Zeitschrift: Bulletin technique de la Suisse romande

Band: 89 (1963)

Heft: 3

Artikel: Calcul des sollicitations d'un barrage-voate dans la zone
d'encastrement des arcs

Autor: Rescher, Othmar-J.

DOl: https://doi.org/10.5169/seals-66292

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-66292
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

89¢ année

Lausanne, 9 février 1963 Ne 3

BULLETIN TECHNIQUE
DE LA SUISSE ROMANDE

paraissant tous les 18 jours

ORGANE OFFICIEL

de la Société suisse des ingénieurs et des architectes

de la Société vaudoise des ingénieurs et des architectes (S.V.I.A.)
de la Section genevoise de la S.LA.

de I'Association des anciens éléves de I'EPUL (Ecole polytechnique
de !'Université de Lausanne)

et des Groupes romands des anciens éléves de I'E.P.F. (Ecole
polytechnique fédérale de Zurich)

COMITE DE PATRONAGE

Président: +t J. Calame, ing. a Genéve

Vice-président: E. d'Okolski, arch. & Lausanne

Secrétaire: S. Rieben, ing. a Geneve

Membres:

Fribourg: H. Gicot, ing.; M. Waeber, arch.

Genéve: G. Bovet, ing.; Cl. Grosgurin, arch.; E. Martin, arch.

J.-C. Ott, ing.
Neuchéitel: ]. Béguin, arch.; R. Guye, ing.
Valais: G. de Kalbermatten, ing.; D. Burgener, arch.
Vaud: A. Chevalley, ing.; A. Gardel, ing.;

M. Renaud, ing.; J.-P. Vouga, arch.

CONSEIL D’ADMINISTRATION

de la Société anonyme du « Bulletin technique »

Président: D. Bonnard, ing.

Membres: Ed. Bourquin, ing.; G. Bovet, ing.; M. Bridel ; ]J. Favre,
arch. ; A. Robert, ing. ; J.-P. Stucky, ing.

Adresse: Avenue de la Gare 10, Lausanne

REDACTION

D. Bonnard, E. Schnitzler, S. Rieben, ingénieurs; M. Bevilacqua,
architecte

Rédaction et Editions de la S.A. du « Bulletin technique »

Tirés a part, renseignements

Avenue de Cour 27, Lausanne

ABONNEMENTS

YAam: s e 5w a0 Suisse Fr. 34.— Etranger Fr. 38.—
Sociétaires . . . . . » » 28.— » » 34—
Prix du numéro . . . » » 1.60

Chéques postaux: « Bulletin technique de la Suisse romande »,
Ne° II 87 78, Lausanne

Adresser toutes communications concernant abonnement, vente au
numéro, changements d'adresse, expédition, etc., a : Imprimerie
La Concorde, Terreaux 29, Lausanne

ANNONCES

Tarif des annonces:

1/1 page Fr. 350.—
1/2 » 4 o » 180.—
1/4 » e »  98.—
1/8 » i d @ »  46.—

Adresse: Annonces Suisses S.A.
Place Bel-Air 2. Tél. (021) 22 33 26. Lausanne et succursales

SOMMAIRE

Calcul des sollicitations d’un barrage-volate dans la zone d’encastrement des arcs, par O.-J. Rescher, Dt és se. techn.
Divers : Note sur les canaux de forme géométrique et le profil ceycloidal fermé, par Li.-A. de Dardel, ingénieur dipl. EPZ.
Bibliographie. — Les congrés. — Carnet des concours. — Documentation générale. — Nouveautés, informations diverses.

CALCUL DES SOLLICITATIONS D'UN BARRAGE-VOUTE
DANS LA ZONE D’)ENCASTREMENT DES ARCS

par O.-]. RESCHER, Dr és sc. techn., chargé de cours a I'Ecole polytechnique de 1'Université de Lausanne

I. Introduction

Le calcul d’un barrage-voiite encastré dans un massif
rocheux constitue un probleme tri-dimensionnel dont
I'analyse exacte rencontre de grandes diflicultés. Aussi
se contente-t-on le plus souvent de l'approximation
consistant & ajuster les déformations d’un double sys-
teme d’ares horizontaux et de murs verticaux en leurs
points d’intersection (méthode arcs-murs). Cel ajuste-
ment permet de déterminer avec une précision sulli-
sante la répartition des charges extérieures (poussée
de l'eau, en particulier), entre ces deux systémes
d’éléments porteurs.

Lles contraintes dans les ares et dans les murs se

sénéralement selon la théorie classique de

calculent g
Navier ; mais la précision du caleul, en particulier dans
la zone voisine de Pencastrement, ne peut étre bien
définie tant qu'une solution rigourcuse n’est pas donnée
a ce probléeme. Iin outre, la théorie de Navier ne permet
pas de déterminer la répartition des contraintes dans

le massif rocheux d’appui.

Nous présentons ici une méthode de calcul des con-
traintes dans les arcs a I'aide de la théorie de 1'élasticité.
Cette méthode, également applicable aux murs, a été
é¢tablie lors de 'étude du barrage de Mauvoisin (Valais,
Suisse ; barrage-votte 237 m de haut), au bureau du
professeur A. Stucky, a Lausanne. Les résultats obtenus,
vérifiés au moyen d’essais photoélastiques, ont permis
de réaliser d'importantes économies d’excavations et de
béton.

Ces derniéres années, plusieurs auteurs ont essayé de
déterminer la répartition des contraintes dans un arc
("I;lsliquvnu-nl encastré soumis & une charge constante
ou variable, soit par le calcul [5], soit par 'expérience
[11]. Sauf erreur, la premiére analyse mathématique de
I’arc encastré a 'aide de la théorie de I'élasticité a été
¢tablie par Hofacker [11] 5 son étude (ares circulaires en-
castrés et d’épaisseurs différentes, soumis & une poussée
hydrostatique constante ou variable) visait essentiel-
lement & déterminer la répartition des contraintes a

I'intérieur de Parc. In raison des hypotheéses simpli-
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ficatrices admises pour la région de l'encastrement
(auxquelles 'auteur a été amené pour faciliter la mise
en équations du probleme) les résultats obtenus ne sont
pas applicables dans cette partie de I'arc et du massif
rocheux.

