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CLAA. Ce bloc, avec celui de Wantage, en Grande-
Bretagne, sont les deux seuls existant actuellement.
Quelques caractéristiques

Murs : 2,50 m de béton ; toit: 1,50 m de béton ; piscine :
7x3 m, 6 m de profondeur ; convoyeur: 1 tour 30," 1 tour
24 ; hublot: 1,25 m, en six bloes; plomb cerium Saint-
(Gobain.

Conclusion

Comme vous venez de le voir, I'industrie francaise
s’engage résolument dans I'utilisation des radio-isotopes.
Comme toute technique nouvelle, ce développement
subit des poussées et des périodes de ralentissement. Il
convient cependant de noter que l'industrie a fait un
effort important par elle-méme, que peu d’autres pays
ont fait. Le Commissariat a I'Energie atomique francais,
par son dynamisme et son esprit d’entreprise, I'a beau-
coup encouragée et aidée.

Il reste beaucoup a faire; le travail est dur, étant
d’avant-garde. Mais si l'on considére les résultats

obtenus en peu d’années, malgré les difficultés de tous
ordres et les possibilités treés larges offertes par les radio-
1sotopes, cet effort sera payant.

Les utilisations se feront de plus en plus nombreuses,
les radio-isotopes apporteront a l'industrie une aide
incomparable lui permettant d’améliorer et méme de
transformer ses techniques et de coopérer a I'amélio-
ration de ses prix de revient.

Aussi toute personne doit étre convaincue que les
radio-isotopes joueront directement ou indirectement
un role dans ses activités et méme dans certains cas
bouleverseront ses activités.

J’en a1 terminé, en espérant qu’'en ce court laps de
temps j’ail pu réussir la gageure de vous faire connaitre
I'intérét des radio-éléments.

Il ne faut pas craindre les radio-isotopes et les radia-
tions, il faut les respecter et ils sont sans danger.

L’industrie suisse est renommée, entre autres par sa
qualité et sa précision ; les radio-isotopes doivent lui
étre d’une grande aide pour maintenir sa renommaée.

SUR LE CALCUL DES DEFORMATIONS EN HYPERSTATIQUE

SPATIALE

par A. ANSERMET, ing.-prof.

Les lignes qui suivent sont en corrélation avec l'ar-
ticle du Bulletin technigue du 2 décembre 1961. Elles
portent surtout sur les systémes articulés spatiaux
quand le nombre des éléments surabondants tend a
devenir élevé (voir [6]). Parmi les solutions développées
dans la littérature statique, trois sont plus particuliére-
ment envisagées icl ; désignons-les par A, B et C.

A la base de tout calcul de ce genre, on aura en
général les équations aux déformations qui expriment
les allongements ou raccourcissements des barres en
fonction des variations des coordonnées des neeuds du
systeme. Pour un nceud déterminé on peut avoir jusqu’a
trois variations différentes de zéro et, pour une barre,
jusqu’a six. De plus, comme on le verra, ces variations
seront éventuellement fractionnées lorsque le calcul du
systéme est lui-méme fractionné ; la solution B surtoul
se préte a un tel mode de calcul lorsqu’on ajoute subsé-
quemment des laisons.

Solution A

Elle est traitée ict plutdt pour mémoire, car son inté-
rét est plus théorique que pratique au point de vue
hyperstatique ; une des caractéristiques de A est d’éviter
la coupure de barres surabondantes. Analytiquement
on a, sous forme générale, pour chaque barre:
(1) a(de — d2") + b(dy — dy') + c(dz — dz") =

= ([3] p. 50-57)

ou a® 4 bh* ¢ =1, m est le module, 7" la tension.

= ¢ =mT

Cette équation aux déformations ou aux ¢ (ou aux 7')
est & mettre en corrélation avee la relation fondamentale
connue :
o~ - ES (TL\? -

(2) [pee] = minimum = 3 ‘ (—,«—,) (voir [6])
: L 2L \ES/ | ~

Les (dx, dy, dz) et (da', dy’, dz’) sont les variations
inconnues. Pour les déterminer on serait tenté de réa-

liser [pe¢| = minimum, mais on aboutirait & une 1m-
passe, car 1l n'y a pas de terme absolu dans (1) et les
équations normales relatives au minimum n’auraient
pas de tels termes. La difliculté fut tournée en ajoutant
des équations d’équilibre qu’il ne parait pas nécessaire
de développer ici: mais le nombre des inconnues peut
devenir fort élevé ; il y a les 7" en plus des da, dy ...

