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LE CALCUL PLASTIQUE DES CONSTRUCTIONS
par M. le Dr B. THÜRLIMANN, professeur à l'Ecole polytechnique fédérale *

1. Introduction
La tâche de l'ingénieur civil consiste à créer des

ouvrages adéquats et esthétiques. Il lui est donc
indispensable de savoir dans quelle mesure les conditions
de leur utilisation risquent d'en compromettre l'existence.

Schématiquement différentes causes de défaillance

peuvent être distinguées :

1. La rupture, causée a) par charge statique, ou b) par
fatigue sous des charges répétées.

2. Les déformations inacceptables, causées a) par des
flèches exagérées ; 6) par des vibrations ; c) par des
fissurations ou une combinaison de ces effets.

Les calculs statiques et le soin apportés à l'exécution
doivent assurer aux constructions un coefficient de

sécurité tel qu'elles seront, à vues humaines, garanties
contre l'apparition de tels phénomènes. Il est clair que
ce coefficient de sécurité est influencé de façon importante

par les incertitudes au sujet des charges à prendre
en compte, des propriétés des matériaux, de la qualité
de l'exécution, des simplifications introduites dans les

calculs, etc. Des recherches récentes permettent de

traiter ces questions par analyse statistique (voir les

références [1], [2] et [3] à la fin de cet article).

La détermination de la résistance effective d'une
construction, soumise à des charges statiques, est un des

points essentiels de l'estimation du coefficient de sécurité.

Il faut malheureusement reconnaître que c'est
précisément dans ce domaine que les méthodes
classiques de la théorie de l'élasticité sont d'une utilité
limitée ; de là, les efforts de ces dernières années pour
établir une méthode simple, mais sûre, permettant
d'estimer la résistance effective des constructions. Il
nous faut insister ici sur le fait que les autres critères
déterminant la sécurité ne doivent pas être négligés.
Mais, pour le calcul des constructions soumises à des

charges statiques, c'est bien la résistance effective qui
est le critère le plus important et généralement prépondérant.

Avant d'en venir à une description de cette nouvelle
méthode, nous allons traiter quelques cas pour lesquels
les méthodes de la théorie de l'élasticité ne fournissent
pas de solution satisfaisante.

* Article publié dans la Schweizerisctie Bauzeitung, n0B 48 et 49
(30 novembre et 7 décembre 1961) et basé sur une conférence faite
au Groupe des Ponts et Charpentes de la SIA le 12 novembre 1960.
Traduction par O. Barde, ingénieur EPF/SIA.
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2. Limites d'application de la théorie de l'élasticité

Considérons pour commencer une poutre sur trois
appuis, avec une rigidité à la flexion EI1 constante,
comme sur la figure 1. Dans le cas a), une charge
uniformément répartie ql produit un moment fléchissant
maximum Ms\ sur l'appui central. Dans le cas b), par
contre, il est possible, par l'interposition judicieuse d'une
articulation, d'égaliser le moment sur appui M$2 au
moment en travée, pour une charge uniformément
répartie q2. La théorie de l'élasticité enseigne qu'une
section peut être sollicitée jusqu'à l'apparition de
l'écoulement dans la fibre extrême. Si maintenant, nous
admettons que, dans les deux cas ci-dessus, la résistance
à la flexion de la poutre est la même, et que nous
égalisons Msi à Ms2, nous obtenons pour le cas b) une
augmentation de la charge maximum admissible de

46 %. Ce résultat est en contradiction flagrante avec
ce que l'on est en droit d'attendre. En premier lieu,
parce qu'une poutre avec une articulation est moins
rigide, et, en second lieu, parce que couper une poutre
et y interposer une articulation provoque sans aucun
doute un affaiblissement. Le calcul selon la théorie de

l'élasticité conduit donc au paradoxe qu'à l'affaiblissement

d'une poutre correspondrait un accroissement de

sa résistance effective.
Comme pendant, mentionnons un exemple où le

renforcement d'un cadre provoquerait une diminution
de la résistance effective. Soit le cadre rectangulaire de

la figure 2. Dans le cas a), la rigidité des béquilles et de la
traverse supérieure est choisie de telle façon qu'il y ait
égalité entre le moment en travée et les moments aux
angles. Si maintenant, nous doublons la rigidité des

montants (voir cas b) nous obtenons une augmentation
des moments négatifs aux angles. La comparaison des

charges dans les deux cas conduit au rapport qi/q2
0,875, soit à une notable diminution de la résistance.
Ce résultat est de nouveau en contradiction avec ce que
nous étions en droit d'espérer. En effet, il est impossible
qu'un renforcement des montants ait pour résultat un
affaiblissement du cadre dans son ensemble.

1 K module d'élasticité ; / — moment d'inertie.

q,i

rirq.i

1.51»

Fig. 2.
Diagramme
des moments fléchissants
pour un cadre rectangulaire,

pour deux cas de
rigidité des montants.

-ït%1

3 ,2
q2l

b
91 14=0,875
<fc 16

Les deux exemples suivants vont nous montrer que
lorsque nous calculons selon la théorie de l'élasticité,
nous formulons souvent des hypothèses qui conduisent
à des sollicitations nominales ne correspondant plus à

la réalité.
Considérons une poutre en T, en béton armé, encastrée

aux deux extrémités (fig. 3). En conformité avec
les hypothèses habituelles, la section de béton considérée

pour le calcul des efforts est l'ensemble de la
section de la poutre, dont on néglige les aciers, soit une
rigidité El constante. Les pourcentages d'armatures
indiqués sont valables pour une utilisation complète de

l'acier aux sections d'appuis, et de l'acier seulement au
milieu de la travée. En recalculant maintenant la rigidité

de la section fissurée (stade 4) et la répartition
correspondante des moments, on constate (fig. 3) que dans
les deux cas les résultats diffèrent de façon appréciable.
On peut donc conclure que l'emploi du facteur de

rigidité El de la section de béton conduit à une répartition

des moments qui est plausible mais certainement
différente de la réalité.

