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CLAA. Ce bloc, avec celui de Wantage, en Grande-
Bretagne, sont les deux seuls existant actuellement.

Quelques caractéristiques
Murs : 2,50 m de béton ; toit : 1,50 m de béton ; piscine :

7 X3 m, 6 m de profondeur ; convoyeur : 1 tour 30/ 1 tour
24 ; hublot : 1,25 m, en six blocs ; plomb cerium Saint-
Gobain.

Conclusion
Comme vous venez de le voir, l'industrie française

s'engage résolument dans l'utilisation des radio-isotopes.
Comme toute technique nouvelle, ce développement
subit des poussées et des périodes de ralentissement. Il
convient cependant de noter que l'industrie a fait un
effort important par elle-même, que peu d'autres pays
ont fait. Le Commissariat à l'Energie atomique français,
par son dynamisme et son esprit d'entreprise, l'a beaucoup

encouragée et aidée.
Il reste beaucoup à faire ; le travail est dur, étant

d'avant-garde. Mais si l'on considère les résultats

obtenus en peu d'années, malgré les difficultés de tous
ordres et les possibilités très larges offertes par les radio-
isotopes, cet effort sera payant.

Les utilisations se feront de plus en plus nombreuses,
les radio-isotopes apporteront à l'industrie une aide
incomparable lui permettant d'améliorer et même de

transformer ses techniques et de coopérer à l'amélioration

de ses prix de revient.
Aussi toute personne doit être convaincue que les

radio-isotopes joueront directement ou indirectement
un rôle dans ses activités et même dans certains cas
bouleverseront ses activités.

J'en ai terminé, en espérant qu'en ce court laps de

temps j'ai pu réussir la gageure de vous faire connaître
l'intérêt des radio-éléments.

Il ne faut pas craindre les radio-isotopes et les radiations,

il faut les respecter et ils sont sans danger.
L'industrie suisse est renommée, entre autres par sa

qualité et sa précision ; les radio-isotopes doivent lui
être d'une grande aide pour maintenir sa renommée.

SUR LE CALCUL DES DEFORMATIONS EN HYPERSTATIQUE
SPATIALE
par A. ANSERMET, ing.-prof.

Les lignes qui suivent sont en corrélation avec
l'article du Bulletin technique du 2 décembre 1961. Elles
portent surtout sur les systèmes articulés spatiaux
quand le nombre des éléments surabondants tend à

devenir élevé (voir [6]). Parmi les solutions développées
dans la littérature statique, trois sont plus particulièrement

envisagées ici ; désignons-les par A, B et C.
A la base de tout calcul de ce genre, on aura en

général les équations aux déformations qui expriment
les allongements ou raccourcissements des barres en
fonction des variations des coordonnées des nœuds du
système. Pour un nœud déterminé on peut avoir jusqu'à
trois variations différentes de zéro et, pour une barre,
jusqu'à six. De plus, comme on le verra, ces variations
seront éventuellement fractionnées lorsque le calcul du
système est lui-même fractionné ; la solution B surtout
se prête à un tel mode de calcul lorsqu'on ajoute subsé-

quemment des liaisons.

Solution A
Elle est traitée ici plutôt pour mémoire, car son intérêt

est plus théorique que pratique au point de vue
hyperstatique ; une des caractéristiques de A est d'éviter
la coupure de barres surabondantes. Analytiquement
on a, sous forme générale, pour chaque barre :

(1) a(dx — dx') -\- b(dy — dy') + c(dz — dz')
v mT ([3] p. 50-57)

où a2 -+- b2 + c2 1, m est le module, T la tension.
Cette équation aux déformations ou aux v (ou aux T)

est à mettre en corrélation avec la relation fondamentale
connue :

(2) [pvv] minimum ^ j — (-~\ 1 (voir [6])

Les (dx, dy, dz) et (dx', dy', dz') sont les variations
inconnues. Pour les déterminer on serait tenté de réa¬

liser [pvv] minimum, mais on aboutirait à une
impasse, car il n'y a pas de terme absolu dans (1) et les

équations normales relatives au minimum n'auraient
pas de tels termes. La difficulté fut tournée en ajoutant
des équations d'équilibre qu'il ne paraît pas nécessaire
de développer ici ; mais le nombre des inconnues peut
devenir fort élevé ; il y a les T en plus des dx, dy

(3)

Les poids p interviennent par leurs valeurs relatives :

