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PROPAGATION DES VIBRATIONS TRANSVERSALES
SINUSOÏDALES DE MOYENNE LONGUEUR D'ONDE
LE LONG D'UNE BARRE PRISMATIQUE
QUASI ÉLASTIQUEMENT DÉFORMABLE

par HENRY FAVRE, professeur à l'EPF, Zurich

§ 1. Introduction

Dans un mémoire paru récemment1, nous avons
examiné quelles équations régissent les vibrations
transversales d'une barre prismatique, faite d'une matière
viscoélastique, à comportement linéaire du 1er ordre.
En particulier, nous avons établi l'équation différentielle

à laquelle doit satisfaire l'ordonnée £(#, de la
ligne élastique, en nous plaçant successivement dans

quatre cas différents pouvant intervenir dans les applications.

Pour définir ces cas, nous avons considéré des
vibrations transversales constituant des ondes sinusoïdales

(progressives ou stationnaires), dont nous avons
distingué trois classes. Selon que le rapport de la
longueur d'onde À à la hauteur h ab de la section droite
(fig. 1) est supérieur à 40, compris entre 40 et 8, ou
inférieur à 8, nous avons parlé de vibrations de grande,
de moyenne, ou de petite (courte) longueur d'onde 2. Les

limites — très approximatives — de ces trois classes

ont été évaluées en supposant la matière quasi
élastiquement déformable, et (ce point a été sous-entendu-
dans notre premier mémoire) en excluant de nos
considérations les fers profilés, où les rapports 40 et 8 seraient
en général à remplacer par des nombres plus grands.

Dans le cas où la barre prismatique est faite d'une
matière quasi élastiquement déformable, et où les vibrations

ont une grande ou une moyenne longueur d'onde,

1 H. Favre : Sur la propagation des vibrations transversales le
long d'une barre prismatique viscoélastique à comportement linéaire.
Journal de Mécanique, Vol. 111, n° 2, juin 1964.

2 Dans une vibration de grande longueur d'onde, l'inertie due à la
rotation des sections droites et les déformations engendrées par les
efforts tranchants ont des influences négligeables sur le mouvement.
Ces influences ne sont plus négligeables, tout en restant petites, dans
le cas des moyennes longueurs d'onde. Enfin, dans celui des ondes
courtes, elles jouent un rôle important, du même ordre de grandeur
que celui joué par l'inertie due au déplacement transversal des
éléments de la barre.
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l'équation différentielle à laquelle doit satisfaire £(#, t)
est du cinquième ordre, comme nous l'avons montré 3.

Nous nous proposons, dans ce nouveau travail, d'appliquer

cette équation à l'étude de la propagation des vibrations

sinusoïdales de moyenne longueur d'onde dans une
telle barre 4.

Dans le paragraphe 2, nous rappellerons les relations
auxquelles doivent satisfaire les principales grandeurs
caractérisant le phénomène étudié, relations d'où l'on
déduit, en éliminant certaines de ces grandeurs, l'équation

différentielle de la ligne élastique. Nous consacrerons

ensuite les paragraphes 3 et 4 à l'étude proprement
dite de la propagation des vibrations définies plus haut,
en admettant que la relation entre les tensions normales
<yx et les allongements spécifiques e^ soit conforme au
modèle de Kelvin, tout en différant peu de la loi de
Hooke. Enfin, dans le paragraphe 5, nous donnerons
les résultats des calculs analogues, faits en supposant
que cette relation soit conforme au modèle de Maxwell,
toujours en admettant qu'elle diffère peu de la loi de
Hooke. Il s'agira donc chaque fois d'une matière quasi
élastiquement déformable 5.

La présente étude théorique a été faite dans le cadre
de recherches expérimentales sur la propagation des
ondes dans les solides, entreprises par le Laboratoire
de photoélasticité de l'Ecole polytechnique fédérale et
subventionnées par le Fonds national suisse de la
recherche scientifique.

§ 2. Rappel de diverses relations fondamentales et de
l'équation différentielle de la ligne élastique

Nous supposons que la barre soit faite d'une matière
homogène, isotrope, quasi élastiquement déformable, et
qu'elle admette un plan de symétrie, parallèlement
auquel elle vibre (fig. 1). La transformée de l'axe, ou
ligne élastique, est donc constamment située dans ce

plan, où nous choisissons deux axes fixes orthogonaux
x, z, le premier coïncidant avec la position primitive
de l'axe de la barre, lorsqu'elle est à l'état de repos,
donc non déformée. Introduisons un troisième axe, y,
perpendiculaire aux deux premiers, et ayant la même
origine 0.

3 Voir l'équation (II), § 3, du mémoire cité dans la note 1. Il s'agit
précisément ici d'un des quatre cas dont nous avons parlé plus haut.

4 L'étude de la propagation des vibrations sinusoïdales de grande
longueur d'onde a déjà été faite § 4 du mémoire cité dans la note 1.

6 La relation entre les tensions tangentielles et les glissements
peut être choisie, dans les deux cas traités ici, conforme à la loi de
Hooke, les valeurs de ces tensions étant petites par rapport à celles
des tensions normales.