Pour combler cette lacune, ce qui représente un
grand intérét pratique, notre étude s'attache plus
spécialement & déterminer la distribution des contrain-
tes dans la partie de 'arc formant la retombée et dans
le massif d’appui. La méthode du calcul développée est
fondée sur un travail de Zienkiewicz [13].

II. Exposé du probléme

La recherche d’une orientation de l'appui des arcs
normale a leur fibre moyenne, amene I'ingénieur a
prévoir des excavations importantes el a remplacer
le bon rocher par du béton. Pour pallier cet incon-
vénient, les encastrements du barrage, en particulier
ceux des ares inférieurs relativement épais, ne sont
pas réalisés par une section radiale plane unique s’éten-
dant sur I'épaisseur totale de I'arc, mais au moyen de
gradins dont les faces sont approximativement normales
4 la fibre moyenne de I'are (fig. 1). Ainsi, la naissance
théorique des arcs est définie d’une maniére incertaine,
et la transmission des efforts au rocher de fondation
se répartit sur une zone assez longue, de sorte que 'arc
est déja appuyé sur le rocher a amont, alors qu’il se
prolonge encore a l'aval.

Pour déterminer les efforts intérieurs d’un are circu-
laire encastré selon les méthodes conventionnelles de
la statique, on admet que Pencastrement est réalisé
par une section radiale théorique qui remplace la section
d’encastrement oblique réelle. C’est la valeur de I'angle
au centre ainsi défini qui est introduite dans le calcul
de larc.

Cette simplification en implique une autre. En effet,
la pression de I'eau ne s’exerce sur le parement amont
de 'are réel que jusqu’au point F (fig. 1); au-dela elle
est théoriquement nulle. Méme en admettant que I'ecau
d'infiltration dans la masse rocheuse exerce sur la
partie encastrée de arc une certaine pression, celle-ci
sera certainement inférieure a la pression hydrostatique
s’exercant au niveau considéré,
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Fig. 1. — Coupe horizontale schématique
d'un barrage-votte arc circulaire.
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En supposant la section de naissance confondue avec
le segment CD, on obtient un arc plus raide que celui
qui est encastré selon la section réelle AF. Ce raidisse-
ment est pratiquement compensé par la surcharge appli-
quée sur le parement amont, entre les points F et D.

L’expérience a montré que les efforts intérieurs dans
'arc ne sont que trés peu influencés par ces simplifi-
cations, cela aussi bien pour les arcs supérieurs (relati-
vement minces) que pour les ares inférieurs (relativement
épais). De ce fait, 1l est possible de déterminer la
résultante des contraintes sur chaque section d’un are,
encastré dans un massif rigide ou déformable, 4 I'aide
des méthodes de la statique.

Les contraintes normales sur toutes les sections de
'are se calculent généralement selon la regle du trapeze
(hypothese de Navier). Comme la these de Hofacker le
montre, pour des arcs circulaires minces a forte courbure,
caractérisés par un élancement (épaisseur relative par
rapporl au rayon moyen) A = I% =10, les diagram-
mes des contraintes normales déterminés a laide de la
théorie de 'élasticité ne sont pas tres différents des
diagrammes trapézoidaux dans la partie centrale de
I'arc. Pour des arcs épais, élancement A<< 10, les dif-
férences deviennent plus grandes.

Les méthodes de la résistance des matériaux ne
permettent pas le caleul précis des contraintes normales
radiales et des contraintes tangentielles. Toutefois, elles
conduisent & des résultats acceptables dans toute la
partie de I'arc non influencée par I'encastrement.

La présente note qui, comme on l'a vu, traite de
la distribution des contraintes a la retombée de I'arc
et dans le massif d’appui, est limitée a I'étude de la
moitié de l'arc. Les elforts en chaque section de l'arce
sont assimilables & une résultante unique dont I'inten-
sité, la position et la direction se déterminent par les
méthodes conventionnelles de la statique.

Selon la théorie de ['élasticité, le calcul de T'arc
soumis 4 une pression uniforme ou variable, compte
tenu de lencastrement et de Pobliquité de lassise
(compatibilité des déformations de I'arc et de la masse
d’appui du rocher), constitue un probléme aux limites.
Ce probleme ne pouvant pas étre résolu par voie ana-
lytique, nous 'avons abordé par une méthode utilisant
les différences finies.

n résumé, I'objet de cette publication est d’établir
a 'aide de la théorie de I'élasticité une méthode de caleul
des contraintes dans un are élastique encastré oblique-
ment dans un massif rocheux, de comparver les résul-
tats obtenus & ceux du caleul classique et de montrer
que la transmission des efforts d’'un arc avee encastre-
ment oblique s’effectue dans de bonnes conditions.
Les résultats découlant d'un tel calcul ont été vériliés

par des essais sur modeéle photoélastique.

III. Bases de calcul

Iypothéses

Nous admettons que le domaine formé par la moitié
de T'are et sa fondation constitue un milieu élastique,
isotrope et homogene, et nous négligeons obliquité
des flancs de la vallée par rapport au plan vertical.
Ces hypotheses ne correspondent qu'approximativement
A la réalité. Le béton, comme on le sail, ne satisfait




pas a la loi de Hook (contraintes et déformations ne
sont pas proportionnelles), il ‘est sujet au fluage, son
module d’¢lasticité n’est pas constant et dépend des
conditions hygroscopiques. Pour pouvoir évaluer I’état
de contrainte dans la masse rocheuse, il est indispen-
sable d’assimiler celle-ci 4 un solide élastique et iso-
trope et d’admettre en profondeur un état de contrainte
découlant de la théorie de Boussinesq. Nous négligeons
ainsi effet de la stratification, d’une éventuelle fissu-
ration du rocher et nous supposons que le module
d’élasticité est le méme en surface qu’en profondeur.
En outre, nous admettons que les propriétés physico-
mécaniques de la masse rocheuse sont les mémes
que celles du béton du barrage.