"i*Ji E2o2 E3o3

L1 L2 L3Pi-Pi- Pa

Les E sont les coefficients d'élasticité, les 5 et L
les sections transversales et les longueurs des barres.
Ces p sont les poids à priori qu'il ne faut pas confondre
avec ceux à posteriori P dont il sera question plus loin.
Cette notion de poids à posteriori se rattache à ce que
l'on appelle parfois la seconde théorie de Gauss. C'est

l'application du principe des moindres carrés qui donne

lieu, pour les inconnues ou des fonctions de celles-ci,

aux gains les plus élevés pour les poids.
La solution A fut transposée dans le plan (voir [3]) ;

les nœuds sont alors matérialisés par des plaques infiniment

minces. Les variations dz, pour chaque nœud,
deviennent des grandeurs angulaires ; ce sont les
rotations des plaques. Cette représentation plane s'applique
surtout aux structures statiquement déterminées ; elle

fournira les termes absolus / qui manquent dans l'équation

(1). Celle-ci prend, en représentation plane, une
forme qui n'est plus linéaire.

Solution B

Elle a ceci d'intéressant qu'elle constitue, à certains
égards, un mode de calcul intermédiaire entre A et C.

Les coordonnées des nœuds varient et l'équation (2)
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est appliquée ; l'équation aux v devient, sous forme
générale :

(3') — / + v a(dx — dx') (poids p)

Mais les variations de coordonnées ne sont ici plus
les mêmes que précédemment. On opère des coupures
pour réaliser un état [pff] ^ [pvv] ; cet état [pff] sera
défini ci-après. L'équation (2) se prête remarquablement
à l'application de la méthode des moindres carrés et au
calcul des déformations.

Solution C

Pour les praticiens, elle est familière ; à la base des
calculs on a les inconnues hyperstatiques X{ (i indice
des barres coupées). D'après la «Baustatik» du
professeur Dr Stüssi, ces Xi revêtent la forme :

(4) X( otö Oj,, -f ai2 a,0 + cc,-3 O30 +
Les Ojo, a20, a30 sont les termes absolus des équations

d'élasticité tandis que les cty, a%2, as-3 sont des
éléments de la matrice conjuguée de celle des dites
équations. La solution C peut devenir précaire si la valeur
que prend le déterminant relatif aux équations d'élasticité

est dangereusement petite ([4], p. 68).
Ce qui importe, c'est l'état final F :

(5) Etat F Etat 0 + X1 (Etat 1) + X2 (Etat 2) +
+ Xs (Etat 3) +

La condition du travail de déformation minimum est
réalisée.

Bevenons à la solution B :

L'état pour lequel Xx X2 X3 1 est supposé
connu, par exemple en appliquant la représentation
plane. C'est l'état [pff] et les praticiens calculent à

triple la différence [pvv] — [pff] '¦

1° en fonction des v et des /.
2° en fonction des inconnues (les variations de

coordonnées).

(6)

3° par : [pvv M) [paff
[paa]

[PM 1]

[pbb i;

où les dénominateurs sont positifs.

[pcf-ï?
[pcc.2]

(voir [2])

On a d« plus mg ^ lpvv\ : r
(r éléments surabondants).

mg est la déformation quadratique moyenne relative
à l'unité de poids.

Avant de poursuivre, rappelons quelques caractéristiques

de la méthode des moindres carrés ; K. Friedrich
([1], p. 97), un des premiers, a montré le rôle que pouvait

jouer cette méthode en hyperstatique spatiale ou
même dans l'espace à n dimensions.

Considérons tout d'abord un système avec un nœud
(x, y, z) variable, les autres nœuds étant définis par
les valeurs (xit y„ z,)

{(x-xi)*+(y-y,)2 + (z-zt)2Ui

¦vn»4 +
Li+i-

{(x0 — Xi)2 + (y0 — yt)2 + (z0 -
+ Ui dx-\-bidy + Cidz

où : x x0 + dx, y — y0 + dy, z z0 + dz.

Li étant la longueur de la barre non déformée ; les
xo> 2/o> zo correspondent à un certain état, ainsi que
les f{.

On en déduit : (— fi -f- Vj) mdx + bidy + Cidz.
Dans la solution A, les dx, dy, dz ne sont pas les

mêmes ; admettons i 1, 2, 3, 4 et éliminons les trois
variables :

(7) [aV] -f- w 0 et [pvv] minimum.
(Solution A : w 0.)