Dans la plupart des calculs, l'influence des tensions
résiduelles est négligée lors de la vérification des

contraintes. Un exemple de ces tensions résiduelles longitudinales,

mesurées dans la cas d'un profilé laminé et
d'un pilier soudé, est donné à la figure 4 (voir aussi la
référence [4]). On peut considérer que ces valeurs sont
spécifiques à la plupart des sections du même type.
Pour les laminés, ces tensions atteignent la moitié de la
limite élastique of et pour les pièces soudées, la limite
élastique elle-même. Ces efforts internes sont créés, dans

un profilé, par le refroidissement plus rapide des extrémités

des ailes et de l'âme, que celui de la zone de

raccordement. Le retrait des cordons de soudure crée, pour
les pièces composées, des efforts encore plus grands. Ces

tensions sont négligées sans hésitations dans les
vérifications de contraintes, et l'expérience a montré que
c'était justifié pour les éléments soumis à des efforts de
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Fig. 3. — Influence des variations de la rigidité

d'une poutre en béton armé sur la répartition

des moments fléchissants.

traction ou de flexion. Pour les éléments comprimés on
constate cependant que ces tensions influencent la
charge critique de façon appréciable, dans le domaine
de transition entre le flambage élastique et l'écoulement

plastique. Ce point a été étudié tout récemment
de façon expérimentale et théorique (voir références [4]
et [5]).

Ces deux derniers exemples montrent que les tensions
calculées ne sont généralement que des valeurs nominales,

souvent différentes des valeurs réelles, et que
l'expérience prouve que, dans la plupart des cas, cette
manière de faire ne comporte pas d'inconvénients. On
comprend alors le besoin de pouvoir disposer d'une
méthode pouvant expliquer ces phénomènes de façon
simple et logique.

Dans la pratique, les cas où les hypothèses de la
théorie de l'élasticité sont violées, de façon plus ou
moins grave, sont plus nombreux qu'on ne le pense

gewalzt 8WF31
(~DIE20)

Fig. 4.
Diagramme des
tensions résiduelles d'une
poutrelle laminée et d'un
pilier composé soudé.
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Fig. 5. — Diagrammes d'allongement de différents aciers.

généralement. Par exemple, les valeurs des tensions

moyennes admissibles pour les assemblages rivés,
boulonnés ou soudés, sont dérivés d'essais à la rupture.
Sous les conditions normales de service déjà, il peut se

produire des contraintes locales dépassant la limite
élastique. Il faut aussi mentionner le calcul des dalles

comprenant des irrégularités dans les conditions- aux
appuis, ainsi que des ouvertures. Il est aisé de soutenir

que rares sont les cas où de telles dalles sont calculables

par la théorie de l'élasticité. Dans le calcul des poutres
triangulées, on néglige les tensions secondaires causées

par les déformations de l'ouvrage. Dans tous les cas où
la théorie de l'élasticité ne fournit pas de solution, ou
une solution démesurément compliquée, on fait appel
aux qualités d'adaptation du matériau. En se basant
sur le fait que tous les matériaux de construction ont
une certaine ductilité, on admet avec raison que les

tensions extrêmes sont réduites par déformation
plastique. Or c'est précisément le but de la théorie de la
plasticité 2 que d'introduire dans les calculs ces qualités
d'adaptation des matériaux et non pas de s'en servir
seulement comme d'un expédient.

3. Résistance à la flexion de poutres d'acier et de
béton armé

Nous allons maintenant étudier l'influence des
déformations plastiques sur la résistance et sur la déformation

des poutres. Dans la figure 5, nous avons représenté

à la même échelle les diagrammes d'allongement
des aciers suivants :

1) acier doux, dit Acier 37 ;

2) acier naturel dur, à haute résistance, dit Acier 52 ;

3) acier d'armature étiré à froid ;

4) acier spécial américain, dit USS T-l ;

5) fil étiré et breveté pour précontrainte.

Il est important de noter que tous ces diagrammes
présentent un palier d'écoulement très marqué (sur la
figure les allongements ne sont portés que jusqu'à 2 %).
Les aciers 1) et 2) ont une limite élastique of très nette,
puis un palier d'écoulement marqué pour lequel
l'allongement e sous tension constante (soit donc entre la
limite élastique — allongement zp — et la zone d'écrouis-
sage — allongement çy) est d'environ dix à quinze fois
l'allongement élastique ejp. Dans la zone d'écrouissage,

2 Théorie considérant le comportement plastique des matériaux
{en anglais : fl Plastic Design » ; en allemand : « plastische Methode »J.
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Diagramme d'allongement pour le béton.

la tension augmente à nouveau mais avec une pente
dont la tangente au départ Ey da/de est d'environ
trente fois plus faible que le module d'élasticité E.
Finalement la limite de rupture ß.z est atteinte pour un
allongement d'environ 25 %, mesuré sur une longueur
de cinq fois le diamètre de l'éprouvette.

Dans le calcul plastique, on ne considère généralement
que le palier d'écoulement, et l'on néglige la zone
d'écrouissage pour les raisons suivantes :

1. Les déformations atteintes au moment de l'écrouis-
sage sont déjà relativement grandes.

2. Les caractéristiques des sections usuelles des fers profilés

(en particulier le rapport de la largeur de l'aile
et son épaisseur, et de la hauteur de l'âme à son
épaisseur) sont telles qu'il n'est pas possible d'atteindre
les contraintes auxquelles l'écrouissage se produirait
sans que des instabilités locales n'apparaissent (vouement

ou déversement) (voir références [5] et [6]).
3. Pour les sections de béton armé, il se produit

généralement un écrasement du béton avant que l'armature

ait atteint la zone d'écrouissage.

Par contre, il est souvent nécessaire de faire appel à

ces contraintes d'écrouissage dans l'interprétation de

certains résultats d'essais.
Le béton comprimé se déforme de façon plastique

selon les diagrammes de la figure 6. Les deux courbes

pour des bétons de ß 200 kg/cm2 et ß 320 kg/cm2
ont été obtenues, par essais de courte durée, de façon à

ne pas être influencées par le retrait et le fluage. L'ac-
courcissement maximum à la rupture est d'environ
3/iooo Pour une charge excentrée et d'environ 2/1000

seulement pour une charge axiale.
Il faut maintenant examiner la résistance à la flexion

d'une poutrelle métallique en I et d'une poutre en

(3) simplifié
(2) sans tensions résiduelles

1) avec tensions résiduelles

- (3) Vereinfocht
- (2) Ohne Eigenspannungen
- d Mil Eigenspannungen ^^^TT""

A

M/M

MF/M

\
Fläche h

'IiIVM

t.MJEI0.2-

oc —

Fig. 8. — Relation entre le moment fléchissant et la courbure.

