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AUTOROUTE GENEVE - LAUSANNE

AUTOROUTE ET CALCUL ÉLECTRONIQUE
par P. BESSON, mathématicien, chef du centre de calcul électronique des autoroutes vaudoises

La construction d'une autoroute est une des activités
de la technique moderne où les méthodes de calcul
électronique trouvent un champ d'application de plus
en plus étendu. Ce développement constant reflète la
nécessité de fournir des résultats numériques toujours
plus nombreux, plus précis et plus rapides. Cette
tendance n'est pas l'effet de la recherche d'un luxe de
détails dont on pourrait se passer, mais résulte au
contraire de la nécessité de produire des projets
satisfaisant à des critères d'optimalisation du coût et de la
durée de la construction. Or il est clair qu'une telle
recherche de la solution optimum, qui relève des
méthodes de la recherche opérationnelle (en particulier
de la simulation), ne peut se concevoir sans l'évaluation
d'une grande quantité de variables numériques pour un
grand nombre de variantes possibles d'un même projet.
Un tel travail ne peut raisonnablement se faire sans
l'utilisation d'une machine à calculer électronique
moderne, dont la caractéristique principale est précisément

la possibilité de traiter un grand nombre de

données dans un laps de temps très court. En fait, il
existe sur le marché mondial des ordinateurs électroniques

un grand nombre de machines dont les
caractéristiques sont compatibles avec les exigences
courantes en matière de calcul de routes. Il n'y a cependant

aucune limitation dans l'usage de machines de
plus en plus complexes et plus rapides ; en effet, dans
quelques années les tâches requises de ces puissants
instruments seront tellement importantes que seules
conviendront les machines à grande capacité de mémoire
et grandes vitesses de calcul, d'entrée et de sortie. Les
petites machines actuellement utilisées trouveront une
application très utile en qualité de chevaliers servants
de ces grands monstres. Cette politique d'utilisation de
l'électronique se trouve déjà remarquablement mise en
pratique dans certains pays voisins de la Suisse 2.

1 Voir en outre les Bulletin technique des 5 novembre 1960 et
28 décembre 1963. (fic'd.).

2 En France, la firme JBM exploite à Paris un important Centre
de calcul doté d'une machine IBM 7094 utilisant plusieurs autres
ordinateurs du type 1401 ou 1620 comme machines périphériques.
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Le Centre de calcul du Bureau de construction des

autoroutes vaudoises est équipé depuis le mois de
septembre 1961 d'un ordinateur IBM 1620 dont la mémoire
s'étend à 20 000 caractères et dont les unités périphériques

d'entrée-sortie se composent d'une machine à

écrire ordinaire, d'un perforateur et d'un lecteur de

bandes papier. Les tâches confiées à cet ensemble

électronique sont de natures très diverses. Au stade actuel,
on peut considérer les cinq catégories suivantes :

a) Exploitation des mesures faites dans le terrain par
les géomètres et calcul des coordonnées de nombreux
points identifiés sur place.

b) Evaluation numérique détaillée des grandeurs fixées
globalement par les projeteurs (situation, profil en
long, dévers, profil-type, etc.).

c) Calcul des éléments numériques à remettre aux géo¬
mètres chargés de l'implantation de la route (éléments
d'implantation).

d) Calculs géotechniques.
e) Analyses de plannings de construction.

L'analyse détaillée de chaque catégorie d'application
ci-dessus sortirait largement du cadre de cet article.
Nous nous bornerons donc à donner un aperçu des

méthodes numériques mises en œuvre dans le calcul de

l'axe horizontal d'une route. C'est en effet dans ce

domaine que nos travaux ont été poussés le plus loin
à ce jour et nous atteignons désormais le degré
d'automatisme désiré pour permettre à chaque projeteur de

concevoir rapidement un projet d'axe avec un minimum
de calculs préliminaires. Cet automatisme est aussi la

condition nécessaire à la mise en œuvre de programmes
d'évaluation de quantités de remblais-déblais par notre
Centre de calculs. Cette étape, qui sera franchie
prochainement, exploitera largement les possibilités des res-

tituteurs stéréographiques modernes et permettra une
évaluation complètement automatique des quantités
désirées (remblais-déblais, emprise, surfaces-murs,
surfaces de revêtement, etc.), c'est-à-dire avec un matériel
numérique de données complètement fourni par la
machine électronique elle-même.