Pendant la vibration, un point P0 d'abscisse x de la
ligne élastique se déplace sur une parallèle à l'axe z.
Soit £(#, t) l'ordonnée de P0, au temps t. Cette ordonnée
est supposée rester petite par rapport à la hauteur
h ab de la section, quel que soit t. Désignons, en un
point quelconque P(x, y, z), par ax la tension normale
parallèle à a; et par £x l'allongement spécifique relatif
à cette direction (fig. 2) ; soit encore, toujours au même
point P, TXz Tzx la tension tangentielle relative aux
directions x, z, et yxz yzx le glissement correspondant
(ou distorsion). Comme on le fait ordinairement en
résistance des matériaux, lorsqu'on exclut le cas des fers
profilés, nous poserons

0, Txy ^ 0, 0.<Jy ^ 0, CSV ^ V, TyX

Nous admettrons qu'entre ax et ex d'une part, entre
tXz et yX2 d'autre part, existent les relations :

d<yx
— b0ix—\-X^ 0, (1)

Txz- -Gy*z 0. (2)

CTr

L'équation (1) est une relation de viscoélasticité
linéaire du premier ordre. La matière de la barre considérée

étant quasi élastiquement déformable, on peut
par exemple supposer — le cas traité §§ 3 et 4 satisfera
à cette condition — que les coefficients Oj, bx, qui sont
positifs ou éventuellement nuls, soient petits par
rapport au coefficient b0 > 0 (en posant Oj bx — 0, on
obtiendrait en effet la formule exprimant la loi de
Hooke, et b0 désignerait alors le module d'élasticité).
L'équation (2) est par contre pleinement conforme à la
loi de Hooke ; G (> 0) y désigne le module de cisaillement.

On a donc négligé, dans cette équation, les deux
petits termes — dus au frottement interne — où
figureraient les dérivées premières de txz et yB par rapport
à t, si l'on utilisait également une relation de visco-
élasticité linéaire du premier ordre entre les tensions
tangentielles et les glissements. Nous sommes autorisés
à faire cette simplification dans le cas des vibrations
linéaires de moyenne longueur d'onde étudié, car les
tensions tangentielles ~txz sont ici petites par rapport aux
tensions ax, et il suffit, pour tenir compte des
glissements yxz qui sont très petits, d'utiliser la relation approchée

(2).

Soit maintenant o(x, t) l'angle formé par l'axe x et
la normale en P0 à la section a-b contenant ce point,
y(x, t) l'angle de cette normale et de la tangente à la

V/^ey m c M+W-dx

dx

h=ab '*+%*

Y? normale en P0

à la section a-b

tangente en P0

à la ligne e'tastique

df
H i

!*)jfJ9

'SM
dx

Vx t,dx

TLrd<p

(-)

M+%4*

'Q+%*

Fig. 1.
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ligne élastique (c'est le glissement ou la distorsion en
P0). Soit encore z la cote d'un point quelconque de la
section a-b, évaluée à partir de l'axe parallèle à y
passant par P0, M(x, t) le moment fléchissant et Q(x, t)
l'effort tranchant (fig. 1 et 2). Désignons en outre par S
l'aire de la section droite, par / son moment d'inertie
par rapport à l'axe dont il vient d'être question, et
par Cî x5 ['aire effective de la section pour le cisaillement.

La matière étant supposée quasi élastiquement
déformable, on peut admettre que le facteur de forme x
a la même valeur que celle obtenue par les calculs de
la résistance des matériaux. Ce facteur est donc égal
à 2/3 dans le cas où la section est un rectangle, et à

3/4 dans celui où elle est un cercle.
Nous admettrons également, comme en résistance des

matériaux, que les points qui, avant la déformation, sont
situés dans une section droite, sont encore, après la
déformation, dans un plan (hypothèse de Bernoulli-
Navier). Entre ex, 9 et z -existe alors la relation géométrique

(fig. 2) :

^9
(3)

En introduisant cette valeur de ex dans l'équation (1),
puis en multipliant par zdS, où dS désigne l'aire d'un
élément de surface d'ordonnée z de la section, et en
intégrant dans le domaine de cette dernière, on obtient
l'équation :

- + *$ + •>'£+m|£ 0. (4)

On déduit d'autre part de (2), en multipliant par dS
et en intégrant dans le même domaine :

Q— Gay 0. (5)

(4) et (5) sont des relations exprimant les propriétés
mécaniques de la matière de la barre fléchie.

La figure 1 montre encore qu'entre £, 9 et y existe
la relation géométrique :

3±
dx 9 + y. (.6)

Enfin, en appliquant le théorème du moment
cinétique et celui du mouvement du centre de gravité à

l'élément abcd de la barre, on obtient après division
par dx les deux équations dynamiques :

P' ^9 e-f dM
dx

0,

m%l 3Q^ dt* - dx
0,

(7)

(8)

où p désigne la masse spécifique.
En éliminant les quatre inconnues M, Q, y, 9 entre

les cinq équations (4) à (8), on est finalement conduit
à la relation suivante, où la seule fonction inconnue est

l{x, t) :

.9*1
PS Hïï + aiP5 -

d*l psipï
dt

ai p8 si dbj
Giï dt1

dt3 +

575-P' 1 +

+Gù d&

boS, d'i
GQ/ dx2dt2

— p/U + 75
VS\_i!L
GCl/d^dt* + M0+- ÜL

dx*dt
:0.

(9)

Cette relation (9) est Véquation différentielle de la ligne
élastique relative au cas considéré ; elle est du cinquième
ordre 6.

Remarques
1° En posant G 00, puis pl 0, ce qui revient

à négliger l'influence des efforts tranchants sur les

déformations et l'influence de l'inertie due à la rotation
des sections droites, l'équation (9) devient :

,d2l d*l
P53,2 + a^PS3ß + bo1

dt dt3
d_H

dx* bj d^dt 0, (10)

qui est celle relative aux vibrations de grande longueur
d'onde 7. Elle est également du cinquième ordre, mais ne
comprend que quatre termes au lieu de huit.

