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CALCUL DES SOLLICITATIONS D'UN BARRAGE-VOUTE
DANS LA ZONE D'ENCASTREMENT DES ARCS

par O.-J. RESCHER, Dr es se. techn., chargé de cours à l'Ecole polytechnique de l'Université de Lausanne

I. Introduction
Le calcul d'un barrage-voûte encastré dans un massif

rocheux constitue un problème tri-dimensionnel dont
l'analyse exacte rencontre de grandes difficultés. Aussi
se contente-t-on le plus souvent de l'approximation
consistant à ajuster les déformations d'un double
système d'arcs horizontaux et de murs verticaux en leurs

points d'intersection (méthode arcs-murs). Cet ajustement

permet de déterminer avec une précision
suffisante la répartition des charges extérieures (poussée
de l'eau, en particulier), entre ces deux systèmes
d'éléments porteurs.

Les contraintes dans les arcs et dans les murs se

calculent généralement selon la théorie classique de

Navier ; mais la précision du calcul, en particulier dans
la zone voisine de l'encastrement, ne peut être bien
définie tant qu'une solution rigoureuse n'est pas donnée
à ce problème. En outre, la théorie de Navier ne permet
pas de déterminer la répartition des contraintes dans
le massif rocheux d'appui.

Nous présentons ici une méthode de calcul des
contraintes dans les arcs à l'aide de la théorie de l'élasticité.
Cette méthode, également applicable aux murs, a été
établie lors de l'étude du barrage de Mauvoisin (Valais,
Suisse ; barrage-voûte 237 m de haut), au bureau du
professeur A. Stucky, à Lausanne. Les résultats obtenus,
vérifiés au moyen d'essais photoélastiques, ont permis
de réaliser d'importantes économies d'excavations et de
béton.

Ces dernières années, plusieurs auteurs ont essayé de
déterminer la répartition des contraintes dans un arc
élastiquement encastré soumis à une charge constante
ou variable, soit par le calcul [5], soit par l'expérience
[11]. Sauf erreur, la première analyse mathématique de
l'arc encastré à l'aide de la théorie de l'élasticité a été
établie par Hofacker [11] ; son étude (arcs circulaires
encastrés et d'épaisseurs différentes, soumis à une poussée

hydrostatique constante ou variable) visait essentiellement

à déterminer la répartition des contraintes à

l'intérieur de l'arc. En raison des hypothèses simpli-
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ficatrices admises pour la région de l'encastrement
(auxquelles l'auteur a été amené pour faciliter la mise

en équations du problème) les résultats obtenus ne sont

pas applicables dans cette partie de l'arc et du massif
rocheux.

Pour combler cette lacune, ce qui représente un
grand intérêt pratique, notre étude s'attache plus
spécialement à déterminer la distribution des contraintes

dans la partie de l'arc formant la retombée et dans
le massif d'appui. La méthode du calcul développée est
fondée sur un travail de Zienkiewicz [13].

II. Exposé du problème

La recherche d'une orientation de l'appui des arcs
normale à leur fibre moyenne, amène l'ingénieur à

prévoir des excavations importantes et à remplacer
le bon rocher par du béton. Pour pallier cet
inconvénient, les encastrements du barrage, en particulier
ceux des arcs inférieurs relativement épais, ne sont
pas réalisés par une section radiale plane unique s'éten-
dant sur l'épaisseur totale de l'arc, mais au moyen de

gradins dont les faces sont approximativement normales
à la fibre moyenne de l'arc (fig. 1). Ainsi, la naissance

théorique des arcs est définie d'une manière incertaine,
et la transmission des efforts au rocher de fondation
se répartit sur une zone assez longue, de sorte que l'arc
est déjà appuyé sur le rocher à l'amont, alors qu'il se

prolonge encore à l'aval.
Pour déterminer les efforts intérieurs d'un arc circulaire

encastré selon les méthodes conventionnelles de

la statique, on admet que l'encastrement est réalisé

par une section radiale théorique qui remplace la section
d'encastrement oblique réelle. C'est la valeur de l'angle
au centre ainsi défini qui est introduite dans le calcul
de l'arc.

Cette simplification en implique une autre. En effet,
la pression de l'eau ne s'exerce sur le parement amont
de l'arc réel que jusqu'au point F (fig. 1) ; au-delà elle

est théoriquement nulle. Même en admettant que l'eau
d'infiltration dans la masse rocheuse exerce sur la

partie encastrée de l'arc une certaine pression, celle-ci

sera certainement inférieure à la pression hydrostatique
s'exerçant au niveau considéré.

i» Q
Ji 2

>',

Fig. 1.
d'ur

- Coupe hori
orraere-voûte

idiomatique
circulaire.

En supposant la section de naissance confondue avec
le segment CD, on obtient un arc plus raide que celui
qui est encastré selon la section réelle AF. Ce raidissement

est pratiquement compensé par la surcharge appliquée

sur le parement amont, entre les points F et D.
L'expérience a montré que les efforts intérieurs dans

l'arc ne sont que très peu influencés par ces simplifications,

cela aussi bien pour les arcs supérieurs
(relativement minces) que pour les arcs inférieurs (relativement
épais). De ce fait, il est possible de déterminer la
résultante des contraintes sur chaque section d'un arc,
encastré dans un massif rigide ou déformable, à l'aide
des méthodes de la statique.

