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PROPAGATION DES VIBRATIONS TRANSVERSALES
SINUSOIDALES DE MOYENNE LONGUEUR D’'ONDE

LE LONG D’UNE BARRE PRISMATIQUE
QUASI ELASTIQUEMENT DEFORMABLE

par HENRY FAVRE, professeur-a I'EPF, Zurich

§ 1. Introduction

Dans un mémoire paru récemment !, nous avons
examiné quelles équations régissent les vibrations trans-
versales d’une barre prismatique, faite d’une matiére
viscoélastique, & comportement linéaire du 1€ ordre.
En particulier, nous avons établi 'équation différen-
tielle & laquelle doit satisfaire I'ordonnée {(a,t) de la
ligne élastique, en nous plagant successivement dans
qualtre cas différents pouvant intervenir dans les applica-
trons. Pour définir ces cas, nous avons considéré des
vibrations transversales constituant des ondes sinusoi-
dales (progressives ou stationnaires), dont nous avons
distingué trois classes. Selon que le rapport de la lon-
gueur d’onde A 4 la hauteur & = ab de la section droite
(fig. 1) est supérieur a 40, compris entre 40 et 8, ou
inférieur 4 8, nous avons parlé de vibrations de grande,
de moyenne, ou de petite (courte) longueur d’onde 2. Les

limites — trés approximatives — de ces trois classes
ont été évaluées en supposant la matiére quasi élas-
tiquement déformable, et (ce point a été sous-entendu
dans notre premier mémoire) en excluant de nos consi-
dérations les fers profilés, o les rapports 40 et 8 seraient
en général a remplacer par des nombres plus grands.

Dans le cas o la barre prismatique est faite d’une
matiére quast élastiquement déformable, et ou les vibra-
tions ont une grande ou une moyenne longueur d onde,

U'H. Favee: Sur la propagation des vibrations transversales le
long d'une barre prismatique viscoélastique & comportement linéaire,
Journal de Mécanique, Vol. 111, n® 2, juin 1964.

? Dans une vibration de grande longueur d’onde, I'inertie due a la
rotation des sections droites et les déformations engendrées par les
efforts tranchants ont des influences négligeables sur le mouvement.
Ces influences ne sont plus négligeables, tout en restant petites, dans
le cas des moyennes longueurs d'onde. Enfin, dans celui des ondes
courtes, elles jouent un role important, du méme ordre de grandeur
que celui joué par Uinertie due au déplacement transversal des élé-
ments de la barre.
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I'équation différentielle a laquelle doit satisfaire {(, ¢)
est du cinquieme ordre, comme nous 'avons montré 3,
Nous nous proposons, dans ce nouveau travail, d’appli-
quer cette équation a I'étude de la propagation des vibra-
tions sinusoidales de moyenne longueur d’onde dans une
telle barre *.

Dans le paragraphe 2, nous rappellerons les relations
auxquelles doivent satisfaire les principales grandeurs
caractérisant le phénomene étudié, relations d’ou 'on
déduit, en éliminant certaines de ces grandeurs, I'équa-
tion différentielle de la ligne élastique. Nous consacre-
rons ensuite les paragraphes 3 et 4 a I'étude proprement
dite de la propagation des vibrations définies plus haut,
en admettant que la relation entre les tensions normales
o, et les allongements spécifiques g, soit conforme au
modéle de Keloin, tout en différant peu de la loi de
Hooke. Enfin, dans le paragraphe 5, nous donnerons
les résultats des calculs analogues, faits en supposant
que cette relation soit conforme au modeéle de Maxwell,
toujours en admettant qu’elle differe peu de la loi de
Hooke. Il s’agira donc chaque fois d’une matiére quasi
élastiquement déformable 2.

La présente étude théorique a été faite dans le cadre
de recherches expérimentales sur la propagation des
ondes dans les solides, entreprises par le Laboratoire
de photoélasticité de I'Ecole polytechnique fédérale et
subventionnées par le Fonds national suisse de la
recherche scientifique.

§ 2. Rappel de diverses relations fondamentales et de
I'équation différentielle de la ligne élastique

Nous supposons que la barre soit faite d’une matiére
homogene, isotrope, quast élastiquement déformable, et
qu’elle admette un plan de symétrie, parallélement
auquel elle vibre (fig. 1). La transformée de 'axe, ou
ligne élastique, est donc constamment située dans ce
plan, ot nous choisissons deux axes fixes orthogonaux
x, z, le premier coincidant avec la position primitive
de l'axe de la barre, lorsqu’elle est a 'état de repos,
donce non déformée. Introduisons un troisitme axe, ,
perpendiculaire aux deux premiers, et ayant la méme
origine 0.

3 Voir I'équation (11), § 3, du mémoire cité dans la note 1. 11 s’agit
précisément ici d'un des quatre cas dont nous avons parlé plus haut.

4 I’étude de la propagation des vibrations sinusoidales de grande
longueur d’onde a déja été faite § 4 du mémoire cité dans la note 1.

® La relation entre les tensions tangenticlles et les glissements
peul étre choisie, dans les deux cas traités ici, conforme & la loi de
Hooke, les valeurs de ces lensions élant pelites par rapport a celles
des tensions normales.
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Pendant la vibration, un point P, d’abscisse 2 de la
ligne élastique se déplace sur une paralléle a 1'axe z.
Soit {(x, t) 'ordonnée de P,, au temps t. Cette ordonnée
est supposée rester petite par rapport a la hauteur
h = ab de la section, quel que soit t. Désignons, en un
point quelconque P(z, y, z), par o, la tension normale
parallele a @ et par g, I'allongement spéeifique relatif
a cette direction (fig. 2) ; soit encore, toujours au méme
point P, T,. = 7., la tension tangentielle relative aux

directions z, z, et y,. = Yz le glissement correspondant
(ou distorsion). Comme on le fait ordinairement en résis-
tance des matériaux, lorsqu’on exclut le cas des fers
profilés, nous poserons

oy==0, 0,0, Tpp="Tey=0, Ty=T.2=0.