L'extrémum devient lié ; c'est le terme w qui caractérise

la différence entre A et B. Certains des /,• peuvent
être nuls (éventuellement autant qu'il y a d'inconnues).

Extrémum non lié
Les Oi, b{, Ci sont les dérivées partielles des vt par

rapport aux variables ; donc la condition du minimum
entraîne :

(8) [pav] 0 [pbv] 0 [pcv] 0

équations normales sous forme implicite avec les termes
absolus [paf], [pbf], [pcf] et la matrice des coefficients :

~ [paa] [pab] [pac] '
[pba] [pbb] [pbc]

_[pca] [pcb] [pcc].

Une remarque ici est essentielle : les L,- et fi ne
diffèrent mutuellement que d'une quantité arbitraire,
laquelle dépend des x0, ya, z0 ; la seule réserve à formuler
est que les accroissements dx, dy, dz soient suffisamment

petits. Les L,- et f{ ont donc mêmes poids. En
d'autres termes, l'état initial n'est pas le même pour
les solutions A et B.

K. Friedrich a basé sa théorie en faisant varier la
température dans la ou les barres surabondantes.

Poids des inconnues

Ces dernières sont exprimées en fonction des /t- :

dx [a/], dy [ß/], dz [y/]
les fi étant considérés comme des quantités mutuellement

indépendantes ; la loi connue de propagation des

poids est applicable. Or il n'est pas nécessaire de
connaître individuellement les coefficients ai. ß/, yi.
Admettons pour simplifiée.: ,pt 1 ; on calcule directement

les coefficients de poids : ''[aa] Qu, [PP] (?22j

[yy] & (voir [8]).

Emettons de plus l'hypothèse que dans la matrice
ci-dessus des équations normales les éléments non
diagonaux soient nuls ou négligeables ; on obtient :

[paa]Qu 1 [pbb]Q22 1 [pec^^ 1

A cet effet traitons un cas fort simple : le sommet
libre d'un pylône à quatre barres.

i at bi Ci Pi Pi

1 + 0,577 + 0,577 + 0,577 1 1,33
-f) + 0,577 -0,577 ¦f 0,577 1 1,33
3 — 0,577 + 0,577 -(- 0,577 1 1,33
A — 0,577 -0,577 -f- 0,577 1 1,33

jes Pf sont les poids à posteriori.
[pab] [pac] [pbc] 0

Q12 Q)3 Q23 0 (coefficients de corrélation)
[paa] [pbb] [pcc]1114/3 -y- jr- =- TT- (voir [6]).

VU V22 V83
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1 1

Pi _ (0,577)«(ÇU + Q22 + Q33)
3 X 2,25 0,75

(Pi : poids à posteriori)
[p, : Pi]t 4 X 0,75 3,00 (trois inconnues).

Pour le moment, les fi n'interviennent pas.
C'est grâce au principe des moindres carrés que les

poids des inconnues et de fonctions de celles-ci sont
amplifiés dans la plus forte proportion ; pour certains,
c'est une façon de définir cette méthode.

Au sommet libre (x, y, z) du pylône, on a une
sphère moyenne de déformation dont le rayon est

m0\/l/Pi= mo y/0,75.

Au lieu de quatre barres, on pourrait en avoir trois :

i ai bi Ci Pi Pi

1 1,00 0,00 0,00 1 1

2 0,00 1,00 0,00 1 1

3 0,00 0,00 1,00 1 1

[pab] [pac] [pbc] 0

[paa] [pbb] [pcc]^= 1

On peut faire des calculs de poids même en l'absence

d'éléments surabondants, mais ici m'=—_ On a une

sphère moyenne de déformation de rayon m0 et non

plus nig \'0,75 >
toutefois ce m0 devrait être connu d'une

autre façon. C'est pourquoi en géodésie on enregistre,
catalogue, les m0 obtenus dans des conditions
déterminées. En hyperstatique on y viendra peut-être ;

l'ordre de grandeur de m0 est alors plus ou moins connu.
Dans l'exemple ci-dessus à quatre barres, on a

[pvi' min. au point (x, y, z) et des sphères
concentriques, lieux des points pour lesquels [pcV] constant

(travail de déformation constant On redoutera
les ellipsoïdes de déformation de forme très allongée.

