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APPLICATION DE LA THEORIE DE L’EQUIVALENCE
EN HYPERSTATIQUE PLANE OU SPATIALE

par A. ANSERMET, ing.-prof.

En hyperstatique des systémes articulés, les praticiens
disposent de diverses méthodes pour le calcul des ten-
sions dans les barres ; un choix judicieux des variables
joue un grand role, surtout si 'on veut étudier le sys-
téme au point de vue des déformations. Certains auteurs
choisissent comme Inconnues les tensions dans les
barres, d’autres les variations des coordonnées des
neeuds, ce qui peut se concevoir de deux maniéres diffé-
rentes. Dans sa publication de 1926 ([3] p. 52), B. Mayor
calcule simultanément les tensions et les déplacements
des neeuds ; ses équations aux déformations revétent
une forme simple en ce sens que les termes absolus sont
implicitement contenus dans le groupe des termes
variables ; & certains égards ce n’est pas un avantage,
car ce groupe d’équations ne présente guére dintérét
considéré isolément. La solution de B. Mayor n’en est
pas moins judicieuse ; en représentation plane, une des
variables devient angulaire pour chaque nceud.

Avant de poursuivre, rappelons I'étroite corrélation
existant entre les systémes hyperstatiques et les réseaux
télémétriques ; un auteur s’est exprimé a ce sujet comme
suit : « Im dreidimensionalen Raum stimmen der ein-
knotige statisch beliebig unbestimmte Stabverband und
der zugehorige iiberbestimmte Bogenschnitt vollig iiber-
ein » (voir [2]). Les staticiens n’auront qu’a appliquer
des formules ayant déja fait leurs preuves en géodésie ;
en particulier la théorie de I'équivalence est souvent a
la base de celle de Iellipse d’erreur (ou de Iellipsoide).

Dans les réseaux, on coupe les cOtés surabondants
provisoirement et dans les systémes les barres surabon-
dantes, moyennant que 'on applique des forces (1 tonne,
par exemple) ; il en résulte un état qui sera initial pour
les variations de coordonnées et déterminant pour les
termes absolus f;:

(1) vi = [i + a; (dzy — dzy) + bi (dy, — dyn)
+ ¢i (dzy — dzp)
poids p;: a; + lz';.' I ("’ — .

Les ¢ sont les indices pour les barres, g et h pour
les nceeuds.
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[pyv] = 2 (pyv) = minimum.

7; est le coeflicient d’élasticité ; S; et L; sont respec-
tivement les sections transversales et les longueurs des
barres. Le calcul peut étre poussé fort loin sans connaitre
les [;, comme les exemples le montreront. Le systéeme
d’équations aux déformations (1) sullit en général pour
résoudre le probleme.

Equivalence : Grace a la théorie de I'équivalence on
peut, dans certains cas et au point de vue des défor-
mations, substituer a4 un systéme hyperstatique un
autre, fictif, statiquement déterminé. Iy a équivalence
entre deux systémes d’équations aux déformations
quand ils donnent lieu aux mémes paleurs pour les
inconnues, leurs poids et pour les potds de fonctions des

inconnues ([6] p. 75). Certains auteurs basent la théorie
des ellipses et ellipsoides d’erreur sur celle de I'équi-
valence ; ici on a des déformations. Les centres de ces
courbes et surfaces se déduisent de la condition [pev] =
= minimum.

L’exemple numérique ci-aprés porte sur diverses solu-
tions : dans le systéme & quatre barres, on calcule les
poids des inconnues et les poids P; des barres a poste-
riori (poids des (— f; + ¢;) ) ; on obtient ainsi des paires
de plans tangents mutuellement paralléles et distants
du centre de - m, V' 1: P;; mais mz =0:0 quand 1l
n’y a plus d’éléments surabondants. L’échelle de Iellip-
soide de déformation moyen n’est pas connue si m]
n’est pas déterminé d’une autre facon ; le systeme est
devenu statiquement déterminé et, de plus, trois plans
tangents suflisent pour calculer I'ellipsoide si les trois
points de contact coincident avec les extrémités de trois
diameétres mutuellement conjugués. 11 n'y a plus de
barre surabondante.

Dans le second exemple traité ci-aprés, on s’est
affranchi de deux barres sur trois; dans le plan, deux
tangentes a l'ellipse de déformation suflisent si elles
sont paralléles & deux diamétres conjugués. lei encore
on réalise 'équivalence ; on verra de plus, dans les deux
exemples traités, que des propriétés d’invariance exis-
tent entre les poids & posteriori des barres. Elles tra-
duisent des propriétés géométriques connues.