2° En choisissant d'autre part, dans (9), Oj 0,
hx 0, b„ E (module d'élasticité), puis en divisant
par pS et en posant encore, pour simplifier,

E[
pS

I
S

k2
5 X,

on obtient l'équation suivante, qui n'est que du
quatrième ordre et où ne figurent que des dérivées d'ordre
pair :

dt*^ xG dt* ° \ "•"
x g) dx* dt* x: "» Sa*«^ 0.

(11)

C'est celle qu'a établie S. P. Timoshenko, en admettant

d'emblée que la matière de la barre satisfasse à

la loi de Hooke8. On sait que l'équation (11) est non
seulement applicable à l'étude des vibrations de grande
ou de moyenne longueur d'onde, mais aussi à celle des

ondes courtes 9.

§ 3. Etude de la propagation des vibrations transver¬
sales sinusoïdales de moyenne longueur d'onde,
dans le cas où la matière de la barre est quasi
élastiquement déformable et où la relation entre
o> et ex est conforme au modèle de Kelvin

Un modèle de Kelvin comprend un ressort de
constante E et un amortisseur de constante T), couplés en
parallèle (fig. 3). On a donc, entre ox et ex, la relation :

<yx — Eex — Ti
dex

dt
0s (12)

qui se déduit directement de la figure. La constante E
est finie et joue le rôle d'un module d'élasticité, tandis
que T|, qui provient du frottement interne, est un très

G C'est précisément l'équation (II), § 3 du mémoire cité dans la
note 1. Nous avons suivi, dans le mémoire en question, pour établir
cette équation, une voie légèrement différente de celle utilisée ici.

7 Voir l'équation (I), § 3, du mémoire cité dans la note 1. Dans
le paragraphe 4 du même mémoire, nous avons précisément utilisé
cette équation pour étudier la propagation des vibrations transversales

sinusoïdales de grande longueur d'onde (voir aussi la note 4).
8 S. P. Timoshenko : On the correction for shear on the differential

equation for transverse vibrations of prismatic bars [Phil. Mag. 41,
Ser. 6, 1921 ; voir aussi The Collected Papers of Stephen P.
Timoshenko, McGraw-Hill, London, 1953, p. 288-290).

8 Voir par exemple H. Kolsky : Stress waves in Solids, Clarendon
Press, Oxford, 1953, p. 70-73; H.N. Abramson, II. J. Plass et
E. A. RippEHGER : Stress wave Propagation in Rods and Beams
[Advances in Applied Mechanics, Vol. V, Acad. Press Inc., New York,
1958, p. 168-175).
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petit coefficient, puisque la matière est supposée quasi
élastiquement déformable. Si l'on compare (12) à la
relation (1), on voit que, dans le cas étudié :

0, b0 K (13)

En introduisant les valeurs (13) dans l'équation
différentielle (9), cette dernière devient, après division par
p5:

dt* +
d*l 6-

c

d*i
)x*dt* -e ^dx*dt3

+ r^+ l dx* + d*t
dx*dt

o,

a
pi

' Ga' b -(.> ES\ I
Ga) S'

c
ni

' Ga' r El d=%-
pS

(14

(15)

Cherchons une solution de la forme :

t e[cu + i(pt — /x)-] e{ipt—i{t + ia)x] — e [. ,,\ (16)

dont la partie réelle

£ eax cos (pt fx) (^n

représente effectivement une vibration transversale,
qui se propage (en s'amortissant) dans le sens des x

croissants. Dans (16) et (17), ¦?>— désigne la fréquence

2tt
(supposée donnée), / -ï— (> 0) l'inverse, multiphé

par 2-rr, de la longueur d'onde A, et a (< 0) la
constante d'amortissement. Pour simplifier, nous avons
choisi l'amplitude de la vibration au point x 0 égale

à l'unité de longueur. En tout point x de la barre,
l'amplitude e"* de la vibration (harmonique) est
constante. Cette amplitude diminue pour des valeurs
croissantes de x, a étant négatif. La ligne élastique* est donc
constituée par des ondulations quasi sinusoïdales, qui

se propagent avec la vitesse de phase c -r> en

diminuant de hauteur, donc en s'amortissant. Dans ce sens,

on peut parler d'une vibration — ou d'une onde —
sinusoïdale amortie. Pour déterminer les deux caractéristiques

/ et ce de cette onde, introduisons l'expression
(16) de £ dans (14). On obtient, après division par et--],
l'équation du quatrième degré :

— p* + ap* — bp* (/ + ia)* — icp3 (f + i
+ r(f+ia)i + idP(f+ia)i 0.

.(18)

Or, dans le cas des ondes moyennes, la valeur de la
grandeur / diffère peu de celle

/.= pSj*
El (19)

qu'aurait cette grandeur, si la loi de Hooke était
rigoureusement applicable (t) 0) et si l'on négligeait
l'influence de l'inertie due à la rotation des sections droites
et celle des déformations

kO-y

S-

kOx

E -LU

±.__.

Fig. 3 (Kelvin).

