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LE CALCUL PLASTIQUE DES CONSTRUCTIONS

par M. le Dr B. THURLIMANN, professeur a 'Ecole polytechnique fédérale *

1. Introduction

La téache de l'ingénieur civil consiste a créer des
ouvrages adéquats et esthétiques. Il lui est done indis-
pensable de savoir dans quelle mesure les conditions
de leur utilisation risquent d’en compromettre ’exis-
tence. Schématiquement différentes causes de défail-
lance peuvent étre distinguées :

1. La rupture, causée a) par charge statique, ou b) par

fatigue sous des charges répétées.

2. Les déformations inacceptables, causées a) par des
fleches exagérées ; b) par des vibrations; ¢) par des
fissurations ou une combinaison de ces effets.

Les calculs statiques et le soin apportés a exécution
doivent assurer aux constructions un coellicient de
sécurité tel qu’elles seront, & vues humaines, garanties
contre lapparition de tels phénoménes. Il est clair que
ce coellicient de sécurité est influencé de fagon impor-
tante par les incertitudes au sujet des charges a prendre
en compte, des propriétés des matériaux, de la qualité
de Pexécution, des simplifications introduites dans les
caleuls, ete. Des recherches récentes permettent de
Lraiter ces questions par analyse statistique (voir les
références [1], [2] et [3] a la fin de cet article).

La détermination de la résistance effective d’une cons-
truction, soumise a des charges statiques, est un des
points essentiels de I'estimation du coellicient de sécu-
rité. Il faut malheureusement reconnaitre que c’est
précisément dans ce domaine que les méthodes clas-
siques de la théorie de I'élasticité sont d’une utilité
limitée ; de la, les efforts de ces derniéres années pour
établir une méthode simple, mais stre, permettant
d’estimer la résistance effective des constructions. 1l
nous faut insister ici sur le fait que les autres critéres
déterminant la sécurité ne doivent pas étre négligés.
Mais, pour le calcul des constructions soumises a des
charges statiques, c¢’est bien la résistance effective qui
est le eritére le plus important et généralement prépon-
dérant.

Avant d’en venir & une description de cette nouvelle
méthode, nous allons traiter quelques cas pour lesquels
les méthodes de la théorie de I'élasticite ne fournissent
pas de solution satisfaisante.

* Article publi¢ dans la Schweizerische Bauzettung, n° 48 et 49
(30 novembre et 7 décembre 1961) et basé sur une conférence faite
au Groupe des Ponts et Charpentes de la STA le 12 novembre 1960.
Traduction par O. Barde, ingénieur EPF/[STA.
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2. Limites d’application de la théorie de I’élasticité

Considérons pour commencer une poutre sur trois
appuis, avec une rigidité a la flexion El*' constante,
comme sur la figure 1. Dans le cas «), une charge uni-
formément répartie ¢; produit un moment {léchissant
maximum Mg, sur 'appul central. Dans le cas b), par
contre, 1l est possible, par U'interposition judicieuse d’une
articulation, d’égaliser le moment sur appui Mgs au
moment en travée, pour une charge uniformément
répartie ¢,. La théorie de I'élasticité enseigne qu’une
section peut étre sollicitée jusqu’a apparition de I'écou-
lement dans la fibre extréme. Si maintenant, nous
admettons que, dans les deux cas ci-dessus, la résistance
a la flexion de la poutre est la méme, et que nous éga-
lisons Mg & Mg, nous obtenons pour le cas b) une
augmentation de la charge maximum admissible de
46 9,. Ce résultat est en contradiction flagrante avec
ce que l'on est en droit d’attendre. En premier licu,
parce qu'une poutre avec une articulation est moins
rigide, et, en second lieu, parce que couper une poutre
et y interposer une articulation provoque sans aucun
doute un affaiblissement. Le calcul selon la théorie de
I'élasticité conduit done au paradoxe qu’a Paflaiblisse-
ment d’une poutre correspondrait un accroissement de
sa résistance effective.

Comme pendant, mentionnons un exemple ou le
renforcement d’un cadre provoquerait une diminution
de la résistance effective. Soit le cadre rectangulaire de
la figure 2. Dans le cas a), la rigidité des béquilles et de la
traverse supérieure est choisie de telle facon qu’il y ait
égalité entre le moment en travée et les moments aux
angles. Si maintenant, nous doublons la rigidité des
montlants (voir cas b) nous obtenons une augmentation
des moments négatifs aux angles, La comparaison des
charges dans les deux cas conduit au rapport q,/q, =
0,875, soit & une notable diminution de la résistance.
Ce resultat est de nouveau en contradiction avec ce que
nous étions en droit d’espérer. Iin effet, il est impossible
qu’un renforcement des montants ail pour résultat un

affaiblissement du cadre dans son ensemble.

U /¢ = module d'¢lasticité ; 1 = moment d'inertic.
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Les deux exemples suivants vont nous montrer que
lorsque nous calculons selon la théorie de D'élasticité,
nous formulons souvent des hypothéses qui conduisent
a des sollicitations nominales ne correspondant plus &
la réalité.

Considérons une poutre en T, en béton armé, encas-
trée aux deux extrémités (fig. 3). En conformité avec
les hypothéses habituelles, la section de béton consi-
dérée pour le calcul des efforts est I'ensemble de la sec-
tion de la poutre, dont on néglige les aciers, soit une
rigidité £/ constante. Les pourcentages d’armatures
indiqués sont valables pour une utilisation complete de
Iacier aux sections d’appuis, et de l'acier seulement au
milieu de la travée. Iin recalculant maintenant la rigi-
dité de la section fissurée (stade 4) et la répartition cor-
respondante des moments, on constate (fig. 3) que dans
les deux cas les résultats différent de facon appréciable.
On peut done conclure que l'emploi du facteur de
rigidité E7 de la section de béton conduit & une répar-
tition des moments qui est plausible mais certainement
différente de la réalité.

