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tore en ferrite, les courbes pour les fréquences entre
800 et 4000 Hz ne se distinguent guére. Ainsi on n’a
porté dans le diagramme que les valeurs pour
/=800 Hz.

La figure 5 montre la variation de la perméabilité et
de P’angle de pertes de ces trois bobines et de deux
bobines a4 pot ferrite avec entrefer en fonction de la
température. Les mesures ont été faites a 800 Hz et
pour un champ faible, c’est-a-dire pour un champ
beaucoup plus faible que la force coercitive du noyau
étudié. Pour la perméabilité, on a porté dans le dia-
gramme des valeurs relatives en mettant la perméabi-
lité a 0°C égale 100 9.

On peut tirer de ces premiéres mesures la régle géné-
rale, qu'une baisse de la température a pour consé-
quence une baisse de la perméabilité et pour les noyaux
en ferrite une augmentation de I’angle de pertes. Mais
ces variations sont trés différentes d’une matiére a
l'autre. Tandis que les caractéristiques du noyau compri-
mé et de I'isoperm ne changent que peu jusqu’a —180°C,
ceux du ferrite changent fortement 1. Mais retenons que
les perméabilités initiales a température ambiante des
deux premiers sont relativement faibles (env. 140,
resp. 90) mais celle du ferrite beaucoup plus élevée
(env. 2500).

Comme nous 'avons dit plus haut, nos mesures n’ont
fait que commencer. D’autres matériaux sont déja a
Iétude et des mesures a plus basses températures
(hydrogéne liquide) sont en préparation. Nous en
reparlerons dans un exposé ultérieur.

Je ne voudrais pas manquer de remercier ici la Fon-
dation Hasler, qui a mis le «nervus rerum » a disposi-
tion, nous permettant ces études ; les Cableries et Tréfi-
leries de Cossonay, qui ont fourni les bobines ; le Labo-
ratoire du génie atomique de 'EPUL, professeur Vittoz,

1 J. Rozes: Etudes des variations en fonction de la fréquence des
caractéristiques électriques et magnétiques d’une ferrite de nickel-
zine. Cdbles et transmissions 13 (1959) 1, p. 26.

Fig. 5. — Permeéabilité et angle de pertes en fonction de
la température pour différentes matiéres magnétiques a
f =800 Hz et a champs faibles.

qui nous a livré 'azote liquide, et mes collaborateurs,
MM. P. Tacier et Ph. Zyromsky, étudiants, qui ont
effectué ces mesures.

LE CALCUL DES DEFORMATIONS
DES SYSTEMES ARTICULES HYPERSTATIQUES

par A. ANSERMET, ingénieur, professeur

Le Bulletin technique a déja consacré quelques pages a
ce probléme mais les exemples traités étaient simples.
Grace a I'appui accordé a titre bénévole par le centre
de calcul électronique de 'EPUL (Prof. Blanc), il est
possible de porter son choix sur des structures plus
compliquées. La résolution de systémes linéaires et sur-
tout I'inversion de matrices ne donnent plus lieu 4 des
calculs laborieux.

I’exemple choisi est inspiré par la thése de Yung
mais en ajoutant des barres surabondantes, ce qui
confére au probléme un tout autre caractére. C’est une
coupole d’aprés Zimmermann (Reichstag), les dimen-
sions étant ici un peu différentes. Certains ingénieurs,
outre-Rhin, ont fait remarquer I’analogie existant avec
le calcul de réseaux radiotélémétriques; les mémes
formules et équations sont applicables en principe,
circonstance bienvenue.
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L’unité de mesure est arbitraire : 10, 12, 15... métres.
Toutes les valeurs sont positives a cause du choix des
axes de coordonnées.

Par hypothése il y a 12 liaisons simples ([5] p. 59)

dzy =dzg =dzg ..... =dzgg =10
drg = dryg = 0 dyg = dysy = 0




Admettons de plus que, par voie graphique ou ana-
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grand réle pour le choix des variables ; grace au calcul
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électronique ce n’est plus guére le cas. Avant de pour-
suivre le calcul de la coupole, considérons (voir [8]) le
cas simple ot il n'y a que trois inconnues et un seul
nceud libre :

(4) —fi+vi=aidz+ bydy + c;dz (poids p,).

Dérivées de ’énergie :

2 [poe] 29 v
_(gda: = 2p, vy (7—d1i + 2p2r)29—d§; + ...

d’ou I’équation :

(5) [pav] =0, etdeméme [pbe] = [pev] =0

ce sont des demi-dérivées. Les termes absolus sont :
[pafl, [pbf], [pef] avec la matrice symétrique des coeffi-
cients :

[paa] [pab] [pac) et Qzr Qzy Qu:
(6) [pbb] [pbc] | son inverse : Quy Qy: | (7)
[pecl | (voir [8)) 0.

Si les éléments non diagonaux sont nuls ou négli-
geables le calcul est particuliérement simple. Dans cette
hypothése, ces coeflicients de poids des inconnues Q,,
Qyys Q:- sont proportionnels aux carrés des axes de
Iellipsoide de déformation pour ce nceud. Dans le voi-
sinage du point pour lequel [pe¢] = minimum, choisi
comme nouvelle origine de coordonnées §, n, { on a:

(8) pr=9i + @€+ bin +

et, toujours en admettant la méme hypothese,

(9) [po'¢'] = [pvv] + [paa] €+ [pbb] n® + [pec] T2
[paa] Qaz = [pbb] Qpy = [pec] Qe = 1.
Sit=1,2, ... 6 (6 barres) on a aussi trois dérivées

de I’énergie en se basant sur les inconnues hypersta-
tiques X, X,, X3 mais cette solution ne se préte guére
a une étude générale des déformations.