(Section I — représentation en valeurs relatives.)
Fläche ki Surface kt

I
fc 3Cf

Mp=fW6|r

Fig. 7. — Moment plastique d'uh profilé I.

béton armé. Pour cela, nous admettons les deux
hypothèses suivantes :

1. Les déformations sont proportionnelles à la distance
à l'axe neutre (hypothèse de Navier-Bernoulli).

2. La relation entre tensions et allongements est celle
donnée, pour le cas d'une charge axiale, par les
figures 5 et 6.

Pour un profilé sans tensions résiduelles, un moment
de flexion n'engendrera d'écoulement qu'au moment où
la tension de la fibre extrême atteindra la valeur
limite up (fig. 7). L'allongement correspondant de la
fibre extrême sera tp et la courbure correspondante
(soit l'angle de rotation pour l'unité de longueur) O.P.

Si la sollicitation augmente encore, l'allongement des

fibres extrêmes augmentera, avec la courbure, mais la
tension o> par contre restera constante et se propagera
vers l'axe neutre. Dans le cas limite la majeure partie
de la section de la pièce sera en état d'écoulement,
aussi bien en traction qu'en compression. En effet, la
tension d'écrouissage n'est atteinte que pour une
déformation d'environ quinze fois celle de la limite
élastique (ey 15 Ef). Le moment résultant de la
plastification complète de la section est nommé moment
plastique et vaut donc

(1) MP fW<JF fMF Zof
où

W module de résistance ;

/ coefficient de forme ;

o\f tension d'écoulement ;

Z moment résistant plastique.
Le coefficient de forme / ne dépend que de la forme

de la section et détermine directement le rapport Mp/Mp.
Dans le tableau (1) nous avons donné les valeurs de ce
coefficient pour quelques sections usuelles.

La figure 8 indique la relation entre le moment M
et la courbure O pour une section en I, en valeurs
relatives. Les moments M ont été divisés par la valeur du
moment plastique Mp et les courbures <t> par la courbure
<J)p Mp/EI. L'avantage de cette représentation en

Querschnitt :

Formfakror f :

Coefficient
de forme

Section
en I

I-Profil

1.13

Section
tubulaire

Rohr

1.27

Section
rectangulaire

en I
Rechleck,
I-Profil

-H-
1,50

Section
ronde

Kreis

-®-
1,70

Parallélogramme

Parallelogramm

~~ V""

2,00

Tableau 1
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Fig. 9. — Moment plastique pour une
section en béton armé.

valeurs relatives est évident, car cette dernière est
valable pour n'importe quelle section en I et pour toutes
les tensions d'écoulement. Il est important de remarquer

l'incurvation de la courbe tenant compte des
tensions résiduelles dans la zone où O/Op 1. Le comportement

non élastique intervient lorsque la somme des
tensions provenant des charges et des tensions
résiduelles atteint la tension d'écoulement. Le moment
correspondant est indiqué dans la figure comme Me.
Le moment plastique après avoir atteint la zone
d'écrouissage Cp7^15(Dp n'augmente plus que légèrement

avec une pente environ trente fois plus faible que
dans le domaine élastique. Les paramètres A-j et k2 ont
été reportés sur cette figure et sont utilisés ci-dessous.
&2 est égal à l'aire de la partie hachurée de la figure et
indique le degré d'incurvation de la courbe M — <t> due
aux tensions résiduelles. k2 est l'ordonnée du centre de

gravité de cette surface. Leurs valeurs moyennes sont
/fj 1/5 et k2 9/10.

Le comportement d'une section de béton armé est
représenté à la figure 9. Lorsque la sollicitation de
l'acier dépasse la limite élastique a>, la tension reste
constante et égale à cette valeur. En même temps, il y
a déplacement de l'axe neutre vers la fibre comprimée
et la répartition des tensions du béton ne reste pas
linéaire. A l'état limite, il se crée une répartition qui
est presque rectangulaire. Une série récente de 1600
essais de rupture (voir référence [7]) a confirmé, une fois
de plus, que cette représentation donnait des résultats
tout à fait suffisants. En partant des conditions d'équi-
ibre, on peut obtenir la valeur du « moment plas-

soittique »

MtCTj

Mp= \ibh*ap M — ¦—:
2ß

P/Pn»

1 Verbundtrager

2 Rechteck

3 Plattenbalken

[EMPA-Bericht 149, Abb S3 ]

[EMPA-Bench! 162,Abb.236]

[EMPA -Bericht I62,Abb 290]

4 Vorgesp. Balken [EMPA, nicht veröffentlich! ô/é'

Fig. 10. — Relation entre la charge et les flèches de
différentes poutres (représentation en valeurs relatives).
1 Poutre mixte (acier-béton) Rap. LFEM 149, fig. 53
2 Poutre rectangulaire (béton armé) Rap. LFEM 162, fig. 238
3 Poutre en T (béton armé) Rap. LFEM 162, fig. 290
4 Poutre précontrainte Rap. LFEM non publié

Pour ce cas aussi, la relation entre la courbure et le
moment est très semblable à celle d'un profilé (voir
fig. 8). Il se forme donc également dans les constructions

en béton armé des rotules plastiques, sauf
lorsqu'une armature surabondante conduit à un écrasement

prématuré du béton.
A la figure 10, nous trouvons les diagrammes relatifs

des flèches pour différents essais. Dans ces diagrammes,
la charge P a été divisée par la charge de rupture Pmax

et les flèches 5 ont été divisées par la flèche
conventionnelle 6'. Cette flèche conventionnelle est obtenue en
prolongeant la tangente à l'origine avec l'horizontale
par Pmax, comme indiqué sur la figure. L'avantage de
cette représentation consiste de nouveau dans la possibilité

de comparer entre eux les résultats de différents
essais. La figure nous montre que la charge s'approche
asymptotiquement de la charge maximum. La grande
capacité de déformation avant la rupture est bien
apparente, ce qui indique de façon indirecte la constitution

progressive d'une articulation plastique.
Finalement, il nous faut encore insister sur la

particularité qu'offre le cas d'une charge concentrée. Dans
la figure 11 nous admettons que la charge a déjà atteint
la valeur P > Pp, de sorte que le moment correspondant
Mm au milieu de la travée est plus grand que le moment
plastique Mp. Afin de pouvoir calculer les flèches par
l'analogie de Mohr, nous avons reporté sous le
diagramme des moments les courbures correspondantes
qui peuvent être relevées sur un graphique analogue à

celui de la figure 8. Introduisons maintenant les
relations suivantes :

ß Mm/Mp > 1

Op Mp/EI
<Dr aOp
(Mm — Mp)jEvl (P — 1) QPE/Et

8 Cette équation (2), connue sous le nom d'« Equation du LFEM »,
a été introduite par G. v. Kazinczy à la page 1169 et par M. Ros à
la page 1179 de la référence [8]. F. Stüssi a donné dans la référence [9]
une représentation très générale de la flexion non élastique.