(voir [6])

r

10Jb

^ _*\

Cas d'indétermination

On sait que le déterminant relatif au système d'équations

d'élasticité peut prendre des valeurs dangereusement

faibles ([4], p. 68) ; qu'en est-il du déterminant D
du système d'équations normales de la solution B
Cette valeur D est la somme de déterminants élevés

au carré (voir [8]) ; c'est, on doit le présumer, un
avantage.

A cet effet traitons un exemple :

— fi + v, Oidx + bidy + Cidz (poids p,).

Jacobi a montré qu'on pouvait grouper ces équations
trois par trois :

(9) dx
•nyk:la3 + -n2dx12l + TT3dx13i — Tr4<£r2

M
([pw] minimum).

Dans les équations normales, les coefficients quadratiques

sont seuls différents de 0.

Par suite : D [paa] [pbb] [pcc] 0,72 X 1,08x3,20
2,49.

1, 2, 3, 4 les groupes sont :

I
II
III
IV

a1blcl

a2b2c2

a3b3c3

e4 0

<'<, v.
0

et pour D : D [tt

résultat : dx dx123

» dx dx12i

» dx dx13t

» dx dx™.

"Aci
a2b2c2

aj)^
a3b3c3

a464c4

En général : atyp,-, 6,vpt, ct\/pi.

"îVi

poids

TT:,

TT4 de même pour c

«•Ac2 2

a^Cg
a^Ct

ly, dz

Pti= i;

Exemple numérique

Considérons encore la figure avec les quatre barres ci-après

Barres (ii bi Ci Pi

1-2 + 0,6 0 + 0,8 1,0
1-3 h<V1 + 0,6 4 0,8 1,5
1-4 — 0,f> 0 -f 0,8 1,0
1-5 0 — 0,6 -i- 0,8 1,5

+ 0,6 0 + 0,8

0,0 + 0,6V^5 + 0,8 V'1,5

— 0,6 0 + 0,8

+ 0,6 0 + 0,8

0 +0fi^Y^> +0,8VL5
0 — 0,6 VÖ +0,8 V'1,5

[Tri 0.5762 x 7,5 2,49 D.

0,576" X 1,

0,5768 X 2,2,

De même : tt3 0,576s X 1,5 Tf4 0,576' X 2,25

85



Le double pylône comprend neuf barres et il y a
six inconnues, donc 84 manières de combiner les neuf
équations :

9-8 7-6 5-4 9-8 7

6! 3!
84.

U n'y a indétermination que si 84 déterminants sont
nuls séparément.

Calcul du double pylône

Il y a deux sommets ou nœuds libres (1) et (6) ;

ce cas est analogue à celui traité dans [6], mais ici
les ellipsoïdes de déformation sont plus aplatis.

(10) — /j + Vi aidxx + bidy1 + cldz1 + a'tdxe +
+ b'idye + c'idzg (poids pi),
(i 1, 2, 9)

Certains termes absolus peuvent être nuls.
Les éléments diagonaux de la matrice de droite sont

à la fois les coefficients de poids des inconnues et les
inverses des poids de celles-ci.

Poids des barres à posteriori
La matrice de droite fournit les éléments pour ce

calcul portant sur les poids des binômes (— fi + vt)
exprimés en fonction des inconnues ([21, p. 290).

Pi
1 _1

P, (0,6)2x0,91

+ (0,8)2x 0,312 0,528

w 4-=i 4- 0,36x0,926
*2 -^4 *7 -*9

+ 0,64x0,312 0,533

toutes les

barres,
sauf (1-6)

p- =Qu + Qu — 2<?14 2 X 0,91 — 2 X 0,48 0,86
5

(voir [6], [7])

[Pi : p,-[J 4 x 0,528 +4 x 1,5 x 0,533 + 0,8 x 0,86 6,00
(6 inconnues).

Les ellipsoïdes de déformation relatifs aux nœuds (1)
et (6) sont connus à l'échelle près indépendamment des
/ ; c'est m0 qui donne l'échelle.

Si l'on considère des paires de plans mutuellement
parallèles, tangents aux ellipsoïdes, mais respectivement

normaux aux axes des coordonnées ainsi qu'aux
barres (sauf 1-6), on peut calculer les distances du
centre de ces surfaces à tous ces plans ; on obtient
ici, pour les valeurs contenues dans le tableau (10') :

± mJÖßl ; ± moV^926 ; ± mJÖ^m ;

± m0 y/ 0,528 ; ± m0 S1 0,533.