Un controle judicieux consiste a former les quotients
(p:: P;) des poids & priori et a posteriori des barres
(dans les réseaux télémétriques des cotés) ; la somme
(pi: Pi] est égale au nombre des inconnues ([G] p. 68).
Dans le second exemple traité, on a: [pi: Pi]] =4
puis, pour le systéme équivalent fictif : [p;: Pi]} = 4 ;
en d’autres termes les poids sont, en moyenne, ampli-
fiés 7:4 = 1,75 fois, puis 5 : 4 = 1,25 fois. Ces valeurs
constituent des maxima ; ¢’est un critére de la méthode
des moindres carrés. Pour I'étude des déformations des
systémes hyperstatiques, on combinera avec avantage
la solution basée sur les équations aux déformations (1)
et la théorie de I'équivalence ; cette méthode qui a fait
ses preuves pour les réseaux télémétriques est aussi a
appliquer aux systémes articulés.

Exemple : Neeud 1 libre ; day, = dy, = dz, = 0.

Barres ai bi ¢ Pi P;
1-2 4 0,817 0,00 | 40,577 | 0,64 0,915
1-3 0,00 — 0,817 | 4 0,577 0,96 1,20
1-4 — 0,817 0,00 + 0,577 0,64 0,915
1-5 0,00 | + 0,817 | + 0,577 | 0,96 1,20

Equations normales (forme implicite) :
[pav] = [pbe] = [pev] =0

Coellicients : [paal, [pbb] ... [pbe]
1:0,9156 = 1,093 ; 1:1,20 = 0,833

Termes absolus : [paf], [pbf], [pecf]
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Les matrices des équations normales et aux coefli-
cients de poids sont inverses et diagonales :

0,854 0,00 0,00 1,170 0,00 0,00 Qy Q13 O13
0,00 1,28 0,00 0,00 0,781 0,00 = | Qa1 Q2 Qa3
0,00 0,00 1,067 | { 0,00 0,00 0,937 Qs s O

m? = [poe] : 1.

1 Pi=1:P; = 0,8172x 1,17 + 0,5772% 0,937 = 1,093

de méme: 1: P, =1:P, = 0,833 (voir [1]).

Controle :

[pi: Pi]} =2(0,64%1,093 + 0,96%0,833) = 3,00 = u

Les longueurs des axes principaux sont proportion-

nelles a \f/1,17, \/ 0,781, \/ 0,937 mais dans ce cas
particulier ; en général ces valeurs fournissent des plans
tangents normaux aux axes de coordonnées. Si l'orien-
tation de ces axes varie, les Qy;, (g, O35 varient aussi
mais pas la somme (Qy; + Qpy + 0y3), ce qui traduit
une propriété connue (sphére orthoptique). Toutes ces
paires de plans tangents paralléles sont distants du
centre de la surface de quantités :

+ m, \/E, L T \/—()_22, -+ m, \/@, -+ m, \/ 1: P;.
=1, 2,3, 4).

Ces perpendiculaires abaissées sur les plans tangents
sont des rayons vecteurs de la surface podaire de Iellip-
soide par rapport au centre (voir [8]).

Equivalence : 11 n’y a plus que trois barres ; les poids
pi et P; sont les mémes. Quant aux matrices réeipro-
ques ci-dessus, elles subsistent. Développons deux des
solutions, toujours pour le nceud libre 1 :

Barres a; bi ci pi = P,
Jvl = () 1-2/ -+ 0,653 | + 0,490 | 4+ 0,577 1,00
vy =0 1-37 0,00 — 0,817 | + 0,577 1,20
l"a == 0 1-4" — 0,653 | + 0,490 | 4 0,577 1,00

m?’ = : 10

‘vl = () 1-2” -+ 0,633 | + 0,775 0,00 1,067
vy == 0 1-3” <+ 0,633 | — 0,775 0,00 1,067
lvs =0 | 1-4” 0.00 0,00 | +1,00 | 1,067

Il y a une propriété d’invariance entre les poids
fictifs :
1,0 + 1,20 4+ 1,0 = 3x 1,067 = 0,854 + 1,28 4
+ 1,067 = 3,20
Cette invariance traduit une propriété de géométrie
spatiale ([8] p. 72):
1 1 1 1 1 1
dTpta=ptate
ou r, s, t sont les distances du centre de I'ellipsoide aux
trois plans tangents ayant leurs points de contact res-
pectifs aux extrémités de trois diamétres mutuellement
conjugués. Les 2a, 2b, 2¢ sont les axes principaux. Les
termes absolus /; sont aussi calculés pour réaliser I'équi-
valence.
En statique, comme en géodésie, on pourra en
général connaitre m, d’une autre fagon; ce n’est pas
'élément le plus important.