1. Généralités

L'axe d'une route est généralement constitué d'une
succession d'arcs de cercles ou de segments de droites
raccordés entre eux par des courbes de transition.

On entend par calcul de l'axe horizontal d'une route
l'ensemble des opérations qui permettent de fournir une
liste des coordonnées planes de divers points de cet

axe (points à des distances données d'une origine fixée,
intersections, etc.). Cet ensemble d'opérations dépend
essentiellement des moyens techniques à disposition.
Nous nous plaçons ici dans le cas de l'utilisation d'un
ordinateur électronique du type scientifique usuel

(IBM 1620, par exemple). Il en résulte une grande
puissance quant aux moyens de calcul (rapidité, exactitude),
mais inversement une grande complexité quant à

l'élaboration des méthodes. L'usage de tables de fonctions
n'est pas possible et toutes les opérations numériques
doivent être conçues sous forme de combinaisons
d'opérations arithmétiques élémentaires (addition, soustraction,

multiplication, division). Ajoutons encore que

l'opération de division n'étant pas automatique (succession

programmée d'additions, soustractions et multiplications)

dans certaines machines, nous avons cherché

à l'éviter dans la mesure du possible. L'objet de la

suite de cet article est de mettre en évidence les méthodes

numériques que nous avons développées pour le calcul
d'axes de routes. Nous nous sommes efforcés de rendre
les solutions rapides et économiques tout en conservant
le maximum de généralité aux problèmes.

2. Clothoïde
Les arcs de cercle ou segments de droite d'un axe

seront désignés désormais sous le nom d'éléments

principaux. Le calcul de ces éléments n'offre aucune
difficulté, cependant ils sont en général raccordés entre eux

par des courbes de transition, dont la définition
analytique n'a pas toujours été clairement fixée. On a

entre autres utilisé jusqu'ici la parabole cubique et la
lemniscate. Dans la technique routière moderne, il est

désormais admis qu'une courbe de transition doit être

un arc de clothoïde.
La clothoïde ou spirale de Cornu (intervenant aussi

dans l'étude des phénomènes de diffraction en optique)
est définie par l'équation intrinsèque

P' (2.1)

où p rayon de courbure, s arc, p constante
paramètre de la clothoïde.
Cette équation (2.1) exprime le fait que la courbure

de la clothoïde est proportionnelle à l'arc décrit.
Cherchons une solution de cette équation. On sait

en effet que toutes les autres solutions s'en déduiront

par déplacement plan accompagné éventuellement de

retournement. Choisissons un système d'axes
rectangulaires xOy quelconque et désignons par ce l'angle de

la tangente en un point de la clothoïde avec Ox. Comme,
1 da

par définition, — -y 1 équation intrinsèque (2.1)

prend la forme différentielle s ds p2 da. D'où, en
intégrant,

V Cste. O. 9,ï

r\ dx dy
{-Jr -y- cos a et -j- sin a. En remplaçant a par

son expression (2.2) et en intégrant, il vient

>s Ik—g + cstel ds

y | sin ^—2 -f- este ds.

Si on se fixe les conditions initiales a x y 0

pour s 0, la solution générale précédente prend la
forme particulière suivante :

x J cos 2? du

0

Jsin^u.
(2.3)

Faisons le changement de variable u y2pc,
du ¦ylpdv.

Les relations (2.3) deviennent alors
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donc

V2p

x -y 2 p I cos v2 dv

o

s

VÏp

y y2 p I sin p2 dv.

(2.4)

Posons t -y a
s/2p V2p

Jl (j) I cos u2 du

0
t

J2 (t) J sin w2 du.

o

Les relations (2.4) s'écrivent aussi

1
x V 2 p A (0 « • ; Ji (t),

y y/2 p J2 (t) s ¦ - Jz {t),

et (2.5)

ou encore, finalement

x «§(()

avec

t/ ST)(t)

l r
Ç (i) - I cos u2 du

0

I

i r
T[ (t) - I sin u2 du.

o

.6)

La courbe définie par les équations paramétriques
(2.6) est la clothoïde de base de paramètre p. Elle passe
par l'origine des coordonnées et admet ce point comme
centre de symétrie, elle y est de plus tangente à l'axe
Ox et y présente un point d'inflexion (en vertu de la
symétrie). Toutes les autres clothoïdes de même
paramètre s'en déduisent par déplacement plan accompagné
éventuellement de retournement (autour de l'axe Ox

par exemple).
Dans la pratique, l'angle a ne dépasse jamais la

valeur tt, t ya n'excède donc pas -y tr. En vertu
de la symétrie de la courbe, on peut se limiter au cas
t > 0. On constate donc que le calcul d'un point de
la clothoïde revient à trouver une bonne méthode
d'évaluation des fonctions £ (t) et r) (i) pour l'intervalle
0 ;= t ^ -y tt. Ce sera l'objet du paragraphe 7.