P'Pp

.PIE ^iiiiiiik:
.4

1

Moment M

PVV/M

Krümmung 0 ?v-a*!

t k.a~

M<Pp
p.! t

Fig. 11. — Variation de la courbure dans
le cas d'une poutre simple avec une charge
concentrée.
Krümmung — courbure
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k,

¦¦ module d'écrouissage (tangente au point
de redressement de la courbe)
surface hachurée du diagramme M — O

(voir fig. 8)
; ordonnée du centre de gravité de kv

Mp
M„ 2ß

l
2ß

a ™ (ß D

Ces grandeurs sont également données par la figure 11.
La courbure dans la zone d'écrouissage a été approchée

par la relation (Mm — Mp)/EvI. Comme la courbe de
CD de la figure 11 est semblable à celle de la figure 8,
nous avons une valeur pour cette surface de k^Op et

une distance du centre de gravité de cette même surface
à l'appui de droite de k2a. La flèche 5 au milieu de la

poutre s'obtient de façon plus simple, si l'on considère
la poutre comme encastrée en son milieu, avec la
tangente horizontale. Nous obtenons alors le déplacement
de l'appui par l'analogie de Mohr en prenant le moment
statique de la surface du diagramme de la courbure

par rapport à l'appui. Dans le cas en question P > Pp

nous obtenons :

«2 / b

0?23a +®<>b [a + 2

Mm — Mpb( 2 ,\
H -g—j 2 \a + 3 + KaQpfya

(3)

Le dernier membre représente la contribution de la
surface hachurée du diagramme, et son importance
dépend de la grandeur des tensions résiduelles. Par
simplification et en utilisant la relation :

l'équation (3)
devient

(5) 5lop

Ppl
Sp~ 48£?

MpV
12 El

comme fonction de ß Mm\Mv > 1

1

l+^a(ß2-l) +
1 E
2F(P l)(2ß« —p —1) + 3M«

La courbe correspondante a été tracée dans la

figure 12 pour les valeurs suivantes :

1,0
M/Mp

/ <t>/$p

i / 1 4

VVEI

¦Mp«M< Mp

Fig. 13.
Relation entre le
moment fléchissant

et la courbure

(représentation
en valeurs

relatives).

k, 1/5a cDs/Qj, 12
E/Ev 30 k2 9/10
ME/MP 1/2

Ces valeurs sont applicables par approximation à un
profilé en I pour un acier 37 (ou un acier américain
ASTM A7). De façon générale, la courbe des déformations

est raide et rectiligne dans le domaine élastique et
beaucoup plus aplatie dans la zone de l'écrouissage.
Dans la partie du diagramme où le moment s'approche
de la valeur M Mp, la transition se fait par une
incurvation qui dépend de la grandeur et de la répartition

des tensions résiduelles dans la section. L'équation

(5) est compliquée, et, comme pour ß > 1, elle
donne approximativement une droite, on peut la
déterminer de façon approchée.

En introduisant les valeurs données ci-dessus, nous
avons

(6) S/6P 1 + Jr (p — 1)

qui donne de bons résultats, comme on peut s'en rendre

compte à la figure 12. Dans cette même figure, nous
avons reporté le résultat d'un essai (voir la référence (6)

figure 5-4, page 24) sur un profilé américain de 35 cm
de haut (14 WF 38). Au début de l'essai, il y a une
bonne corrélation avec les valeurs théoriques, mais à

partir de 5/5p 6, la charge commence à diminuer lentement

à la suite du déversement latéral de la poutre.
Il a été montré, aussi bien de façon théorique que

par des essais, que dans le cas d'une charge concentrée,
la charge P peut dépasser la charge de rupture Pp
calculée, cependant ce dépassement est faible et accompagné

de grandes déformations. De plus, ce dépassement
est limité par le déversement latéral de la poutre ou

par le vouement local de l'aile comprimée. Ne pouvant
donc pas intervenir dans la réalité, il sera toujours
négligé dans les calculs pratiques (voir fig. 17 à 20). Il
ne faut donc faire intervenir l'écrouissage que pour
expliquer les résultats d'essais avec charges concentrées,
surtout s'il s'agit de poutres compactes et courtes (voir
fig. 21).

4. La méthode de calcul plastique
Après cette brève description du comportement

plastique des éléments fléchis, et en particulier de la relation
entre les moments fléchissants et la courbure, nous
allons maintenant décrire la méthode de calcul plastique
à l'aide de quelques exemples simples.

Dans le cas d'éléments fléchis, il faut utiliser quatre
hypothèses qui sont :

1. La relation entre le moment fléchissant et la courbure
est celle donnée aux figures 13 et 8, c'est-à-dire que
la courbure s'approche asymptotiquement du moment
plastique Mp. En pratique il suffit d'avoir atteint
CD/Op 4, pour obtenir la redistribution complète des
moments.
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2. Les déformations de la construction sont faibles par
rapport à ses dimensions. Il s'ensuit que l'on peut
conserver les conditions d'équilibre du système primitif,

et se borner à un calcul du premier ordre, comme
on le ferait normalement en statique élastique.

3. La mise en charge est progressive, c'est-à-dire que les
charges augmentent de façon proportionnelle jusqu'à
la charge limite Pp.

4. L'influence des efforts normaux et du cisaillement est
négligée. Est exclue également toute défaillance
prématurée par flambage, déversement ou voilement.

Ces deux dernières hypothèses, qui dans certains cas
pourraient être par trop limitatives, peuvent être
éliminées. Il est possible de tenir compte des efforts
normaux et des efforts tranchants, et d'éviter par des
dispositifs constructifs les instabilités locales. L'établissement

des points ci-dessus était essentiel pour pouvoir
utiliser pratiquement la théorie du calcul plastique des
constructions. (Voir la référence [6] pour une description

complète dans le domaine de la charpente métallique.)