Equivalence dans le plan : lci encore, un exemple tres
simple sera choisi, mais permettant le calcul de m, ;
on a :
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(2)  —fi+ vi = a; (dzyg — da) + by (dy, — dyn)
(poids p;s; af + b = 1)

avec les équations normales sous forme implicite :
[pav] = [pbe] = 0.

fi est encore la déformation révélée apres la coupure
des barres surabondantes. A partir de cet état, on fait
varier les coordonnées, ce qui distingue cette solution
de celle de B. Mayor ; ces barres sont remplacées par
des forces (1 tonne).

Si on admet les liaisons : day, = 0 et dy;, = 0, Uellipse
de déformation au point g a pour équation :

[paa) da? 4 2 [pab| dx.dy + [pbb] dy* = constante.

Le centre est le point pour lequel [po¢] = minimum ;
c’est Porigine de ces nouveaux dw, dy. C'est le méme
probleme qu’en télémétrie ; dans la citation non tra-
duite en premiére page, on lira : « espace & deux dimen-
slons ».

La solution la plus usuelle consiste encore & inverser
la matrice des équations normales ; pour chaque ellipse,
il faut déterminer deux coellicients aux poids (Qj et
Qji et Qi non quadratique (voir [1]).

En d’autres termes, au point de vue des déforma-
tions et grice a I'équivalence, on peut escamoter cer-
taines barres tandis que le systéme est modifié. En
statique c’est, sauf erreur, une notion nouvelle. Le
systéme initial et I'autre, équivalent mais fictif, don-
nent lieu aux mémes équations normales, aux mémes
poids pour les inconnues ou pour des fonctions des
inconnues,

Exemple numérique : Considérons une paire de nceuds
N et N’ donnant un systéme :

—fi + v =aidx 4 bidy + c;da" + didy’
(poids pi; af + U] = ¢ +di = 1)

1

Le nombre de barres sera réduit se sept a cing (une
barre surabondante).

La valeur m, dans le systéme équivalent n’est done
pas indéterminée. On exprime I’équivalence entre les
matrices des équations normales puis on forme la
matrice réciproque ; ces matrices ne sont pas diago-
nales.

Les axes principaux des deux ellipses sont respec-
tivement paralléles et normaux a NN';

en IV, leurs longueurs sont 2m, \/ 0,485, 2m, \/ 0,667 ;
en N': 2m, \ 0,430, 2m, \ 0,556.

Pouds a posteriort Py des barres : Bornons-nous au
systéme équivalent & cing barres :

1:P, =0,8x0,485 4 0,62x 0,667 = 0,55 ;

de méme 1: P, = 0,60

1: Py = 0,485 + 0,430 — 2% 0,149 = 0,617 ;
1:P, =1:P, = 0,707%0,430 + 0,556) = 0,493

Contréle : [pi: P> = 1,5 (0,55 4 0,60) 4 0,8
% 0,617 + 1,8 (0,493 + 0,493) = 4,00 = w.

De plus :
0,485 + 0,667 = 0,55 -+ 0,60 et
0,430 + 0,556 = 0,493 -+ 0,493.




Barres ai b, ) di pi Barres ai bi ci di pi P
N—1 | 4+ 0,342 | + 0,940 1,0 | N—17| +08 [+ 0,6 Py P, =
N—2 | £ 0,643 | — 0,766 1,0 [ N—2'| +0,6 |—0,8 m P, ||[£5
N—3 |— 0,985 0,174 1.0 | N—N?% -1,00 1,00 0,8 P, h\aw
N—N| + 1,00 — 1,00 0,8 |N"—3 + 0,707 | - 0,707 | p, P, |lgz
N —4 + 0,375 | + 0,927 1,2 | NF— 47 - 0,707 | — 0.707 Do P, |45
N'—35 -+ 0,616 | — 0,788 1,2 '
N —6 — 0,990 - 0,139 1,2
[ 2,3 0,0 —0,8 0,0 i+ 0,8 0,0 — 0,8 0,0 0,485 0,0 + 0,149 0,0 .
0,0 1,5 0,0 0,0 0,0 py 0,0 0,0 0,0 0,667 0,0 0,0 matrice aux
— 08 0,0 2.6 0,0 — 0,8 0,0 p,+ 0,8 0,0 -+ 0,149 Q,U 0,430 0,0 coeflicients de P()i(ls
L 00 00 00 18 0,0 0,0 0,0 ps 0,0 0,0 0,0 0556
dot p, =15, po=18, Qy; =0,485 @y =00667 ... Q3=+ 0,149
Ces ¢galités expriment la propriété connue : les rec- de ces courbes et surfaces peuvent jouer un role en

tangles circonscrits a une ellipse sont inscrits dans un
méme cercle. On constate en outre jusqu’a quel point
les calculs peuvent étre poussés sans que les termes
absolus /; interviennent. Il y a cing valeurs fictives [;

pour réaliser D'équivalence, y compris celle de m,.
Quant aux sept termes absolus des équations aux défor-
mations initiales, donc non fictives, leur détermination
est facile. Si le systéme était spatial, on pourrait appli-
quer la représentation plane d’aprés B. Mayor pour le
calcul de ces termes.