Nous admettrons qu’entre o, et g, d’une part, entre
q part,
T, et y,. d’autre part, existent les relations :

d O« d &
o.r—i—a.17—~bosl—b17t—:0, (1)
Tz — GYIZ = 0. (2)

L’équation (1) est une relation de viseoélasticité
linéaire du premier ordre. La matiére de la barre consi-
dérée étant quasi élastiquement déformable, on peut
par exemple supposer — le cas traité §§ 3 et 4 satisfera
a cette condition — que les coellicients aq, by, qui sont
positifs ou éventuellement nuls, solent petits par rap-
port au coeflicient b, > 0 (en posant a; = b; = 0, on
obtiendrait en effet la formule exprimant la loi de
Hooke, et b, désignerait alors le module d’élasticité).
L’équation (2) est par contre pleinement conforme a la
lot de Hooke ; G (> 0) y désigne le module de cisaille-
ment. On a donc négligé, dans cette équation, les deux
petits termes — dus au frottement interne — ou figu-
reraient les dérivées premiéres de T, et y,. par rapport
a t, st 'on utilisait également une relation de visco-
élasticité linéaire du premier ordre entre les tensions
tangentielles et les glissements. Nous sommes autorisés
a faire cette simplification dans le cas des vibrations
linéaires de moyenne longueur d’onde étudié, car les ten-
stons tangentielles T,. sont ici petites par rapport aux
tensions o, et il sullit, pour tenir compte des glisse-
ments y,. qui sont trés petits, d’utiliser la relation appro-
chée (2).

Soit maintenant ¢(z, t) 'angle formé par I'axe a et
la normale en P, a la section a-b contenant ce point
b

y(z,t) 'angle de cette normale et de la tangente a la




ligne élastique (c’est le glissement ou la distorsion en
P,). Soit encore z la cote d’un point quelconque de la
section a-b, évaluée & partir de 'axe paralléle a y pas-
sant par P,, M(z,t) le moment fléchissant et Q(z, 1)
Ieffort tranchant (fig. 1 et 2). Désignons en outre par S
I'aire de la section droite, par / son moment d’inertie
par rapport a l'axe dont il vient d’étre question, et
par Q = XS laire effective de la section pour le cisaille-
ment. La matiére étant supposée quasi élastiquement
déformable, on peut admettre que le facteur de forme x
a la méme valeur que celle obtenue par les calculs de
la résistance des matériaux. Ce facteur est donc égal
a 2/3 dans le cas ou la section est un rectangle, et a
3/4 dans celui ou elle est un cercle.

Nous admettrons également, comme en résistance des
matériaux, que les points qui, avant la déformation, sont
situés dans une section droite, sont encore, aprés la
déformation, dans un plan (hypothése de Bernoulli-
Navier). Entre €, ¢ et z existe alors la relation géomé-
trique (fig. 2):

.29
ra (3)

Ep = —

En introduisant cette valeur de g, dans I'équation (1),
puis en multipliant par zdS, ou dS désigne I'aire d’un
élément de surface d’ordonnée z de la section, et en
mtégrant dans le domaine de cette derniére, on obtient
I'équation :

v 2
M+a191 + b, 1 ® by I;EEL

=0. (4

On déduit d’autre part de (2), en multipliant par dS
et en intégrant dans le méme domaine :

0— Gay =0. (5)

\

(4) et (5) sont des relations exprimant les propriélés
mécaniques de la matiére de la barre fléchie.
La figure 1 montre encore qu’entre {, ¢ et y existe
la relation géoméirique :
98
S — o4y, 6
5w P TY (6)
Enfin, en appliquant le théoréme du moment ciné-
tique et celul du mouvement du centre de gravité a
I'élément abed de la barre, on obtient aprés division
par da les deux équations dynamiques :

92 IM
ol 8 — 0+ %57 =0, o
PT 90 _

ou p désigne la masse spécifique.

[in éliminant les quatre inconnues M, Q, y, ¢ entre
les cing équations (4) a (8), on est finalement conduit
a la relation suivante, ou la seule fonction inconnue est

O(z, 1) :

9 23T 2SI 94
2 +(11PSLN3 !‘ GO W‘J(‘ 4
ay p? SI 9% ( b S) 9% ¢
GO o pI{1 + (.Q) X Jir ©)
by S\ 2°C J"Q )°C
(1+(Q)W{ﬂa+ba +b1mw 0.

Cette relation (9) est I'équation différentielle de la ligne
élastique relative au cas considéré ; elle est du cinquiéme
ordre ®

Remarques

10 En posant G = oo, puis p/ = 0, ce qui revient
a négliger I'influence des efforts tranchants sur les
déformations et 'influence de I'inertie due a la rotation
des sections droites, I’équation (9) devient :

9 J 7 J
(%g +a,pS taﬁ + bl 5 5 }at

qui est celle relative aux vibrations de grande longueur

4 b1 0, (10)

d’onde . Elle est également du cinquiéme ordre, mais ne
comprend que quatre termes au lieu de huit.