Les pieds de ces perpendiculaires sont sur la surface
podaire de l'ellipsoïde par rapport à son centre ; l'équation

de cette surface, qui est unicursale, contient un
groupe de termes de quatrième ordre indépendant de
l'orientation des axes de coordonnées et une forme
quadratique ternaire (voir [7]). Il n'y a pas de terme
absolu.

Ici les axes principaux des ellipsoïdes coïncident avec
les axes de coordonnées ou sont parallèles à ceux-ci.
En statique, comme en géodésie, avec les ellipsoïdes
d'erreur, on évitera les surfaces très aplaties ou allongées.

Fractionnement

Le calcul comporte deux phases ; ce cas fut traité
dans le Bulletin technique, 1960, page 304. C'est un
avantage de la méthode des moindres carrés de se prêter
à ce fractionnement.

Faisons l'hypothèse suivante : on ajoute une liaison
au système représenté par la figure ; il en résulte une
équation de plus mais, aux inconnues dxx, dyx déjà
calculées, il faut ajouter des valeurs (dxj), (dyx)
appelées surcorrections :

(12) AJdxJ + A2(dVl) + A%(dze) + A0 0.

Le contrôle des poids à posteriori devient, avec les
nouveaux poids P\ :

[pt : P'i]l 5 .au lieu de [p, : Pj]{ 6.

Les poids sont amplifiés en moyenne 1,8 fois au lieu
de 1,5 fois.

De plus on a, par suite du fractionnement :

(10')

i Barre a} k Ci a'i b'i c'i Pi

1 1-2 + 0,6 0 + 0,8 0 0 0 1,0
2 1-3 0 + 0,6 + 0,8 0 0 0 1,5
3 1-4 -0,6 0 + 0,8 0 0 0 1,0
4 1-5 0 — 0,6 + 0,8 0 0 0 1,5
5 1-6 + 1,0 0 0 — 1,0 0 0 0,8
6 6-7 0 0 0 + 0,6 0 + 0,8 1,0
7 6-8 0 0 0 0 — 0,6 + 0,8 1,5
8 6-9 0 0 0 — 0,6 0 + 0,8 1,0
9 6-10 0 0 0 0 + 0,6 + 0,8 1,5

Les matrices symétriques, mutuellement réciproques,
des équations normales et des coefficients de poids des

Equations normales :

(11) [pav] 0

[pbv] 0

[pc'v] 0

[pvv] [pff. 6]
(voir [2], [6]).

Cette symétrie a pour but
de simplifier les calculs.

1,52 0 0 — 0,8 0 0
0 1,08 0 0 0 0
0 0 3,20 0 0 0

0,8 0 0 1,52 0 0

0 0 0 0 1,08 0
0 0 I) 0 0 3,20

inconnues sont :

0,91 0 0 + 0,48 0 0
0 0,926 0 0 0 0
0 0 0,312 0 0 0

+ 0,48 0 0 0,91 0 0

0 0 0 0 0,926 0

0 0 0 0 0 0,312
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LITTÉRATURE

[pvv] [pv'v'] + [pv"v"] car [pv'v"] 0 et il faut
diviser [pvv] par 4 et non plus par 3.

Résumé

Trois solutions A, B, C furent envisagées ici portant
sur le même problème ; les deux solutions A et C ont
ceci de caractéristique qu'elles n'ont pas ou presque
pas de points communs. Avec A, les coordonnées des
nœuds varient mais la condition du minimum n'intervient

pas, avec C les X{ varient. La solution B
chevauche, si l'on peut s'exprimer ainsi, sur les deux
autres : les coordonnées varient et le minimum pour
[pvv] est réalisé. En outre les cas d'indétermination
sont moins à craindre avec la solution B. Ce problème
est complexe et n'est guère ici qu'effleuré. Dans chaque
cas on choisira la solution appropriée.
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SOCIETE VÄUDOISE DES INGENIEURS ET DES ARCHITECTES
(SECTION S.I.Ä.)

Rapport d'activité 1962

La Société vaudoise des ingénieurs et des architectes
a été créée en 1874. Le présent rapport embrasse la
période allant du 1er janvier au 31 décembre 1962 et
relate les principales activités de notre société au cours
de cet exercice.

1. Effectif

Nous avons enregistré 39 admissions et 15 départs.
Le nombre des membres de la SVIA, qui était de
547 au 1er janvier 1962, a ainsi passé à 571 au 31
décembre de la même année.