Les poids p interviennent par leurs valeurs relatives :

E\S, | EyS, | E;S,
P1:P2:P3 -+ = L, L, L,

(3)

Les E sont les coeflicients d’élasticité, les S et L
les sections transversales et les longueurs des barres.
Ces p sont les poids & priort qu'il ne faut pas confondre
avec ceux a posteriori P dont il sera question plus loin.
Cette notion de poids a posterior se rattache a ce que
I'on appelle parfois la seconde théorie de Gauss. Clest
I'application du principe des moindres carrés qui donne
lieu, pour les inconnues ou des fonctions de celles-ci,
aux gains les plus élevés pour les poids.

La solution A fut transposée dans le plan (voir [3]);
les nceuds sont alors matérialisés par des plaques infini-
ment minces. Les variations dz, pour chaque nceud,
deviennent des grandeurs angulaires ; ce sont les rota-
tions des plaques. Cette représentation plane s’applique
surtout aux structures statiquement déterminées ; elle
fournira les termes absolus / qui manquent dans I'équa-
tion (1). Celle-ci prend, en représentation plane, une

forme qui n’est plus linéaire.

Solution B

Elle a ceci d’intéressant qu’elle constitue, a certains
¢gards, un mode de calcul intérmédiaire entre A et C.
Les coordonnées des nceuds varient et 'équation (2)
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est appliquée ; I'équation aux ¢ devient, sous forme
générale :

) —f+v=alde—dz') ... (poids p)

Mais les variations de coordonnées ne sont ici plus
les mémes que précédemment. On opére des coupures
pour réaliser un état [pff] = [pev]; cet état [pff] sera
défini ci-apres. L’équation (2) se préte remarquablement
a I'application de la méthode des moindres carrés et au
calcul des déformations.

Solution C

Pour les praticiens, elle est familiere ; a la base des
calculs on a les inconnues hyperstatiques X; (i = indice
des barres coupées). D’aprés la « Baustatik » du pro-
fesseur DT Stiissi, ces X; revétent la forme :

(4) X = o010 + 0ppag + Cgtgg + ...

Les ayg, ayg, agy sont les termes absolus des équations
d’élasticité tandis que les oy, oug, Qg ... sont des élé-
ments de la matrice conjuguée de celle des dites équa-
tions. La solution C peut devenir précaire si la valeur
que prend le déterminant relatif aux équations d’élas-
ticité est dangereusement petite ([4], p. 68).

Ce qui importe, c¢’est I'état final I :

(9) Etat I' = Etat 0 + X, (Etat 1) + X, (Etat 2) +
+ X, (Etat 3) + ...

La condition du travail de déformation minimum est
réalisée.

Revenons a la solution B :

L'état pour lequel X; = X, = X, = 1 est supposé
connu, par exemple en appliquant la représentation
plane. C’est I'état [pff] et les praticiens calculent a
triple la différence [poe]l — [pff]

1o en fonction des ¢ et des f.
20 en fonction des inconnues (les variations de
coordonnées).
(6)

(paf*  [pbf 11>  [pef.2?

) [[17(1 ~ [pbb 1] o [pcc.?

30 par: [pev| = [pff) —

ou les dénominateurs sont positifs.

On a de plus: mg o~ [poe] : r
(r éléments surabondants).
my est la déformation quadratique moyenne relative
a I'unité de poids.

Avant de poursuivre, rappelons quelques caractéris-
tiques de la méthode des moindres carrés ; K. Friedrich
([1], p. 97), un des premiers, a montré le role que pou-
vait jouer cette méthode en hyperstatique spatiale ou
méme dans I'espace 4 n dimensions.

Considérons tout d’abord un systéme avee un neud
(z, y, z) variable, les autres neuds étant définis par
les valeurs (x4, vy, z)

Li + v; = {(.I' —2)2 4 (y —y)? + (2 — ;,-‘,‘-’}’/-'; =
- {‘-"0 zi)? + (Yo ¥i)2 + (79— 3:‘)2>L2 =+
Foapde+bidy 4 ez
ou: x=ux,+dr, y=y,+dy, z=3z+ da

Li étant la longueur de la barre non déformée ; les
Ty, Yo, Z correspondent 4 un certain état, ainsi que

les /..
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On en déduit: (— f; + ¢,) = a;da + bidy + cida.