Dans la plupart des calculs; influence des tensions
résiduelles est négligée lors de la vérification des con-
traintes. Un exemple de ces tensions résiduelles longitu-
dinales, mesurées dans la cas d’un profilé laminé et
d’un pilier soudé, est donné a la figure 4 (voir aussi la
référence [4]). On peut considérer que ces valeurs sont
spécifiques & la plupart des sections du méme type.
Pour les laminés, ces tensions atteignent la moitié de la
limite élastique op et pour les picces souddées, la limite
élastique elle-méme. Ces efforts internes sont créés, dans
un profilé, par le refrordissement plus rapide des extré-
mités des ailes et de Pdame, que celui de la zone de rac-
cordement. Le retrait des cordons de soudure crée, pour
les pidces composées, des efforts encore plus grands. Ces
tensions sonl négligées sans hésitations dans les vérifi-
cations de contraintes, et Pexpérience a montré que
¢'était justifié pour les ¢éléments soumis a des efforts de
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dité d’une poutre en béton armé sur la répar-
tition des moments {léchissants.

traction ou de flexion. Pour les éléments comprimés on
constate cependant que ces tensions influencent la
charge critique de facon appréciable, dans le domaine
de transition entre le flambage élastique et 1'écoule-
ment plastique. Ce point a été étudié tout récemment
de facon expérimentale et théorique (voir références [4]
et [5]).

Ces deux derniers exemples montrent que les tensions
calculées ne sont généralement que des valeurs nomi-
nales, souvent différentes des valeurs réelles, et que
I'expérience prouve que, dans la plupart des cas, cette
maniére de faire ne comporte pas d’inconvénients. On
comprend alors le besoin de pouvoir disposer d’une
méthode pouvant expliquer ces phénomeénes de facon
simple et logique.

Dans la pratique, les cas ou les hypotheses de la
théorie de I'¢lasticité sont violées, de fagon plus ou
moins grave, sont plus nombreux qu’on ne le pense

& Fig. 4.

Diagramme des

tensions résiduelles d’une
poutrelle laminée et d’un
pilier composé soudé.
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Fig. 5. — Diagrammes d’allongement de différents aciers.

généralement. Par exemple, les valeurs des tensions
moyennes admissibles pour les assemblages rivés, bou-
lonnés ou soudés, sont dérivés d’essais a la rupture.
Sous les conditions normales de service déja, il peut se
produire des contraintes locales dépassant la limite
élastique. Il faut aussi mentionner le calcul des dalles
comprenant des irrégularités dans les conditions aux
appuis, ainsi que des ouvertures. Il est aisé de soutenir
que rares sont les cas ou de telles dalles sont calculables
par la théorie de I’élasticité. Dans le calcul des poutres
triangulées, on néglige les tensions secondaires causées
par les déformations de 'ouvrage. Dans tous les cas ol
la théorie de I'élasticité ne fournit pas de solution, ou
une solution démesurément compliquée, on fait appel
aux qualités d’adaptation du matériau. En se basant
sur le fait que tous les matériaux de construction ont
une certaine ductilité, on admet avec raison que les
tensions extrémes sont réduites par déformation plas-
tique. Or c’est précisément le but de la théorie de la
plasticité 2 que d’introduire dans les calculs ces qualités
d’adaptation des matériaux et non pas de s’en servir
seulement comme d’un expédient.

3. Résistance a la flexion de poutres d’acier et de
béton armé

Nous allons maintenant étudier U'influence des défor-
mations plastiques sur la résistance et sur la déforma-
tion des poutres. Dans la figure 5, nous avons repré-
senté a la méme échelle les diagrammes d’allongement
des aciers suivants :

) acier doux, dit Acier 37 ;

) acier naturel dur, a haute résistance, dit Acier 52;
3) acier d’armature étiré a froid ;

) acier spécial américain, dit USS T-1;

) fil étiré et breveté pour précontrainte.

Il est important de noter que tous ces diagrammes
présentent un palier d’écoulement trés marqué (sur la

figure les allongements ne sont portés que jusqu’a 2 9).
Les aciers 1) et 2) ont une limite élastique op trés nette,
puis un palier d’é¢coulement marqué pour lequel I'allon-
gemenl € sous lension constante (soit donc entre la
limite élastique — allongement gz — et la zone d’écrouis-
sage — allongement gy) est d’environ dix & quinze fois
I'allongement élastique ez, Dans la zone d’écrouissage,

2 Théorie considérant le comportement plastique des matériaux
(en anglais : « Plastic Design» ; en allemand : « plastische Methode »).
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Fig. 6. — Diagramme d’allongement pour le béton.

la tension augmente & nouveau mails avec une pente
dont la tangente au départ Ey = do/de est d’environ
trente fois plus faible que le module d’élasticité [,
Finalement la limite de rupture Pz est atteinte pour un
allongement d’environ 25 9%, mesuré sur une longueur
de cinq fois le diamétre de Iéprouvette.

Dans le calcul plastique, on ne considére genéralement
que le palier d’écoulement, et l'on néglice la zone
d’écrouissage pour les raisons suivantes :

1. Les déformations atteintes au moment de 1’écrouis-
sage sont déja relativement grandes.

2. Les caractéristiques des sections usuelles des fers pro-
filés (en particulier le rapport de la largeur de l'aile
et son épaisseur, et de la hauteur de l’ame a son
épaisseur) sont telles qu’il n’est pas possible d’atteindre
les contraintes auxquelles 1'écrouissage se produirait
sans que des instabilités locales n’apparaissent (voile-
ment ou déversement) (voir références [5] et [6]).

3. Pour les sections de béton armé, il se produit géné-
ralement un écrasement du béton avant que I'arma-
ture ait atteint la zone d’écrouissage.

Par contre, il est souvent nécessaire de faire appel a
ces contraintes d’écrouissage dans linterprétation de
certains résultats d’essais.

Le béton comprimé se déforme de fagon plastique
selon les diagrammes de la figure 6. Les deux courbes
pour des bétons de p = 200 kg/cm? et p = 320 kg/cm?®
ont été obtenues, par essais de courte durée, de fagon a
ne pas étre influencées par le retrait et le fluage. L’ac-
courcissement maximum & la rupture est d’environ
3/.000 POUr une charge excentrée et d’environ %/;59, seu-
lement pour une charge axiale.

Il faut maintenant examiner la résistance a la flexion
d’une poutrelle métallique en I et d’une poutre en

(3) simplifié

(2) sans tensions résiduelles
(1) avec tensions résiduelles

M/Mp — (3) Vereinfacht
(2) Ohne Eigenspannungen
(1) Mit Eigenspannungen
1,0 4 o
M/M 7 A |
£ r:_ s h
N [\
Fldche k, R
/ \l
1 \
T
J \
I‘ IT—i
0,2 f; ¢9=MP/EI
o=
0 T - T T T T r T
0 2 10 ~15 %
b
Fig. 8 — Relation entre le moment fléchissant et la cour-

bure. (Section I — représentation en valeurs relatives.)

