
tion p (voir paragraphe 6).

2) Calcul des fonctions y, ye, € <s = ,r]%) .

3) ag=¢ey.—D.

4) Si |ap| est plus petit qu'une limite supérieure
fixée (par exemple 0,5 mm), la valeur p du para-
métre est considérée comme suflisante.

5) Dans le cas contraire, p est remplacé par

oy
P (1 e y)

6) Retour a 2).

6. Détermination d’une solution approximative
aw probléme précédent

Dans le paragraphe 5, nous avons développé une
méthode rapide d’amélioration du paramétre, sans indi-
quer cependant comment déterminer la valeur initiale
de ce dernier. Nous nous contenterons d’indiquer sans
démonstration un procédé de calcul qui fournit une
excellente premiére approximation.




a) Cas cercle-cercle b) Cas droite-cercle

a = Ry — Ry @ =D—|R]|
ay = R, + R, -,
a; = R . R? _ — a,

a P 44/ 3 R? arctgA/m
ay = 52

RSV R S A/@ + D) (ay — D)
P —/l ay a, amerg (D —ay) (D + a,)

Ces relations, appliquées en conjugaison avec celles
du paragraphe 5, nous ont permis d’établir une sous-
routine de calcul du paramétre pour notre ordinateur
IBM 1620, dont le temps de fonctionnement est en
général de I'ordre de 8 secondes et qui occupe environ
2500 caractéres de la mémoire.

7. Calcul des fonctions transcendantes €, 7, E et .

Les divers développements analytiques des para-
graphes précédents nous ont conduits prendre en
considération les fonctions transcendantes € 1, & et ne.
On démontre que ces quatre fonctions sont continues
et dérivables dans I'intervalle — oo, - co. Nous avons
vu cependant que dans la pratique du calcul de routes
on se limite a 'intervalle () = ; = \/? Comme ces
fonctions sont d’un usage courant, il était nécessaire
de mettre au point une méthode de calcul treés rapide.
Nous avons fixé notre choix sur des approximations de

type polynomial (en raison de la lenteur de la division),
c’est-a-dire de la forme

) =at"+ a1 + ... + auit + a.

Le développement des fonctions €, ), & et n. en série
de Taylor autour de 0 nous a fourni provisolrement
une réponse a notre probléme. Les séries obtenues étant
alternées, nous avons la garantie que I'erreur commise

en supprimant les termes de degré élevé n’excéde pas
la valeur absolue du premier terme négligé. Nous obte-
nons a ce jour d’excellents résultats en ne retenant
que les huit premiers termes de chaque développement.
Par exemple, 'expression retenue pour 7, est

Ne = 3(ay + ayt* + apt® + ayt!® + a8 + agt® +

+ a6t2-l + a7128’)

avec a, =  8.3333333 . 10-2
a; = — 2.9761905 . 10-3
a, =  6.3131313 . 10-5
az = — 8.2671958 . 10-7
Q= 7.2519261 . 10-9
a; = — 4.5384254 . 10-11
ag =  2.1242121 . 10-13
a, = — 7.7088344 . 10-16
En fait, cette solution — d’ailleurs trés satisfaisante

— s’avére étre une solution de premiére urgence. On
n’ignore pas que la série de Taylor tronquée fournit
une approximation excellente au voisinage de 1'origine
mais que la précision se détériore rapidement lorsqu’on
s'écarte de celle-ci; I'erreur est en quelque sorte mal
répartie. En fait il existe des approximations polyno-
miales de degré moindre que celles adoptées jusqu’ici
dont I'erreur globale n’est cependant pas plus grande.
Ce sont les approximations polynomiales de norme
minimum au sens de Chebyschev. C’est dans le but
de remplacer prochainement les fonctions adoptées par
de meilleures que nous avons déja calculé les dix-neuf
premiers coeflicients des développements de Taylor de
nos quatre fonctions avec une précision de trente
chiffres significatifs. Un calcul de relaxation sur ces
coeflicients qui sera confié a la machine électronique
elle-méme nous fournira la solution définitive de ces
approximations. Ainsi nous espérons gagner encore
10 a 20 9, du temps actuellement nécessaire au caleul
sans perdre la précision déja obtenue.

UTILISATION DE MACHINES ELECTRONIQUES
POUR CALCULER LA STABILITE DES TALUS

par I. KARAKAS, ing. dipl. SIA - ASCE, chef de la Section des essais

I. Introduction

Les caractéristiques des routes modernes nécessitent
souvent I'exécution de talus trés hauts sur des terrains
inclinés et pour les remblais d’accés a des ouvrages d’art
par-dessus des routes, des voies ferrées, ete. D’autre
part, I'ingénieur est souvent dans I'obligation de cons-
truire la route sur des sols de fondation de trés mauvaise
qualité et parfois méme sur des marais. Dans une masse
de terre, quand 'effort de cisaillement dépasse la résis-
tance a celui-ci, une rupture ou glissement se produit
le long d’une surface. Le coeflicient de sécurité a la rup-
ture d’un talus est fonction de I'inclinaison, de la hau-
teur du talus et des caractéristiques géotechniques des
couches de sols dont le talus est formé.

A proximité du niveau du terrain naturel, les carac-
téristiques déterminant la résistance au cisaillement
peuvent facilement varier selon la saison. Certains sols

gonflent pendant la saison pluviale, aussi leur résistance
au cisaillement est beaucoup plus faible que la résistance
correspondante en saison séche. La résistance des sols
apres le dégel est également trés inférieure a celle exis-
tant en saison séche. Le niveau de la nappe phréatique
dans les sols est aussi fonction des saisons. Les niveaux
maxima et minima jouent un grand role dans la déter-
mination théorique des talus stables. Il est évident que
les caractéristiques qui doivent étre prises en considé-
ration dans un caleul de stabilité sont celles qui cor-
respondent a I’état le plus défavorable. A tous ces fac-
teurs qui compliquent déja considérablement I'analyse
de la stabilité s’ajoute encore la variation des caracté-
ristiques  géotechniques en profondeur. Un sol homo-
géne sur toute la hauteur d’un talus et en profondeur
est tres rare ; I'ingénieur doit done tenir compte des
variations de couches trés différentes.
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