Ces facteurs modifient certainement la distribution
des contraintes calculées selon la théorie de 1'élasticité.
Toutefois les essais sur modele réduit confirment que
les contraintes ainsi calculées se rapprochent davan-
tage de la réalité que celles déterminées au moyen des
régles classiques de la résistance des matériaux. Il
est difficile de savoir dans quelle mesure cette conclu-
sion est valable pour I'ouvrage réel : seuls de nombreux
essais sur des ouvrages exécutés permettront de tran-
cher la question.

Cas de charge considéré

Les contraintes dans un arc de barrage-votite sont
essenticllement dues & la poussée de I'eau s’exercant
sur le parement amont. Suivant le nombre des murs
verticaux choisis pour le calcul de l'ajustement des
déformations, cette pression est constante ou variable.
D’autres effets, généralement secondaires, provoquent
également des contraintes : ce sont la pression de 'eau
sur les versants de la vallée, le retrait et le fluage du
béton, les variations de température, la pression de
Ieau dans les pores, etc. Il est pratique de calculer
I'état de contrainte pour chaque effet séparément et
de composer ensuite les contraintes correspondant aux
différents cas par superposition.

Dans cette étude, nous nous bornons au calcul d’un
arc d’épaisseur variable, soumis 4 une pression uni-
forme.

‘woot=@

I'ig. 2. — Dimensions générales du domaine arc-fondation
étudié. Définition du réseau remplacant le continuum et
charges appliquées.

Largeur a la clé Epaisseur
Arc idéalisé. . . . . . . . . . .. 1,00 m. 0,1 m.
Arc réel . . . 35,80 m. 1,0 m.

(Arc 1830 du I::u.'rﬂ.g(: de Mauvoisin)

Profil étudié

Nous avons étudié la moitié droite d'un arc parti-
culierement sollicité du barrage de Mauvoisin, situé
dans la zone du tiers inférieur du barrage, au niveau
1830 ; la figure 2 en définit la forme. Pour le calcul,
un changement d’échelle des longueurs a été effectud,
ramenant 1’épaisseur de l'arc a la clé de 35,80 m a
1,00 m et sa hauteur de 1,00 m a 0,1 m; la pression
uniforme sur le parement amont de I’arc a été admise de
1 t/m2 Les contraintes réelles se déduisent des con-
traintes ainsi calculées en multipliant ces derniéres
par la pression réelle supportée par I'arc. Le calcul du
barrage selon la méthode arcs-murs, a donné pour la
part de la pression supportée par cet arc la valeur de
114 t/m? (ajustement des déformations radiales au
droit du seul mur central).

IV. Méthode de calcul

Exposé du probléme

Il s’agit de déterminer I’état de contrainte bidimen-
sionnel du solide élastique constitué par la moitié de
I'arc et son massif de fondation sur une épaisseur
(profondeur) égale & environ 1,5 fois 1'épaisseur de I'arec.
Ce demi-arc est sollicité, sur son extrados, par la pres-
sion radiale uniforme de I’eau et, sursa section de clé,
par des contraintes normales réparties suivant un
diagramme trapézoidal, équivalentes aux efforts inté-
rieurs agissant sur cette section (effort normal et
moment fléchissant), tels qu’ils découlent du caleul
classique de l'arc encastré.

Le massif de fondation est théoriquement infini,
Nous le limitons & la zone o les perturbations provenant
de I'encastrement de I'arc cessent pratiquement de se
faire sentir. D’aprés le principe de Saint-Venant, les
contraintes a la périphérie de ce massif de fondation
dépendent essentiellement de la valeur de la réaction
de Parc et de sa direction, et non de la répartition
locale des contraintes dans la zone de contact de 'arc
avec le rocher; a la distance du bord égale 4 environ
1,5 fois I'épaisseur de I'arc, tout se passe déja comme
si les contraintes étaient distribuées dans le massif
de fondation suivant les équations établies par Boussi-
nesq pour un demi-espace d'un solide homogéne et
isotrope, en appliquant une force concentrée P, équi-
valente a la réaction de I'arc sur la section située au
droit de la ligne de contact (fig. 4). Ce mode de faire
représente évidemment une approximation, mais on
peut obtenir une précision aussi grande que I'on veut
en délimitant le massif par une frontiére sullisamment
éloignée de la ligne de contact.

Fonction de contrainte (fonction d’Airy)

Comme on le sait, la distribution des contraintes
dans un domaine élastique bidimensionnel est défini
par une fonction de contrainte (fonction d’Airy).
Celle-ci doit satisfaire a I'équation aux dérivées par-
tielles du quatrieme ordre du disque (solide plat d’épais-
seur uniforme chargé dans son plan) qui prend, dans
un systeme de coordonnées cartésiennes, la forme
suivante [4, 12]:

pIya Pl NF
o T 252 oyt
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En raison de I'absence de forces massiques les trois
contraintes o, o,, T, sont définies par les équations
suivantes aux dérivées secondes de la fonction bi-
harmonique ['(a,y) :

_#F
o =

_PF 9
oy = 9.1;2 (_)
Tey = — 27 Jy

Conditions aw contour

Un disque est généralement sollicité par des charges
appliquées sur son pourtour, quelquefois aussi par des
forces agissant a I'intérieur de ce dernier et par des
forces massiques (p. ex. poids propre) figure 3.