La matrice (6), au lieu de trois éléments diagonaux,
en comportera ici 24, tous positifs. De nombreux
coefficients sont nuls. Par voie électronique la résolu-
tion du systéme (10) est rapide ; les variations de coor-
données étant connues, on en déduit les ¢; puis la
déformation quadratique moyenne relative a 'unité de
poids : m? o~ [pov] : 4.

Par hypothése les poids p sont ici égaux: p; = 1,
ce 1 ayant une dimension donnée par I'équation (2).
A titre de controle, on calcule a double ([pee] — [pff]
(voir [2]). Dans la matrice inverse (11) il n’a pas paru
nécessaire de donner tous les éléments non diagonaux.
Ce tableau permet de calculer les poids des inconnues
et de fonctions de celles-ci, en particulier les poids a
posteriori des barres et leurs déformations.

Ezemples : neeud 1.

Admettons provisoirement m’ = 1 (dimension de m’

donnée par [2])

342

Matrice symétrique des coefficients des équations normales
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V Qe = A 2,46 = + 1,56
vV 0y =+ 242= 4155
Q.. =/ 1,72 = + 1,31

Valeurs qui fournissent trois paires de plans respec-
tivement normaux aux axes des z, y, z et tangents a
Iellipsoide de déformation du nceud ; Quz -+ Qyy + Qe =
= 6,58 = K, + K, + K, est un invariant exprimant
une propriété géométrique connue, les K étant les

racines de I’équation :

(QII _ I() er sz
12)| Qw (Quw—K) @ |=0 (voir[4])
Qz: Qp:  (Q=— K)

Equation connue mais avec les notations de la
méthode des moindres carrés ; les A/ Ky, v/ Ky, A/ K,

sont les demi-axes principaux toujours pour m’ = 1.
Qe = — 1,56, Qr, = — 1,20, Q. = 4 1,03,

Les éléments diagonaux sont toujours positifs.

Qez Qu| 1,55 —0,315
Neeud 9. Our = 0,92

Il n'y a plus qu'une ellipse de déformation. Cette
courbe est inscrite dans le rectangle défini par les
valeurs :

A/ 1,55 = + 1,24 4/ 0,92 = + 0,96

1,55 + 0,92 = 2,47 est aussi un invariant (cercle orthop-
tique)

Ky =168 Ky,=079 K;=0. KKy=QuQy—0Ql,
VE, =130 4/K,=089 (voir [4], [2]).

On pourrait calculer les directions des axes princi-
paux ; la valeur m, caractérise lellipse dite moyenne.
La forme de cette courbe présente de I'intérét. Une
prochaine publication sera consacrée & un systéme
articulé comportant un nombre plus élevé de barres
surabondantes.

LITTERATURE

[1] Amsi, E.: Systémes hyperstatiques de degré élevé
(Paris, 1963).

[2 Baescnuwn, F.: Ausgleichungsrechnung (Cours ETH).

[3] Frieoricu, K.: Methode der kleinsten Quadrate aus
den  Grundsdtzen der Mechanik abgeleitet (Zeitschr. I.
Vermessungwesen, 1943).

[4] Howusen, J.: Das Fehlerellipsoid (Schweiz. Zeitschr. f.
Vermessung, 1956).

[5] Mavor, B.: Introduction a la statique des systémes de
Uespace (Payot, Lausanne).

[6] Sarres, F.: Initiation a la théorie de Uénergie élastique
(Dunod, Paris).

[7] Srissy, ¥F.: Baustattk I, 11 (Birkhiduser, Bale).

[8] AnsermeTr, A.: Déformations en hyperstatique spaliale
(Bulletin technique, 1963).

[9] Grossmann, W.: Grundziige der Ausgleichungsrechnung
(Springer, Berlin).

[10] ZurminL R.: Malrizen (Springer Verlag).

PUL pour le caleul électronique)

=

Ly

(Etablie par la centrale de I'k

Matrice symétrique aux coeffictents de poids (inverse de la précédente)

o OO O S Mm
2H8R8 22858853
O © O ol el 7l DI 00
Sodc SocoocsooH
[ ++1 =1 |+
.
2 SE8S
o v—il!b'm'l‘ﬁ'_
=} (=== 2]
st <= == -
2
= -~ 0 8
) S S =
L =
= Scooo
ko A= °
~ = om
o MmO m
SR A
S~
G i i o
™ mw© .
O DO~
i g A
coog &
sl
- © O w =
nS~== =
U SR S 8
S A a
+ | +
= ©mm .
0 SN~
S B @ o
SSSH
[+
b =
© S N D
ﬁ_mhm'c’_ -
SSSH
+ &+
oo =
v—i.‘o._’v‘)'c}._
Scoo &
s ok ol o
N M OoON .
® NS
X, A3, ),
SoS I~
|
.
w o~
Soes =°
mRrle
cooo =
+1+ 8
g
=N W
SoEw
N -
SSSH
1+
o, .
L
oS S8
S
D O ¢ Eo
= -0 M
Qaes o
=R —"-8’
| ++ a
— M-
S o
S &
- SN
B
S o .
0O ™
A LSty
S ==
[+
Ll ) o«
S &~
Sow
(=Rl =
8
+ | E
w o~
— 2
e
- N
0 © .
N
~ o
S
3 ™
D S o
— - 'é‘
+ | a
o D
- oM
5,
— -
+ |
- o
[= 3
Nronli
-
|+
N oM —
L N
R —
— & =3 -
8 -
A ~—
o)
X
Yr-
™

343




	Le calcul des déformations des systèmes articulés hyperstatiques