A l'aide de ces hypothèses, il est possible maintenant
de calculer différents types de construction d'une façon
très simple.

Exemple 1 :
Soit une poutre continue sur 4 appuis (fig. 14) avec

une résistance à la flexion plastique constante et égale
à Mp. Avec la charge concentrée P, on obtient, dans la
phase élastique, les deux moments sur appuis M2 et M4,
et le moment en travée M3, dans un rapport bien déterminé.

En augmentant la charge, le moment M3 va
passer successivement par la valeur Me (dépassement
de la limite d'élasticité causé par la charge et les
tensions résiduelles), puis par le moment d'écoulement
Mp Wap, pour atteindre finalement la valeur du
moment plastique Mp fWop. Il se constitue donc
progressivement une articulation par plastification de
la section, de telle façon que les moments sur appuis
vont être appelés à transmettre une plus grande partie
de la charge (redistribution des moments). Finalement,
on en arrive au point où les deux moments sur appuis
M2 et Mt atteignent aussi la valeur du moment plas¬

tique Mp. D'après la théorie simplifiée du calcul
plastique des constructions (c'est-à-dire en négligeant
l'écrouissage), il n'est alors plus possible d'augmenter
la charge. On obtient ainsi la valeur théorique de la
charge de rupture tout simplement par des conditions
d'équilibre (voir la fig. 14). Le moment de la poutre
simple M Ppl/i est partagé par moitié entre les

appuis et la travée.

Ppl/i Mp+Mp
Pp 8Mpß

A côté de cette méthode intuitive qui utilise les
conditions d'équilibre, il en existe une autre dite
« Méthode du Mécanisme » qui se prête particulièrement
au calcul des structures compliquées. Pour illustrer cette
méthode, reprenons la situation à l'instant de la formation

des articulations aux points 2, 3 et 4. Au point de

vue théorique l'on constate que la poutre peut
maintenant se déformer sans augmentation de la charge.
En d'autres termes, nous avons maintenant un mécanisme

avec un degré de liberté. L'équilibre de ce
système peut s'exprimer de façon simple avec le Principe
des Travaux Virtuels. Ce principe énonce que le travail
pour un déplacement virtuel d'un système en équilibre
doit s'annuler. On peut donc choisir les déplacements
de telle façon que le travail des forces intérieures ne
soit effectif qu'aux emplacements où se sont formées
les rotules plastiques. Comme en ces points on connaît
la valeur des moments fléchissants, on peut obtenir de
façon très simple la charge de rupture Pp. Les déplacements

virtuels ont été représentés à la figure 14 par des

lignes pointillées, et l'on obtient des rotations 0 aux
points 2 et 4, et 26 au point 3. Le déplacement de la
charge PP est Ql/2, de sorte que le travail des forces
intérieures est

(8) Ai —QMp
rotules : (2)

2QMp
(3)

QMP

(4)

Le signe négatif du second membre de l'équation (8)
provient de ce que le sens de la rotation est opposé à
celui du moment Mp. Le travail extérieur est fourni
par la charge Pp sur le déplacement Ql/2, soit

(9) A, PPQl/2

D'après le Principe des travaux virtuels nous avons :

(10) Aa — Ai

soit PpQl/2 i6Mp et finalement

(11) Pp 8Mp/l

Lorsque ce principe est appliqué sous la forme de

l'équation (10) et que le travail intérieur est effectué
seulement aux articulations plastiques, le second membre

de l'équation a toujours une valeur positive.
Le résultat de l'équation (11) confirme la valeur déjà

établie pour là charge de rupture Pp. On peut encore
constater que celle-ci ne dépend pas de la grandeur des
travées latérales kl et que seule la grandeur de la flèche
en est fonction. Nous reviendrons sur ce point plus tard
en discutant le résultat des essais.

Pour résumer, nous constatons qu'une solution par
la théorie de la plasticité doit satisfaire à trois conditions

:
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1. Condition d'équilibre.
2. Condition de plasticité : le moment de flexion ne

peut dépasser le moment résistant plastique en

aucune section.

(12) \M\<ZM,
3. Condition de mécanisme : un nombre suffisant

d'articulations plastiques doivent se former de

telle façon que la construction (ou une 'partie de

la construction) constitue un mécanisme.

Au début, il a été admis qu'il fallait (n -}- 1) rotules
plastiques pour obtenir la charge de rupture d'un
système hyperstatique d'ordre n. Il est facile de voir dans

l'exemple que nous venons de traiter que le fait d'ajouter

des travées supplémentaires à droite et à gauche ne
change rien au problème et que la charge de rupture
n'en est pas modifiée. Il est donc parfaitement possible
qu'il ne se développe qu'un mécanisme local.

Exemple 2

Soit le cadre de la figure 15, dont les montants ont un
moment résistant Mp et la travée supérieure, le moment
résistant 3 Mp. Admettons que les charges appliquées
selon la figure créent le mécanisme illustré en (15 b),
avec des rotules plastiques aux points 1, 3, 5 et 6. Pour
la détermination de la charge de rupture, on introduit
le déplacement virtuel fixé par le paramètre 6. Les
rotations et les déplacements correspondants sont indiqués

sur la figure et permettent de calculer le travail
intérieur et le travail extérieur.

Aa — A{

(13) ^PPQl+ PpQl + PP^l
charges (2) (3) (4)

2Pp*1

(5)

Mpe + 3MP^Q
3

Mp*Q + Mp 6

articulations (1)

D'où :

(14)

(5) (6)

Pp
16 A/j
5 l

p

Le diagramme des moments fléchissants peut se

dessiner facilement, puisque le système est devenu isostatique

grâce aux rotules plastiques. Comme on peut le
voir sur la figure 15 c, tous les moments sont égaux ou

plus petits que le moment plastique. La condition de

plasticité est donc remplie. Comme de plus, les conditions

d'équilibre et de mécanisme sont également
remplies, la solution admise représente la solution réelle. Si

l'on commence par admettre une rotule plastique à la
section 4 au lieu de la section 3, le calcul donne une plus
grande valeur pour la charge de rupture. Le contrôle des

moments fléchissants montre cependant que pour la
section 3 la valeur du moment dépasse 3 Mp, et que
donc le mécanisme correspondant ne remplit pas la

condition de plasticité. Cette remarque peut être

exprimée de façon tout à fait générale sous la forme
des « Théorèmes de l'Analyse Limite ». Il n'est
malheureusement pas possible d'en parler dans le cadre de cet
article. (Voir références [10] et [6], p. 6.)