En chaque point du contour d’un disque sollicité
par des forces agissant dans son plan, I'équilibre entre
forces extérieures et intérieures permet d’écrire :

1

Z X-ds =+ o, dy — 15y dx

L (3)
= Y-ds = — oy dx + Tdy

ou X, Y composantes des charges appliquées au con-
tour par unité de longueur

e épaisseur uniforme du disque.

L’introduction des valeurs des contraintes (2) dans
les équations (3) et l'intégration membre & membre
de ces derniéres sur la longueur s du contour donnent :

B
IF IF 1 B
(E%—«EL‘+EIN“
A
B

((7F) (()F) 1 Y.d
—] — (% SR - ds
Jr/p I/ 4 e
1
Pour des disques simplement connexes, les termes
1\ 1
constants (—) et (—) peuvent étre supprimés, car
dx /4 Y/ a ’

ils sont sans influence sur la courbure de la surface
représentant la fonction de contrainte ['(z,y) et, de
ce fait, sur le caleul des contraintes.

Les intégrales du deuxieme membre des équations (4)
représentent les composantes de effort tranchant 7'
au point 3, d'ou:

B
Il (c')/'" 1[. (T
4 (5)
] o i B 1
I I 1 r 1
) (&) =+- [Xds=+-T,
(()!/)/: (().'/)xl e f & | e

A

Ces équations permettent de déterminer les valeurs

— et — le long du contour; en outre elles montrent
Y

que ces Lermes restent constants sur la longueur des

trongons non chargés du contour.

Pour pouvoir calculer la variation de la fonction
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y A (o€ParT DE
L'INTEGRATION )

X

9

F(x,y) entre A et B nous introduisons dans la différen-
tielle
ar ar
dFF = — do + — - dy
Jx [71/
les expressions des dérivées partielles de /7. Aprés inté-
gration sur la longueur s du contour et simplifications,

(6)
Mg

e

il vient :

1

e

B B
Fgp—F, = {A{X(_I/I;—y)ds—k [ Y(;v—arl,)ds}:

ou Mp représente le moment des charges appliquées
sur la longueur s par rapport au point B ; ce montant est
positif dans le sens inverse des aiguilles d'une montre.
Le terme constant ¥4 de l'origine peut étre choisi nul.

Un probléeme d’élasticité plane est résolu si l'on
arrive a déterminer la fonction F(a,y) satisfaisant
I'équation (1) du disque compte tenu des conditions
au contour. Or, ce sont justement les conditions au
contour qui créent de réelles difficultés mathématiques,
rendant I'intégration analytique de I'équation diffé-
rentielle V4" = O le plus souvent impossible et empé-
chant de trouver une solution rigoureuse du probléeme.

Si les conditions au contour se rapportent unique-
ment aux charges appliquées, le probléeme est déterminé

or IF oF

lorsqu’on fixe les valeurs de F et - ou — et —-
l an az Y
., doF .. ) or .
La dérivée = se calcule a 'aide de 2— et Z— . Si ces
Jx Ay

conditions sont satisfaites pour des disques simplement
connexes, 'intégration de I'équation du disque V4F = Q
donne une solution unique [6, 7].

Approximation a Uaide d’un calcul par différences finies
Pour ¢tudier la distribution des contraintes cherchées,

on est parti des distributions de contraintes aux limites

sutvantes :

a) sur I'ave, pression uniforme sur I'extrados, et répar-
tition linéaire des contraintes normales sur la section
de clé




Fig. 4. — Force concentrée appliquée sur la frontiere recti-
ligne d’'un corps semi-infini.

b) sur le pourtour du massif de fondation, contraintes
découlant des formules de Boussinesq, la réaction
de l'arc étant supposée concentrée et appliquée sur
la ligne de contact (fig. 2).

Sur le contour du massif de fondation AMPOND, la
fonction de contrainte correspondant a Iapplication
d’une force oblique P par unité d’épaisseur a pour
valeur [12]:

Flz—f—_: r-6-sin 6 (7)

. Cette équation correspond a l'état de contrainte dans
un solide défini par O.K. Fréhlich pour un facteur de
concentration ¢ = 3, c’est-a-dire un solide élastique
homoge

totale de ’arc sur la section de contact. De 'équation (7)

F a
on peut facilement déduire I et les nradlentsa g[
le long du pourtour AMPOND. ¥

La fonction de contrainte correspondant a I'état de

ne et isotrope (fig. 4). La force P est la réaction

contrainte additionnel dit a la pression directe de I'eau
sur le massif de fondation, est la suivante [1] (fig. 5):
Foo— L 26 — 20
2= T 4qr (sin 2 26)
(8)
__ 2 etg L — oy}
Agrl a? 4 y?) m(,Lg;—ag/J
Si I'on fait abstraction de la liaison de 'arc au
massif de fondation, les contraintes correspondantes
sont les sulvantes :

(9)

oo — Lo+ sinol — — 2Lt oq sinaal

| | r

Oy = »;—{Ze—sme} - I%{-rr{ 2o [—sin‘zo(}
Pl esel = P L1 1 cos 2a)
Ty = VZ'ITl | (n.\e[ = '2_”' | -+ cos ZC(I

Fig. 5. — Charge uniformément répartie, s’étendant vers
la gauche, appliquée sur la frontiére rectiligne d’un corps
semi-infini.

et les contraintes principales ont pour valeurs :

GIZﬁ%(6+si119)
(10)
(6 — sin )

O = —

:H'U

¢r représentant 'angle formé par la direction de la
contrainte principale oy, et l'axe y, on a:

¢r =5 (m—8)

bl =

Ce cas de charge n'influence que peu I’état de con-
trainte dans la région de contact arc-fondation qui
nous intéresse. Aussi pour mieux apprécier U'influence

Y
4
Ax

|

AYy=AX

(-/ { (+/

k-2 |k-1 |k K+l |K+2

b
-

(-1 ¢ (+1

ig. 6.
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de la poussée de 'arc sur l'appui, avons-nous préféré
séparer les deux cas de charge. Leurs effets peuvent
étre superposeés.