Les contraintes normales sur toutes les sections de

l'arc se calculent généralement selon la règle du trapèze
(hypothèse de Navier). Comme la thèse de Hofacker le

montre, pour des arcs circulaires minces à forte courbure,
caractérisés par un élancement (épaisseur relative par

rapport au rayon moyen) A iä: 10, les diagrammes

des contraintes normales déterminés à l'aide de la
théorie de l'élasticité ne sont pas très différents des

diagrammes trapézoïdaux dans la partie centrale de

l'arc. Pour des arcs épais, élancement Â< 10, les
différences deviennent plus grandes.

Les méthodes de la résistance des matériaux ne

permettent pas le calcul précis des contraintes normales
radiales et des contraintes tangentielles. Toutefois, elles

conduisent à des résultats acceptables dans toute la
partie de l'arc non influencée par l'encastrement.

La présente note qui, comme on l'a vu, traite de
la distribution des contraintes à la retombée de l'arc
et dans le massif d'appui, est limitée à l'étude de la
moitié de l'arc. Les efforts en chaque section de l'arc
sont assimilables à une résultante unique dont l'intensité,

la position et la direction se déterminent par les
méthodes conventionnelles de la statique.

Selon la théorie de l'élasticité, le calcul de l'arc
soumis à une pression uniforme ou variable, compte
tenu de l'encastrement et de l'obliquité de l'assise

(compatibilité des déformations de l'arc et de la masse
d'appui du rocher), constitue un problème aux limites.
Ce problème ne pouvant pas être résolu par voie
analytique, nous l'avons abordé par une méthode utilisant
les différences finies.

En résumé, l'objet de cette publication est d'établir
à l'aide de la théorie de l'élasticité une méthode de calcul
des contraintes dans un arc élastique encastré obliquement

dans un massif rocheux, de comparer les résultats

obtenus à ceux du calcul classique et de montrer
que la transmission des efforts d'un arc avec encastrement

oblique s'effectue dans de bonnes conditions.
Les résultats découlant d'un tel calcul ont été vérifiés

par des essais sur modèle photoélastique.

III. Bases de calcul

Hypothèses
Nous admettons que le domaine formé par la moitié

de l'arc et sa fondation constitue un milieu élastique,
isotrope et homogène, et nous négligeons l'obliquité
des flancs de la vallée par rapport au plan vertical.
Ces hypothèses ne correspondent qu'approximativement
à la réalité. Le béton, comme on le sait, ne satisfait
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pas à la loi de Hook (contraintes et déformations ne
sont pas proportionnelles), il est sujet au fluage, son
module d'élasticité n'est pas constant et dépend des
conditions hygroscopiques. Pour pouvoir évaluer l'état
de contrainte dans la masse rocheuse, il est indispensable

d'assimiler celle-ci à un solide élastique et
isotrope et d'admettre en profondeur un état de contrainte
découlant de la théorie de Boussinesq. Nous négligeons
ainsi l'effet de la stratification, d'une éventuelle
fissuration du rocher et nous supposons que le module
d'élasticité est le même en surface qu'en profondeur.
En outre, nous admettons que les propriétés
physicomécaniques de la masse rocheuse sont les mêmes

que celles du béton du barrage.
Ces facteurs modifient certainement la distribution

des contraintes calculées selon la théorie de l'élasticité.
Toutefois les essais sur modèle réduit confirment que
les contraintes ainsi calculées se rapprochent davantage

de la réalité que celles déterminées au moyen des

règles classiques de la résistance des matériaux. Il
est difficile de savoir dans quelle mesure cette conclusion

est valable pour l'ouvrage réel : seuls de nombreux
essais sur des ouvrages exécutés permettront de trancher

la question.

Cas de charge considéré
Les contraintes dans un arc de barrage-voûte sont

essentiellement dues à la poussée de l'eau s'exerçant
sur le parement amont. Suivant le nombre des murs
verticaux choisis pour le calcul de l'ajustement des

déformations, cette pression est constante ou variable.
D'autres effets, généralement secondaires, provoquent
également des contraintes : ce sont la pression de l'eau
sur les versants de la vallée, le retrait et le fluage du
béton, les variations de température, la pression de
l'eau dans les pores, etc. Il est pratique de calculer
l'état de contrainte pour chaque effet séparément et
de composer ensuite les contraintes correspondant aux
différents cas par superposition.

Dans cette étude, nous nous bornons au calcul d'un
arc d'épaisseur variable, soumis à une pression
uniforme.

e*"'

Fig. 2. — Dimensions générales du domaine arc-fondation
étudié. Définition du réseau remplaçant le continuum et

charges appliquées.
Largeur à la clé Epaisseur

Arc idéalisé 1,00 m. 0,1 m.
Arc réel 35,80 m. 1,0 m.