Fliche k, = Surface k,
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Mp= WG %

Fig. 7. — Moment plastique d’un profilé I.

béton armé. Pour cela, nous admettons les deux hypo-
théses sulvantes :
1. Les déformations sont proportionnelles a la distance
a ’axe neutre (hypothése de Navier-Bernoulli).
2. La relation entre tensions et allongements est celle

donnée, pour le cas d’une charge axiale, par les
figures 5 et 6.

Pour un profilé sans tensions résiduelles, un moment
de flexion n’engendrera d’écoulement qu’au moment ol
la tension de la fibre extréme atteindra la valeur
limite oy (fig. 7). L’allongement correspondant de la
fibre extréme sera ez et la courbure correspondante
(soit I'angle de rotation pour l'unité de longueur) ®p.
Si la sollicitation augmente encore, l'allongement des
fibres extrémes augmentera, avec la courbure, mais la
tension oy par contre restera constante et se propagera
vers 'axe neutre. Dans le cas limite la majeure partie
de la section de la piéce sera en état d’écoulement,
aussi bien en traction qu’en compression. En effet, la
tension d’écrouissage n’est atteinte que pour une
déformation d’environ quinze fois celle de la limite
élastique (ey =2 15ep). Le moment résultant de la
plastification compléte de la section est nommé moment
plastique et vaut donc

(1) M, = (Wop = fMp = Zor

W = module de résistance ;

{ = coellicient de forme ;

or = tension d’écoulement ;

Z = moment résistant plastique.

Le coeflicient de forme f ne dépend que de la forme
de la section et détermine directement le rapport M,/ M p.
Dans le tableau (1) nous avons donné les valeurs de ce
coeflicient pour quelques sections usuelles.

La figure 8 indique la relation entre le moment M
et la courbure ® pour une section en I, en valeurs rela-
tives. Les moments M ont été divisés par la valeur du
moment plastique M, et les courbures ® par la courbure
®, = M,/EI. L’avantage de cette représentation en

. . - . S i 9
. Section Section péotlon Section Parallélo-
Coupe .| rectangulaire .
en I tubulaire ronde gramme
en |
Rechteck, Parallelo-
Querschnitt © | I-Profil Rohr I-Profil Kreis gramm

_I - ,@,_ -

Formfaktor f : 113 127 150 1,70 2,00

Coeflicient
de forme
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Fig. 9. — Moment plastique pour une

section en béton armé.

valeurs relatives est évident, car cette derniére est
valable pour n’importe quelle section en I et pour toutes
les tensions d’écoulement. Il est important de remar-
quer I'incurvation de la courbe tenant compte des ten-
sions résiduelles dans la zone ou ®/®, = 1. Le compor-
tement non élastique intervient lorsque la somme des
tensions provenant des charges et des tensions rési-
duelles atteint la tension d’écoulement. Le moment
correspondant est indiqué dans la figure comme M.
Le moment plastique aprés avoir atteint la zone
d’écrouissage Oy =~ 15 ®, n’augmente plus que légére-
ment avec une pente environ trente fois plus faible que
dans le domaine élastique. Les paramétres k, et k, ont
été reportés sur cette figure et sont utilisés ci-dessous.
ky est égal a I'aire de la partie hachurée de la figure et
indique le degré d’incurvation de la courbe M — @ due
aux tensions résiduelles. %, est Uordonnée du centre de
gravité de cette surface. Leurs valeurs moyennes sont
ky =1/5 et ky = 9/10.

Le comportement d’une section de béton armé est
représenté a la figure 9.
Pacier dépasse la limite élastique o, la tension reste
constante et égale a cette valeur. En méme temps, il y

Lorsque la sollicitation de

a déplacement de I'axe neutre vers la fibre comprimée
et la répartition des tensions du béton ne reste pas
linéaire. A I'état limite, il se crée une répartition qui
est presque rectangulalre. Une série récente de 1600
essais de rupture (voir référence [7]) a confirmé, une fois
de plus, que cette représentation donnait des résultats
tout a fait suflisants. En partant des conditions d’équi-

libre, on peut obtenir la valeur du « moment plas-

tique » 3, soil

(2) My = wbhtor (1 -

I
0,51 }
1 1 Verbundtrdger  [EMPA -Bericht 149, Abb.53 ]
; 2 Rechteck [EMPA -Bericht 162,Abb. 238]
! 3 Plattenbalken [EMPA -Bericht 162, Abb, 290]
5 ; ' 4 Vorges'p. Balken [EMPA,r'ucM verdffentiicht ] ) 8/8"
0 1 2 3 4 5

Fig. 10. — Relation entre la charge et les fleches de diffé-
rentes poulres (Il'])!lhl'l”.lll()]l en valeurs relatives).

I Poutre mixte (acier-béton) Rap. LFEM 149, fig. 53
2 Poutre rectangulaire (béton armé) Rap. LFEM 162, fig. 238
3 Poutre en T (béton armé) Rap. LFEM H;_, fig. 290
4 Poulre précontrainte Rap. LFEM non publié

Pour ce cas aussi, la relation entre la courbure et le
moment est tres semblable a celle d’un profilé (voir
fig. 8).
tions en béton armé des rotules plastiques, sauf lors-
qu'une armature surabondante conduit & un écrase-

Il se forme donc également dans les construc-

ment prématuré du béton.

A la figure 10, nous trouvons les diagrammes relatifs
des fleches pour différents essais. Dans ces diagrammes,
la charge P a été divisée par la charge de rupture Py
et les fleches & ont été divisées par la fleche conven-
tionnelle &". Cette fleche conventionnelle est obtenue en
prolongeant la tangente a l'origine avec I’horizontale
par Puay, comme indiqué sur la figure. L’avantage de
cette représentation consiste de nouveau dans la possi-
bilité de comparer entre eux les résultats de différents
essais. La figure nous montre que la charge s’approche
asymptotiquement de la charge maximum. La grande
capacité de déformation avant la rupture est bien
apparente, ce qui indique de facon indirecte la constitu-
tion progressive d'une articulation plastique.