Sur le pourtour de l'arc proprement dit ABCD,
les valeurs limites et les gradients de F' sont déterminés
a partir des équations (4) et (6). En partant du point A
(ou D) commun & la fondation et a I'arc, ces valeurs
inconnues sont calculées de proche en proche. Un
controle de ce caleul est possible puisqu’en aboutis-
sant a4 D (ou a A) on doit retrouver les valeurs fixées.
Il s’agit maintenant de déterminer la fonction F (2,y)
satisfaisant & 1’équation du disque V*[" =0 en tous
les points situés a Pintérieur du domaine considéré.

L’intégration analytique étant impossible, nous avons
recouru a une méthode de calcul par différences finies :
le disque continu est remplacé par un réseau de mailles
carrées, dont les cotés sont paralleles aux axes de
coordonnées et plus serrés dans les zones ot les variations
de contraintes sont plus accentuées. En remplagant
dans I'équation du disque V4" =0 les dérivées par-
tielles par des différences finies, celle-ci prend en un
point quelconque, k, la forme suivante (fig. 6).

(140
VIF _y 20F; —8(Fy—1 + Fep1 + Fi + ) + '
4+ 2(Fiy 4+ Fip1+ Feoa 4 Figr) +
+ (["k72 + Fk+2 + Fh + Fm) =0

Chaque point du réseau est ainsi lié aux douze points
voisins. A l'intérieur du domaine, une équation sem-
blable linéaire en IY peut étre établie pour chaque point
nodal du quadrillage. Pour les points situés pres du
contour ou un peu en dehors du domaine, les valeurs
de la fonction I sont déterminées par les valeurs aux
points situés a Uintérieur du domaine et par les valeurs
de F et de ses gradients aux points ou les lignes du
réseau coupent le contour. En écrivant ces relations
pour les différents points du réseau, il en résulte alors
équations & n—inconnues,

un systéeme linéaire de n-
qui sont les valeurs de la fonction I aux n—points
considérés.

La figure 8 montre le réseau entourant un point, k,
situé pres du contour; quelques points tombent en
dehors du domaine considéré. Nous introduisons dans
Péquation réguliere les valeurs de la fonction /' aux
points [ et m en reliant ces points au point k par une
parabole a faible courbure qui donne au point du
bord II les valeurs de la fonction et ses gradients
imposées. Par les points (I 4+ 1) et (Il —1) nous
procédons d’une maniére analogue. La résolution du
systeme d’équations établi pour tous les points situés
4 lintéricur du domaine devient ainsi possible. Une
méthode pratique de  résolution  d’un tel systeme
d’¢quations a grand nombre d’inconnues a été déve-
loppée par R. V. Southwell [9, 10] : c’est la « méthode
de relaxation» qui permet de résoudre le probleme
par approximations successives avec toute la précision
désirée. Elle exige un important caleul numérique qui
est cependant plus rapide que loutes les méthodes
directes dés que le nombre d’équations est trés élevé,

s .« .
comme ¢ est 11,) cas 1cl.

M éthode de relaxation
[ application de cette méthode n'est pas limitée
aux problemes définis par une équation différentielle
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tition des résidus

du deuxiéme ordre ou par une équation biharmonique.
En effet, elle peut étre appliquée a une grande variété
de problémes définis par des équations linéaires ayant
la forme suivante [8]:

Point 0 :

i=k

Zy —I—EO(MQ — oWy =Ry (i=1,2,3...k) (12)
i=1

ou : W, Valeur de la fonction au point (0).
Wi Valeur de la fonction dans un point
voisin (1).

e Coeflicients constants.

Zy =7 (zy)y Fonction de z et y au point (0).
ity Erreur, résidu ;

erreur absolue (si oy = 1).

En tous les autres points du réseau une équation
semblable peut étre écrite. Le résidu se calcule a partir
de valeurs quelconques de la fonction admises au
préalable en tous les points du réseau. Dans I'équation
(12) la somme s’étend seulement aux seuls points
adjacents (i) définis par cette équation. En augmentant
la valeur de la fonction Wyde AW, (Wo— W -+ AW,),
I’équation (12) devient

i=k
i - >
- . — V.o L v =
Zy -+ N aiW; —aqy (W, + AW,) = Ry + AR, (13)
=1
1303
1590 1512 130
CLE DE REPARTITION
DES RESIDUS POUR
“OPERATION UNITAIRE"
- AF=+1
o
1503 1231 1oe: 1067 952
VALEURS DE w20
taFoncTion 22| 427 Resious
=) 148 | — 247 e
C :l&g \B'
e 829 755
570
Fig. 9.




Fig. 10. — Valeurs de la fonction de contrainte — F.102
sur le pourtour et a l'intérieur du domaine considéré.

En soustrayant membre & membre I’équation (13) de
I’équation (12), 1l vient

ARy = — a, AW, (14)
AR; = — AW, (14 a)

et nous constatons que l'augmentation de la fonction
AW, n’entraine qu’'une variation du résidu, égale au
produit de AW, par le coeflicient — .

Aux points (7) voisins du point 0 qui apparaissent
dans D'équation (12) seuls les résidus subissent une
modification mais non les valeurs de la fonction, comme

Lorsque o = 1:

les équations suivantes le démontrent.
Point (1) :
i=Fk

Zy+ N BWi— P Wy =Ry (i=0,2,3, ... k) (15)
=0

i=k
Z, + 2 BiW;+ B AWy — B, Wy = R, + AR, (16)
i=0
d’ou :

AR, = + B,AW, (17)

Cette équation reste inchangée pour By = 1.

Les relations (14) et (17) sont les équations fonda-
mentales de la méthode de relaxation définissant le
mode de calcul lorsqu’on fait varier la valeur de la
fonction en un point du réseau. En effet, la clé de
répartition conduisant a la liquidation des résidus
découle d’une opération unitaire AW = 1. En appli-
quant ces relations a Péquation du disque V47 = 0,
base de notre probléeme, nous trouvons facilement la
clé de répartition (fig. 7).