(Arc 1830 du barrage de Mauvoisin)

Profil étudié
Nous avons étudié la moitié droite d'un arc

particulièrement sollicité du barrage de Mauvoisin, situé
dans la zone du tiers inférieur du barrage, au niveau
1830 ; la figure 2 en définit la forme. Pour le calcul,
un changement d'échelle des longueurs a été effectué,
ramenant l'épaisseur de l'arc à la clé de 35,80 m à

1,00 m et sa hauteur de 1,00 m à 0,1 m ; la pression
uniforme sur le parement amont de l'arc a été admise de
1 t/m2. Les contraintes réelles se déduisent des
contraintes ainsi calculées en multipliant ces dernières

par la pression réelle supportée par l'arc. Le calcul du
barrage selon la méthode arcs-murs, a donné pour la
part de la pression supportée par cet arc la valeur de
114 t/m2 (ajustement des déformations radiales au
droit du seul mur central).

IV. Méthode de calcul

Exposé du problème
Il s'agit de déterminer l'état de contrainte bidimen-

sionnel du solide élastique constitué par la moitié de
l'arc et son massif de fondation sur une épaisseur
(profondeur) égale à environ 1,5 fois l'épaisseur de l'arc.
Ce demi-arc est sollicité, sur son extrados, par la pression

radiale uniforme de l'eau et, sur sa section de clé,
par des contraintes normales réparties suivant un
diagramme trapézoïdal, équivalentes aux efforts
intérieurs agissant sur cette section (effort normal et
moment fléchissant), tels qu'ils découlent du calcul
classique de l'arc encastré.

Le massif de fondation est théoriquement infini.
Nous le limitons à la zone où les perturbations provenant
de l'encastrement de l'arc cessent pratiquement de se
faire sentir. D'après le principe de Saint-Venant, les
contraintes à la périphérie de ce massif de fondation
dépendent essentiellement de la valeur de la réaction
de l'arc et de sa direction, et non de la répartition
locale des contraintes dans la zone de contact de l'arc
avec le rocher ; à la distance du bord égale à environ
1,5 fois l'épaisseur de l'arc, tout se passe déjà comme
si les contraintes étaient distribuées dans le massif
de fondation suivant les équations établies par Boussinesq

pour un demi-espace d'un solide homogène et
isotrope, en appliquant une force concentrée P,
équivalente à la réaction de l'arc sur la section située au
droit de la ligne de contact (fig. 4). Ce mode de faire
représente évidemment une approximation, mais on
peut obtenir une précision aussi grande que l'on veut
en délimitant le massif par une frontière suffisamment
éloignée de la ligne de contact.

Fonction de contrainte (fonction d'Airy)
Comme on le sait, la distribution des contraintes

dans un domaine élastique bidimensionnel est défini
par une fonction de contrainte (fonction d'Airy).
Celle-ci doit satisfaire à l'équation aux dérivées
partielles du quatrième ordre du disque (solide plat d'épaisseur

uniforme chargé dans son plan) qui prend, dans
un système de coordonnées cartésiennes, la forme
suivante [4, 12] :

V4 F %T + 2 âTTldx* da? dy* + O. (1)

31



En raison de l'absence de forces massiques les trois
contraintes <jx, av, Txy sont définies par les équations
suivantes aux dérivées secondes de la fonction bi-
harmonique F(x,y) :

d2F

°y=^ (2)

d*F
Tœy~ dxdy'

Conditions au contour

Un disque est généralement sollicité par des charges
appliquées sur son pourtour, quelquefois aussi par des

forces agissant à l'intérieur de ce dernier et par des

forces massiques (p. ex. poids propre) figure 3.

En chaque point du contour d'un disque sollicité

par des forces agissant dans son plan, l'équilibre entre
forces extérieures et intérieures permet d'écrire :

1
¦X-ds

Y-ds

ox dy — Txy da

(3)

Gy
djC ,dy

où X, Y composantes des charges appliquées au con¬

tour par unité de longueur
e épaisseur uniforme du disque.

L'introduction des valeurs des contraintes (2) dans
les équations (3) et l'intégration membre à membre
de ces dernières sur la longueur s du contour donnent :

•9F\ _(if\
dyJB \dy]A

dF\
dx)b

d_F\
dx)a

X-ds

Y-ds

(4)

Pour des disques simplement connexes, les termes
tdF\ (9F\

constants I-—I et l-r—I peuvent être supprimes, car\dxj a \dyiA
ils sont sans influence sur la courbure de la surface

représentant la fonction de contrainte F(x,y) et, de

ce fait, sur le calcul des contraintes.
Les intégrales du deuxième membre des équations (4)

représentent les composantes de l'effort tranchant T
au point B, d'où :

B

a -m =_\dxJB \dx]

d£\
dyiB

Y-ds

X-ds

r'.
(5)

Ces équations permettent de déterminer les valeurs
dF 3F '

:— et — le long du contour : en outre elles montrent
Dx dy
que ces termes restent constants sur la longueur des

tronçons non chargés du contour.
Pour pouvoir calculer la variation de la fonction

Pt

Pz

•i
Xr*y TxyffxH-
T depart oe

L'intégration)
%

Ps

XB
pa

Xa

Fier. 3.

F(x,y) entre A et B nous introduisons dans la différentielle

dy
.„ dF

dF — — dx
dx

les expressions des dérivées partielles de F. Après
intégration sur la longueur s du contour et simplifications,
il vient :

(6)

Mb
e

FA - | J X(yB — y)ds+ J Y(x—xjdsl-

où Mb représente le moment des charges appliquées
sur la longueur s par rapport au point B ; ce montant est

positif dans le sens inverse des aiguilles d'une montre.
Le terme constant Fa de l'origine peut être choisi nul.