-L Y)

m
Fig. 4 (Maxwell)

engendrées par les efforts tranchants 10. On peut donc

poser
/ /„(l + 6), (20)

où 6 est petit par rapport à 1. Remarquons en outre

que, d'après la troisième et la cinquième des formules
(15), c et d sont de petites quantités, et qu'il en est de

même de a, puisque toutes ces constantes doivent leur
existence au frottement interne, supposé petit. Dans

ces conditions, on a

/+KX /. 1 + V il)

où j comme 6 — est petit par rapport à 1, et l'on

peut, dans un calcul de première approximation,
remplacer l'équation (18) par la suivante :

(22)

p* + ap* — bp* f0 \l + 20 + % t)— icp* ft +

+17* (l + 46 + 4*^) + idpft H
qui peut aussi s'écrire :

2/02 (2 r fl- bP*) e + r /t- (i + bf0 - ¦ ap*) p*

2 /. (2 r f0- bp*) a + fl (dft - cp*) p

+

0.

(23)

En égalant à zéro chacune des deux parenthèses

[...], on obtient pour 0 et a — en tenant compte de

(15), (19), et en remplaçant par 1 deux facteurs
approximativement égaux à ce nombre dans le domaine

8 < \ < 40
h

les formules n

10 Voir par exemple la formule (33) du mémoire cité dans la note 1.
11 Un calcul de seconde approximation, fait en remplaçant l'équation

(18), non par (22), mais par l'équation plus exacte :

-p* + apl—bpifoi

— icp3 /o'

'+'ïh{,+f'
i + 2 e + i /•/J

°) + 6re+i"
u

+ idpfo* 1 +4 6+Ï11 o,

• (221

nous a montré que, dans le cas où la section droite de la barre est
un cercle, et dans celui où cette section est un rectangle, l'erreur que
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H'+IWI^
pSp2 np_
EI E

(24)

(25)

Connaissant la valeur de 0, il est facile de calculer
la longueur d'onde A et la vitesse de phase ou de propagation

c. En effet, en vertu de (19), (20) et (24), on a :

(26)

/=/»(! + < l-T-U- ^ p'
15^ £/

a-2ttX--p.
1 /, £S\1-41+Gâ) p'

Tsp
El

pSp*

(27)

/ 1-4(1
£5\
Gn/

P7n
15?

El i
^Sp2 (28)

Cherchons encore la valeur de c en fonction de A.
Dans ce but, remplaçons, dans la formule (28), le der-

cV*

M*nier facteur p 2 par sa valeur exacte -y 2tt rrir > tirée

'2tt\
remplaçons egale-de la relation connue A

P

ment, dans le second terme de la parenthèse [...]
4 tt2

8 / El
de (28), p par sa valeur approchée—=-g- V/ —^> déduite

2-rr
de (19), où /o^ -r—¦ En résolvant enfin l'équation ainsi

obtenue par rapport à c, on obtient :

ES\ I 1

W^ + Galsl*
ëLL
pSÂ (29)

Au cours des calculs, nous avons supposé que r\ était
une petite quantité (ce qui revient à admettre que le

frottement interne est faible) et que, en conséquence,
la constante d'amortissement a était elle-même petite,

ou plutôt que le quotient y était petit par rapport à 1.
h

Or, d'après les formules (19) et (25), onaj —T~W '
fo 4 ii

La condition y <C 1 sera donc satisfaite pour les ondes

moyennes considérées, si le nombre -=- est lui-même

petit par rapport à 1 (pratiquement, il suffira qu'il^soit

égal ou inférieur à 0,1, ou même à 0,2, car c'est -r—rr6 ' 4 E
qui intervient ici). On voit qu'en somme, c'est le nombre

—p- qui caractérise le frottement interne dans le phénomène

étudié, comme nous l'avions d'ailleurs déjà remarqué
à propos des vibrations de grande longueur d'onde 12.

l'on commet en appliquant les formules (24) et (25) est de l'ordre de

0,1 % seulement, dans le plus grande partie (16 < ~r < 40) du domaine

étudié, et de l'ordre de 0,5 % dans la partie restante (8 < — < 16),
h

voisine du domaine des ondes courtes.

12 Voir le point 4 du paragraphe 4 du mémoire cité dans la note 1.

Nous avons aussi admis que 0 était petit par rapport
à 1. Or, d'après la formule (24), ce nombre ne dépend
que des principales caractéristiques de la barre — à

l'exclusion de n — et de la fréquence h— de la vibration.2tt
Comme nous allons le voir, il est facile de vérifier que
cette condition concernant l'ordre de grandeur de 0 est
bien satisfaite pour les ondes moyennes étudiées.

Si l'on remplace, en effet, dans (24), p par l'expres-

4 tt2
2 / Elsion approchée déjà citée -=-j- V / —=¦. on obtient la

valeur de 0 en fonction de A :

ES\ I 1
;7r {i+-Gn)s*m (30)

En choisissant -^ 2,6 (valeur qui correspondrait,

dans le cas où la loi de Hooke serait rigoureusement
applicable, à un nombre de Poisson v 0,3), cette
formule devient :

a) pour une barre dont la section est un cercle de

* 3
rayon r k-i où Ion a 5= irr2, n xS t irc2i

_ 3L^

0 ~ 2,755
h\*

(30')

b) pour une barre dont la section est un rectangle de
2

largeur B et de hauteur h, où S Bh, Q, x S -~ Bh,
Bh3

/_l2":
w(» (30")

Les deux courbes de la figure 5 représentent les

valeurs (30') et (30") de 0 en fonction de 7- Ces deux
h

courbes montrent d'abord que, dans le domaine des

ondes moyennes (8 < t- < 40), le nombre 0 est petit

par rapport à 1 (sans être toutefois négligeable,

surtout pour les valeurs de v- comprises entre 8 et 16).