Cette clé de répartition des résidus doit étre modifice
pour les points du domaine qui sont influencés par les
conditions au contour. La méthode de relaxation
consiste alors a liquider successivement les résidus en
menant simultanément deux comptabilités (fig. 9), une
relative a la modification des valeurs de la fonction
et une autre a celle des résidus. Il est pratique de dessi-
ner le quadrillage du domaine 4 une échelle suflisamment

Fig. 11. — Valeurs du gradient ((77—11} - 10—1 sur le pourtour
z

du domaine considére.

grande pour indiquer schématiquement en chaque point
du réseau la clé de répartition (fig. 8). Ce procédé
permet de résoudre d’une maniére commode le probléme
posé et méme des problémes plus compliqués que ceux
caractérisés par une fonction biharmonique. Généra-
lement on commence & corriger la fonction au point
ou le résidu est le plus grand. Le procédé de correction
continue est convergent [2, 10]. Une accélération peut
étre réalisée en modifiant simultanément les valeurs de
la fonction en plusieurs points (relaxation en bloc ou
en groupe). Il est évident que le procédé de liquidation
des résidus est fortement raccourci, si la premiére esti-
mation des valeurs de la fonction est satisfaisante.
Abstraction faite des régions du domaine ou se
trouvent des points singuliers, la précision qu’on peut

: i OF
Iig. 12. — Valeurs du gradient — - 10—1 sur le pourtour
' dy
du domaine considéreé.
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atteindre a l'aide de la méthode de relaxation est
d’environ 1 9, de la plus grande valeur de la fonction
pour les problémes définis par un potentiel, et d’environ
5 9% pour les problémes biharmoniques. Dans notre
cas particulier on peut estimer que 'erreur probable
est de l'ordre de 3 9 en admettant des résidus de + 50
au maximum (voir figure 10).

Application pratique de la méthode
Le calcul a été effectué dans l'ordre suivant :
1) Choix d’un réseau a grandes mailles dans la fon-
dation et a mailles plus serrées dans la partie de
I’arc et la zone d’encastrement.

8]
—

Détermination de la grandeur, de la direction et
du point d'application de la réaction P sur la
surface de contact arc-fondation.

Calcul de la répartition des contraintes normales

sur la section de clé¢ BC.

3) Calcul des valeurs de la fonction F et de ses dérivées
oI oI . .

—— et = en tous les points du réseau situés sur
ks Y
le contour ABCD et AMPOND (fig. 10, 11 et 12).

4) Etablissement des équations aux différences finies
liant les points extérieurs au contour ABCD aux
points intérieurs.

5) Estimation des valeurs de la fonction /' en tous
les points du réseau & grandes mailles situés a
I'intérieur du domaine considéré.

6) Application de la méthode de relaxation (relaxation

sommaire, préliminaire) pour liquider les résidus

aux nceuds du réseau 4 grandes mailles.

Calcul des valeurs de la fonction /' aux nceuds du

réseau a mailles plus serrées par interpolation

~1
~—

cubique a partir de celles obtenues par le procédé
de la relaxation sommaire.

8) Nouvelle application de la méthode de relaxation
en corrigeant également les perturbations créées
sur les valeurs des résidus du grand réseau par
Iintroduction du réseau plus serré jusqu’au
moment ot les résidus en tous les points sont
devenus négligeables.

9) Calcul des contraintes selon les équations (2) en
remplagant les différentielles par les différences

finies :
P Fy—2F; 4 F;
o T E T Ay?
=1 a8 g% —, Iy — 2A/’11; + Fy_1
e f)zl Fip14+ Fra—Fi 1 — Fiq
! dxy 4 Ax Ay

10) Calcul des contraintes dans les sections choisies,
en particulier les sections radiales de Parc et les
sections normales & la réaction sur appui, P, en
utilisant les relations découlant du cercle de Mohr.

V. Résultats et commentaires

Section radiale de Uarc

Les graphiques de la figure 14 représentent le mode
de transmission des efforts de 'arc au massif de fonda-
tion :

Dans les sections radiales de I'are, jusqu’a une dis-
tance de encastrement égale approximativement & son
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épaisseur, les contraintes normales o sont distribuées
d’une facon peu différente de la répartition linéaire.
Ce sont les contraintes dominantes. Les contraintes
tangentielles Tg, et les contraintes normales o, comme
on doit s’y attendre, sont nettement plus faibles.
Au voisinage de l'encastrement, les efforts sur les
sections radiales tendent & se concentrer vers l'intra-
dos, créant une augmentation de la compression, tandis
que du cbté de Iextrados, les compressions diminuent
dans une zone tres localisée a tel point que des tractions
apparaissent. Ce sont des contraintes d’angle. Au voisi-
nage de I'encastrement, la répartition des contraintes
normales sur une section radiale différe ainsi beaucoup
de la répartition découlant de la régle de Navier.
Stmultanément, les contraintes tangentielles sont plus
élevées a l'intrados et leur répartition s’écarte de la
répartition parabolique classique, telle qu’elle se pré-
sente dans les sections radiales éloignées de l'appul.

Massif de fondation

Dans le massif de fondation, sur des sections nor-
males a la résultante des efforts, on constate une concen-
tration des contraintes au droit du contact de I'intrados
avec la surface du rocher. La contrainte d’angle est
tres localisée. Dés que 'on s’écarte méme trés peu de
I'angle intrados, elle diminue rapidement d’intensité.
Vers I’extrados, elle s’évanouit a une distance égale
a deux fois I'épaisseur de 'arc environ. En profondeur,
les contraintes diminuent rapidement par suite de la
diffusion des efforts.