Un problème d'élasticité plane est résolu si l'on
arrive à déterminer la fonction F(x,y) satisfaisant
l'équation (1) du disque compte tenu des conditions
au contour. Or, ce sont justement les conditions au
contour qui créent de réelles difficultés mathématiques,
rendant l'intégration analytique de l'équation
différentielle ViF O le plus souvent impossible et empêchant

de trouver une solution rigoureuse du problème.
Si les conditions au contour se rapportent maniement

aux charges appliquées, le problème est déterminé

lorsqu'on fixe les valeurs de F et
9F dF ¦ $F
dn dx

et
dy

t a- ¦ ¦ dF dF dF
La uenvee — se calcule a 1 aide de — et — bi ces

dn dx dy

conditions sont satisfaites pour des disques simplement
connexes, l'intégration de l'équation du disque V4i?:= 0
donne une solution unique [6, 7].

Approximation à l'aide d'un calcul par différences finies
Pour étudier la distribution des contraintes cherchées,

on est parti des distributions de contraintes aux limites
suivantes :

a) sur l'arc, pression uniforme sur l'extrados, et répar¬
tition linéaire des contraintes normales sur la section
de clé ;
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Fig. 4. — Force concentrée appliquée sur la frontière recti-
ligne d'un corps semi-infini.

Fig. 5. — Charge uniformément répartie, s'étendant vers
la gauche, appliquée sur la frontière rectiligne d'un corps

semi-infini.

b) sur le pourtour du massif de fondation, contraintes
découlant des formules de Boussinesq, la réaction
de l'arc étant supposée concentrée et appliquée sur
la ligne de contact (fig. 2).

Sur le contour du massif de fondation AMPOND, la
fonction de contrainte correspondant à l'application
d'une force oblique P par unité d'épaisseur a pour
valeur [12] :

p
F, -r-6-sine (7)

TT

Cette équation correspond à l'état de contrainte dans

un solide défini par O.K. Fröhlich pour un facteur de
concentration v 3, c'est-à-dire un solide élastique
homogène et isotrope (fig. 4). La force P est la réaction
totale de l'arc sur la section de contact. De l'équation (7)

dF dF
on peut facilement déduire F et les gradients r— et —
le long du pourtour AMPOND.

La fonction de contrainte correspondant à l'état de

contrainte additionnel dû à la pression directe de l'eau
sur le massif de fondation, est la suivante [1] (fig. 5) :

F, + f- (sin 26 -

4tt ¦26)

P 1,^
fin

(8)

o^ i i** + y2) arcts - xy

Si l'on fait abstraction de la liaison de l'arc au
massif de fondation, les contraintes correspondantes
sont les suivantes :

(9)

rfx —£-i2Q + sinôl —^|TT + 2a —sin2oti

°v= -£{2e-sine}= -JLJTT+2CX + sin 2a)

2-rrljl-cose —^1 +cos 2a

et les contraintes principales ont pour valeurs :

P
TT

(10)

on (6 — sin 6)

q>i représentant l'angle formé par la direction de la
contrainte principale o"i, et l'axe y, on a :

9/ j (""" — e)

Ce cas de charge n'influence que peu l'état de
contrainte dans la région de contact arc-fondation qui
nous intéresse. Aussi pour mieux apprécier l'influence

Ax

k-2

H

K-l

(-/

m

l+l

k+i

i+i

k+2

Ay AX

-*¦*
Fig. 6.

33



de la poussée de l'arc sur l'appui, avons-nous préféré

séparer les deux cas de charge. Leurs effets peuvent
être superposés.

Sur le pourtour de l'arc proprement dit ABCD,
les valeurs limites et les gradients de F sont déterminés
à partir des équations (4) et (6). En partant du point A
(ou D) commun à la fondation et à l'arc, ces valeurs
inconnues sont calculées de proche en proche. Un
contrôle de ce calcul est possible puisqu'en aboutissant

à D (ou à ^4) on doit retrouver les valeurs fixées.

Il s'agit maintenant de déterminer la fonction F (x,y)
satisfaisant à l'équation du disque V1 F 0 en tous
les points situés à l'intérieur du domaine considéré.

L'intégration analytique étant impossible, nous avons

recouru à une méthode de calcul par différences finies :

le disque continu est remplacé par un réseau de mailles

carrées, dont les côtés sont parallèles aux axes de

coordonnées et plus serrés dans les zones où les variations
de contraintes sont plus accentuées. En remplaçant
dans l'équation du disque V4 F 0 les dérivées
partielles par des différences finies, celle-ci prend en un

point quelconque, k, la forme suivante (fig. 6).