20 En choisissant d’autre part, dans (9), a; = 0,
by =0, b, = E (module d’élasticité), puis en divisant
par pS et en posant encore, pour simplifier,

Bl I o
pS_a"’ 8 Ser T %

on obtient I'équation suivante, qui n’est que du qua-
triéme ordre et ou ne figurent que des dérivées d’ordre
pair :

Py ke 2t E\ 2 g BT
e X6 ﬁ*“"°<1+x_G>9mﬁaz2+°‘09_x4_
) (11)

C’est celle qu’a établie S. P. Timoshenko, en admet-
tant d’emblée que la matiére de la barre satisfasse a
la loi-de Hooke 8. On sait que I'équation (11) est non
seulement applicable a I'étude des vibrations de grande
ou de moyenne longueur d’onde, mais aussi a celle des
ondes courtes .

§ 3. Etude de la propagation des vibrations transver-
sales sinusoidales de moyenne longueur d’onde,
dans le cas ou la matiére de la barre est quasi
élastiquement déformable et/ou la relation entre
o, et £, est conforme au modeéle de Kelvin

Un modéle de Kelpin comprend un ressort de cons-
tante [ et un amortisseur de constante n, couplés en
parallele (fig. 3). On a done, entre o, et g, la relation :

J Ex
at

or—Ee—n = 0\ (12)

qui se déduit directement de la figure. La constante E
est finie et joue le role d'un module d’élasticité, tandis
que 1, qui provient du frottement interne, est un trés

6 Clest précisément Péquation (IT), §3 du mémoire cité dans la
note 1. Nous avons suivi, dans le mémoire en question, pour établir
celte équation, une voie légérement différente de celle utilisée ici.

7 Voir 'équation (I), § 3, du mémoire cité dans la note 1. Dans
le paragraphe 4 du méme mémoire, nous avons précisément utilisé
cette équation pour étudier la propagation des vibrations transver-
sales sinusoidales de grande longueur d'onde (voir aussi la note 4).

8 S. P. Timosuenko : On the correction for shear on the differential
equation for transverse vibrations of prismatic bars (Phil. Mag. 41
Ser. 6, 1921 ; voir aussi The Collected Papers of Stephen P. Timo-
shenko, McGraw-Hill, London, 1953, p. 288-290).

? Voir par exemple H. Kousky : Stress waves in Solids, Clarendon
Press, Oxford, 1953, p. 70-73; H. N. Asramson, H.J. Prass et
E. A. Rierercenr: Stress wave Propagation in Rods and Beams
(Advances in Applied Mechanics, Vol. V, Acad. Press Inc., New York,
1958, p. 168-175).
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petit coeflicient, puisque la matiére est supposée quasi
élastiquement déformable. Si 'on compare (12) a la
relation (1), on voit que, dans le cas étudié :

a, =0, by=E, b =n. (13)

En introduisant les valeurs (13) dans I’équation diffé-
rentielle (9), cette derniére devient, aprés division par

pS:

2* ' *T 2*C
or T gn —V gugE  C s T
4 (14)
' FL .
s+ doma =0
ou :
_pl o ( : ES) I
a=%gn’ b=\'t%al3
(15)
o B p o
c=%a "=ps ‘Tov
Cherchons une solution de la forme :
{=el=+ i(pt— /2] = elit—i(+imz —=el...1 (16)
dont la partie réelle
{ = ex cos (pt — fz) (17)

représente effectivement une vibration transversale,

qui se propage (en s’amortissant) dans le sens des x

croissants. Dans (16) et (17), 2p—_n_ désigne la fréquence

2
(supposée donnée), [ = 17-:—1- (> 0) T'inverse, multiplié

par 2m, de la longueur d’onde A, et o (<< 0) la cons-
tante d’amortissement. Pour simplifier, nous avons
choist Uamplitude de la vibration au point x = 0 égale
a lunité de longueur. En tout point x de la barre,
I'amplitude e®* de la vibration (harmonique) est cons-
tante. Cette amplitude diminue pour des valeurs crois-
santes de z, o étant négatif. La ligne élastique est donc
constituée par des ondulations quasi sinusoidales, qui

: 4 s
se propagent avec la vitesse de phase ¢ = %—: en dimi-

nuant de hauteur, donc en s’amortissant. Dans ce sens,
on peut parler d’une yibration — ou d’une onde — sinu-
soidale amortie. Pour déterminer les deux caractéris-
tiques [ et o de cette onde, introduisons I'expression
(16) de [ dans (14). On obtient, aprés division par el-- ],
I'équation du quatrieme degré :

— p? + ap* — bp?(f + ic)® — icp?(f + ia)® + 18)

+ [ (f + i) + wdp (f + 1)t = 0.

Or, dans le cas des ondes moyennes, la valeur de la
grandeur f différe peu de celle

4
S p?
fioe= \/PE, (19)

qu’aurait cette grandeur, si la loi de Hooke était rigou-

reusement applicable (n = 0) et si 'on négligeait I'in-
fluence de I'inertie due a la rotation des sections droites
et celle des déformations
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Fig. 3 (Kelvin). Fig. & (Maxwell).

engendrées par les efforts tranchants 1% On peut donc
poser

f="1l+9), (20)
ou 6 est petit par rapport a 1. Remarquons en outre
que, d’aprés la troisieme et la cinquiéme des formules
(15), ¢ et d sont de petites quantités, et qu’il en est de
méme de «, puisque toutes ces constantes doivent leur
existence au frottement interne, supposé petit. Dans
ces conditions, on a

fia=h(L+o+iF) (21)

e 2 : )
ou 5 comme 6 — est petit par rapport a 1, et I'on
0

peut, dans un calcul de premiére approximation, rem-
placer I’équation (18) par la suivante :

— P2 apt — bp?[? (1 + 2+ 2ilj5)— icpd P
| ° (22)
4 (1 + 40+ 4if5‘> by e
qui peut aussi s’écrire :
(22217 — b0+ T fi— 1+ b2 —apt)p?] +
23)
i 20T at £ — ) p| 0.