Nous avons eu le chagrin de perdre quatre membres :

MM. Jean Tschumi, architecte, Lausanne ; Jean
Gaulis, ingénieur civil, Lausanne ; Adil Gabay,

ingénieur mécanicien, Lausanne ; Paul Flouck, ingénieur
chimiste, Penthalaz. Notre société conservera le meilleur

souvenir de ces disparus.
Voici maintenant les noms de ceux de nos membres

qui, pour des raisons diverses, ont quitté la SVIA au
cours de l'an passé :

Architectes : M. Marc Piccard, Lausanne.
Ingénieurs civils : MM. Georges Berthier, Genève ;

Paulin Courtot, Paris ; Umberto Guglielmetti, Martigny.
Ingénieurs électriciens : MM. Jean-S. Desmeules, Genève ;

Robert Schneeberger, Genève ; Jules Tâche, Vevey.
Ingénieurs mécaniciens: MM. Michel Bally, Wintert hur ;

René Mussard, Prilly ; Max Zangerl, Zollikofen.
Ingénieurs chimistes : M. Jean Wiswald, Lausanne.

Nous avons enfin eu le plaisir d'accueillir 39 nouveaux
membres. II s'agit de

Architectes : MM. Charles-Kd. Bachofen, Lausanne ;
Jean Boever, Pully ; Mukkader Cizer, Lausanne ; Jean
Duboux, Paris ; Jan Gryzaj, Lausanne ; Franz Guth,
Lausanne ; I)avid-R. Mutz, Lausanne ; Georges Jaunin,
Lausanne ; Chriatophe-M. Jelenkiewicz, Prilly ; Ljubomir
Milosavljevic, Lausanne ; Hanspeter Schmidt, Lausanne ;
Jean Serex, Merges ; Paul Vallotton, Lausanne ; Oscar
Winterhalter, Lausanne.

Ingénieurs civils: Justin Alberti, Lausanne; Hermann
Bergmann, La Tour-de-Peilz ; Pierre Bernev, Lausanne ;

• Louis Cardinaux, Nyon ; Gilbert Etienne, Lausanne ;
Carlo Francioli, Lausanne ; Yves Gander, Pully ; Jean
Krähenbühl, Lausanne ; André Lambert, Lausanne ; Manuel
Maestre Orts, Madrid ; René Masson, Lausanne ; Pierre
Soutter, Küsnacht (ZH) ; Arthur Spagnol, Lausanne ;
Mme Helena Szutorisz Homonnai, La Conversion.

Ingénieurs électriciens : MM. Gérard Järmann, Lausanne ;
Gérard Lavanchy, Lausanne ; André Necker, Pully ;
Michel Protopapas, Lausanne.

Ingénieurs mécaniciens : MM. Théophile Chevalley,
Leysin ; Jean Joho, Lausanne ; Francis Pauli, Prilly ;
Gerassimos Voutsinas, Winterthur.

Ingénieurs chimistes : M. Sarandos Kopitopoulos,
Lausanne.

Ingénieurs physiciens : MM. Edouard-P. Eugster, La
Neuveville ; Jean-Paul Meyer, Lausanne.

Le tableau de l'effectif de la SVIA se présente donc
au 31 décembre 1962, de la manière suivante :

To bal Dimi¬
tations nutions

1961 1962

Architectes 160 162 4-14 + 12
Ingénieurs civils 24(i 256 + 14 — 4 + 10
Ingenieurs électriciens 60 61 + 4 — 3 + 1
Ingénieurs mécaniciens 58 58 + •» — 4
Ingénieurs chimistes 10 9 + 1 — 2 - 1

Ingénieurs ruraux 1 4 — —
Ingénieurs forestiers 8 8
Ingénieurs physiciens 4 6
Géomètres S
Géologues 1 1

547 571 + 39 — 15 + 24

Nous serions incomplets si nous n'ajoutions pas
qu'au 31 décembre 10 demandes d'admission étaient
en cours.

L effectif de la SVIA, avec 24 membres supplémentaires,

accuse une augmentation de 4,5 %, très voisine
de la progression moyenne de la SIA. Au risque de
nous répéter, nous ne saurions nous déclarer satisfaits
de ce progrès qui aurait pu, sans difficultés, être plus
important. Les membres de la SVIA devraient faire
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