(11)
V*F ^ 20 Fi — 8 (Ft-i + Fk+1 + Fi + Ft) +

+ 2(Fi_i + Fl+1 + F{_i + Ft+1) +
+ {Fk-2 + Fk+2 + Fh + Fm) 0

Chaque point du réseau est ainsi lié aux douze points
voisins. A l'intérieur du domaine, une équation
semblable linéaire en F peut être établie pour chaque point
nodal du quadrillage. Pour les points situés près du

contour ou un peu en dehors du domaine, les valeurs
de la fonction F sont déterminées par les valeurs aux

points situés à l'intérieur du domaine et par les valeurs
de F et de ses gradients aux points où les lignes du

réseau coupent le contour. En écrivant ces relations

pour les différents points du réseau, il en résulte alors

un système linéaire de n—équations à n—inconnues,

qui sont les valeurs de la fonction F aux n—points
considérés.

La figure 8 montre le réseau entourant un point, k,
situé près du contour ; quelques points tombent en

dehors du domaine considéré. Nous introduisons dans

l'équation régulière les valeurs de la fonction F aux
points l et m en reliant ces points au point k par une

parabole à faible courbure qui donne au point du
bord II les valeurs de la fonction et ses gradients
imposées. Par les points (l + 1) et (l — 1) nous

procédons d'une manière analogue. La résolution du

système d'équations établi pour tous les points situés
à l'intérieur du domaine devient ainsi possible. Une

méthode pratique de résolution d'un tel système

d'équations à grand nombre d'inconnues a été

développée par R. V. Southwell [9, 10] : c'est la « méthode
de relaxation » qui permet de résoudre le problème

par approximations successives avec toute la précision
désirée. Elle exige un important calcul numérique qui
est cependant plus rapide que toutes les méthodes

directes dès que le nombre d'équations est très élevé,

comme c'est le cas ici.

Méthode de relaxation

L'application de cette méthode n'est pas limitée

aux problèmes définis par une équation différentielle
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du deuxième ordre ou par une équation biharmonique.
En effet, elle peut être appliquée à une grande variété
de problèmes définis par des équations linéaires ayant
la forme suivante [8] :

Point 0 :

i=k
0^0 R0(i l,2,3...k) (12)

où : W0 Valeur de la fonction au point (0).

Wj Valeur de la fonction dans un point
voisin (i).

a Coefficients constants.
Z0 Z (xy)0 Fonction de x et y au point (0).

R0 Erreur, résidu ;

erreur absolue (si a0 1).

En tous les autres points du réseau une équation
semblable peut être écrite. Le résidu se calcule à partir
de valeurs quelconques de la fonction admises au

préalable en tous les points du réseau. Dans l'équation
(12) la somme s'étend seulement aux seuls points
adjacents (i) définis par cette équation. En augmentant
la valeur de la fonction W0 de ÙW0 (W0->- W0 + AW0),
l'équation (12) devient

z0 + ^auwt- cx0(W0 + AW0) R0 + AR0 (13)
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En soustrayant membre à membre l'équation (13) de

l'équation (12), il vient

ARn a0AW0 (14)

Lorsque Oq 1 : AR0 — AW0 (14 a)

et nous constatons que l'augmentation de la fonction
AW0 n'entraîne qu'une variation du résidu, égale au
produit de AW0 par le coefficient — Oq.

Aux points (i) voisins du point 0 qui apparaissent
dans l'équation (12) seuls les résidus subissent une
modification mais non les valeurs de la fonction, comme
les équations suivantes le démontrent.

Point (1) :

i=k
Z1 + ^ ptWt — fcWx R1(i= 0, 2, 3, k) (15)

Zi + 2 PiWi + ß0AW0 — p1W1 R1 + ARt

d'où

(16)

(17)Ar^ + p0AW0

Cette équation reste inchangée pour ßx 1.

Les relations (14) et (17) sont les équations
fondamentales de la méthode de relaxation définissant le
mode de calcul lorsqu'on fait varier la valeur de la
fonction en un point du réseau. En effet, la clé de

répartition conduisant à la liquidation des résidus
découle d'une opération unitaire AW 1. En
appliquant ces relations à l'équation du disque VfF 0,
base de notre problème, nous trouvons facilement la
clé de répartition (fig. 7).

Cette clé de répartition des résidus doit être modifiée

pour les points du domaine qui sont influencés par les

conditions au contour. La méthode de relaxation
consiste alors à liquider successivement les résidus en

menant simultanément deux comptabilités (fig. 9), une
relative à la modification des valeurs de la fonction
et une autre à celle des résidus. Il est pratique de dessiner

le quadrillage du domaine à une échelle suffisamment

grande pour indiquer schématiquement en chaque point
du réseau la clé de répartition (fig. 8). Ce procédé

permet de résoudre d'une manière commode le problème
posé et même des problèmes plus compliqués que ceux
caractérisés par une fonction biharmonique. Généralement

on commence à corriger la fonction au point
où le résidu est le plus grand. Le procédé de correction
continue est convergent [2, 10]. Une accélération peut
être réalisée en modifiant simultanément les valeurs de

la fonction en plusieurs points (relaxation en bloc ou
en groupe). Il est évident que le procédé de liquidation
des résidus est fortement raccourci, si la première
estimation des valeurs de la fonction est satisfaisante.

Abstraction faite des régions du domaine où se

trouvent des points singuliers, la précision qu'on peut

P -.^asSi

Fig. 12. — Valeurs du gradient -s— • 10—l sur le pourtour
dy

du domaine considéré.
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atteindre à l'aide de la méthode de relaxation est
d'environ 1 % de la plus grande valeur de la fonction
pour les problèmes définis par un potentiel, et d'environ
5 % pour les problèmes biharmoniques. Dans notre
cas particulier on peut estimer que l'erreur probable
est de l'ordre de 3 % en admettant des résidus de i 50

au maximum (voir figure 10).