#A

Icourtes ondes moyennes _,__ ondes tongues
r" *r m'"
ondes

10

action rectangulaire (d'après'fJO*Jj
0.05

section circulaire fd'apresfJO'Jj

0 t-
2,

24 32 40 48 S6 64

Fig. 5. — Valeurs approchées de 9 en fonction du rapport

—, dans le cas d'une barre de section circulaire et dans celui
h
d'une barre de section rectangulaire.
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La seconde des deux conditions admises au cours des

calculs est donc bien satisfaite. D'autre part, l'examen

des formules (19), (24), (26), (27) et (28) montre

que c'est le nombre 0 qui caractérise les deux influences

combinées 1° de l'inertie due à la rotation des
sections droites, 2° des déformations engendrées par les

efforts tranchants 13. On voit ainsi que, dans le domaine
considéré, ces deux influences combinées sont petites,
mais non négligeables par rapport à celle de l'inertie
due au déplacement latéral des éléments (cette dernière
se manifeste par la présence du premier terme 1)
de chacune des parenthèses [. ] des formules (26) à

(28), tandis que les deux premières influences combinées

sont représentées par les seconds termes de ces

parenthèses, dont la valeur absolue est précisément
égale à 0.

Les courbes de la figure 5 montrent également que,

dans le cas des ondes longues I -r > 40 0 est inférieur

à 0,003, donc très petit : les deux premières influences
sont pratiquement négligeables par rapport à la troi-

'A
sième. Enfin, dans le domaine des ondes courtes I -r <
on voit que les deux premières influences combinées sont
au contraire du même ordre de grandeur que la troisième.

Tout ceci confirme les limites approximatives de 40

et 8, choisies précédemment pour définir les trois
catégories de vibrations (de grande, de moyenne, et de

courte longueurs d'onde), en supposant que la section
de la barre ne diffère pas trop d'un cercle ou d'un
rectangle, ce qui exclut le cas des fers profilés, comme nous
l'avons déjà remarqué 14.

§ 4. Calcul du moment fléchissant M(x, t) et de l'effort
tranchant Q(x, t), dans le cas des vibrations
transversales sinusoïdales étudiées au paragraphe 3

On tire de l'équation (8), en remplaçant £ par sa

valeur (16) :

dï=zpsW=~9Sp eC"'3'

d'où

Q ^C (31)i (f + ia

En substituant cette valeur de Q dans (5), on obtient

y
Q_

Gü
ip Sp* et---]

Ga{f+ia)

On tire d'autre part de l'équation (6), compte tenu
de (16) et (32) :

t-|-r o 2

(/ + fa)-cn(/+*a).

18 Soient 0i et
première, celle provenant de l'inertie due à la rotation des sections,
s'obtient en posant G — w dans (24). Elle est donc égale à §i

2/
seconde, due aux déformations engendrées par11 / p7 iT\ïïsp- La

les efforts tranchants, est égale à 6S 6— i v peis
4 G«

14 Voir le paragraphe 1 de la présente étude. Voir aussi le premier
alinéa du paragraphe 3 du mémoire cité dans la note 1.

Substituons cette expression de q> dans l'équation (4),
où nous remplaçons alr b0, b1 par leurs valeurs (13). Le

œ ¦ * dM
coefficient a, de -=—étant nul, on peut résoudre directe-

dt
ment cette équation par rapport à M. Nous obtenons,
en tenant compte de (21) et en négligeant deux très
petits termes :

(34)
M I(K + iL)el---l

=1 (K + iL) e™[cos (pt — fx) + i sin (pt — fx)],
où

K^Efl + 2Ef0Q-^P*, L^2Ef0<x+f0w.

Si l'on remplace encore, dans les deux dernières

formules, f0, 0 et a par leurs expressions (19), (24) et
(25), on obtient pour K et L les valeurs suivantes :

K
1 f, ES\ / pi

V ~rp-

L PS 2

(35)

où le second terme de la parenthèse [. .] est petit par

rapport à 1, dans le domaine 8 < j- < 40, comme on

le reconnaît facilement dans le cas d'une section circulaire

ou dans celui d'une section rectangulaire, en
remplaçant, dans ce terme, p par sa valeur approchée

4-TT2 J /' EI_
a2 y Ps

'

De la formule (34), on déduit la partie réelle de M,
qui représente effectivement 1'« onde des moments
fléchissants » cherchée :

M Iff [K cos (pt — fx)—L sin (pt — fx)], (36)

et qui peut aussi se mettre sous la forme

M DleP* cos (pt — fx + 8), (37)

où 8 est une constante.
En remplaçant, dans (37), cos (pt — fx -\- 8) par

cos 8 cos (pt — fx) — sin 8 sin (pt — fx), et en comparant

l'expression ainsi obtenue à (36), on voit que K
D cos 8, L D sin 8, d'où l'on déduit, en tenant

compte des valeurs (35) de if et L et en négligeant de
très petits termes :

(38)

(32)

8:

D \JK* + L*g±K ^
il

compte tenu

s;
[\ 1 /, ES\*[pî '

.1+2 (i-GajS/ËsP. ^
et---]. (33)

L 1

-5 — 2 2 \ Gai V ES
TIP

E ' (39)

D'après (37), la quantité D est Vamplitude — pour la
section x 0 et au facteur I près — de la variation

15 D'après la nature du phénomène étudié (onde progressive
amortie), la fonction arbitraire du temps y (t) qu'il faudrait ajouter

m
au second membre, en intégrant 1 expression de -r— pour obtenir la

dx
valeur de Q, est identiquement nulle.
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(sinusoïdale) du moment fléchissant M en fonction du
temps. En vertu de (38), cette quantité D dépend de p
et des grandeurs p, E, G, S, I, ß qui, avec la
constante t), caractérisent la barre étudiée. En une section
d'abscisse x quelconque, l'amplitude effective de la
variation de M est égale à Diet31. Elle ne dépend pas
de mais par contre de x.