Finalement, il nous faut encore insister sur la parti-
cularité qu’offre le cas d’une charge concentrée. Dans
la figure 11 nous admettons que la charge a déja atteint
la valeur P > P, desorte que le moment correspondant
M, au milieu de la travée est plus grand que le moment
plastique M. Afin de pouvoir calculer les fleches par
I'analogie de Mohr,
gramme des moments les courbures correspondantes
qui peuvent étre relevées sur un graphique analogue a

nous avons reporté sous le dia-

celui de la figure 8. Introduisons maintenant les rela-
tions sulvantes

= My /M, > 1
O, = M,/EI
O, = o,
(Mp — Myp)|E 1 = (p—1)D,E/E,

# Cette équation (2), connue sous le nom d’« Equation du LFEM »,
a été introduite par G. v. Kazinczy a la page 1169 et par M. Ros a
la page 1179 de la référence [8]. F. Stissi a donné dans la référence [9]
une représentation trés générale de la flexion non élastique.

gy
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Fig. 11. Variation de la courbure dans
le cas d'une poutre simple avee une charge
concentrée,

Kriitmmung = courbure
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Fig. 12. — Diagramme des fléches en fonction des charges

pour une charge concentrée agissant sur une poutre simple
(représentation en valeurs relatives).

Gleichung (6) = équation (6) Gleichung (5) = équation (5)
Versuch [6] Abb. 5. &4 = essai [6] Fig. 5. &

E, = module d’écrouissage (tangente au point
de redressement de la courbe)

ky = surface hachurée du diagramme M — O
(voir fig. 8)

ky = ordonnée du centre de gravité de k.

! M, I
=3 M. 2

l l
b:g—_a:_ﬂa(p_i)

Ces grandeurs sont également données par la figure 11.
La courbure dans la zone d’écrouissage a été approchée
par la relation (M, — M,)/E,I. Comme la courbe de
® de la figure 11 est semblable a celle de la figure 8,
nous avons une valeur pour cette surface de k;a®, et
une distance du centre de gravité de cette méme surface
a appul de droite de kya. La fleche & au milieu de la
poutre s’obtient de fagon plus simple, si 'on considére
la poutre comme encastrée en son milieu, avec la tan-
gente horizontale. Nous obtenons alors le déplacement
de 'appui par I'analogie de Mohr en prenant le moment
statique de la surface du diagramme de la courbure
par rapport a lappui. Dans le cas en question P > P,
nous obtenons :

2 b
(3) &8=0, %l—; a—+®D,b ((l-+ -;) 4+

‘11"1 = A"llp b 2
+ T EL D (a + 3 b) + kya®plkqa

Le dernier membre représente la contribution de la
surface hachurée du diagramme, et son importance
dépend de la grandeur des tensions résiduclles. Par
simplification et en utilisant la relation :

Pyl M, 2
4) = =P TP
() = I8EI ~ 12EI
Iéquation (3) comme fonction de P = M, /M, > 1
devient
- 1 3
() 5/57):62 Y=t 20‘([52—1)‘}-
1E - ,
+ ZE(B —1) (2B* — P —1) + 3k ky

La courbe correspondante a été tracée dans la

figure 12 pour les valeurs suivantes :
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Fig. 13.

Relation entre le
L moment fléchis-
sant et la cour-
bure (représenta-
tion en valeurs
relatives).

-MpSM < Mp

a=0,/b, =12 b =15

E/E, =30 ky = 9/10

Mg/M, =1)2
Ces valeurs sont applicables par approximation a un
profilé en I pour un acier 37 (ou un acier américain
ASTM A7). De facon générale, la courbe des déforma-
tions est raide et rectiligne dans le domaine élastique et
beaucoup plus aplatie dans la zone de I'écrouissage.
Dans la partie du diagramme ou le moment s’approche
de la valeur M = M,, la transition se fait par une
incurvation qui dépend de la grandeur et de la réparti-
tion des tensions résiduelles dans la section. L’équa-
tion (5) est compliquée, et, comme pour B > 1, elle
donne approximativement une droite, on peut la déter-
miner de facon approchée.

En introduisant les valeurs données ci-dessus, nous

avons

E \
6 8Fp=1+¢ (B—1)

qui donne de bons résultats, comme on peut s’en rendre
compte & la figure 12. Dans cette méme figure, nous
avons reporté le résultat d’un essai (voir la référence (6)
figure 5-4, page 24) sur un profilé américain de 35 cm
de haut (14 WF 38). Au début de I’essai, il y a une
bonne corrélation avec les valeurs théoriques, mais a
partir de §/8, = 6, la charge commence a diminuer lente-
ment a la suite du déversement latéral de la poutre.

Il a été montré, aussi bien de facon théorique que
par des essals, que dans le cas d'une charge concentrée,
la charge P peut dépasser la charge de rupture P,
calculée, cependant ce dépassement est faible et accom-
pagné de grandes déformations. De plus, ce dépassement
est limité par le déversement latéral de la poutre ou
par le voilement local de I'aile comprimée. Ne pouvant
donc pas intervenir dans la réalité, il sera toujours
négligé dans les calculs pratiques (voir fig. 17 a 20). 11
ne faut donc faire intervenir I'écrouissage que pour

" expliquer les résultats d’essais avec charges concentrées,

surtout s’il s'agit de poutres compactes et courtes (voir
fig. 21).

4. La méthode de calcul plastique

Apres cette bréve deseription du comportement plas-
tique des éléments fléchis, et en particulier de la relation
entre les moments fléchissants et la courbure, nous
allons maintenant décrire la méthode de caleul plastique
a laide de quelques exemples simples.

Dans le cas d’éléments fléchis, 1l faut utiliser quatre
hypothéses qui sont :

1. La relation entre le moment fléchissant et la courbure
est celle donnée aux figures 13 et 8, c'est-a-dire que
la courbure s’approche asymptotiquement du moment
plastique M. En pratique il suffit d’avoir atteint
O /D, = 4, pour obtenir la redistribution complete des
moments.,




Fig. 14.
Mécanisme et
charge de rupture
d'une poutre sur

Mp quatre appuis,
avec charge
B 8Mp concentrée.
P~ 1

Prinzip der virt. Ar-
=) beit = Principe des
ol l PP travaux virtuels

Prinzip der virt. Arbeit : A+ Aj=0

Py BL=Mp(F+29+9)

8M
Po= —T°

2. Les déformations de la construction sont faibles par
rapport a ses dimensions. Il s’ensuit que l'on peut
conserver les conditions d’équilibre du systéme primi-
tif, et se borner a un calcul du premier ordre, comme
on le ferait normalement en statique élastique.

3. La mise en charge est progressive, c’est-a-dire que les
charges augmentent de facon proportionnelle jusqu’a
la charge limite Pp.

4. L’influence des efforts normaux et du cisaillement est
négligée. Est exclue également toute défaillance pré-
maturée par flambage, déversement ou voilement.