3. Centre de courbure

Par définition, le centre de courbure est le centre
du cercle osculateur à la courbe en un point. Lorsqu'on
connaît des expressions de x, y, p et a, cette détermination

du centre revient au calcul de l'extrémité d'un
vecteur

xc x — p sin a

De y + p cos a.

Dans notre cas, x «§, y sr\, p ôTg et a î2 ;

*Ç 2t2
sin t2

yc sr\ + 2^2 COS t2.

Effectuons l'artifice de calcul qui consiste à ajouter

à l'expression de yc la quantité nulle p — ^ • Il vient

xc s(%— 2t2
sin*2

Ou encore

1 + 2t2
<cos f2

xc — s Çc (t)

Vc P + *T),;(t)

1

i

(3.1)

H« l) tlW 2t2 (cost2—1).

Le calcul des coordonnées du centre de courbure se
ramène donc au calcul des fonctions Çc(t) et T\c{t) pour
l'intervalle 0 ^ t ^ -y tt. Nous verrons au paragraphe 7

comment nous avons procédé.

4. Relations différentielles entre les fonctions Ç, T), £c, t\c.

Les fonctions fj, t|, £c> île n'ont pas été introduites
au hasard ; en réalité elles satisfont à des relations
différentielles remarquables qui trouveront une
application au paragraphe suivant.

Il résulte immédiatement de la définition des fonctions

§ et r) (relations 2.6) que

(t Ç)' cos t2

(«ti)' sin t2.
(4.1)

De même

sin «V«r-w-CïO cos t2 +
sin t
~~2t? — cos i*

sin r

w %• /cosis
(«n«) (*n) + —« i\'

(4-2)

cos t2 1

2t2
sin t2

sin t2-

cos t2

Enfin

2«2

sin t*
~2T 'Ç-

sin ta

~2T
«S

(**Tlc)' t(«T|e)' + iTV
1 COS t*

(4.3)

2t + «T) +
cos t' 1

2i «T).

Ces relations importantes seront utilisées dans les

paragraphes suivants.
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5. Raccordement de deux éléments principaux donnés

Etant donnés deux éléments principaux (cercle ou

droite) bien définis, il n'existe qu'une seule clothoïde
les raccordant. Dans ce paragraphe, nous indiquons une
méthode itérative de détermination du paramètre de

cette clothoïde. Nous nous sommes efforcés de limiter
au maximum le nombre d'itérations conduisant au
résultat tout en rendant minimum le nombre d'opérations

arithmétiques effectuées dans chaque itération.

a) Cas cercle-cercle

Dans le cas où deux cercles doivent être raccordés

par une clothoïde, la donnée du problème est constituée

par la distance des centres D, le rayon du premier
cercle iîj et le rayon du second cercle R2. Ces rayons
sont donnés avec un signe indiquant dans quel sens

de rotation le cheminement a lieu sur les cercles (signe -|-

rotation dans le sens trigonométrique positif ;

signe — rotation en sens contraire). Moyennant cette
convention, on démontre que les relations développées
ci-dessous sont valables aussi bien pour les raccordements

du type en S (rayons de signes opposés) que ceux
du type en ovale (rayons de même signe). Soit p le

paramètre de la clothoïde raccordant les deux cercles.

Posons U
P

et U
V2i*j

p doit satisfaire à l'équation

V2its
Le paramètre

f(p) V[xc (y ~ xc {h)f + [yc (t2) - yc (t,)]2- D 0.

Les fonctions xc et yc étant transcendantes, il serait
vain de chercher une solution de cette équation par
des méthodes algébriques. Nous avons donc cherché un
procédé itératif. Dans ce problème, la méthode de

Newton-Raphson fournit de bons résultats tout en
restant d'application relativement simple.