On voit d'autre part, en comparant (17) et (37), que
8 n'est autre que le décalage de phase entre l'onde des

moments fléchissants M et celle des déplacements £.
D'après la formule (39), ce décalage est, comme la
constante d'amortissement ex, proportionnel au nombre

-j=r qui caractérise le frottement interne dans le

phénomène étudié. En première approximation, on peut
TIP

poser 8 ttb > ce qui montre que le décalage 8 est

petit par rapport à 1 et positif.
Déterminons maintenant l'effort tranchant Q. On a

successivement, en partant de la formule (31) et en
négligeant quelques très petits termes (le calcul est
analogue à celui que nous venons de faire pour obtenir
le moment de flexion M) :

<?=7 pV
*"(/¦

— ipSp

-pS

et---] iSp*é.--ï

,//*'
V psp2 \

EIp*
pSP

a
T>

/o i + e

.a
%

i(i-e)

a

eC-Oœ-

el---l

Q S (K' — iL') et---l,

K' EIp* r\p*
pS iE

L'~± -'fr+M' EIp*
ps P-

(40)

(41)

On déduit facilement des formules (40) et (41), pour
la partie réelle de Q, qui représente effectivement
1'« onde des efforts tranchants » cherchée :

(42)
Q FSeP* cos I pt — fx — ^ + 8'

FSeP* sin (pt — fx + 8') ;

f i K'*+L'*^L':

H ('+ë) vte*] p viË
(43)

6 ^-pr^4 mm^i V ES ¥• m
Les significations de F, de FSef1 et de S' (qui est

petit par rapport à 1 et positif) sont évidentes. En
comparant (37) et (42) d'une part, (39) et (44) d'autre

part, on voit que le décalage de phase entre l'onde des

efforts tranchants Q et l'onde des moments fléchissants M
est approximativement égal à

+ 5'
TT

2 4£ (45)

Ce décalage est donc négatif. Sa valeur absolue est

légèrement supérieure a y •

Remarques générales concernant les formules établies
dans les paragraphes 3 et 4

1° Il est intéressant de constater qu'à l'approximation

de nos calculs, la grandeur -gr > caractérisant dans

le phénomène étudié le frottement interne, ne figure
que dans la formule (25) donnant la valeur de la
constante d'amortissement a et dans les expressions (39)
et (44) des décalages de phase 8 et 8'. La caractéris-

tique -p n intervient par contre aucunement dans les

formules (27), (28), (29), (38) et (43), donnant
respectivement les valeurs de la longueur d'onde A, de la
vitesse de propagation c, ainsi que celles des quantités D
et F qui sont — pour la section x 0 et aux facteurâftï|
et S près — les amplitudes des variations de M et de Q.
On peut dire aussi que les grandeurs A, c, D, F ont les
mêmes valeurs que si la matière était élastiquement
déformable, de modules E et G16.

En d'autres termes, le frottement interne engendre
1° un amortissement e02, le long de la barre, des variations
des principales grandeurs £, M, Q, jouant un rôle
dans la propagation de la vibrationj 2° un petit décalage
de phase 8 entre l'onde des moments fléchissants M et
l'onde des déplacements C ; 3° une petite variation 8' du
décalage de phase entre l'onde des efforts tranchants Q
et celle des déplacements Ç (ce dernier décalage est ainsi

7 tt ttegal a — ^—r S au lieu d avoir la valeur — » qu il
aurait si la loi de Hooke était rigoureusement applicable).

Les trois quantités a, 8 et 8' sont proportionnelles à -jr •

2° L'inertie due à la rotation des sections droites
ainsi que les déformations engendrées par les efforts
tranchants n'ont, d'après (25), pas d'influence sur la
valeur de la constante d'amortissement a. Cette inertie
et ces déformations influencent par contre (dans une faible
mesure il est vrai) les valeurs de la longueur d'onde A,
de la vitesse de propagation c et des amplitudes D et F
(pour x 0, aux facteurs I, S près) des variations de
M et Q. Elles influencent également les valeurs des décalages

de phase 8 et 8'. Elles se manifestent en effet par
la présence des seconds termes des parenthèses [.. .],
dans les formules (27), (28), (38), (39), (43) et (44).

3° Les tensions normales <jx sont, à chaque instant,
réparties linéairement dans toute section droite. On le
reconnaît en effet en introduisant dans la formule (3)
la valeur (33) de 9, puis en substituant la partie réelle
de l'expression ainsi obtenue dans l'équation (1) (où
ax 0, b0 E, bx T|) et en résolvant finalement cette
dernière par rapport à c*. On peut donc calculer ces

16 Ceci confirme pleinement ce que nous avions prévu dans la
note 9 de la publication citée note 1 du présent mémoire.
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M
tensions en utilisant la formule connue ax ~f z> ce

qui donne, compte tenu de la valeur (37) de M :

az De^z cos (pt — fx + 8). (46)

Quant aux tensions tangentielles Txt, on peut les

calculer approximativement en fonction de Q(x, t), à

l'aide des mêmes formules que celles utilisées en
résistance des matériaux.