Ces deux derniéres hypothéses, qui dans certains cas
pourraient &tre par trop limitatives, peuvent étre
éliminées. Il est possible de tenir compte des efforts
normaux et des efforts tranchants, et d’éviter par des
dispositifs constructifs les instabilités locales. L’établis-
sement des points ci-dessus était essentiel pour pouvoir
utiliser pratiquement la théorie du calcul plastique des
constructions. (Voir la référence [6] pour une descrip-
tion compléte «dans le domaine de la charpente métal-
lique.)

A Taide de ces hypothéses, il est possible maintenant
de calculer différents types de construction d’une facon
trés simple,

Exemple 1 :

Soit une poutre continue sur 4 appuis (fig. 14) avec
une résistance a la flexion plastique constante et égale
a& Mp. Avec la charge concentrée P, on obtient, dans la
phase élastique, les deux moments sur appuis M, et M,,
et le moment en travée M, dans un rapport bien déter-
miné. En augmentant la charge, le moment M, va
passer successivement par la valeur My (dépassement
de la limite d’¢lasticité causé par la charge et les ten-
sions résiduelles), puis par le moment d’écoulement
Mp = Wop, pour atteindre finalement la valeur du
moment plastique M, = [Wop. Il se constitue done
progressivement une articulation par plastification de
la section, de telle facon que les moments sur appuis
vont étre appelés & transmettre une p]us grande partie
de la charge (redistribution des moments). Finalement,
on en arrive au point ol les deux moments sur appuis
M, et My atteignent aussi la valeur du moment plas-

tique M,. D’apres la théorie simplifiée du calcul plas-
tique des constructions (c’est-d-dire en négligeant
Iécrouissage), 1l n’est alors plus possible d’augmenter
la charge. On obtient ainsi la valeur théorique de la
charge de rupture tout simplement par des conditions
d’équilibre (voir la fig. 14). Le moment de la poutre
simple M = P,l/4 est partagé par moitié¢ entre les
appuis et la travée.

Pyljh = M, + M,
(7) P, =8 M,/

A coté de cette méthode intuitive qui utilise les
conditions d’équilibre, il en existe une autre dite
« Méthode du Mécanisme » qui se préte particuliérement
au calcul des structures compliquées. Pour illustrer cette
méthode, reprenons la situation & I'instant de la forma-
tion des articulations aux points 2, 3 et 4. Au point de
vue théorique 'on constate que la poutre peut main-
tenant se déformer sans augmentation de la charge.
En d’autres termes, nous avons maintenant un méca-
nisme avec un degré de liberté. L’équilibre de ce sys-
téme peut s’exprimer de facon simple avec le Principe
des Travaux Virtuels. Ce principe énonce que le travail
pour un déplacement virtuel d'un systéme en équilibre
doit s’annuler. On peut donc choisir les déplacements
de telle facon que le travail des forces intérieures ne
soit effectif qu'aux emplacements ou se sont formées
les rotules plastiques. Comme en ces points on connait
la valeur des moments fléchissants, on peut obtenir de
fagon trés simple la charge de rupture P,. Les déplace-
ments virtuels ont été représentés a la figure 14 par des
lignes pointillées, et 'on obtient des rotations § aux
points 2 et 4, et 26 au point 3. Le déplacement de la
charge P, est 81/2, de sorte que le travail des forces
intérieures est

(8) Aj=—8M,—20M,—0M,

rotules : (2) (3) (4)

Le signe négatif du second membre de I'équation (8)
provient de ce que le sens de la rotation est opposé a
celut du moment M,. Le travail extérieur est fourni
par la charge P, sur le déplacement 61/2, soit

9) Aq = P,01)2

D’apres le Principe des travaux virtuels nous avons :
(10) Ay = —A4;
solt P,01]2 = 46 M,

et finalement
(11) Pp = 8M,/l

Lorsque ce principe est appliqué sous la forme de
I'équation (10) et que le travail intérieur est effectué
seulement aux articulations plastiques, le second mem-
bre de I'équation a toujours une valeur positive.

Le résultat de Uéquation (11) confirme la valeur déja
établie pour la charge de rupture P,. On peut encore
constater que celle-ci ne dépend pas de la grandeur des
travées latérales /il et que seule la grandeur de la fleche
en est fonction. Nous reviendrons sur ce point plus tard
en discutant le résultat des essais.

Pour résumer, nous constatons qu'une solution par
la théorie de la plasticité doit satisfaire & trois condi-

Lrons :
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Fig. 15. — Mécanisme et diagramme des

moments pour un cadre rectangulaire.

1. Condition d’équilibre.

2. Condition de plasticité : le moment de flexion ne
peut dépasser le moment résistant plastique en
aucune section.

(12) |M| £ M,

3. Condition de mécanisme : un nombre sullisant
d’articulations plastiques doivent se former de
telle fagcon que la construction (ou une partie de
la construction) constitue un mécanisme.

Au début, 1l a été admis qu’il fallait (n 4 1) rotules
plastiques pour obtenir la charge de rupture d’un sys-
teme hyperstatique d’ordre n. Il est facile de voir dans
I’exemple que nous venons de traiter que le fait d’ajou-
ter des travées supplémentaires a droite et 4 gauche ne
change rien au probléme et que la charge de rupture
n’en est pas modifice. Il est donc parfaitement possible
qu’il ne se développe qu’un mécanisme local.

Exemple 2

Soit le cadre de la figure 15, dont les montants ont un
moment résistant M, et la travée supérieure, le moment
résistant 3 M,. Admeltons que les charges appliquées
selon la figure créent le mécanisme illustré en (15 b),
avec des rotules plastiques aux points 1, 3, 5 et 6. Pour
la détermination de la charge de rupture, on introduit
le déplacement virtuel fixé par le parameétre 8. Les
rotations et les déplacements correspondants sont indi-
qués sur la figure et permettent de calculer le travail
intérieur et le travail extérieur,

."1(, = — ;1[

1 1 1
(13) 5 Pp8l+ Pp8l+ Pps8l+ 5 P8l =

charges  (2) (3) (4) (5)

3 3
= M8 +3My5 0 + M50+ M, 0

articulations (1) (3) (5) (6)
[ou :

16 M
(]/l) ,)I‘ . _T) /7’

56

=
Al ”i,
~ 4
N
mp @ pA 2
S p ‘
T .
i | Fig. 16.
@ i @ | Mécanisme d’une dalle
u mp mp H[ (1-m)a uniformément chargée.
1’ |
\ |
__________ || Se—
C‘ - | JD
(1-¢)a ¢a

Le diagramme des moments fléchissants peut se des-
siner facilement, puisque le systéme est devenu isosta-
tique grace aux rotules plastiques. Comme on peut le
voir sur la figure 15 ¢, tous les moments sont égaux ou
plus petits que le moment plastique. La condition de
plasticité est donc remplie. Comme de plus, les condi-
tions d’équilibre et de mécanisme sont également rem-
plies, la solution admise représente la solution réelle. Si
I’on commence par admettre une rotule plastique a la
section 4 au lieu de la section 3, le calcul donne une plus
grande valeur pour la charge de rupture. Le controle des
moments fléchissants montre cependant que pour la
section 3 la valeur du moment dépasse 3 M), et que
donc le mécanisme correspondant ne remplit pas la
condition de plasticité. Cette remarque peut étre
exprimée de facon tout a fait générale sous la forme
des « Théorémes de I’Analyse Limite ». Il n’est malheu-
reusement pas possible d’en parler dans le cadre de cet
article. (Voir références [10] et [6], p. 6.)