Dans la solution A, les da, dy, dz ne sont pas les
mémes ; admettons 1 = 1, 2, 3, 4 et éliminons les trois
variables :
(7) [a’v] +w =0 et [pee] = minimum.

(Solution A4 :w = 0.)

L’extrémum devient lié ; c’est le terme & qui carac-
térise la différence entre A et B. Certains des f; peuvent
étre nuls (éventuellement autant qu’il y a d’inconnues).

Extrémum non lié

Les a;, bi, ¢; sont les dérivées partielles des ¢; par
rapport aux variables ; donc la condition du minimum
entraine :

(8) [pav] =0 [pbe] =0 [per] =0

équations normales sous forme implicite avec les termes
absolus [paf], [pbf], [pef] et la matrice des coeflicients :

[paal  [pab]  [pac)
(pba  [pbb]  (pbel

[peal [peb) [pec]

Une remarque ici est essentielle : les L; et f; ne dif-
ferent mutuellement que d'une quantité arbitraire,
laquelle dépend des 2, y,, 7, : la seule réserve a formuler
est que les accroissements dx, dy, dz soient suflisam-
ment petits. Les L; et f; ont donc mémes poids. En
d’autres termes, I'état initial n’est pas le méme pour
les solutions A et B.

K. Friedrich a basé sa théorie en faisant varier la
température dans la ou les barres surabondantes.

Poids des inconnues
Ces derniéres sont exprimées en fonction des f; :

dy = [Bf], dz=[y]]

les f; étant considérés comme des quantités mutuelle-

dz = [af],

ment indépendantes ; la loi connue de propagation des
poids est applicable. Or il n’est pas nécessaire de
connaitre individuellement les coeflicients «i, B, yi.
Admettons pour simplifier: p; = 1; on calcule directe-
ment les coeflicients de poids : [aa] = Qyy, [BR] = O,
[YY] = Qs (voir [8]).

Emettons de plus I'hypothése que dans la matrice
ci-dessus des équations normales les éléments non dia-
gonaux soient nuls ou négligeables ; on obtient :

[paalQy =1 [pbb]Qyy = [pee]Qyy = 1

A cet effet traitons un cas fort simple : le sommet
libre d’un pylone a quatre barres.

U= i bi Ci i P;
1 + 0,577 + 0,077 + 0,577 1 1,33
2 + 0,577 0,577 0,577 1 1,33
3 0,577 + 0,577 + 0,577 1 1,33
A 0,577 0,577 0,577 1 1,33

Les Py sont les poids & posteriori.
[pab| = [pac] = [pbe] = 0
(12 = Oy = (g3 = 0 (coellicients de corrélation)
[paa] = [pbb] = [pcc] =
| 1 1

— 419 — = —_—
. '/3” ()33

(voir [6]).

(\l] (‘Z‘




U 1 . .
P (0,577)%(Qyy + Q92 + Os) = 3 x 2,25 = 0,75

(P;: poids & posteriori)
[p.: Pilt = 4 x 0,75 = 3,00

Pour le moment, les f; n’interviennent pas.

(trois inconnues).

(’est grace au principe des moindres carrés que les
poids des inconnues et de fonctions de celles-ci sont
amplifiés dans la plus forte proportion ; pour certains,
c’est une facon de définir cette méthode.

Au sommet hibre (2, y, z) du pylone, on a une
sphére moyenne de déformation dont le rayon est

mg \ 1/P;= my V 0,75.

Au lieu de quatre barres, on pourrait en avoir trois :

(= w; bi ci pi P
1 1,00 0,00 0,00 1 1
9 0,00 1,00 0.00 1 1
3 0,00 0,00 1,00 1 1

[pab| = [pac] = [pbc] = 0
[paa] = [pbb] = [pec] =1

On peut faire des calculs de poids méme en I'absence

d’éléments surabondants, maisici m == On a une

sphere moyenne de déformation de rayon m, et non

plus my\'0,75 : toutefois ce my devrait étre connu d’une
autre facon. Clest pourquoi en géodésie on enregistre,
catalogue, les m, obtenus dans des conditions déter-
=) s 0
minées. En hyperstathuo on y viendra peul-étre
Iordre de grandeur de mg est alors plus ou moins connu.
Dans 'exemple ci-dessus & quatre barres, on a
[pee] = min. au point (x, y, z) ¢l des spheres concen-
triques, lieux des points pour lesquels [pe’e’ = cons-
tant (travail de déformation constant). On redoutera
les ellipsoides de déformation de forme trés allongée.
(voir [6])