En égalant a zéro chacune des deux parenthéses
[...], on obtient pour § et @ — en tenant compte de
(15), (19), et en remplagant par 1 deux facteurs approxi-
mativement égaux a ce nombre dans le domaine

A

8 < 7 < 40 — les formules 1 :

10 Voir par exemple la formule (33) du mémoirp cité dans la note 1.
1 Un calcul de seconde approximation, fait en remplacant I'équa-
tion (18), non par (22), mais par I'équation plus exacte :

_[)2+(l[)4ibp2f02l'1 +2<e + ,;%) +(e +%)2J*
— icp? /02[1 + 2<e a0 L%)] +

oo g)es(orig)]

+ idp fo* [1 4 (e N %)] =0,

nous a montré que, dans le cas ol la section droite de la barre est
un cercle, et dans celui ot cette section est un rectangle, 'erreur que




1 ES pI
1 ' [eSp np
«=—z \ FE E° (25)

Connaissant la valeur de 8, il est facile de calculer
la longueur d’onde N et la vitesse de phase ou de propa-

gation c. En effet, en vertu de (19), (20) et (24), on a:
(26)
4
i~ 1 ES pl p Sp?
f_f0(1+e)%[1+ (1+GQ) \/ES :l \/—ET 3
(27)

== 4
27 1 ES ol EI
A= “[1—‘(” %) ¢E—sp] V—p Tz

4
P 1 ES pl El 1
627%[1 <1+GQ)\/ESP] S5 P7 e (28)

Cherchons encore la valeur de ¢ en fonction de A.
Dans ce but, remplagons, dans la formule (28), le der-
1 /2
nier facteur p2 par sa valeur exacte 4/ 21 uEvw

—— tirée

: 27 .
de la relation connue A = ¢ (T), remplagons égale-

ment, dans le second terme de la parentheése [...]

de (28), p par sa valeur approchee \/__, déduite

2 5 5
de (19), ou f, =~ TTT En résolvant enfin 'équation ainsi

obtenue par rapport a ¢, on obtient :

ES\I 11 /EI1
sl [1—211 <1+(,Q>57\2]\/_3X (29)

Au cours des calculs, nous avons supposé que 1 étail
une petite quantité (ce qui revient a admettre que le

frottement interne est faible) et que, en conséquence,
la constante d’amortissement « était elle-méme petite,
R - S . !
ou plutdt que le quotient 7 était petit par rapport a 1.
0
e 1 np
Or, d’aprés les formules (19) et (25), on a b= EZ% ;
o

e A0 ey
La condition — < 1 sera donc satisfaite pour les ondes

o

c1a . . np T
moyennes considérées, st le nombre — est lui-méme

E
petit par rapport a 1 (pratiquement, il suffira qu’il soit
1 np
4 E

qui intervient ici). On voit qu’en somme, c¢’est le nombre

égal ou inférieur & 0,1, ou méme a 0,2, car c’est

np 5 2 5 . l hé o
—= qui caractérise le frottement interne dans le phénoméne
E

étudié, comme nous 'avions d’ailleurs déja remarqué
a propos des vibrations de grande longueur d’onde 12,

I'on commet en appliquant les formules (24) et (25) est de 'ordre de

0,1 % sculement, dans le plus grande partie (16 <7 < 40) du domaine

étudié, et de Pordre de 0,5 % dans la partie restante (8 /—< 16),

h

voisine du domaine des ondes courtes.

12 Voir le point 4 du paragraphe 4 du mémoire cité dans la note 1.

Nous avons aussi admis que 8 était petit par rapport
a 1. Or, d’aprés la formule (24), ce nombre ne dépend
que des principales caractéristiques de la barre — a

I'exclusion de 1 — et de la fréquence 5— 2“_ de la vibration.

Comme nous allons le voir, il est facile de vérifier que
cette condition concernant I'ordre de grandeur de 6§ est
bien satisfaite pour les ondes moyennes étudiées.

Si I'on remplace, en effet, dans (24), p par 'expres-

. o ., At BT
sion approchée déja citée TT;_ \/p—s-r on obtient la

valeur de 6 en fonction de A:
ES\ 11
~ 172 — =
En choisissant o= 2,6 (valeur qui correspondrait,

dans le cas ou la loi de Hooke serait rigoureusement
applicable, & un nombre de Poisson v = 0,3), cette
formule devient :

a) pour une barre dont la section est un cercle de
h 3
rayon r = 5o oulona S=mr% Q=xS= 7 T2

wrt
I:T.

0

IR

B2
9,755 ( ?\i> ; (30')

b) pour une barre dont la section est un rectangle de

2
largeur B et de hauteur 2, 00 S = Bh, Q = x S = T
Bh®
5

Bh,

1=
0 = 4,03 ('—‘) ; (30)

Les deux courbes de la figure 5 représentent les
valeurs (30") et (30”) de 8 en fonction de % Ces deux
courbes montrent d’abord que, dans le dﬁnminv des
ondes moyennes (8§ < IA < 40), le nombre ® est petit

par rapport & 1 (sans étre toutefois négligeable, sur-

tout pour les valeurs de A comprises entre 8 et 16).
D4

'tondes

!coz_thas ondes moyennes ondes longues

d’une barre de section rectangulaire.
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010} \ | l l ‘ | |
'\ 5 . ) \ P
| \\ section rectangulaire [d apres/.i'o ’//
005 —— —t—1—
|
i section circulaire /o’ apres[&’(? )
0 $____ g 4 ._._‘_._.ﬂc‘-«-— el
0 8 16 24 32 40 4(9 55 64
Iig. 5. — Valeurs approchées de € en lonction du rapport
%, dans le cas d'une barre de section circulaire et dans celui
!