Rappelons le principe de cette méthode. Soit une
fonction f(x) continue et derivable deux fois en x ; on

se propose de trouver la valeur de x rendant nulle cette
fonction. Etant donnée une valeur approchée xn de la
solution, on démontre que la quantité Xn+i Xn —

?T7—; est une nouvelle approximation de la solu-
/ (xn)

tion meilleure que Xn, d'où un procédé de récurrence.
Dans notre cas, la difficulté réside dans l'évaluation

de la dérivée de la fonction f(p) par rapport à p. Il
importe de connaître d'abord les dérivées de xc{t^), xc(t2),

yc(h), yc{t2) par rapport à p. Posons t ~j=•yLR
R Rlt t tj et pour R R2, t t2) ; alors

xc(t) sÇe(t) 2Rt2Zc(t);

yc(t) R + »tic (0 -R + 2flt2Tic(t),

et, en vertu des relations 4.3

dxc dxc dt „„,.„„,,

(pour

dp

dyc

dp

dt

dyc

dt

dp

dt

2R(t2Çc)' ¦
y/lR

1

2R(t2T)Cy-
dP \/2R

V2«Ç(0:

V2 *ti (t)

X

p

y
p

-fDès lors la dérivée de f(p) est facile à calculer et

nous trouvons l'expression suivante :

- m (a2 — xi) + (jfa — ya) kh — Vi)

V fat — xcù2 + {yc.
/'(p)=^

p V (««i — ^i)2 + (y«t — yi)
Ces résultats nous ont conduits à introduire le

procédé de calcul suivant :

1) Détermination d'une valeur approchée de la
solution p (voir paragraphe 6).

2) Calcul des fonctions xlf yl7 xCl, yCl
P

Ri

3) Calcul des fonctions x2, y2, xCv yc,

4) % x2 — x1 ;

y*~y\

ai yet — 2/c! ;

a% "5 — D-

5) Si | a6 | est plus petit qu'une limite supérieure
fixée (par exemple 0,5 mm), la valeur p du
paramètre est considérée comme suffisante.

6) Dans le cas contraire, p est remplacé par

P a^H
P r •

a3al "T" aia2

7) Retour à 2).

Les opérations arithmétiques du cycle 2) à 7) ci-

dessus se composent du calcul de huit fonctions
transcendantes, d'une racine carrée, de huit additions ou

soustractions, de six multiplications et d'une division.
La durée de ce cycle n'excède pas 2 secondes sur notre
ordinateur ; on peut donc considérer cette méthode

comme très satisfaisante et facile à programmer.

b) Cas droite-cercle

Dans ce cas, la donnée du problème est constituée

par la distance D du centre du cercle à la droite et
le rayon R du cercle. L'équation en p est alors f(p)

|y,|-D=0.
Ou, en posant e 1 si yc ^ 0 et s — 1 si yc < 0,

£2/
— • Le procédé de cal-
Pf(p) eyc—D 0etf'(p)

cul est alors très simple :

1) Détermination d'une valeur approchée de la solu¬

tion p (voir paragraphe 6).

Ê
R2) Calcul des fonctions y, yc, eis

3) a1 ej/c— D.
4) Si I «i | est plus petit qu'une limite supérieure

fixée (par exemple 0,5 mm), la valeur p du
paramètre est considérée comme suffisante.

5) Dans le cas contraire, p est remplacé par

p(l-^
6) Retour à 2).

6. Détermination d'une solution approximative
au problème précédent

Dans le paragraphe 5, nous avons développé une
méthode rapide d'amélioration du paramètre, sans indiquer

cependant comment déterminer la valeur initiale
de ce dernier. Nous nous contenterons d'indiquer sans

démonstration un procédé de calcul qui fournit une
excellente première approximation.
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R,
i) Cas cercle-cercle

-Ri
h Ri
R\

b) Cas droite-cercle
D — \R\

"2
m

p W3R2arctgJM:

p
V

4-y3 a3 a,
arctg / Xi

D) ¦D)
(D-at)(D

Ces relations, appliquées en conjugaison avec celles
du paragraphe 5, nous ont permis d'établir une sous-
routine de calcul du paramètre pour notre ordinateur
IBM 1620, dont le temps de fonctionnement est en
général de l'ordre de 8 secondes et qui occupe environ
2500 caractères de la mémoire.