Pour ¢ = 1, 2, 3, 4 les groupes sonl :

b ) b o
| pp = vy =03 =0 résultat :
11 oy =iy = gy =10 »
]” “1 = 1'3: \’l == |} »
]\ "2 = \'3 —; \’l — () »
wybyey aybyey

T = | asbycy Ty = | @absly

agbye,

el pour D: D =[] général : a,\ p;,

Exemple numérique

Considérons encore la figure avece les quatre barres

Barres (o by Ci Di ™
1-2 + 0,6 0 0,8 1,0
1-3 &0 3 = 0,6 0,8 1.5

! ! T,

1-4 0.6 0 0.8 1.0 2
1-5 0 0,6 0,8 1,5

[Tr]

De méme : Ty 0,576 1.6 T = 0,576 %

)
2,25

Ty —

Cas d’indétermination

On sait que le déterminant relatif au systeme d’équa-
tions d’élasticité peut prendre des valeurs dangereuse-
ment faibles ([4], p. 68); qu’en est-il du déterminant D
du systéeme d’équations normales de la solution B ?
Cette valeur D est la somme de déterminants élevés
au carré (voir [8]): c'est, on doit le présumer, un
avantage.

A cet effet traitons un exemple :

— fi + vi = adx + bidy + cidz (poids py).
Jacobi a montré qu'on pouvait grouper ces équations

trois par trois :

gy + Todayyy £ Tadaygy + Tdayg,

9 da =

([pee] mimmum).
Dans les équations normales, les coeflicients quadra-
tiques sont seuls différents de 0.

Par suite : D = [paa] [pbb] [pec] = 0,72 1,08 % 3,20

= 2,49,
poids
dz = day5 | 75
de = dais; |
dr = dxigq | 18
dv = dagy, | m, de méme pour dy, dz
ayhyey uyb,cy l
tybgey Ty = | @ybycy (pi=1)
aybyey aybye,
/1,\/]),', ciy Pi-
cl-apres :
L06 0 + 0,8 2
= 0,0 +0,6V15 -+ 08 V1,5 = (,5762 % 1.5
0,6 0 + 0,8
"
L 0,6 0 L0
0 FO0,6V1,5 08 = 0,5762 x 2,25
0 -0,6V1,5 -+ 0,8V1,5
0,576% X 7,5 2,49 = D.

or
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Le double pyléne comprend neuf barres et il y a
six inconnues, donec 84 maniéres de combiner les neuf
équations :

987654 9.87

61 S =k

Il n’y a indétermination que si 84 déterminants sont
nuls séparément.

Calcul du double pyléne

Il 'y a deux sommets ou nceuds libres (1) et (6);
ce cas est analogue a celul traité dans [6], mais ici
les ellipsoides de déformation sont plus aplatis.

(10) —fi+ o= aidzy + bidy, + cdz; + a'idxg -
+ bidyg + ¢’idzg  (poids pi).
=1, 2, ... 9
Certains termes absolus peuvent étre nuls.
Les éléments diagonaux de la matrice de droite sont

a la fois les coeflicients de poids des inconnues et les
inverses des poids de celles-ci.

Poids des barres a posteriori

La matrice de droite fournit les éléments pour ce
calcul portant sur les poids des binémes (—fi+ o)
exprimés en fonction des inconnues ([2], p. 290).

P_11 - 1713 - Pis K Fis o toutes les
+ (0,8)2 0,312 = 0,528 barres,

Fig — 1714 :P—17 — pig — 0,360,926 + | “*uf (16
+ 0,64%0,312 = 0,533

p_15 = On + Que— 205 = 2 % 0,91 — 2% 0,48 — 0,86

(voir [6], [7])
[pi: P8 =4x0,528 4-4%1,5 % 0,533 40,8 x 0,86 — 6,00

(6 inconnues).

Les ellipsoides de déformation relatifs aux nceuds (1)
et (6) sont connus & I’échelle prés indépendamment des
{3 ¢’est my qui donne I'échelle.

Si l'on consideére des paires de plans mutuellement
paralléles, tangents aux ellipsoides, mais respective-
ment normaux aux axes des coordonnées ainsi qu’aux
barres (sauf 1-6), on peut calculer les distances du
centre de ces surfaces a tous ces plans: on obtient

ici, pour les valeurs contenues dans le tableau (107) +

-+ m \e/(IQ—i; + myy/0,926 + my\/0,312 ;
0 0 0
+my v/ 0,528; + my \ 0,533.