La seconde des deux conditions admises au cours des
calculs est donc bien satisfaite. D’autre part, I'exa-
men des formules (19), (24), (26), (27) et (28) montre
que c’est le nombre § qui caractérise les deux influen-
ces combinées 1° de U'inertie due & la rotation des sec-
tions drottes, 20 des déformations engendrées par les
efforts tranchants 3. On voit ainsi que, dans le domaine
considéré, ces deux influences combinées sont petites,
mais non négligeables par rapport a celle de Uinertie
due au déplacement latéral des éléments (cette derniére
se manifeste par la présence du premier terme (= 1)
de chacune des parenthéses [...] des formules (26) a
(28), tandis que les deux premiéres influences combi-
nées sont représentées par les seconds termes de ces
parentheéses, dont la valeur absolue est précisément
égale a 6.

Les courbes de la figure 5 montrent également que,

A i
dans le cas des ondes longues (Tl > 40) , © est inférieur

a 0,003, donc trés petit: les deux premiéres influences
sont pratiquement négligeables par rapport a la troi-

. ; A
stéme. Enfin, dans le domaine des ondes courtes <TZ < 8> )

on voit que les deux premiéres influences combinées sont
aw contraire du méme ordre de grandeur que la troisiéme.

Tout ceci confirme les limites approximatives de 40
et 8, choisies précédemment pour définir les trois caté-
gories de vibrations (de grande, de moyenne, et de
courte longueurs d’onde), en supposant que la section
de la barre ne différe pas trop d’un cercle ou d’un rec-
tangle, ce qui exclut le cas des fers profilés, comme nous
l’avons déja remarqué .

§ 4. Calcul du moment fléchissant M(x, t) et de I’effort
tranchant Q(x, t), dans le cas des vibrations trans-
versales sinusoidales étudiées au paragraphe 3

On tire de I'équation (8), en remplagant { par sa

valeur (16):

P, 22
9—§:PS§F§=—95P%[~'],
d’ou 15
__psSp® .
0= T+ i) @ = (31)

En substituant cette valeur de Q dans (5), on obtient :

) 2el...]
Q ip Sp? e (32)

=C%a- T Gaftia)

On tire d’autre part de I’équation (6), compte tenu

de (16) et (32):

s

0=2 g =it + it @)

GQ (f41a)

13 Soient 8, et 0; les contributions de ces deux influences. La
premiére, celle provenant de I'inertic due a la rotation des sections,
s’obliLnL _en posant G = » dans (24). Elle est donc égale a 6, =

1 pl

== S p- La seconde, due aux déformations engendrées par
£3

1 \ pEIS
les efforts tranchants, est égale a 0y = 0 — 6, _[—_(__.1
C I
14 Voir le paragraphe 1 de la présente étude. Voir aussi le premier
alinéa du paragraphe 3 du mémoire cité dans la note 1.
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Substituons cette expression de ¢ dans I'équation (4),
ol nous remplagons a,, by, b; par leurs valeurs (13). Le

y

; M ;
coeflicient a, de (iy—tétant nul, on peut résoudre directe-

ment cette équation par rapport a M. Nous obtenons,
en tenant compte de (21) et en négligeant deux trés
petits termes :

M=1K+iL)el--1=
=1 (K + tL)ex[cos (pt — fz) + isin (pt — fz)],
ou

o 2 2 pES 2
I(:Efa +2Efo GQ p )

Si I'on remplace encore, dans les deux derniéres
formules, f,, ® et o par leurs expressions (19), (24) et
(25), on obtient pour K et L les valeurs suivantes :

} (36)

LgZEf,,ot—{—f:np.

ES

2 2
PR ol p ES
K= [_1+§<1—‘c'g) \ EEP] V T1°

1 */ps
Lgi\/E] ﬂP;

ou le second terme de la parenthése [..

(35)

.] est petit par

. A
rapport a 1, dans le domaine 8 < - < 40, comme on

h
le reconnait facilement dans le cas d’une section circu-
laire ou dans celui d’une section rectangulaire, en rem-
placant, dans ce terme, p par sa valeur approchée

4w JEI
A2 S
De la formule (34), on déduit la partie réelle de M,

qui représente effectivement '« onde des moments flé-
chissants » cherchée :
M = Iex [K cos (pt — fz) — L sin (pt — fz)],  (36)

el qui peut aussi se mettre sous la forme

M = Dle= cos (pt— fz + 8), (37)

ou & est une constante.

En remplagant, dans (37 cos (pt— fx 4+ &) par
cos § cos (pt — fx) — sin & sin (pt — fz), et en compa-
rant 'expression ainsi obtenue & (36), on voit que K =
=Dcosd, L=Dsind, dou I'on déduit, en tenant
compte des valeurs (35) de K et L et en négligeant de
trés petits termes :

D:\/Kz—{—ngI’g l

1 ES\ o1 1.7/oES (58)
= [1 + 5 1 (75) ES P] T
2
L 1 1 ES pl np
8 D%Q[i 7(1‘072) ﬁP]F' 89)

D’aprés (37), la quantité D est Uamplitude — pour la
section x = 0 et au facteur I prés — de la variation

15 D'aprés la nature du phénoméne étudié (onde progressive
amortie), la fonction arbitraire du temps W (t) qu’il faudrait ajouter

. » v . ¢ .
au sccond membre, en intégrant l'expression de —.; pour obtenir la
’ Jx

valeur de Q, est identiquement nulle.