Exemple 3

Pour terminer, nous allons encore appliquer cette
méthode au calcul d'une dalle. Soit une dalle carrée

(voir fig. 16), encastrée sur le côté AC, avec des appuis
simples le long de AB et BD et libre sur CD. La valeur
du moment plastique est unitaire sur toute la dalle et
égale à mp (m kg/m). La charge uniformément répartie q

va créer, au moment de la rupture, des rotules linéaires

(voir fig. 16). Il a été démontré que ces lignes, appelées
souvent lignes de rupture, doivent être rectilignes et
satisfaire à certaines conditions cinématiques (voir
réf. [11]). La position de ces lignes est fixée par les

paramètres Ç et t|. On peut maintenant considérer les

trois conditions d'équilibre pour chaque partie de la
dalle. Pour la partie 1, en prenant AC comme axe de

référence, on peut éliminer la réaction d'appui lorsque
la condition d'équilibre des moments est satisfaite.
L'apport du moment plastique le long de AC est m^a,
le long de la ligne entre 1 et 2 il est mpT\a (si l'on considère

la projection sur l'axe AC) et le long de la ligne
entre 1 et 3 cet apport est mp (1 — r)) a. On obtient
ainsi, avec le moment dû à la charge agissant sur la
surface 1 :

(15) a + r\a + (1

1p

I

ô(i-Ç)

¦r\)a
1

_3 [1— E)2ny 0

De façon analogue, on obtient les conditions d équilibre

des moments pour les parties-2 (avec l'axe de

référence AB) et 3 (avec l'axe de référence BD) :
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(16)

(17)

1
mpa — ^ qparf

n
qpa (1-Tl) 0

Ce système de trois équations avec les trois inconnues
§, r) et qp se laisse facilement résoudre et l'on obtient
la valeur de la charge de rupture :

(18) qp 18,7 mPla*

Le but de ces trois exemples était de démontrer la
simplicité d'utilisation du calcul plastique. Il est bien
entendu qu'une étude préliminaire des bases de la
méthode est indispensable à sa bonne compréhension et
à son application judicieuse. Cette méthode est
maintenant solidement fondée et différents procédés ont été
étudiés de façon complète. (Voir la référence [6] pour
une bibliographie complète.) Par les exemples traités,
nous avons pu voir que la méthode donne, grâce à sa

simplicité, une image bien claire du comportement réel
des constructions. Si l'on veut démontrer la validité de
cette méthode, il faut en comparer les résultats avec
des résultats d'essais et avec des observations sur des
constructions existantes.

5. Résultats des essais

Depuis longtemps, mais plus particulièrement depuis
quelques années, des essais systématiques relatifs à
cette méthode ont été faits, surtout dans le domaine de
la construction métallique (voir réf. [6], p. 21). Le but
de cette expérimentation était également de pouvoir
estimer l'influence de facteurs secondaires tels que :

l'influence de l'effort normal et de l'effort tranchant, du
voilement local, du déversement latéral et du comportement

des assemblages. Nous donnons ci-dessous les
résultats les plus importants qui ont été établis. La
figure 17 donne la flèche 5 en fonction de la charge
croissante pour un cadre en acier qui fut chargé jusqu'à
la rupture lors d'un congrès à l'Université Lehigh à

Bethlehem (Pa.), USA. Les écarts au début du chargement

entre les valeurs calculées et celles mesurées lors
de l'expérience peuvent s'expliquer par l'imperfection
de l'encastrement des montants, et par les tensions
résiduelles dues à la soudure. Ces deux points sont

=-K" BWF40 q

'
.— -¦ I 8WF40 r

~w=~- 8WF40 d

J » ¦-
_Li L_L
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i t
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Î2WF36 f
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Fig. 18. — Comparaison entre les résultats d'essais et les
résultats calculés. — Poutres en I continues.

cependant sans effet sur la charge de rupture. La charge
maximum supportée par le cadre est un peu plus grande
que la valeur calculée pour la charge de rupture Pp. La
déformation que ce cadre a supportée est remarquable.
Sur le diagramme nous avons encore reporté la charge
Pp, à laquelle selon le calcul de la théorie de l'élasticité
(et en négligeant les tensions résiduelles), l'écoulement
de la fibre la plus sollicitée aurait commencé. Le
rapport Pp/1,65 représente la charge « élastique » admissible

selon les normes de 1'« American Institute of Steel
Construction ». Si par contre l'on applique le calcul
plastique, le coefficient de sécurité par rapport à la charge
de rupture doit être de 1,85. Ceci repose sur la condition

qu'une construction hyperstatique doit avoir la
même sécurité par rapport à la charge de rupture
qu'une construction isostatiqua. Comme dans les systèmes

statiquement déterminés, les moments fléchissants
sont indépendants de la déformation, ils restent
proportionnels à la charge aussi dans le domaine non élastique.
Nous avons donc l'expression de la charge admissible :

Pad C-Mad C-MpjsE
de la charge à la limite d'élasticité :

Pp C-Mp
et de la charge de rupture :

Pp C-Mp C-f-Mp
avec C constante de proportionnalité

se coefficient de sécurité élastique
/ 1,13 facteur de forme moyen pour les pro¬

filés en I
Le coefficient de sécurité à la rupture devient donc :

(19) sp -^ =f-sB= 1,13 X 1,65 a« 1,85
¦* ad

(voir réf. [6], p. 18).
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Nachversuch essai complémentaire

Ce même facteur de sécurité est exigé aussi pour les

constructions hyperstatiques, lorsque, par formation de

rotules plastiques, il se crée une répartition favorable
des moments. La différence entre Pp/1,85 et Pp/1,65
dans la figure 17 donne une idée de la grandeur de

l'influence de cette redistribution des moments.
La figure 18 donne des résultats d'essais sur poutrelles

en acier *. La disposition de ces graphiques est ainsi
faite, que la charge de rupture Pmax, atteinte lors de

l'essai, apparaît en pourcents de la charge de rupture
théorique Pp. De plus la charge correspondant à la
limite élastique conventionnelle Pp calculée selon la
théorie de l'élasticité (en négligeant les tensions
résiduelles) est également reportée. De cette façon, la partie
pleine du trait illustre la réserve de résistance qui peut
être mobilisée par la déformation plastique et la répartition

des moments qui en résulte. Il est évident que
cette réserve n'est pas un pourcentage constant de la
charge limite élastique Pp ou de la charge de rupture Pp.
L'essai (i) est spécialement intéressant (voir réf. [12]),
car, par suite d'un abaissement des appuis, le moment
plastique était déjà atteint à l'appui central avant
même l'application des charges.

