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tore en ferrite, les courbes pour les fréquences entre
800 et 4000 Hz ne se distinguent guère. Ainsi on n'a
porté dans le diagramme que les valeurs pour
/ 800 Hz.

La figure 5 montre la variation de la perméabilité et
de l'angle de pertes de ces trois bobines et de deux
bobines à pot ferrite avec entrefer en fonction de la
température. Les mesures ont été faites à 800 Hz et
pour un champ faible, c'est-à-dire pour un champ
beaucoup plus faible que la force coercitive du noyau
étudié. Pour la perméabilité, on a porté dans le

diagramme des valeurs relatives en mettant la perméabilité
à 0°C égale 100 %.

On peut tirer de ces premières mesures la règle générale,

qu'une baisse de la température a pour
conséquence une baisse de la perméabilité et pour les noyaux
en ferrite une augmentation de l'angle de pertes. Mais
ces variations sont très différentes d'une matière à

l'autre. Tandis que les caractéristiques du noyau comprimé

et de l'isoperm ne changent que peu jusqu'à —180°C,
ceux du ferrite changent fortement1. Mais retenons que
les perméabilités initiales à température ambiante des
deux premiers sont relativement faibles (env. 140,

resp. 90) mais celle du ferrite beaucoup plus élevée
(env. 2500).

Comme nous l'avons dit plus haut, nos mesures n'ont
fait que commencer. D'autres matériaux sont déjà à

l'étude et des mesures à plus basses températures
(hydrogène liquide) sont en préparation. Nous en
reparlerons dans un exposé ultérieur.

Je ne voudrais pas manquer de remercier ici la
Fondation Hasler, qui a mis le « nervus rerum » à disposition,

nous permettant ces études ; les Câbleries et Tréfi-
leries de Cossonay, qui ont fourni les bobines ; le
Laboratoire du génie atomique de l'EPUL, professeur Vittoz,

1 J. Rozes : Etudes des variations en fonction de la fréquence des
caractéristiques électriques et magnétiques d'une ferrite de nickel-
zinc. Câbles et transmissions 13 (1959) 1, p. 26.
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Fig. 5. — Perméabilité et angle de pertes en fonction de
la température pour différentes matières magnétiques à
f 800 Hz et à champs faibles.

qui nous a livré l'azote liquide, et mes collaborateurs,
MM. P. Tacier et Ph. Zyromsky, étudiants, qui" ont
effectué ces mesures.

LE CALCUL DES DEFORMATIONS
DES SYSTÈMES ARTICULÉS HYPERSTATIQUES
par A. ANSERMET, ingénieur, professeur

Le Bulletin technique a déjà consacré quelques pages à

ce problème mais les exemples traités étaient simples.
Grâce à l'appui accordé à titre bénévole par le centre
de calcul électronique de l'EPUL (Prof. Blanc), il est
possible de porter son choix sur des structures plus
compliquées. La résolution de systèmes linéaires et
surtout l'inversion de matrices ne donnent plus lieu à des

calculs laborieux.
L'exemple choisi est inspiré par la thèse de Yung

mais en ajoutant des barres surabondantes, ce qui
confère au problème un tout autre caractère. C'est une
coupole d'après Zimmermann (Reichstag), les dimensions

étant ici un peu différentes. Certains ingénieurs,
outre-Rhin, ont fait remarquer l'analogie existant avec
le calcul de réseaux radiotélémétriques ; les mêmes
formules et équations sont applicables en principe,
circonstance bienvenue.

Nœuds x y Z

1 1 2 1
2 2 2 1
3 2 1 1
4 1 1 1

5 0 2 0
6 1 3 0
7 2 3 0
8 3 2 0
9 3 1 0

10 2 0 0
11 1 ¦'0. 0
12 0 £>i& 0 X II

L'unité de mesure est arbitraire : 10, 12, 15... mètres.
Toutes les valeurs sont positives à cause du choix des

axes de coordonnées.
Par hypothèse il y a 12 liaisons simples ([5] p. 59)

dz1

dxc,

dz dzs

0
dza 0

dy» dVn °
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Admettons de plus que, par voie graphique ou
analytique (voir [5]), l'état fondamental (Grundsystem,
voir [7]), est calculé ; les forces de remplacement pour
les barres coupées sont arbitraires (1T par exemple).
Cette étape du calcul ne donne lieu à aucun commentaire

; elle fournira les termes absolus des équations
aux déformations /. Celles-ci peuvent revêtir deux
formes pour une barre d'indice i reliant les nœuds g
et h :

(1)
Vi ai (5xg — 6xA) + bi (5yg — Syn) + cs- (5zg—8zh)

Vi étant l'allongement ou le raccourcissement de la
barre ; c'est la solution de B. Mayor qui ne se prête pas
au calcul de la dérivée de l'énergie ; l'éminent professeur

a suivi une autre voie.

Dérivées du travail ou de l'énergie

Choix des variables

A la base du calcul on a la condition :

(2) y ES /Tl\2\
21 \ES minimum Z (pv2) [pvv]

où E est le module d'élasticité, S la section transversale
et l la longueur de la barre, T l'effort axial. Les poids p

ES
sont proportionnels à

l
Pour certains auteurs, il n'y a guère qu'une solution :

former les dérivées de l'énergie par rapport aux inconnues

hyperstatiques Xlt X2, X3... ; d'autres auteurs
formulent des réserves (voir [6]), surtout si le degré
d'hyperdétermination est élevé. Une solution qui a fait
ses preuves en télémétrie consiste à former les dérivées
de [pvv] par rapport aux variations de coordonnées

figurant dans l'équation :

(3)

fi fi + ai (dxg — dxh) + h (dyg—dyh) + c,- (dzg—dzh).'