Exemple 3

Pour terminer, nous allons encore appliquer cette
méthode au caleul dune dalle. Soit une dalle carrée
(voir fig. 16), encastrée sur le coté AC, avec des appuis
simples le long de AB et BD et libre sur CD. La valeur
du moment plastique est unitaire sur toute la dalle et
égale & m,, (m kg/m). La charge uniformément répartie ¢
va créer, au moment de la rupture, des rotules linéaires
(voir fig. 16). Il a été démontré que ces lignes, appelées
souvent lignes de rupture, doivent étre rectilignes et
satisfaire 4 certaines conditions cinématiques (voir
véf. [11]). La position de ces lignes est fixée par les
paramétres € et m. On peut maintenant considérer les
trois conditions d’équilibre pour chaque partie de la
dalle. Pour la partie 1, en prenant AC comme axe de
référence, on peut éliminer la réaction d’appui lorsque
la condition d’équilibre des moments est satisfaite.
[apport du moment plastique le long de AC est mya,
le long de la ligne entre 1 et 2 il est myna (si 'on consi-
dére la projection sur I'axe AC) et le long de la ligne
entre 1 et 3 cet apport est m, (1 —mn)a. On obtient
ainsi, avec le moment di & la charge agissanl sur la
surface 1:

(15)  my, ‘u +na+ (1 —n)a

— 0

| 1
4/],‘15(1 -€)2 a® 3 (1—¢&?*na®

De facon analogue, on obtient les conditions d’équi-
> Lol
libre des moments pour les parties:2 (avee laxe de réfé-
rence AB) et 3 (avee 'axe de référence BD) -
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Ce systéme de trois équations avec les trois inconnues
€ n et g, se laisse facilement résoudre et 1’on obtient
la valeur de la charge de rupture :

(18) qp = 18,7 m, Ja®

Le but de ces trois exemples était de démontrer la
simplicité d’utilisation du calcul plastique. Il est bien
entendu qu’une étude préliminaire des bases de la
méthode est indispensable & sa bonne compréhension et
a son application judicieuse. Cette méthode est main-
tenant solidement fondée et différents procédés ont été
étudiés de fagon complete. (Voir la référence [6] pour
une bibliographie compléte.) Par les exemples traités,
nous avons pu voir que la méthode donne, grice a sa
simplicité, une image bien claire du comportement réel
des constructions. Si 'on veut démontrer la validité de
cette méthode, 1l faut en comparer les résultats avec
des résultats d’essais et avec des observations sur des
constructions existantes.

5. Résultats des essais

Depuis longtemps, mais plus particuliérement depuis
quelques années, des essais systématiques relatifs &
cette méthode ont été faits, surtout dans le domaine de
la construction métallique (voir réf. [6], p. 21). Le but
de cette expérimentation était également de pouvoir
estimer l'influence de facteurs secondaires tels que :
Iinfluence de I'effort normal et de effort tranchant, du
voilement local, du déversement latéral et du compor-
tement des assemblages. Nous donnons ci-dessous les
résultats les plus importants qui ont été établis. La
figure 17 donne la fleche & en fonction de la charge
croissante pour un cadre en acier qui fut chargé jusqu’a
la rupture lors d'un congrés & 1'Université Lehigh a
Bethlehem (Pa.), USA. Les écarts au début du charge-
ment entre les valeurs calculées et celles mesurées lors
de I'expérience peuvent s’expliquer par 'imperfection
de I'encastrement des montants, et par les tensions
résiduclles dues & la soudure. Ces deux points sont
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Fig. 18. — Comparaison entre les résultats d’essais et les
résultats calculés. — Poutres en I continues.

cependant sans effet sur la charge de rupture. La charge
maximum supportée par le cadre est un peu plus grande
que la valeur calculée pour la charge de rupture P,. La
déformation que ce cadre a supportée est remarquable.
Sur le diagramme nous avons encore reporté la charge
Pp, a laquelle selon le calcul de la théorie de 1'élasticité
(et en négligeant les tensions résiduelles), I’écoulement
de la fibre la plus sollicitée aurait commencé. Le rap-
port Pp/1,65 représente la charge « élastique » admis-
sible selon les normes de '« American Institute of Steel
Construction ». Si par contre 'on applique le calcul plas-
tique, le coeflicient de sécurité par rapport a la charge
de rupture doit étre de 1,85. Ceci repose sur la condi-
tion qu'une construction hyperstatique doit avoir la
méme sécurité par rapport a la charge de rupture
qu’une construction isostatiqua. Comme dans les syste-
mes statiquement déterminés, les moments fléchissants
sont indépendants de la déformation, ils restent propor-
tionnels a la charge aussi dans le domaine non élastique.
Nous avons done I'expression de la charge admissible :

I)ad — (,‘-J'Imz = Cw‘]F/SE
de la charge a la limite d’élasticité :
Pr=C-Myp
et de la charge de rupture :
P,=C-M,=C-f Mp
avec  C = constante de proportionnalité
sp = coellicient de sécurité élastique
[ =2 1,13 facteur de forme moyen pour les pro-
filés en I
Le coeflicient de sécurité a la rupture devient done :
. 12
(19) = p_ = f.sg = 1,13 X 1,65 221,85

ad

(voir réf. [6], p. 18).
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Nachversuch = essai complémentaire

Ce méme facteur de sécurité est exigé aussi pour les
constructions hyperstatiques, lorsque, par formation de
rotules plastiques, il se crée une répartition favorable
des moments. La différence entre P,/1,85 et Pp/1,65
dans la figure 17 donne une idée de la grandeur de
I'influence de cette redistribution des moments,

La figure 18 donne des résultats d’essais sur poutrelles
en acier?, La disposition de ces graphiques est ainsi
faite, que la charge de rupture Ppg,, atteinte lors de
I'essai, apparait en pourcents de la charge de rupture
théorique P,. De plus la charge correspondant a la
limite élastique conventionnelle Pp calculée selon la
théorie de D'élasticité (en négligeant les tensions rési-
duelles) est également reportée. De cette fagon, la partie
pleine du trait illustre la réserve de résistance qui peut
étre mobilisée par la déformation plastique et la répar-
tition des moments qui en résulte. Il est évident que
cette réserve n’est pas un pourcentage constant de la
charge limite élastique Ppou de la charge de rupture Pp.
[essai (i) est spécialement intéressant (voir réf, [12]),
car, par suite d’un abaissement des appuis, le moment
plastique était déja atteint a lappul central avant
méme Papplication des charges.