Les pieds de ces perpendiculaires sont sur la surface
podaire de Pellipsoide par rapport 4 son centre ; I'équa-
tion de cette surface, qui est unicursale, contient un

) b
groupe de termes de quatriéme ordre indépendant de
Porientation des axes de coordonnées et une forme
quadratique ternaire (voir [7]). Il n’y a pas de terme
absolu.

Ici les axes principaux des ellipsoides coincident avec
les axes de coordonnées ou sont paralléles & ceux-ci.
En statique, comme en géodésie, avec les ellipsoides

que, ;
d’erreur, on évitera les surfaces trés aplaties ou allon-
gées.

Fractionnement

Le calcul comporte deux phases; ce cas fut traité
dans le Bulletin technique, 1960, page 304. C’est un
avantage de la méthode des moindres carrés de se préter
a ce fractionnement.

Faisons I'hypotheése suivante :
au systéme représenté par la figure ; il en résulte une
équation de plus mais, aux inconnues day, dy, ... déja
calculées, il faut ajouter des valeurs (da,), (dy,)

on ajoute une liaison

appelées surcorrections :
(12)  Ay(dzy) + Ay(dy,) + . .. Ag(dzg) + 4, = 0.

Le controle des poids a posteriori devient, avec les
nouveaux poids P’ :
[pi: Pl =5 au lieu de [pi: P} =6,

Les poids sont amplifiés en moyenne 1,8 fois au lieu
de 1,5 fois.

De plus on a, par suite du fractionnement :

(10)
) Equations normales :
I'= Barre ai bi cq a’i b &% pi
(11) [pav] =0
[pbe] =0
1 1-2 4106 0 108 0 0 0 1,0 ‘
9 1-3 0 106 | 408 0 0 0 1,5
3 1-4 — 0,6 0 + 0,8 0 0 0 1,0 s
4 1-5 0 0,6 108 0 0 0 15 [pe'y] = 0
5 1-6 +1,0 0 0 1,0 0 0 0,8 S
6 6-7 0 0 0 406 0 108 | 1.0 [pre] o [pff-6
7 6-8 0 0 0 0 06 | +08 | 1.5 (voir [2], [6]).
8 6-9 0 0 0 — 0,6 0 + 0,8 1,0 ) L.
9 6-10 0 0 0 0 40,6 10,8 1,5 Cette symetrie a pour but
de simplifier les caleuls.

Les matrices symétriques, mutuellement réciproques,

des équations normales et des coeflicients de poids des

1,52 0 0 —0,8 0 0 =
0 1,08 0 0 0 0
0 0 3,20 0 0 0
—0,8 0 0 ,52 0 0
0 0 0 0 1,08 0
() 0 0 0 0 3,20

inconnues sont :

0,91 0 0 + 0,48 0 0
0 0,926 0 0 0 0
0 0 0,312 0 0 0
+ 0,48 0 0 0,91 0 0
0 0 0 0 0,926 0
0 0 0 0 0 0,312




1%

I
Q\
L
<

[pov] = [pv'e’] 4 [pe"¢"] car [pe'¢”] = 0 et il faut
diviser [pe¢] par 4 et non plus par 3.

Résumé

Trois solutions A, B, C furent envisagées ici portant
sur le méme probléme ; les deux solutions A et C ont
ceci de caractéristique qu’elles n’ont pas ou presque
pas de points communs. Avee A, les coordonnées des
neeuds varient mais la condition du minimum n’inter-
vient pas, avee C les X; varient. La solution B che-
vauche, si l'on peut s’exprimer ainsi, sur les deux
autres : les coordonnées varient et le minimum pour
[pov] est réalisé. In outre les cas d'indétermination
sont moins a craindre avec la solution B. Ce probléme
est complexe et n’est guére ici qu’eflleuré. Dans chaque
cas on choisira la solution appropriée.
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SOCIETE VAUDOISE DES INGENIEURS ET DES ARCHITECTES

(SECTION S.L.A.)

Rapport d’activité 1962

La Société vaudoise des ingénieurs et des architectes
a été créée en 1874, Le présent rapport embrasse la
période allant du 1€ janvier au 31 décembre 1962 et
relate les principales activités de notre société au cours
de cet exercice.

1. Effectif

Nous avons enregistré 39 admissions et 15 départs.
Le nombre des membres de la SVIA, qui était de
547 au 1T janvier 1962, a ainsi passé a4 571 au 31 de-
cembre de la méme année.