4° Les valeurs (25) et (26) obtenues pour a et /
correspondent à l'une des quatre racines / + ia de l'équation

(18). Cette racine est bien celle qui se rapporte
au phénomène étudié, car on peut montrer qu'elle tend
asymptotiquement vers l'unique racine intervenant dans
le cas des grandes longueurs d'onde17, lorsqu'on fait

tendre le rapport -=- vers l'infini, en supposant que le

frottement interne soit faible, ou plus exactement, que
Tip

le nombre -==- qui le caractérise soit petit par rapport

à 1.

§ 5. Cas où la matière de la barre est quasi élastique¬
ment déformable et où la relation entre ax et ex

est conforme au modèle de Maxwell

Nous nous bornerons à esquisser les calculs, à en
donner les principaux résultats et à faire quelques
remarques fondamentales.

Admettons que la barre soit encore quasi élastiquement

déformable et satisfasse en principe aux mêmes
conditions que celles précisées dans le paragraphe 2.

Supposons en outre qu'entre ox et ez existe, non pas
la relation de Kelvin (12), utilisée dans les paragraphes 3

et 4, mais la relation suivante, conforme au modèle de

Maxwell (fig. 4) :

T\ dOx dtx
Vx + E dt ^=°" (47)

Les coefficients figurant dans (1) ont ici les valeurs :

a, g b0 0, fei T),

et l'équation (9) devient, après multiplication par

(48)

Edt
pSr\

et en intégrant (la fonction arbitraire f(x) que l'on
devrait ajouter au second membre est identiquement
nulle, dans le cas des ondes progressives sinusoïdales

que nous étudions) :

n.dl,d%,h,d%,,d%adï+dë + bd? + cd?

— d'
3%

dx*dt 8 dx*dt* + r d%
da*

où
E pi E

a — >

Tl
v ~ Ga n ' c

d' / E
8

/. ES\ 1

S'

(49)

sL
Ga

-^K» r El
Vs

(50)

En substituant dans (49) la même expression de £

que précédemment, à savoir

17 Voir le point 2 du paragraphe 4 du mémoire cité dans la note 1.

r __ e[cœ + j (pt — jx)} e[...]j

dont la partie réelle

£ eax cos (pj — fx)

(16)

(17)

représente effectivement la vibration transversale
cherchée, on obtient pour déterminer / et a l'équation du
quatrième degré :

ia'p — p* — ib'ps + c'p* + id'p (f + ia)2 -

'p*(f + ia)2 + T(/ + ia)4 0.
(51)

Comme le montre le schéma de la figure 4, le rap-
E ¦ jport — est nécessairement très petit dans le cas examine

ici, où nous supposons la matière quasi élastiquement
déformable (en faisant tendre -q vers l'infini dans

l'équation (47), divisée préalablement par r\, on voit
d'ailleurs qu'on obtient à la limite la loi de Hooke).
Les coefficients a', b' et d' sont donc d'après (50) très
petits. L'équation (51) peut alors s'écrire, en posant
comme précédemment :

/+icc /0 1
/o

(21)

où /„ a la valeur (19) et où

port à 1 :

ia'p — p* — ib'p3 + c'p* + id'pffj —

?P*fo U-
A

et j- sont petits par rap-

(52)

r/*!!+ 40 + 4M^O.

La partie réelle et la partie purement imaginaire
devant être séparément nulles, on tire de cette équation,

en tenant compte de (19) et (50), les valeurs
approchées suivantes de 0 et a18 :

A ~ i (i + ES\ 1
P1

n9
4 l1 + go) V15 P' (53)

l*fp~ï?E
a= 4\/ El qp

(54)

L'expression (53) de 0 est identique k celle (24)
obtenue précédemment, en utilisant le modèle de Kelvin.

En conséquence, les formules (26) à (29), ainsi
que (38) et (43) (toutes établies dans les paragraphes 3
et 4), où le frottement interne ne joue aucun rôle, sont
encore valables dans le cas du modèle de Maxwell traité
dans le ^présent paragraphe.

La valeur (54) de a diffère par contre de celle (25)
trouvée § 3. Alors que le troisième facteur de la

formule (25) est -vr > le dernier facteur de (54) est — >
v ' E tip

c'est-à-dire l'inverse du premier rapport. Cela est dû
au fait que, dans le cas du modèle de Kelvin, c'est le

18 Un calcul de seconde approximation, analogue à celui mentionné
dans la note 11, a confirmé la validité des formules (53) et (54). Il
a cependant montré que, pour les ondes moyennes considérées, l'erreur
que l'on commet en déterminant ot à l'aide de la formule (54) est
nettement supérieure (5 à 10 fois) à celle de l'ordre de quelques
millièmes que l'on commet en appliquant la formule (25). Par contre,
le nouveau calcul a confirmé l'exactitude de la valeur déjà obtenue
pour 0.
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TIPnombre -=¦ (petit par rapport à 1) qui caractérise le

frottement interne, tandis que dans celui du modèle de

Maxwell, c'est le nombre inverse — qui joue ce rôle fil
TIP *

est alors, dans ce cas, petit par rapport à l)19. Insistons
sur le fait que tout ceci suppose, bien entendu, que la
matière soit quasi élastiquement déformable.