Les résultats d'autres essais sur des cadres sont
donnés aux figures 19 et 20, en utilisant la même
disposition. En général tous ces résultats d'essais
correspondent bien avec les valeurs calculées. Ils sont même en

moyenne un peu en dessus, ce qui n'est pas pour nous
étonner puisque la zone d'écrouissage de l'acier a été

négligée dans le calcul.
Cette influence de la zone d'écrouissage est

particulièrement apparente dans les essais faits avec une

©S" 'ö«vS!*ff=fff«!1§
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Fig. 20. — Suite de la figure 19.

Nachversuch essai complémentaire

charge concentrée. Dans la figure 21 nous avons représenté

les essais de F. Stüssi et C. F. Kolbrunner (réf. [13])
et F. Stüssi (réf. [14]) 5 qui ont été faits avec une charge
concentrée. Comme ces essais ont été répétés plusieurs
fois, différents résultats ont été indiqués par de petits
triangles. On peut voir que pour les essais sur poutre
simple (essais a et f), la charge maximum Pmax était
d'environ 30 % plus grande que la charge de rupture Pp
calculée. Ce résultat pouvait être escompté et peut être
démontré rigoureusement par un calcul tenant compte
de la zone d'écrouissage (voir fig. 12). Dans les essais

sur poutres continues avec quatre appuis, on observe

que la charge maximum Pmax se rapproche de plus en
plus de la charge calculée Pp, à mesure que la grandeur
des portées latérales augmente. Même dans le cas
extrême, quand les travées latérales ont une portée
triple de la travée centrale (essais e et 1) la charge de

rupture théorique, basée sur une redistribution
complète des moments, est atteinte par la charge maximum
d'essai. On peut penser que dans ces cas, la rupture a

4 Les résultats illustrés dans les figures 18, 19 et 20 sont pris dans
la référence [6]. Cette publication indique toutes les sources.

5 La publication [14] ne contient pas d'indications sur les tensions
d'écoulement du matériau. Nous avons dono utilisé la valeur Op de
la publication [13J.
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Fig. 21. — Comparaison entre les résultats d'essais et les
résultats calculés — Poutres en I continues, sous une
charge concentrée.

eu lieu par voilement de l'aile comprimée sous la charge
concentrée, et par déversement latéral de la longue
travée extérieure, avant que l'influence de la zone
d'écrouissage puisse se faire sentir.

En relation avec ces essais, il convient encore de faire
une remarque au sujet des déformations. Dans la
figure 22, nous donnons en valeurs relatives les flèches

sous les charges P. Le calcul de ces flèches a été fait à

l'aide d'une hypothèse simplificatrice qui n'a pas
d'influence notable : la relation admise entre le moment de

flexion M et la courbure O est celle de la courbe 3 de

la figure 8, en négligeant la zone d'écrouissage. Ces

catactéristiques de courbure seraient applicables à des

poutrelles en I, pour lesquelles l'importance de l'âme
est négligeable et qui n'auraient pas de tensions
résiduelles. Prenons par exemple la courbe pour le cas où

lt 2l2 dans la figure 22. Au début, le comportement
de la poutre est élastique. Pour P 0,636 Pp le moment
en travée atteint Mp Mp. Maintenant, seuls les

moments sur appuis croissent avec l'augmentation de

la charge, de telle façon que la flèche augmente beaucoup

plus rapidement. La charge de rupture est atteinte
avec une flèche de 6 9 MPZ|/24 El. Comme on néglige
l'influence de la zone d'écrouissage, la flèche peut
augmenter librement. Malgré l'hypothèse simplificatrice,

le processus que nous venons de décrire a été
démontré par un essai (voir réf. [13], fig. 14). Les
différentes courbes de la figure 22 permettent de comparer
les flèches de poutres sur quatre appuis depuis le cas où
les portées latérales ont une longueur /j 0, c'est-à-dire

pour un encastrement complet de la portée centrale,

'| rMP=MF

P/R

L-C l,=2l L=31 1

.0

te

/{-ppA85
0.5

L.=co

MDK

Gerber-T : t,=3t2
ooooVersuchpä]: t, 2l2

h^m-

Fig. 22. — Diagramme des flèches en fonction des
charges pour une poutre continue sur quatre appuis.
Gerber-T poutre Gerber Versuch [13] essai réf. [13]

jusqu'au cas où lx oo, c'est-à-dire pour des portées
latérales de longueur infinie. La flèche de la travée
centrale, sous la charge de rupture, est d'autant plus
grande que les travées latérales sont plus longues. Dans
le cas où li 3l2, nous devrions donc avoir théoriquement

une flèche infinie, ce qui n'arrivera évidemment
pas dans la réalité puisque en plus des charges, les
déformations doivent aussi être contrôlées. De plus, il
est rare que, dans la pratique, la portée d'une travée
dépasse le triple de la portée de la travée voisine.

Pour permettre d'autres comparaisons, nous donnons
encore les courbes relatives à une poutre Gerber avec
lx 3l2 (fig. 22) et les articulations dans la travée
médiane. La position de ces articulations est choisie de
telle façon que déjà dans la phase élastique il y ait
égalité entre les moments en travée et les moments
sur appuis. On constate que cette poutre présente une
flèche élastique qui est deux à trois fois plus importante

que pour la poutre correspondante sans articulations.

Elle est donc beaucoup moins rigide et cette
constatation est très générale : un système hyperstatique

qui est rendu statiquement déterminé par
interposition d'articulations placées de façon qu'il y ait déjà
dans le domaine élastique une égalisation des moments,
subira généralement de plus grandes déformations que
le système original.