Application pratique de la méthode

Le calcul a été effectué dans l'ordre suivant :

1) Choix d'un réseau à grandes mailles dans la fon¬
dation et à mailles plus serrées dans la partie de
l'arc et la zone d'encastrement.

2) Détermination de la grandeur, de la direction et
du point d'application de la réaction P sur la
surface de contact arc-fondation.
Calcul de la répartition des contraintes normales
sur la section de clé BC.

3) Calcul des valeurs de la fonction F et de ses dérivées
dF dF
^— et —— en tous les points du reseau situes surdx dy r
le contour ABCD et AMPOND (fig. 10, 11 et 12).

4) Etablissement des équations aux différences finies
fiant les points extérieurs au contour ABCD aux
points intérieurs.

5) Estimation des valeurs de la fonction F en tous
les points du réseau à grandes mailles situés à

l'intérieur du domaine considéré.
6) Application de la méthode de relaxation (relaxation

sommaire, préliminaire) pour liquider les résidus
aux nœuds du réseau à grandes mailles.

7) Calcul des valeurs de la fonction F aux nœuds du
réseau à mailles plus serrées par interpolation
cubique à partir de celles obtenues par le procédé
de la relaxation sommaire.

8) Nouvelle application de la méthode de relaxation
en corrigeant également les perturbations créées

sur les valeurs des résidus du grand réseau par
l'introduction du réseau plus serré jusqu'au
moment où les résidus en tous les points sont
devenus négligeables.

9) Calcul des contraintes selon les équations (2) en
remplaçant les différentielles par les différences
finies :

d2F
~~

dy2

dF

F, — 2Fk + F,
Ay*

Fk+i — 2Fk -\- Fi_i
dx2

d2F

Ax2

Fi+l + -Tf—1 Fj-_l -- Fi+i
dxdy iAxAy

10) Calcul des contraintes dans les sections choisies,
en particulier les sections radiales de l'arc et les
sections normales à la réaction sur appui, P, en
utilisant les relations découlant du cercle de Mohr.

V. Résultais et commentaires

Section radiale de l'arc
Les graphiques de la figure 14 représentent le mode

de transmission des efforts de l'arc au massif de fondation

:

Dans les sections radiales de l'arc, jusqu'à une
distance de l'encastrement égale approximativement à son

épaisseur, les contraintes normales ct^ sont distribuées
d'une façon peu différente de la répartition linéaire.
Ce sont les contraintes dominantes. Les contraintes
tangentielles Tçr et les contraintes normales <jr, comme
on doit s'y attendre, sont nettement plus faibles.

Au voisinage de l'encastrement, les efforts sur les
sections radiales tendent à se concentrer vers l'intrados,

créant une augmentation de la compression, tandis
que du côté de l'extrados, les compressions diminuent
dans une zone très localisée à tel point que des tractions
apparaissent. Ce sont des contraintes d'angle. Au voisinage

de l'encastrement, la répartition des contraintes
normales sur une section radiale diffère ainsi beaucoup
de la répartition découlant de la règle de Navier.

Simultanément, les contraintes tangentielles sont plus
élevées à l'intrados et leur répartition s'écarte de la
répartition parabolique classique, telle qu'elle se
présente dans les sections radiales éloignées de l'appui.

Massif de fondation

Dans le massif de fondation, sur des sections
normales à la résultante des efforts, on constate une concentration

des contraintes au droit du contact de l'intrados
avec la surface du rocher. La contrainte d'angle est
très localisée. Dès que l'on s'écarte même très peu de

l'angle intrados, elle diminue rapidement d'intensité.
Vers l'extrados, elle s'évanouit à une distance égale
à deux fois l'épaisseur de l'arc environ. En profondeur,
les contraintes diminuent rapidement par suite de la
diffusion des efforts.

Section de contact arc-rocher

Les graphiques de la figure 13 donnent les contraintes
sur des sections parallèles aux axes de coordonnées, et
en particulier sur la ligne de contact. On voit que les
contraintes normales sur cette section oblique de

contact (fig. 13 a) diffèrent notablement de celles découlant

de la règle de Navier ; si l'on fait abstraction des

pointes très localisées (contraintes d'angle), le maximum
se présente au milieu de la section. Les contraintes
tangentielles (fig. 13 c) sont également très différentes
de celles que l'on pourrait calculer par les méthodes
classiques ; abstraction faite des pointes, on trouve des
valeurs plus uniformes.