Nous avons eu le chagrin de perdre quatre membres :

MM. Jean Tschumi, architecte, Lausanne: Jean
Gaulis, ingénieur civil, Lausanne; Adil Gabay, ingé-
nieur mécanicien, Lausanne; Paul Flouck, ingénieur
chimiste, Penthalaz. Notre société conservera le meil-
leur souvenir de ces disparus.

Voict maintenant les noms de ceux de nos membres
qui, pour des raisons diverses, onl quitté la SVIA au
cours de I'an passé :

Architectes : M. Marc Piceard, Lausanne.

MM. Georges Berthier, Geneéve ;
Paulin Courtot, Paris; Umberto Gugliclmetti, Martigny.

Ingénicurs ¢lectriciens : MM. Jean-S. Desmeules, Genéve ;
Robert Schueeberger, Genéve ; Jules Tache, Vevey.

[ngénicurs mécaniciens : MM. Michel Bally, Winterthur ;
René Mussard, Prilly ; Max Zangerl, Zollikofen.

Ingénicurs chimistes : M. Jean Wiswald, Lausanne.

Ingénieurs  ecivils

Nous avons enfin eu le plaisir d’accueillir 39 nouveaux
membres. [l s’agit de

Architectes :  MM. Charles-Id.  Bachofen, Lausanne :
Jean Boever, Pully ; Mukkader Cizer, Lausanne ; Jean
Duboux, Paris; Jan Gryzaj, Lausanne; Iranz  Guth,
Lausanne ;. David-R. Hotz, Lausanne; Georges Jaunin,
Lausanne ; Christophe-M. Jelenkiewicz, Prilly; Ljubomir
Milosavljevie, Lausanne ; Hanspeter Schmidt, Lausanne ;
Jean Serex, Morges; Paul Vallotton, Lausanne: Oscar
Winterhalter, Lausanne,

Ingénicurs civils : Justin Alberti, Lausanne ; Hermann
Bergmann, La Tour-de-Peilz ; Pierre Berney, Lausanne ;

Louis  Cardinaux, Nyon; Gilbert Etienne, Lausanne ;
Carlo Francioli, Lausanne; Yves Gander, Pully ; Jean
Kriahenbiihl, Lausanne ; André Lambert, Lausanne ; Manuel
Maestre Orts, Madrid ; René Masson, Lausanne; Pierre
Soutter, Kisnacht (ZH); Arthur Spagnol, Lausanne ;
Mme Helena Szutorisz Homonnai, La Conversion.

[ngénieurs électriciens : MM. Gérard Jiarmann, Lausanne ;
Gérard  Lavanchy, Lausanme; André Necker, Pully ;
Michel Protopapas, Lausanne.

Ingénieurs  mécaniciens :  MM. Théophile Chevalley,
Leysin; Jean Joho, Lausanne; Francis Pauli, Prilly ;
Gerassimos Voutsinas, Winterthur.

Ingénieurs chimistes : M. Sarandos Kopitopoulos, Lau-
sdanne.

Ingénieurs physiciens : MM. Edouard-P. Eugster, La
Neuveville ; Jean-Paul Meyer, Lausanne.

Le tableau de I'effectif de la SVIA se présente donc
au 31 décembre 1962, de la maniére suivante :

Total Augmen-| Dimi-
tations | nutions | T /T

1961 1962
Avchiteetes . + . .7 . . 150 162 + 14 2 + 12
Ingénieurs civil 246 256 + 14 - 4 + 10
Ingénieurs clec GO 61 + 4 — 3 + 1
Ingénieurs mécanic 58 o8 + 4 E! -
Ingénienrs chimistes . . . 10 9 4+ 1 — 2 — 1
Ingénieurs rurans L 4 — — —
Ingéniewrs forestiers . . . 8 8 = = -
Ingénieurs physiciens . . . 1 6 + 2 - 2
Géometres . . . . . . L . 6 G
Géologaes: . . =« w <« & « & 1 1 == =

BT 571 + 39 15 + 24

Nous serions incomplets si nous n’ajoutions pas
quau 31 décembre 10 demandes d’admission étaient
en cours.

[effectil de la SVIA, avec 24 membres supplémen-
taires, accuse une augmentation de 4,5 95, trés voisine
de la progression moyenne de la SIA. Au risque de
nous répéter, nous ne saurions nous déclarer satisfaits
de ce progrés qui aurait pu, sans diflicultés, étre plus
important. Les membres de la SVIA devraient faire
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