7. Calcul des fonctions transcendantes £, t), Çc et r\e

Les divers développements analytiques des
paragraphes précédents nous ont conduits à prendre en
considération les fonctions transcendantes {;, r), Çc et r\c-
On démontre que ces quatre fonctions sont continues
et dérivables dans l'intervalle — oo, -f- oo. Nous avons
vu cependant que dans la pratique du calcul de routes
on se limite à l'intervalle 0 =êz t -y tt Comme ces
fonctions sont d'un usage courant, il était nécessaire
de mettre au point une méthode de calcul très rapide.
Nous avons fixé notre choix sur des approximations de
type polynomial (en raison de la lenteur de la division),
c'est-à-dire de la forme

m On~lt

Le développement des fonctions Ç, T|, §c et r\c en série
de Taylor autour de 0 nous a fourni provisoirement
une réponse à notre problème. Les séries obtenues étant
alternées, nous avons la garantie que l'erreur commise

en supprimant les termes de degré élevé n'excède pas
la valeur absolue du premier terme négligé. Nous obtenons

à ce jour d'excellents résultats en ne retenant
que les huit premiers termes de chaque développement.
Par exemple, l'expression retenue pour r\c est

r\e t2(a0 + a^ + a2t? + a3t12 + a4«16 + aBi20 +
+ o,*» + a,*28)

avec a0 8.3333333 10-2

a, =—2.9761905 «H
a2= 6.3131313 KH
a3 — 8.2671958 10-?

a4= 7.2519261 10-9

a5 —4.5384254 10-"
a6= 2.1242121 lO-«
a7 —7.7088344 10-i«

En fait, cette solution — d'ailleurs très satisfaisante
— s'avère être une solution de première urgence. On
n'ignore pas que la série de Taylor tronquée fournit
une approximation excellente au voisinage de l'origine
mais que la précision se détériore rapidement lorsqu'on
s'écarte de celle-ci ; l'erreur est en quelque sorte mal
répartie. En fait il existe des approximations polynomials

de degré moindre que celles adoptées jusqu'ici
dont l'erreur globale n'est cependant pas plus grande.
Ce sont les approximations polynomiales de norme
minimum au sens de Chebyschev. C'est dans le but
de remplacer prochainement les fonctions adoptées par
de meilleures que nous avons déjà calculé les dix-neuf
premiers coefficients des développements de Taylor de
nos quatre fonctions avec une précision de trente
chiffres significatifs. Un calcul de relaxation sur ces
coefficients qui sera confié à la machine électronique
elle-même nous fournira la solution définitive de ces
approximations. Ainsi nous espérons gagner encore
10 à 20 % du temps actuellement nécessaire au calcul
sans perdre la précision déjà obtenue.

UTILISATION DE MÄCHINES ELECTRONIQUES
POUR CALCULER LA STABILITÉ DES TALUS
par I. KARAKAS, ing. dipl. SIA - ASCE, chef de la Section des essais

I. Introduction
Les caractéristiques des routes modernes nécessitent

souvent l'exécution de talus très hauts sur des terrains
inclinés et pour les remblais d'accès à des ouvrages d'art
par-dessus des routes, des voies ferrées, etc. D'autre
part, l'ingénieur est souvent dans l'obligation de
construire la route sur des sols de fondation de très mauvaise
qualité et parfois même sur des marais. Dans une masse
de terre, quand l'effort de cisaillement dépasse la
résistance à celui-ci, une rupture ou glissement se produit
le long d'une surface. Le coefficient de sécurité à la rupture

d'un talus est fonction de l'inclinaison, de la hauteur

du talus et des caractéristiques géotechniques des
couches de sols dont le talus est formé.

A proximité du niveau du terrain naturel, les
caractéristiques déterminant la résistance au cisaillement
peuvent facilement varier selon la saison. Certains sols

gonflent pendant la saison pluviale, aussi leur résistance
au cisaillement est beaucoup plus faible que la résistance
correspondante en saison sèche. La résistance des sols
après le dégel est également très inférieure à celle existant

en saison sèche. Le niveau de la nappe phréatique
dans les sols est aussi fonction des saisons. Les niveaux
maxima et minima jouent un grand rôle dans la
détermination théorique des talus stables. II est évident que
les caractéristiques qui doivent être prises en considération

dans un calcul de stabilité sont celles qui
correspondent à l'état le plus défavorable. A tous ces
facteurs qui compliquent déjà considérablement l'analyse
de la stabilité s'ajoute encore la variation des
caractéristiques géotechniques en profondeur. Un sol homogène

sur toute la hauteur d'un talus et en profondeur
est très rare ; l'ingénieur doit donc tenir compte des
variations de couches très différentes.
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