.




(sinusoidale) du moment fléchissant M en fonction du
temps. En vertu de (38), cette quantité D dépend de p
et des grandeurs p, E, G, S, I, Q qui, avec la cons-
tante n, caractérisent la barre étudiée. En une section
d’abscisse @ quelconque, 'amplitude effective de la
variation de M est égale & DIexr. Elle ne dépend pas
de t, mais par contre de z. .

.On voit d’autre part, en comparant (17) et (37), que
& nlest autre que le décalage de phase entre Uonde des
moments fléchissants M et celle des déplacements (.
D’aprés la formule (39), ce décalage est, comme la
constante d’amortissement o, proportionnel au nombre

ok qui caractérise le frottement interne dans le phé-

E

nomeéne étudié. En premiére approximation, on peut
poser § = E_Z’ ce qui montre que le décalage & est

petit par rapport & 1 et positif.

Déterminons maintenant I’effort tranchant Q. On a
successivement, en partant de la formule (31) et en
négligeant quelques trés petits termes (le calcul est
analogue a celui que nous venons de faire pour obtenir
le moment de flexion M) :

_ 1Sp2el- -1
h(t+e+i7)

EI

Q=S (K'—iL") el--1, (40)

4
’ \ [ ELP® np?
K =ap pS LE’
1 ES\ * /ol * [E1p
[1 - z(i + Tm) \/ﬁ P] P \/—ps P

On déduit facilement des formules (40) et (41), pour
la partie réelle de (, qui représente effectivement
I'«onde des efforts tranchants » cherchée :

(41)

Ll

IR

Q = FSe>= cos (pt—fg;_;_r_{_g') _ I

= FSe* sin (pt — fx 4+ &) ;

(42)

ou

P
Fz\/K'2+L'2gL'g

2 4
1 ES pl EIp?
[1—2(” @) \/E—SP] P\ o5 P

2
K’ 1 1 ES pl np
x gz[uz(w——m) %ﬁplf. (44)

Les significations de F, de FSex et de & (qui est
petit par rapport & 1 et positif) sont évidentes. En
comparant (37) et (42) d’une part, (39) et (44) d’autre

(43)

[l

8/

IR

part, on voit que le décalage de phase entre U'onde des
efforts tranchants Q et Uonde des moments fléchissants M
est approximativement égal a

(_121+5r)_52_3_m, (45)
Ce décalage est donc négatif. Sa valeur absolue est

légérement supérieure a 5

Remarques générales concernant les formules établies
dans les paragraphes 3 et 4

10 1I est intéressant de constater qu’a Uapprozima-
tion de nos calculs, la grandeur %l—)y caractérisant dans
le phénoméne étudié le frottement interne, ne figure
que dans la formule (25) donnant la valeur de la cons-
tante d’amortissement « et dans les expressions (39)
et (44) des décalages de phase & et 8. La caractéris-
tique ﬂ_El_’ n’intervient par contre aucunement dans les
formules (27), (28), (29), (38) et (43), donnant respec-
tivement les valeurs de la longueur d’onde A, de la
vitesse de propagation ¢, ainsi que celles des quantités D
et I7 qui sont — pour la section & = 0 et aux facteurs /
et S prés — les amplitudes des variations de M et de Q.
On peut dire aussi que les grandeurs A, ¢, D, F ont les
mémes valeurs que si la matiére était élastiquement
déformable, de modules E et G 16,

En d’autres termes, le frottement interne engendre
10 un amortissement e, le long de la barre, des variations
des principales grandeurs [, M, Q, ... jouant un réle
dans la propagation de la vibration; 2° un petit décalage
de phase & entre Uonde des moments fléchissants M et
Uonde des déplacements [ ; 3° une petite variation &' du
décalage de phase entre l'onde des efforts tranchants Q
et celle des déplacements { (ce dernier décalage est ainsi

égal a —12—1- + &', au lieu d’avoir la valeur — _21'_1' qu’tl

aurait si la loi de Hooke était rigoureusement applicable).

Les trots quantités o, § et 8" sont proportionnelles a .

E

20 L’inertie due a la rotation des sections droites
ainsi que les déformations engendrées par les efforts
tranchants n’ont, d’aprés (25), pas d’influence sur la
valeur de la constante d’amortissement . Cette inertie
et ces déformations influencent par contre (dans une faible
mesure il est grat) les valeurs de la longueur d’onde A,
de la pitesse de propagation c et des amplitudes D et F
(pour @ = 0, aux facteurs I, S prés) des variations de
M et Q. Elles influencent également les valeurs des déca-
lages de phase & et &'. Elles se manifestent en effet par
la présence des seconds termes des parenthéses [...],

dans les formules (27), (28), (38), (39), (43) et (44).

30 Les tensions normales o, sont, a chaque instant,
réparties linéairement dans toute section droite. On le
reconnait en effet en introduisant dans la formule (3)
la valeur (33) de ¢, puis en substituant la partie réelle
de I'expression ainsi obtenue dans I'équation (1) (on
a; = 0, by = E, by = 1) et en résolvant finalement cette
derniére par rapport & o,. On peut donc calculer ces

¢ Ceci confirme pleinement ce que nous avions prévu dans la
note 9 de la publication citée note 1 du présent mémoire.
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. - M
tensions en utilisant la formule connue o, = T ce

qui donne, compte tenu de la valeur (37) de M :

o, = Dex*z cos (pt — fx + 5). (46)

Quant aux tensions tangentielles T,,, on peut les
calculer approximativement en fonction de Q(z, (), a
I'aide des mémes formules que celles utilisées en résis-
tance des matériaux.