Les résultats d’autres essais sur des cadres sont
donnés aux figures 19 et 20, en utilisant la méme dispo-
sition. in général tous ces résultats d’essais corres-
pondent bien avec les valeurs calculées. Ils sont méme en
moyenne un peu en dessus, ce qui n’est pas pour nous
¢tonner puisque la zone d’éerowissage de l'acier a été
négligée dans le calcul.

Cette influence de la zone d’écrouissage est particu-

liecrement apparente dans les essais fails avec une
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Nachversuch = essai complémentaire

charge concentrée. Dans la figure 21 nous avons repré-
senté les essais de I. Stiissi et C. F. Kolbrunner (réf. [13])
et F. Stiisst (réf. [14]) ® qui ont été faits avec une charge
concentrée. Comme ces essais ont été répétés plusieurs
fois, différents résultats ont été indiqués par de petits
triangles. On peut voir que pour les essals sur poutre
simple (essais a et f), la charge maximum P, était
d’environ 30 9%, plus grande que la charge de rupture P,
calculée. Ce résultat pouvait étre escompté et peut étre
démontré rigoureusement par un calcul tenant compte
de la zone d’écrouissage (voir fig. 12). Dans les essais
sur poutres continues avec quatre appuis, on observe
que la charge maximum P,,, se rapproche de plus en
plus de la charge calculée P,, & mesure que la grandeur
des portées latérales augmente. Méme dans le cas
extréme, quand les travées latérales ont une portée
triple de la travée centrale (essais e et 1) la charge de
rupture théorique, basée sur une redistribution com-
plete des moments, est atteinte par la charge maximum
d’essai. On peut penser que dans ces cas, la rupture a

* Les résultats illustrés dans les figures 18, 19 et 20 sont pris dans
la référence [6]. Cette publication indique toutes les sources.

® La publication [14] ne contient pas d’indications sur les tensions
d’écoulement du matériau. Nous avons done utilisé la valeur o5 de
la publication [13).
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Fig. 21. — Comparaison entre les résultats d’essais et les

résultats calculés — Poutres en I continues, sous une

charge concentrée.

eu lieu par voilement de I’aile comprimée sous la charge
concentrée, et par déversement latéral de la longue
travée extérieure, avant que linfluence de la zone
d’écrouissage puisse se faire sentir.

IEn relation avec ces essais, 1l convient encore de faire
une remarque au sujet des déformations. Dans la
figure 22, nous donnons en valeurs relatives les fleches
sous les charges P. Le calcul de ces fleches a été fait a
l'aide d’une hypothése simplificatrice qui n’a pas d’in-
fluence notable : la relation admise entre le moment de
flexion M et la courbure @ est celle de la courbe 3 de
la figure 8, en négligeant la zone d’écrouissage. Ces
catactéristiques de courbure seraient applicables a des
poutrelles en I, pour lesquelles 'importance de I'dme
est négligeable et qui n’auraient pas de tensions rési-
duelles. Prenons par exemple la courbe pour le cas o
l, = 21, dans la figure 22. Au début, le comportement
de la poutre est élastique. Pour P = 0,636 P, le moment
en travée atteint Mp = M,. Maintenant, seuls les
moments sur appuis croissent avec 'augmentation de
la charge, de telle fagon que la fleche augmente beau-
coup plus rapidement. La charge de rupture est atteinte
avec une fleche de & = 9 Ml2/24 EI. Comme on néglige
I'influence de la zone d’écrouissage, la fleche peut
augmenter librement. Malgré T'hypothése simplifica-
trice, le processus que nous venons de décrire a été
démontré par un essai (voir réf. [13], fig. 14). Les diffé.
rentes courbes de la figure 22 permettent de comparer
les fleches de poutres sur quatre appuis depuis le cas o
les portées latérales ont une longueur I, = 0, ¢’est-a-dire
pour un encastrement complet de la portée centrale,

P/Po

1,=0 =1, =21 =3
104 1 17 1520 1=3L

(W

0,51 { (L P

———Gerber-T : |;=3l,
o000 Versuch[3]: =2,

. . . . . . §_2LEI
o 2 4 6 8 10 12 Mp G
Fig. 22. — Diagramme des fleches en fonction des

charges pour une poutre continue sur quatre appuis.

Gerber-T = poutre Gerber  Versuch [13] = essai réf. [13]

jusqu’au cas ou l; = oo, c’est-a-dire pour des portées
latérales de longueur infinie. La fleche de la travée
centrale, sous la charge de rupture, est d’autant plus
grande que les travées latérales sont plus longues. Dans
le cas ou l; = 3l,, nous devrions donc avoir théorique-
ment une fleche infinie, ce qui n’arrivera évidemment
pas dans la réalité puisque en plus des charges, les
déformations doivent aussi étre contrélées. De plus, il
est rare que, dans la pratique, la portée d’une travée
dépasse le triple de la portée de la travée voisine.

Pour permettre d’autres comparaisons, nous donnons
encore les courbes relatives a une poutre Gerber avec
l, = 3l, (fig. 22) et les articulations dans la travée
médiane. La position de ces articulations est choisie de
telle fagon que déja dans la phase élastique 1l y ait
égalité entre les moments en travée et les moments
sur appuis. On constate que cette poutre présente une
fleche élastique qui est deux & trois fois plus impor-
tante que pour la poutre correspondante sans articula-
tions. Elle est donc beaucoup moins rigide et cette
constatation est trés générale: un systéme hypersta-
tique qui est rendu statiquement déterminé par inter-
position d’articulations placées de fagon qu’il y ait déja
dans le domaine élastique une égalisation des moments,
subira généralement de plus grandes déformations que
le systéme original.