En conclusion, on voit que lapplication de la théorie
de Péquivalence fournit dans certains cas une solution
nouvelle ; on peut méme s’affranchir de barres surabon-
dantes. Les inconnues sont encore les variations des
coordonnées des nceuds ; la notion d’ellipses ou ellip-

soides de déformation subsiste. La forme et la position

hyperstatique.
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ques, unités, dimensions, par Rm/mond Hlur(l Paris,
Gauthier-Villars, 1963. — Un volume 21 % 27 em, 64 pages.
Prix : broché¢, 9 I.

Dans la préface de cet ouvrage, le professeur Escande
dit notamment :

. Consacré a la présentation des régles d’énoncia-
tion et d’éeriture correctes du langage scientifique, par-
ticulierement en ce qui concerne les grandeurs des
sciences physiques, les unités, les symboles, ce formu-
laire, rempli de renseignements pratiques, , avanl
tout, un instrument de travail.

(est en effet un outil dont ne peuvent se passer tous
ceux qui s'occupent de science et de technique. Son
actualité et son importance ont été amplifices par la
promulgation en France du décret du 3 mai 1961 ren-
dant seul légal et obligatoire le Systéme international
de Mesures, irrévocablement universel et abrogeant tou-
tes les unités non cohérentes.

Il s’adresse done aux professeurs, aux ingénieurs, aux
physiciens, aux techniciens, et enfin aux ¢léves des
orandes écoles, des facultés et de enseignement tech-
nique. Il doit tre pour (hd(llll d’eux la base de toute
normalisation de I'expression scientifique et techni-
que...»

est

Sommaire :

Tableaw des espéces  physiques. Définttions, unités,
dimensions : Grandeurs londamentales, de la géométrie, de
la cinématique, de la statistique, de la dynamique, de la

thermodynamique, de I'¢lectricité, de I'électromagnétisme,
de la plmtmn('-lriv r'-nvr;:l'-li([m-, de la photométrie physiolo-
gique, de I'acoustique énergétique, concernant les mélanges,
titres, concentrations PI, de la radio-activité et de 'ato-
mistique.

Grandeurs physiques et définttions normalisées de leur unité :
Longueur, masse, temps, intensité de courant électrique.
Température, intensité lumineuse. Angle plan, angle solide,
fréquence, force, énergie, puissance. Viscosité dynamique
viscosité cinématique. Tension électrique, quantité d’élec-
tricité, résistance. Capacité, inductance, conductance, flux
et induction magnétiques. Chaleur. Luminance, flux lumi-
neux, éclairement. Vergence, gain.

Tableaux d'équivalence entre unités de méme espéce : Lon-

gucurs. Aires, surfaces. Volumes, capacités. Masses. Vitesses.
Vitesses angulaires. Angles plans, angles solides. Forces,

poids. Pressions, contraintes, taux de travail. Energie. Puis-
sances.

Constantes physiques universelles : Propriétés du vide
absolu. Relativité. Atomistique. Physique moléculaire.
Thermodynamique. Rayonnement énergétique.

Hydrologie de surface, par M. Roche, ingénieur hydrologue
a I'Electricité de France, en coédition avee 'ORSTOM.

lid. Gauthier-Villars, Paris. Un volume 18 xX26 cm,
430 pages, tableaux, figures et photographies (1963).
Prix : cartonné, 75 I.

[ ouvrage est avant tout destiné aux spécialistes de
|]l\(llt)l()1fl(’ et plus spécialement de I'hydrologie tro-
picale. Les différents problémes relatifs a cette disc ipline
v sonl traités dans la double optique de Porganisme
d’études appliquées et de recherche fondamentale d’une
part, du « Service hydrologique » & vocation organisa-
tionnelle d’autre part.

La rédaction de ouvrage est toutefois suflisamment
claire et simple pour que ce dernier puisse étre utilisé
avec profit par tous les professionnels qui s'intéressent
de pres ou de loin aux problemes de I'écoulement naturel
des eaux, en particulier les spécialistes de agriculture,
du génie rural, des travaux publics et des aménagements
hydro-électriques. 11 est indispensable aux étudiants qui
veulent s’'initier aux méthodes d’investigation modernes
concernant I'hydrologie de surface.

375




	Application de la théorie de l'équivalence en hyperstatique plane ou spatiale