Sectron de contact arc-rocher

Les graphiques de la figure 13 donnent les contraintes
sur des sections paralléles aux axes de coordonnées, et
en particulier sur la ligne de contact. On voit que les
contraintes normales sur cette section oblique de
contact (fig. 13 a) différent notablement de celles décou-
lant de la régle de Navier; si 'on fait abstraction des
pointes trés localisées (contraintes d’angle), le maximum
se présente au milieu de la section. Les contraintes
tangentielles (fig. 13 ¢) sont également tres différentes
de celles que 'on pourrait calculer par les méthodes
classiques ; abstraction faite des pointes, on trouve des
valeurs plus uniformes.

Effet d’angle (Concentration des contraintes)

Dans la zone de contact des arcs et du rocher, les
contraintes sont concentrées aussi bien a I'extrados
qu'a l'intrados et quelles que soient I'inclinaison de la
section d’encastrement, la position et la direction de
la résultante. Le calcul théorique montre que, dans la
région des angles vifs rentrants, aigus ou obtus, les
contraintes devraient étre infinies pour satisfaire aux
conditions de compatibilité des déformations dans le
stade élastique. Ces valeurs infinies ne peuvent pas
étre atteintes, la matiére subissant des déformations
plastiques. Dans les cas ou, I'angle étant arrondi, le
rayon du congé est trop petit, les contraintes dépasse-
ront aussi sensiblement la limite d’élasticité de la
matiére provoquant également des déformations plas-
tiques qui entraineront une nouvelle répartition des
contraintes. Toutefois, la zone ol régnent ces contraintes
tres élevées est extrémement limitée, et ces derniéres
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Contraintes

— Contraintes dans le rocher en t;m2.

normales Oy sur des sections y = const.

aj
h) Contraintes normales O, sur des sections x = const.
¢) Contraintes tangentielles

ne seront pratiquement modifiées que dans cette zone.
Les angles vifs forment des points singuliers qui échap-
pent aux régles de I'élasticité. La nouvelle répartition
des contraintes ne peut plus se calculer selon les métho-
des de la théorie de I'élasticité, mais on congoit facile-
ment que les contraintes diminuent dans la zone ou
le fluage plastique a commencé et augmentent autour
de la limite de cette zone. Comme les valeurs théoriques
extrémes se limitent & une zone trés localisée, la modi-
fication de la répartition des contraintes calculée pour

Fig. 14. — Contraintes
dans l'arc et dans le

rocher en t/m?2.
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Tzy sur des sections y = const.

un état élastique est petite et se fait sentir essentielle-
ment dans cette zone, sans influencer beaucoup les
contraintes dans les régions plus éloignées des angles.
De ce fait, les contraintes d’angle (ou contraintes d’en-
taille) n’influencent que peu la répartition des con-
traintes d’ensemble assurant l'équilibre de la cons-
truction. Pour évaluer assez exactement ces contraintes
locales, le calcul par différences finies exigerait une
forte réduction de la maille, mais on voit, déja avee
la maille choisie, que les contraintes augmentent rapide-

Fig. 15. — Comparaison entre les contraintes
09, 07, Ter déterminées par la théorie de I'¢las-
ticité et par photocélasticité.

Section I — T perpendiculaire a la direction de
la résultante a la naissance.
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ment vers le sommet de 'angle. Si 'on désire que les
contraintes restent inférieures a la limite d’élasticité de
la matiére, 1l est nécessaire d’arrondir les coins {ormés
par les angles.

A T'amont, la contrainte de pointe est une traction
qui est nécessaire pour satisfaire aux conditions de
compatibilité des déformations, mais non a I'équilibre.
Elle n’est done pas dangereuse, car si une fissure venait
a se former, cette traction disparaitrait. Par ailleurs,
la fissure ne pourrait pas progresser derriére 'appuil
de I'arc puisqu’elle entrerait rapidement dans une zone
comprimée dans tous les sens.

En réalité, I'état de contrainte se présente plus
favorablement, car Ieffet de la pression directe de I'eau
sur les versants crée a l'intérieur du massif rocheux
un état additionnel de contrainte constitué uniquement
par des compressions. Ces contraintes, nettement plus
petites que celles dues & la pression de l'arc peuvent
étre évaluées avec une bonne approximation selon les
expressions des équations 9 et 10.

VI. Conclusions

Comparatson entre les résultats du calcul et les résultats
des essats photoélastiques

Les graphiques de la figure 15 permettent d’établir
cette comparaison pour les contraintes considérées ici,
soit celles qui agissent sur une section passant par le
point de contact du parement intrados de I’arc avec le
rocher, et normales 4 la résultante de I’arc. On constate
que pour les trois contraintes og, o, et T, la concor-
dance est parfaite. On en déduit que les résultats des
essais photoélastiques sont pratiquement équivalents
a ceux du calcul.

Estimation des contraintes dans le rocher a la retombée
des arcs

L’étude détaillée, par calculs et par essais, a porté
sur 'arc 1830 du barrage de Mauvoisin, un des plus
chargés. On peut se demander quelle est la valeur des
contraintes sur le rocher a la retombée des autres arcs.
Pour cela on a cherché a déduire des essais une méthode
approximative commode, capable d’estimer la valeur
des contraintes maximums de contact béton-rocher sur
une section normale a la force. Les essais ont montré
que lorsqu’on fait varier la force, le diagramme des
contraintes normales conserve une forme sensiblement
triangulaire et que la contrainte maximum peut alors
se déduire des cfforts appliqués et de la position de la
force par rapport a l'aréte intrados : cette contrainte
maximum est pratiquement égale a deux fois la con-
trainte moyenne qui s’exercerait sur une section de
largeur égale a trois fois la distance de la force a laréte
intrados.