La figure 22 montre encore la charge P,/1,85 qui
représente la charge admissible, avec un facteur de
séeurité de 1,85 a la rupture. On peut constater que
dans ces conditions, méme pour le cas extréme ou
l; = 3ly, la limite élastique conventionnelle n’est pas
atteinte, et que le systéme reste donc entiérement
élastique. Ce résultat peut également étre généralisé :
le comportement d’une construction sous la charge
admissible P,/1,85 reste ¢lastique. Les exceptions a
cette reégle seront généralement écartées, dans la pra-
tique, soit, parce que I'on doit limiter les déformations,
soit pour des impératifs économiques. Un argument qui
est souvent employé contre le calcul plastique est que
cette méthode conduit a de grandes déformations et a
un comportement plastique des constructions déja sous
les charges de service. Un coup d’eeil & 'exemple de la
figure 22 montre que ceci n’est pas le cas.

De la méme facon les essais mentionnés dans les
références [13] et [14] et reportés dans la figure 21,
démontrent  également Dapplicabilité et le  degré
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Fig. 23. — Vue du pont d’Opfikon avant les essais.

d’exactitude de cette méthode. Dans les publications
[13] et [14], les résultats des essals ne sont pas comparés
avec la charge de rupture théorique P,. De plus, les
expérimentateurs sont partis de I’hypothése que la
poutre continue devait porter une charge double de
celle de la poutre simple. Il n’a pas été possible de faire
la preuve de cette hypothése pour la raison suivante :
les essais sur les poutres simples avec une charge
concentrée agissant sur une section compacte, ont été
influencés par 'écrouissage et ont donné des charges de
rupture d’environ 30 9, plus grandes que celles éta-
blies par le calcul. Mais si 'on procéde a la comparaison
sur la base des charges de rupture théorique, on cons-
tate que les résultats des essals sont toujours supé-
rieurs. D’autre part, des essais récents faits avee de
grosses sections et des charges correspondant a des
conditions réelles d’emploi, montrent qu’il ne faut pas
calculer en tenant compte de la zone d’écrouissage et
que le calcul plastique donne ainsi des résultats tout a
fait satisfaisants.

Dans le domaine du béton armé, on ne dispose pas
encore de résultats d’essais systématiques sur 'applica-
bilité de la méthode de calcul plastique. Les essais
exécutés récemment au pont’d’Opﬁkon ont cependant
confirmé la méthode de fagon brillante. Cet ouvrage en
béton précontraint (fig. 23) qui avait été construit en
1954-55 a été soumis pendant I'été 1960 a une série
trés compléte d’essais a la fatigue. Ensuite il a été
soumis & un essal statique poursuivi jusqu’'a la rup-
ture 8. Le systéme statique de ce pont (fig. 24 a) con-
sistait en une ferme a contrefiches. Le tablier était
formé par une dalle en béton précontraint de hauteur
variable. D’apres le calcul plastique, la rupture devait
survenir soit avec un méeanisme symétrique (voir
fig. 24 Db)

fig. 24 ¢) st les conditions de symétrie n’étaient pas

, soit avec un mécanisme asymétrique (voir
parfaitement réalisées. Le calcul donne dans les deux
cas la méme charge de rupture. En fait, ¢’est le second
cas qui s’est réalisé, comme on peut le voir sur la
figure 25. Des six rotules, seules les deux intervenant
dans le tablier ont une importance pratique, car celles des
appuis nont ¢qu’une influence faible sur la charge de
rupture. La partie (d) de la figure 24 donne le diagramme

% Le LFEM doit publier prochainement un rapport sur ces essais.
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des moments fléchissants & la rupture. Le moment
résistant plastique M, calculé selon la formule du
LFEM, équation 2, a été atteint en deux points, la ol
les rotules plastiques se sont formées. Le calcul donnait
une charge de rupture de 420 tonnes, alors que dans
’essai la charge maximum supportée a été de 433 tonnes.
Le rapport Ppe./P, = 1,03 indique une concordance
bien meilleure que ce que 'on pouvait attendre, compte
tenu des circonstances, et cet essai démontre une fois
de plus la confiance que I'on peut accorder a cette nou-
velle méthode.

6. Résumé

La premiére partie de l'avticle a été consacrée aux
lacunes de la théorie de I'élasticité dans le calcul des

q,=8,50 t/m

o =1‘I,‘80 t/m
| A

q,=8,50 t/m

-==-= Mp Querschnitt = section

Mp inf. Pp,q“qz,A

g, 24. — Pont d'Opfikon, systéme statique, mécanismes
et diagramme des moments f{léchissants,




Fig. 25. — Vue du pont d'Opfikon apres les essais.

constructions. Il en découle le besoin de disposer d'une
méthode simple et siire permettant de calculer la capa-
cité de charge d’une construction. Les bases du calcul
plastique des constructions ont été briévement expo-
sées, et suivies de l'application & trois exemples. Le
crédit que I'on peut accorder a la méthode est ensuite
étudié par comparaison a des résultats d’essais. Aujour-
d’hui, cette méthode est employée pour le calecul des
structures en acier aussi bien en Angleterre (réf. [15])
qu'aux Etats-Unis (réf. [16]) et son emploi y est trés
courant. Dans le domaine du béton armé, le dimen-
sionnement des sections a la rupture (plastification de
la section) est utilisé, entre autres, en France, en
Autriche et aux USA. Par contre, pour la détermination
des sollicitations a la suite du comportement plastique
des matériaux, on ne dispose, pour le moment, que
d’études partielles. Il reste encore toul un travail de
développement & faire, aussi bien théorique qu’expéri-
mental. La méthode de la plasticité ne va pas supplanter
la théorie de I’élasticité dans le calcul des constructions,
mais va lui apporter un complément nécessaire en per-
mettant de prévoir le comportement au-dela de la
limite élastique, et d’établir la capacité de charge
statique.
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Le traitement du béton en autoclave présente un
intérét d’autant plus important que 'emplot d’éléments
de construction préfabriqués en béton et en béton armé
tend a se répandre davantage. Cette méthode permet

d’obtenir un durcissement accéléré, d’utiliser une quan-
tité beaucoup moins importante de ciment Portland et
d’employer des agrégats de remplacement selon les res-
sources locales.

L’ouvrage cité donne les résultats d’essais effectuds
pour déterminer toutes les caractéristiques de bétons
traités en autoclave sous différentes pressions de
vapeur ; auteur y ¢étudie les réactions qui se produi-
sent entre les constituants du elinker de ciment Port-
land et le sable de silice. Il contient en outre des

(Suite page 65)
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