Pour le calcul des déformations, les avantages sont
manifestes. Le nombre des dérivées ne sera en général
pas le même dans les deux solutions. Remarquons
enfin que, dans le système (3), on pourrait éliminer les

variations dx, dy, dz...
En d'autres termes, l'état fondamental, caractérisé

par la valeur [pff] ^ [pw], est initial pour la variation
des coordonnées des nœuds. Ce mode de calcul est
depuis longtemps courant pour les réseaux géodé-
siques ; il a fait ses preuves. Les coordonnées varient à

partir d'une solution appelée en général « provisoire ».

Le tableau ci-contre fournit les coefficients des équations

(3) ; on pourrait les déterminer graphiquement
(géométrie cotée). Le nombre de barres pourrait être
plus élevé ainsi que le degré d'hyperdétermination.
Autrefois le nombre d'équations normales jouait un
grand rôle pour le choix des variables ; grâce au calcul
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électronique ce n'est plus guère le cas. Avant de
poursuivre le calcul de la coupole, considérons (voir [8]) le
cas simple où il n'y a que trois inconnues et un seul
nœud libre :

(4) — fi + Vi oj dx + bi dy + c,- dz (poids p%).

Dérivées de l'énergie :

d[pvv] 2"i t o dv2

-Ï&- 2p^ ddx + 2P*vTdï + • • •

d'où l'équation :

(5) [pav] — Oj et de même [pbv] [pcv] 0

ce sont des demi-dérivées. Les termes absolus sont :

[paf], [pbf], [pcf] avec la matrice symétrique des
coefficients :

(6)
[paa] [pab] [pac]

[pbb] [pbc]
[pcc]

et
son inverse

(voir [8])

Yxx \?xy Yxz

Yyy Qyz

Qzz

Si les éléments non diagonaux sont nuls ou
négligeables le calcul est particulièrement simple. Dans cette
hypothèse, ces coefficients de poids des inconnues QXx,

Qm Q" sont proportionnels aux carrés des axes de

l'ellipsoïde de déformation pour ce nœud. Dans le
voisinage du point pour lequel [pvv] minimum, choisi
comme nouvelle origine de coordonnées Ç, r\, £ on a :

(8) v'{ v{ + at Ç + bit] + et £

et, toujours en admettant la même hypothèse,

[pv'v'] [pvv] + [paa] %2 + [pbb] t]2 + [pcc] £2
(9)

[paa] Qxx [pbb] Qyy [pcc] Q„ 1.

Si i — 1, 2, 6 (6 barres) on a aussi trois dérivées
de l'énergie en se basant sur les inconnues hyperstatiques

Xlt X2, X3 mais cette solution ne se prête guère
à une étude générale des déformations.

La matrice (6), au lieu de trois éléments diagonaux,
en comportera ici 24, tous positifs. De nombreux
coefficients sont nuls. Par voie électronique la résolution

du système (10) est rapide ; les variations de
coordonnées étant connues, on en déduit les vt puis la
déformation quadratique moyenne relative à l'unité de

poids : m0 ^ [pw] : 4.

Par hypothèse les poids p sont ici égaux : pi 1,

ce 1 ayant une dimension donnée par l'équation (2).
A titre de contrôle, on calcule à double ([pw] — [pff]
(voir [2]). Dans la matrice inverse (11) il n'a pas paru
nécessaire de donner tous les éléments non diagonaux.
Ce tableau permet de calculer les poids des inconnues
et de fonctions de celles-ci, en particulier les poids à

posteriori des barres et leurs déformations.
Exemples : nœud 1.

Admettons provisoirement ml 1 (dimension de m2

donnée par [2])
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V~Q^ V 2,44 ± 1,56

V^ V 2,42 ±1,55

v& - V 1,72 ±1,31

Valeurs qui fournissent trois paires de plans
respectivement normaux aux axes des x, y, z et tangents à

l'ellipsoïde de déformation du nœud ; Qxx-\- Qyy ± Qa

6,58 K1 ± K2 ± K3 est un invariant exprimant
une propriété géométrique connue, les K étant les

racines de l'équation :

(12)

(Qxx — K) Q^ Qxz

Qxy (Qyy-K) Qy,

QXz Qyz (Qzz-K)

0 (voir [4])

Equation connue mais avec les notations de la

méthode des moindres carrés ; les \ Kx, -\/K2, \/Ks
sont les demi-axes principaux toujours pour m2 1.

Qxy — 1,56, Q„ — 1,20, Qyz ± 1,03,

Les éléments diagonaux sont toujours positifs.

"1,55
Nœud 9.

Qxx Qw

Qyy

0,315]
0,92j

Il n'y a plus qu'une ellipse de déformation. Cette
courbe est inscrite dans le rectangle défini par les

valeurs :

1,55-
tique'

V 1,55 ± 1,24 V^92 ± 0,96

- 0,92 2,47 est aussi un invariant (cercle orthop-

X1 l,68 K2 0,10 Ks 0. KJC^QJQn—Çf^

V^T=1,30 ¦\Œ2 0,^ (voir [4], [2]).

On pourrait calculer les directions des axes principaux

; la valeur m0 caractérise l'ellipse dite moyenne.
La forme de cette courbe présente de l'intérêt. Une
prochaine publication sera consacrée à un système
articulé comportant un nombre plus élevé de barres
surabondantes.
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