Effet d'angle (Concentration des contraintes)

Dans la zone de contact des arcs et du rocher, les
contraintes sont concentrées aussi bien à l'extrados
qu'à l'intrados et quelles que soient l'inclinaison de la
section d'encastrement, la position et la direction de
la résultante. Le calcul théorique montre que, dans la
région des angles vifs rentrants, aigus ou obtus, les
contraintes devraient être infinies pour satisfaire aux
conditions de compatibilité des déformations dans le
stade élastique. Ces valeurs infinies ne peuvent pas
être atteintes, la matière subissant des déformations
plastiques. Dans les cas où, l'angle étant arrondi, le

rayon du congé est trop petit, les contraintes dépasseront

aussi sensiblement la limite d'élasticité de la
matière provoquant également des déformations
plastiques qui entraîneront une nouvelle répartition des
contraintes. Toutefois, la zone où régnent ces contraintes
très élevées est extrêmement limitée, et ces dernières
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Fig. 13. — Contraintes dans le rocher en t/m2.
a) Contraintes normales Oy sur des sections y const.
6) Contraintes normales 0> sur des sections x —- const,
r) Contraintes tangentielles Txy sur des sections y const.

c)

ne seront pratiquement modifiées que dans cette zone.
Les angles vifs forment des points singuliers qui échappent

aux règles de l'élasticité. La nouvelle répartition
des contraintes ne peut plus se calculer selon les méthodes

de la théorie de l'élasticité, mais on conçoit facilement

que les contraintes diminuent dans la zone où
le fluage plastique a commencé et augmentent autour
de la limite de cette zone. Comme les valeurs théoriques
extrêmes se limitent à une zone très localisée, la
modification de la répartition des contraintes calculée pour

un état élastique est petite et se fait sentir essentiellement

dans cette zone, sans influencer beaucoup les

contraintes dans les régions plus éloignées des angles.
De ce fait, les contraintes d'angle (ou contraintes
d'entaille) n'influencent que peu la répartition des
contraintes d'ensemble assurant l'équilibre de la
construction. Pour évaluer assez exactement ces contraintes
locales, le calcul par différences finies exigerait une
forte réduction de la maille, mais on voit, déjà avec
la maille choisie, que les contraintes augmentent rapide-

Fig. 14. — Contraintes
dans l'arc et dans le

rocher en t/m2.

Fig. 15. — Comparaison entre les contraintes
o\p, o>, Tcpr déterminées par la théorie de l'élas¬

ticité et par photoélasticité.
Section I — I perpendiculaire à la direction de

la résultante à la naissance.
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ment vers le sommet de l'angle. Si l'on désire que les

contraintes restent inférieures à la limite d'élasticité de
la matière, il est nécessaire d'arrondir les coins formés

par les angles.
A l'amont, la contrainte de pointe est une traction

qui est nécessaire pour satisfaire aux conditions de

compatibilité des déformations, mais non à l'équilibre.
Elle n'est donc pas dangereuse, car si une fissure venait
à se former, cette traction disparaîtrait. Par ailleurs,
la fissure ne pourrait pas progresser derrière l'appui
de l'arc puisqu'elle entrerait rapidement dans une zone
comprimée dans tous les sens.

En réalité, l'état de contrainte se présente plus
favorablement, car l'effet de la pression directe de l'eau
sur les versants crée à l'intérieur du massif rocheux
un état additionnel de contrainte constitué uniquement
par des compressions. Ces contraintes, nettement plus
petites que celles dues à la pression de l'arc peuvent
être évaluées avec une bonne approximation selon les

expressions des équations 9 et 10.

VI. Conclusions

Comparaison entre les résultats du calcul et les résultats
des essais photoélastiques

Les graphiques de la figure 15 permettent d'établir
cette comparaison pour les contraintes considérées ici,
soit celles qui agissent sur une section passant par le

point de contact du parement intrados de l'arc avec le
rocher, et normales à la résultante de l'arc. On constate
que pour les trois contraintes CTç, ar et Tçr, la concordance

est parfaite. On en déduit que les résultats des
essais photoélastiques sont pratiquement équivalents
à ceux du calcul.

Estimation des contraintes dans le rocher à la retombée
des arcs

L'étude détaillée, par calculs et par essais, a porté
sur l'arc 1830 du barrage de Mauvoisin, un des plus
chargés. On peut se demander quelle est la valeur des

contraintes sur le rocher à la retombée des autres arcs.
Pour cela on a cherché à déduire des essais une méthode
approximative commode, capable d'estimer la valeur
des contraintes maximums de contact béton-rocher sur
une section normale à la force. Les essais ont montré
que lorsqu'on fait varier la force, le diagramme des

contraintes normales conserve une forme sensiblement
triangulaire et que la contrainte maximum peut alors
se déduire des efforts appliqués et de la position de la
force par rapport à l'arête intrados : cette contrainte
maximum est pratiquement égale à deux fois la
contrainte moyenne qui s'exercerait sur une section de

largeur égale à trois fois la distance de la force à l'arête
intrados.

Conclusions

Le calcul par la théorie de l'élasticité, comme les
essais photoélastiques, permettent de tirer les conclusions

.suivantes :

a) L'effet de l'obliquité de la section des arcs dans
la région d'appui n'entraîne pas de perturbations
importantes dans la répartition des contraintes
de la section de naissance.

b) Les concentrations de contraintes dans les angles
sont indépendantes de l'obliquité de cette section.
Elles se produisent essentiellement dans le béton
et non dans le massif d'appui, où l'effort se diffuse
très rapidement.

c) Ces contraintes concentrées, très localisées, sont
sans danger parce qu'elles ne sont pas nécessaires

pour satisfaire à l'équilibre et parce qu'elles
découlent uniquement de conditions locales de

déformation.

d) On peut évaluer, en première approximation, dans'
la section de retombée des arcs, les contraintes
normales sur des sections perpendiculaires à la
résultante, en admettant que leur distribution
est triangulaire, et qu'elles se répartissent sur
une largeur fictive égale à trois fois la distance
de la force au bord du profil.

e) Les efforts provenant de la poussée des arcs se

diffusent fortement dans le massif rocheux
d'appui, de sorte que les contraintes qui en
résultent diminuent rapidement d'intensité en

profondeur.