40 Les valeurs (25) et (26) obtenues pour o et f cor-
respondent & I'une des quatre racines [ + i de I'équa-
tion (18). Cette racine est bien celle qui se rapporte
au phénomene étudié, car on peut montrer qu’elle tend
asymptotiquement vers 'unique racine intervenant dans
le cas des grandes longueurs d’onde'?, lorsqu’on fait

A e
tendre le rapport 3, vers Iinfini, en supposant que le
frottement interne soit faible, ou plus exactement, que

le nombre 12 qui le caractérise soit petit par rapport

E
a 1.

§ 5. Cas ou la matiére de la barre est quasi élastique-
ment déformable et ou la relation entre o, et e
est conforme au modéle de Maxwell

Nous nous bornerons a esquisser les caleuls, a en
donner les principaux résultats et a faire quelques
remarques fondamentales.

Admettons que la barre soit encore quasi élastique-
ment déformable et satisfasse en principe aux mémes
conditions que celles précisées dans le paragraphe 2.
Supposons en outre qu'entre o, el g, existe, non pas
la relation de Kelvin (12), utilisée dans les paragraphes 3
et 4, mais la relation suivante, conforme au modéle de

Mazwell (fig. 4) :

n Jd0oz Q_E.r

GI+E7—T] at:(’)' (47)

Les coeflicients figurant dans (1) ont 1c1 les valeurs :

n
a =5 bp=0, b =n, (48)
), . . . Nk et Edt
et I'équation (9) devient, aprés multiplication par o5

et en intégrant (la fonction arbitraire Y(z) que l'on
devrait ajouter au second membre est identiquement
nulle, dans le cas des ondes progressives sinusoidales
que nous étudions) :

98 9%
Yoo

. S
22)t 8 )P

1(73 /94
e 9T€ o —
(49)
(74
97%——0’

T

ou

_IE ES\ I _EI
_( —,—)37 —'p—S'

En substituant dans (49) la méme expression de
que précédemment, & savoir

17 Voir le point 2 du paragraphe 4 du mémoire cité dans la note 1.
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[ = elox +i(pt— )] = ¢l..], (16)
dont la partie réelle
{ = e cos (pt — fx) (17)

représente effectivement la vibration transversale cher-
chée, on obtient pour déterminer f et o I'équation du
quatrieme degré :

ia'p — p?—ib'p® + 'pt 4 id'p (f + i) — | o
— P+ i) + T + i)t = 0. i

Comme le montre le schéma de la figure 4, le rap-
port —ﬁ est nécessairement trés petit dans le cas examiné
ict, o nous supposons la matiére quasi élastiquement
déformable (en faisant tendre m vers linfini dans
I'équation (47), divisée préalablement par m, on voit
d’ailleurs qu'on obtient a la limite la loi de Hooke).
Les coeflicients o, b’ et d' sont donc d’aprés (50) trés
petits. L’équation (51) peut alors s’écrire, en posant
comme précédemment :

f+ix=ffl+0+iF)

7 (21)

ou [y a la valeur (19) et ot 6 et < sont petits par rap-

port a 1:
ia'p — p* — ib'p® + ¢'p* + id'pfy — I
(52)

x

_gp2f3<1+2e+2ifo‘) +ri(1+ 46+4i%>g 0. [

La partie réelle et la partie purement imaginaire
devant étre séparément nulles, on tire de cette équa-
tion, en tenant compte de (19) et (50), les valeurs
approchées suivantes de 6 et o18:

2
1 ES\ *[oI 2
G%Z(HG—Q)\/%P’ (53)

1. foSp? E
4V EIl np’

x

IR

(54)

L’expression (53) de © est identique a celle (24)
obtenue précédemment, en utilisant le modéle de Kel-
vin. En conséquence, les formules (26) a (29), ainsi
que (38) et (43) (toutes établies dans les paragraphes 3
et 4), ot le [rottement interne ne joue aucun réle, sont
encore valables dans le cas du modéle de Maxzswell traité
dans le présent paragraphe.

La valeur (54) de o différe par contre de celle (25)
trouvée §3. Alors que le troisieme facteur de la for-

g .
mule (25) est 12, le dernier facteur de (54) est

E np ’

c’est-a-dire I'inverse du premier rapport. Cela est da

“au fait que, dans le cas du modéle de Kelvin, c’est le

'8 Un caleul de seconde approximation, analogue a celui mentionné
dans la note 11, a confirmé la validité des formules (53) et (54). 11
a cependant montré que, pour les ondes moyennes considérées, I'erreur
que l'on commet en déterminant o & laide de la formule (54) est
nettement supéricure (5 & 10 fois) a celle de lordre de quelques mil-
litmes que l'on commet en appliquant la formule (25). Par contre,
le nouveau calcul a confirmé I'exactitude de la valeur déja obtenue

pour 6.




nombre % (petit par rapport a 1) qui caractérise le

frottement interne, tandis que dans celui du modeéle de

5

Mazwell, c’est le nombre inverse qut joue ce réle (il

est alors, dans ce cas, petit par rapport a 1)¥. Insistons
sur le fait que tout ceci suppose, bien entendu, que la
matiére soit quasi élastiquement déformable.