Conclusions
Le calcul par la théorie de D'élasticité, comme les
essals photoélastiques, permettent de tirer les conclu-
sions, suivantes :
a) Leffet de I'obliquité de la section des ares dans
la région d’appui n'entraine pas de perturbations
importantes dans la répartition des contraintes

de la section de naissance,
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b) Les concentrations de contraintes dans les angles
sont indépendantes de 'obliquité de cette section.
Elles se produisent essentiellement dans le béton
et non dans le massif d’appui, ou I'effort se diffuse
trés rapidement.

c¢) Ces contraintes concentrées, trés localisées, sont
sans danger parce qu’elles ne sont pas nécessaires
pour satisfaire a Déquilibre et parce qu’elles
découlent uniquement de conditions Jocales de
déformation.

d) On peut évaluer, en premiére approximation, dans
la section de retombée des arcs, les contraintes
normales sur des sections perpendiculaires a la
résultante, en admettant que leur distribution
est triangulaire, et qu’elles se répartissent sur
une largeur fictive égale a trois fois la distance
de la force au bord du profil.

e) Les efforts provenant de la poussée des arcs se
diffusent fortement dans le massif rocheux
d’appui, de sorte que les contraintes qui en
résultent diminuent rapidement d’intensité en
profondeur.

VII. Résumé

A T'aide de la théorie de I'élasticité, nous avons déter-
miné I'état de contrainte dans la zone de I'encastrement
d’un arc d’un barrage-voute, et dans le massif rocheux
de fondation. Le probléme, ramené a un probléme aux
limites, a été résolu par la méthode de relaxation en
introduisant des différences finies. Les résultats obtenus
ont été comparés aux résultats d’essais photoélastiques
effectués pour plusieurs positions et inclinaisons de la
poussée de 'arc. Cette comparaison a permis de cons-
tater, une fois de plus, la bonne concordance des
résultats découlant de la théorie de I'élasticité et de
son partenaire la photoélasticité.

Le calcul par différences finies permet d’obtenir les
résultats aussi précis qu’on le désire, mais non sans
exiger beaucoup de temps. Par contre, il ne conduit
pas directement a des résultats généraux permettant la
discussion : pour chaque cas de charge différent le
calcul doit étre recommencé. Les essais photoélastiques
permettent de multiplier facilement les cas de charge,
et de trouver rapidement les valeurs des contraintes
déterminantes, sans qu'il soit nécessaire de pousser
I'analyse complétement. Les deux méthodes ont I'avan-
tage de permettre de résoudre des problemes d’élasti-
cité non accessibles 4 une méthode analytique ; dans
une certaine mesure, elles se complétent 'une 'autre.

Les résultats obtenus ont permis d’établir une méthode
approximative commode pour estimer la répartition
des contraintes maximums au contact du béton et
du rocher ainsi que sur une section normale a la force
et de tirer quelques conclusions pratiques.

A cette ocecasion, I'auteur remercie viverment M. le
Professeur A. Stucky qui lui a suggéré d’entreprendre
cette étude et qui I'a suivie avee un grand intérdt.
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DIVERS

Note sur les canaux de forme géométrique et le profil cycloidal fermé
par L.-A. DE DARDEL, ing. dipl. EPZ Suiselectra Bale

I. Le probléme courant et sa résolution

Partons de la formule de Strickler, qu’on peut mettre
sous la forme

O 63

kJiz P23 (1)

ot Q est le débit, k le coeflicient de rugosité, J la pente
de la ligne d’énergie, F' le profil hydraulique et P le
périmeétre mouillé. Le probléme qui consiste a déter-
miner la section transversale d’'un canal ne trouve géné-
ralement pas de solution immédiate : 1l n’y a de rap-
port simple entre F et P, ou entre F3/3 et P23 que si
la section est circulaire et le canal en charge; auquel
cas le diamétre est-

8
= 11,5483[ 2 r’ (2)

kJ1/2

L’équation (1) exprime que 'eau coule dans un canal
entierement connu en ses dimensions longitudinales et
transversales, et jusqu’en la nature de ses parois. Elle
ne donne pas d’indication directe sur le profil trans-
versal a4 adopter. Il faut choisir la forme et les dimen-
sions de ce profil, puis examiner comment l'eau s’y
comporte, c¢’est-a-dire comment varie le couple des
valeurs ' et P, ce qui permet en fin de compte de
trouver la profondeur i de 'eau pour laquelle I7 et P
satisfont a I’équation (1), et au besoin de modifier les
valeurs (), k et J en conséquence.

Hors de toute considération constructive, le probleme
de la détermination du profil d’un canal comporte donc
deux groupes d’opérations juxtaposées et dépendantes
soumises ensemble &4 'appréciation permanente de I'hy-
draulicien jusqu’a satisfaction :

1. Détermination ou choix 2. Choix de la forme du pro-
du débit Q, de la pente J fil transversal et d’une

et du coeflicient k de ru- valeur des ¢léments I+ et
gosité ; calcul des valeurs P telle que

, 0 AL ——
V= v=pm ¥ )

e

T

T

(

Fig. 1. — Profil symétrique quelconque.

II. Le probléeme auxiliaire

Le second probléme énoncé se pose inéluctablement
a toul praticien et complique souvent sa tache. Consi-
dérons la figure 1, qui représente le profil transversal
d’un canal de forme géométrique quelconque, mais
symétrique par rapport a I'axe Oy du systéme rectan-
gulaire 20y de référence. Dans ce profil supposé rigide,
momentanément tout au moins, 'eau atteint le niveau
MM,. Les deux points M et M, sont sur le pourtour
et symétriques ; leurs coordonnées satisfont & une équa-
tion bien délinie, celle de la courbe du pourtour. Nous
nommerons éléments relatifs a M les quantités dont les
expressions algébriques sont fonctions des coordonnées
de M, telles que

4 F 28 . [ 1278 [578
7l e e

De cette série, les éléments qu’il importe de connaitre

hpFP

sont I" et . L’on est donc le plus souvent amené a
calculer 'une apres lautre les valeurs numériques de
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