La figure 22 montre encore la charge Pp/1,85 qui
représente la charge admissible, avec un facteur de
sécurité de 1,85 à la rupture. On peut constater que
dans ces conditions, même pour le cas extrême où
^i 3^2> la limite élastique conventionnelle n'est pas
atteinte, et que le système reste donc entièrement
élastique. Ce résultat peut également être généralisé :

le comportement d'une construction sous la charge
admissible Pp/1,85 reste élastique. Les exceptions à

cette règle seront généralement écartées, dans la
pratique, soit, parce que l'on doit limiter les déformations,
soit pour des impératifs économiques. Un argument qui
est souvent employé contre le calcul plastique est que
Cette méthode conduit à de grandes déformations et à

un comportement plastique des constructions déjà sous
les charges de service. Un coup d'œil à l'exemple de la
figure 22 montre que ceci n'est pas le cas.

De la même façon les essais mentionnés dans les
références [13] et [14] et reportés dans la figure 21,
démontrent également l'applicabilité et le degré
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Fig. 23. Vue du pont d'Opfikon avant les essais.

d'exactitude de cette méthode. Dans les publications
[13] et [14], les résultats des essais ne sont pas comparés
avec la charge de rupture théorique Pp. De plus, les

expérimentateurs sont partis de l'hypothèse que la

poutre continue devait porter une charge double de
celle de la poutre simple. Il n'a pas été possible de faire
la preuve de cette hypothèse pour la raison suivante :

les essais sur les poutres simples avec une charge
concentrée agissant sur une section compacte, ont été
influencés par l'écrouissage et ont donné des charges de

rupture d'environ 30 % plus grandes que celles
établies par le calcul. Mais si l'on procède à la comparaison
sur la base des charges de rupture théorique, on constate

que les résultats des essais sont toujours
supérieurs. D'autre part, des essais récents faits avec de

grosses sections et des charges correspondant à des

conditions, réelles d'emploi, montrent qu'il ne faut pas
calculer en tenant compte de la zone d'écrouissage et

que le calcul plastique donne ainsi des résultats tout à

fait satisfaisants.
Dans le domaine du béton armé, on ne dispose pas

encore de sésultats d'essais systématiques sur l'applicabilité

de la méthode de calcul plastique. Les essais

exécutés récemment au pont d'Opfikon ont cependant
confirmé la méthode de façon brillante. Cet ouvrage en
béton précontraint (fig. 23) qui avait été construit en
1954-55 a été soumis pendant l'été 1960 à une série
très complète d'essais à la fatigue. Ensuite il a été
soumis à un essai statique poursuivi jusqu'à la
rupture 8. Le système statique de ce pont (fig. 24 a)
consistait en une ferme à contrefiches. Le tablier était
formé par une dalle en béton précontraint de hauteur
variable. D'après le calcul plastique, la rupture devait
survenir soit avec un mécanisme symétrique (voir
fig. 24 b), soit avec un mécanisme asymétrique (voir
fig. 24 c) si les conditions de symétrie n'étaient pas
parfaitement réalisées. Le calcul donne dans les deux
cas la même charge de rupture. En fait, c'est le second

cas qui s'est réalisé, comme on peut le voir sur la
figure 25. Des six rotules, seules les deux intervenant
dans le tablier ont une importance pratique, car celles des

appuis n'ont qu'une influence faible sur la charge de

rupture. La partie (d) de la figure 24 donne le diagramme

* Le LFEM doit publier prochainement un rapport sur ces essais.

des moments fléchissants à la rupture. Le moment
résistant plastique MP, calculé selon la formule du
LFEM, équation 2, a été atteint en deux points, là où
les rotules plastiques se sont formées. Le calcul donnait
une charge de rupture de 420 tonnes, alors que dans
l'essai la charge maximum supportée a été de 433 tonnes.
Le rapport PmaxjPp 1,03 indique une concordance
bien meilleure que ce que l'on pouvait attendre, compte
tenu des circonstances, et cet essai démontre une fois
de plus la confiance que l'on peut accorder à cette
nouvelle méthode.

6. Résumé

La première partie de l'article a été consacrée aux
lacunes de la théorie de l'élasticité dans le calcul des

q2 8,50 t/m q, =11,80 t/m

|2Pp irp

q, =8,50 t/m

23,001 9,90

3,83 7,67 «.00 ' 4,90

C ^ 7'

400 mt

Mp Querschnitt section

Mp inf. Pp.q^qj.A

Fig. 24. — Pont d'Opfikon, système statique, mécanismes
et diagramme des moments fléchissants.
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Fig. 25. — Vue du pont d'Opfikon après les essais. (Noter les deux articulations dans le tablier.)

constructions. Il en découle le besoin de disposer d'une
méthode simple et sûre permettant de calculer la capacité

de charge d'une construction. Les bases du calcul
plastique des constructions ont été brièvement exposées,

et suivies de l'application à trois exemples. Le
crédit que l'on peut accorder à la méthode est ensuite
étudié par comparaison à des résultats d'essais. Aujourd'hui,

cette méthode est employée pour le calcul des

structures en acier aussi bien en Angleterre (réf. [15])
qu'aux Etats-Unis (réf. [16]) et son emploi y est très
courant. Dans le domaine du béton armé, le dimen-
sionnement des sections à la rupture (plastification de
la section) est utilisé, entre autres, en France, en
Autriche et aux USA. Par contre, pour la détermination
des sollicitations à la suite du comportement plastique
des matériaux, on ne dispose, pour le moment, que
d'études partielles. Il reste encore tout un travail de

développement à faire, aussi bien théorique qu'expérimental.

La méthode de la plasticité ne va pas supplanter
la théorie de l'élasticité dans le calcul des constructions,
mais va lui apporter un complément nécessaire en
permettant de prévoir le comportement au-delà de la
limite élastique, et d'établir la capacité de charge
statique.
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Le traitement du béton en autoclave présente un

intérêt d'autant plus important que l'emploi d'éléments
de construction préfabriqués en béton et en béton armé
tend à se répandre davantage. Cette méthode permet

d'obtenir un durcissement accéléré, d'utiliser une quantité
beaucoup moins importante de ciment Portland et

d'employer des agrégats de remplacement selon les
ressources locales.

L'ouvrage cité donne les résultats d'essais effectués
pour déterminer toutes les caractéristiques de bétons
traités en autoclave sous différentes pressions de

vapeur ; l'auteur y étudie les réactions qui se produisent

entre les constituants du clinker de ciment Portland

et le sable de silice. Il contient en outre des

(Suite page 65)
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