En poursuivant les calculs, on verrait que les
formules donnant les valeurs des décalages de phase 8
et 8' définis § 4 s'obtiennent, dans le cas du modèle
de Maxwell, en remplaçant dans (39) et (44) le facteur
TIP E _
-pr par — • Ce résultat n est d ailleurs pas étonnant,E qp
ces deux facteurs étant respectivement, dans chacun
des deux cas étudiés ici, petits par rapport à 1 et
caractérisant le frottement interne.

On peut résumer cette discussion en disant que, dans
le cas du modèle de Kelvin comme dans celui du modèle

de Maxwell, le nombre -=¦ ou — > caractérisant chaqueE qp *

19 Voir aussi l'alinéa qui suit la formule (29), § 3, de cette
publication, et surtout les points 4 et 5 du paragraphe 4, du mémoire
cité dans la note 1.

fois le frottement interne, joue un rôle identique, dans
toutes les formules où ce frottement intervient, pourvu que
ce dernier soit constamment très petit, c'est-à-dire que la
matière soit quasi élastiquement déformable.

Remarque : Le lecteur s'étonnera peut-être qu'on soit
arrivé à cette dernière conclusion, étant donné que les

équations différentielles (14) et (49), relatives aux deux
modèles successivement utilisés dans cette étude, sont
nettement différentes l'une de l'autre. Il semble qu'il
y ait là un certain paradoxe. Ce dernier n'est cependant
qu'apparent. Il est en effet possible de montrer que la
substitution de l'expression (16) de £ dans ces équations
conduit, pour déterminer 0 et a, à deux relations qui,
si l'on y néglige quelques très petits termes, diffèrent
seulement par le fait qu'il faut remplacer, dans la

TIP E
premiere, -==r par —

substitution étant pleinement justifiée par la signification

de ces deux nombres, on voit que l'on n'a en
définitive affaire qu'à une seule et même équation. Bien
entendu, ceci n'est valable qu'à l'approximation où

nous nous sommes placés dans nos calculs.

Zurich, le 1er juillet 1964.

pour obtenir la seconde. Cette

TRAVAUX D'EXCAVATION ET CONSOLIDATION DU ROCHER
D'UNE CENTRALE SOUTERRAINE EN ECOSSE | ^^^^M
par Dr. Ing. SPIROS VLATSEAS, Senior Engineer, The Mitchell Construction Co. Ltd. Beauly, Inverness-shire, Ecosse

1. Renseignements généraux
Avec la mise en service, en 1963, de l'aménagement

hydro-électrique de Strathfarrar et Kilmorack, la North
of Scotland Hydro-electric Board — entreprise pubUque
pour l'exploitation des ressources hydrauliques en
Ecosse du Nord — a complété la deuxième étape de

l'utilisation du bassin versant de la rivière Beauly. La
première étape, celle de l'aménagement de Glen Affric,
avait été terminée en 1952.

L'aménagement de Strathfarrar et Kilmorack est
situé au nord-ouest de Inverness, à une distance de
15 à 60 km de cette ville, et se compose de quatre
paliers en série, pour un total de 102 MW de puissance
installée.

Le premier palier, celui de Deanie, dont les
caractéristiques sont rapportées à la figure 1, utilise les eaux
d'un bassin versant de 220 km2. Un barrage-voûte de
39 m de haut forme, avec un barrage subsidiaire en
gravité, le bassin d'accumulation principal, celui de

Monar, d'une capacité de 142 millions de m3.

Une galerie d'amenée de 9 km de long alimente la
centrale souterraine de Deanie, dont la puissance
installée de deux turbines Francis est de 38 MW. Les eaux
sont ensuite déchargées dans le réservoir de Beannachran

— d'une capacité de 1,4 million de m3' — en tête du
deuxième palier, celui de Culligran, dont la centrale,
équipée d'une turbine Dériaz et d'une turbine Francis,
a une puissance installée de 24 MW. Les deux paliers
restants sont constitués chacun d'un barrage-centrale
en gravité avec deux turbines Kaplan d'une puissance
installée de 20 MW.

2. Géologie

Le terrain, le long du palier de Deanie, est composé
presque entièrement de roche cristalline métamorphique
appartenant à la série de Moine, pour la plupart des

granulites siliceux et micaschisteux, avec des variations
locales. De la moraine et des dépôts alluviaux de lac et
de rivière couvrent les niveaux inférieurs de la région.

Aux environs de la centrale souterraine, le rocher est
composé pour la plus grande part de granulites psam-
mitiques plutôt quartzeux avec des bandes péliques.
A proximité immédiate de la centrale même, laquelle
a une couverture de 70 m environ sur sa calotte,
le rocher a révélé, pendant les creusements, beaucoup
de clivages, généralement pleins d'eau et formant entre
eux des blocs lenticulaires très instables, sous forme de
Vs inversés. Ces clivages donnèrent lieu à des tombées
de roche et du hors-profil abondant. D'autre part, la
médiocrité du rocher exposé pendant le creusement de
la centrale exigea que l'on changeât les méthodes de
construction prévues et que l'on posât deux calottes
de revêtement, dont la première était composée
d'anneaux en fer et béton de remplissage du hors-profil, et la
deuxième, celle de couverture, de béton non armé. En
outre, il fallut pourvoir au boulonnage du rocher, aux
injections de ciment et au revêtement en béton des

murs de la centrale, originellement prévus en roche nue.

3. Excavation

Les travaux d'excavation de l'ensemble chambre
d équilibre - centrale - galerie de fuite commencèrent en
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	Propagation des vibrations transversales sinusoïdales de moyenne longueur d'onde le long d'une barre prismatique quasi élastiquement déformable