En poursuivant les calculs, on verrait que les for-
mules donnant les valeurs des décalages de phase &
et & définis § 4 s’obtiennent, dans le cas du modéle
de Maxwell, en remplacant dans (39) et (44) le facteur

;
% par T]E_p Ce résultat n’est d’ailleurs pas étonnant,
ces deux facteurs étant respectivement, dans chacun
des deux cas étudiés ici, petits par rapport a 1 et
caractérisant le frottement interne.
On peut résumer cette discussion en disant que, dans
le cas du modéle de Kelvin comme dans celui du modéle

[

g :
de Mazxwell, le nombre T]f{ ou . caractérisant chaque

' Voir aussi l'alinéa qui suit la formule (29), § 3, de cette publi-
cation, et surtout les points 4 et 5 du paragraphe 4, du mémoire

cité dans la note 1.

fois le [rottement interne, joue un réle identique, dans
toutes les formules ow ce frottement intergient, pouryu que
ce dernier soit constamment trés petit, c’est-a-dire que la
matiére soit quast élastiquement déformable.

Remarque : Le lecteur s’étonnera peut-étre qu’on soit
arrivé a cette derniére conclusion, étant donné que les
équations différentielles (14) et (49), relatives aux deux
modeéles successivement utilisés dans cette étude, sont
nettement différentes I'une de 'autre. Il semble qu’il
y ait la un certain paradoxe. Ce dernier n’est cependant
qu'apparent. Il est en effet possible de montrer que la
substitution de I'expression (16) de { dans ces équations
conduit, pour déterminer § et o, a deux relations qui,
st 'on y néglige quelques trés petits termes, différent
seulement par le fait qu’il faut remplacer, dans la

D
premiére, TWL_P par T]E—[J’ pour obtenir la seconde. Cette
substitution étant pleinement justifiée par la signifi-
cation de ces deux nombres, on voit que l'on n’a en
définitive affaire qu’a une seule et méme équation. Bien
entendu, ceci n’est valable qu’a l'approximation ou
nous nous sommes placés dans nos calculs.

Zurich, le 1°T juillet 1964.

TRAVAUX D’EXCAVATION ET CONSOLIDATION DU ROCHER
D’'UNE CENTRALE SOUTERRAINE EN ECOSSE

par Dr. Ing. SPIROS VLATSEAS, Senior Engineer, The Mitchell Construction Co. Ltd. Beauly, Inverness-shire, Ecosse

1. Renseignements généraux

Avec la mise en service, en 1963, de 'aménagement
hydro-électrique de Strathfarrar et Kilmorack, la North
of Scotland Hydro-electric Board — entreprise publique
pour lexploitation des ressources hydrauliques en
Ecosse du Nord — a complété la deuxiéme étape de
I'utilisation du bassin versant de la riviere Beauly. La
premiére étape, celle de 'aménagement de Glen Affric,
avait été terminée en 1952.

I’aménagement de Strathfarrar et Kilmorack est
situé au nord-ouest de Inverness, a une distance de
15 a 60 km de cette ville, et se compose de quatre
paliers en série, pour un total de 102 MW de puissance
installée.

Le premier palier, celui de Deanie, dont les caracté-
ristiques sont rapportées a la figure 1, utilise les eaux
d’un bassin versant de 220 km?2 Un barrage-voiite de
39 m de haut forme, avec un barrage subsidiaire en
gravité, le bassin d’accumulation principal, celui de
Monar, d’'une capacité de 142 millions de m?.

Une galerie d’amenée de 9 km de long alimente la
centrale souterraine de Deanie, dont la puissance ins-
tallée de deux turbines Francis est de 38 MW. Les eaux
sont ensuite déchargées dans le réservoir de Beannachran
— d’une capacité de 1,4 million de m® — en téte du
deuxieme palier, celui de Culligran, dont la centrale,
équipée d’une turbine Dériaz et d’une turbine Francis,
a une puissance installée de 24 MW. Les deux paliers
restants sont constitués chacun d’un barrage-centrale
en gravité avec deux turbines Kaplan d’une puissance

installée de 20 MW.

2. Géologie

Le terrain, le long du palier de Deanie, est composé
presque entiérement de roche cristalline métamorphique
appartenant a la série de Moine, pour la plupart des
granulites siliceux et micaschisteux, avec des variations
locales. De la moraine et des dépdts alluviaux de lac et
de riviere couvrent les niveaux inférieurs de la région.

Aux environs de la centrale souterraine, le rocher est
composé pour la plus grande part de granulites psam-
mitiques plutdt quartzeux avec des bandes péliques.
A proximité immédiate de la centrale méme, laquelle
a une couverture de 70 m environ sur sa calotte,
le rocher a révélé, pendant les creusements, beaucoup
de clivages, généralement pleins d’eau et formant entre
cux des blocs lenticulaires trés instables, sous forme de
Vs inversés. Ces clivages donnérent lieu & des tombées
de roche et du hors-profil abondant. D’autre part, la
médiocrité du rocher exposé pendant le creusement de
la centrale exigea que I'on changedt les méthodes de
construction prévues et que l'on posat deux calottes
de revétement, dont la premiére était composée d’an-
neaux en fer et béton de remplissage du hors-profil, et la
deuxiéme, celle de couverture, de béton non armé. En
outre, il fallut pourvoir au boulonnage du rocher, aux
mnjections de ciment et au revétement en béton des
murs de la centrale, originellement prévus en roche nue.

'

3. Excavation

Les travaux d’excavation de I'ensemble chambre
d’équilibre - centrale - galerie de fuite commencérent en
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