VII. Résumé

A l'aide de la théorie de l'élasticité, nous avons déterminé

l'état de contrainte dans la zone de l'encastrement
d'un arc d'un barrage-voûte, et dans le massif rocheux
de fondation. Le problème, ramené à un problème aux
limites, a été résolu par la méthode de relaxation en
introduisant des différences finies. Les résultats obtenus
ont été comparés aux résultats d'essais photoélastiques
effectués pour plusieurs positions et inclinaisons de la
poussée de l'arc. Cette comparaison a permis de

constater, une fois de plus, la bonne concordance des

résultats découlant de la théorie de l'élasticité et de

son partenaire la photoélasticité.
Le calcul par différences finies permet d'obtenir les

résultats aussi précis qu'on le désire, mais non sans

exiger beaucoup de temps. Par contre, il' ne conduit
pas directement à des résultats généraux permettant la
discussion : pour chaque cas de charge différent le
calcul doit être recommencé. Les essais photoélastiques
permettent de multiplier facilement les cas de charge,
et de trouver rapidement les valeurs des contraintes
déterminantes, sans qu'il soit nécessaire de pousser
l'analyse complètement. Les deux méthodes ont l'avantage

de permettre de résoudre des problèmes d'élasticité

non accessibles à une méthode analytique ; dans

une certaine mesure, elles se complètent l'une l'autre.
Les résultats obtenus ont permis d'établir une méthode

approximative commode pour estimer la répartition
des contraintes maximums au contact du béton et
du rocher ainsi que sur une section normale à la force
et de tirer quelques conclusions pratiques.

A cette occasion, l'auteur remercie vivement M. le
Professeur A. Stucky qui lui a suggéré d'entreprendre
cette étude et qui l'a suivie avec un grand intérêt.
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DIVERS

Note sur les canaux de forme géométrique et le profil cycloïdal fermé
par L.-A. DE DARDEL, ing. dipl. EPZ Suiselectra Bâle

I. Le problème courant et sa résolution

Partons de la formule de Strickler, qu'on peut mettre
sous la forme

Q

/c/l/2
F6I3
pi/3 (1)

où Q est le débit, k le coefficient de rugosité, J la pente
de la ligne d'énergie, F le profil hydraulique et P le

périmètre mouillé. Le problème qui consiste à

déterminer la section transversale d'un canal ne trouve
généralement pas de solution immédiate : il n'y a de

rapport simple entre F et P, ou entre F6/3 et P2/3 que si

la section est circulaire et le canal en charge ; auquel
cas le diamètre est •

D 1,5483
Q

/cJl/2

3/8
(2)

L'équation (1) exprime que l'eau coule dans un canal
entièrement connu en ses dimensions longitudinales et
transversales, et jusqu'en la nature de ses parois. Elle
ne donne pas d'indication directe sur le profil
transversal à adopter. Il faut choisir la forme et les dimensions

de ce profil, puis examiner comment l'eau s'y
comporte, c'est-à-dire comment varie le couple des

valeurs F et P, ce qui permet en fin de compte de

trouver la profondeur h de l'eau pour laquelle F et P
satisfont à l'équation (1), et au besoin de modifier les

valeurs Q, k et J en conséquence.
Hors de toute considération constructive, le problème

de la détermination du profil d'un canal comporte donc
deux groupes d'opérations juxtaposées et dépendantes
soumises ensemble à l'appréciation permanente de l'hy-
draulicien jusqu'à satisfaction :

1. Détermination ou choix 2. Choix de la forme du pro -
du débit Q, de la pente J fil transversal et d'une
et du coefficient k de ru- valeur des éléments F et
gosité ; calcul des valeurs P telle que

V /f./l/2 Y
F 6/3

~pïjï V' (3)

Y

LA

T -— X

Fig. 1. — Profil symétrique quelconque.

II. Le problème auxiliaire

Le second problème énoncé se pose inéluctablement
à tout praticien et complique souvent sa tâche.
Considérons la figure 1, qui représente le profil transversal
d'un canal de forme géométrique quelconque, mais

symétrique par rapport à l'axe Oy du système rectangulaire

xOy de référence. Dans ce profil supposé rigide,
momentanément tout au moins, l'eau atteint le niveau
MMX. Les deux points M et Mx sont sur le pourtour
et symétriques ; leurs coordonnées satisfont à une équation

bien définie, celle de la courbe du pourtour. Nous

nommerons éléments relatifs à M les quantités dont les

expressions algébriques sont fonctions des coordonnées
de M, telles que

h P F P -p-
F
P

2/3
F fJi/S JP6H

H'

De cette série, les éléments qu'il importe de connaître
sont F et u/. L'on est donc le plus souvent amené à

calculer l'une après l'autre les valeurs numériques de
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