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APPLICATION DE LA THEORIE DE L'EQUIVALENCE
EN HYPERSTATIQUE PLÄNE OU SPATIALE

par A. ANSERMET, ing.-prof.

En hyperstatique des systèmes articulés, les praticiens
disposent de diverses méthodes pour le calcul des
tensions dans les barres ; un choix judicieux des variables
joue un grand rôle, surtout si l'on veut étudier le
système au point de vue des déformations. Certains auteurs
choisissent comme inconnues les tensions dans les

barres, d'autres les variations des coordonnées des

nœuds, ce qui peut se concevoir de deux manières
différentes. Dans sa publication de 1926 ([3] p. 52), B. Mayor
calcule simultanément les tensions et les déplacements
des nœuds ; ses équations aux déformations revêtent
une forme simple en ce sens que les termes absolus sont
implicitement contenus dans le groupe des termes
variables ; à certains égards ce n'est pas un avantage,
car ce groupe d'équations ne présente guère d'intérêt
considéré isolément. La solution de B. Mayor n'en est

pas moins judicieuse ; en représentation plane, une des

variables devient angulaire pour chaque nœud.
Avant de poursuivre, rappelons l'étroite corrélation

existant entre les systèmes hyperstatiques et les réseaux
télémétriques ; un auteur s'est exprimé à ce sujet comme
suit : « Im dreidimensionalen Raum stimmen der
einknotige statisch beliebig unbestimmte Stabverband und
der zugehörige überbestimmte Bogenschnitt völlig überein

» (voir [2]). Les staticiens n'auront qu'à appliquer
des formules ayant déjà fait leurs preuves en géodésie ;

en particulier la théorie de l'équivalence est souvent à

la base de celle de l'ellipse d'erreur (ou de l'ellipsoïde).
Dans les réseaux, on coupe les côtés surabondants

provisoirement et dans les systèmes les barres surabondantes,

moyennant que l'on applique des forces (1 tonne,
par exemple) ; il en résulte un état qui sera initial pour
les variations de coordonnées et déterminant pour les

termes absolus fi :

(1) vt fi + m {dxg — dxh) + bi {dyg — dyh) +
-f ci (dzg — dzh)

poids pt ; a2 + b\ + c? 1.

Les i sont les indices pour
les nœuds.

as barres, et h pour

Et Si TjL,
EiSi (T{ tension)

[pvv] I {pvv) minimum.

E{ est le coefficient d'élasticité ; 5t- et L; sont
respectivement les sections transversales et les longueurs des

barres. Le calcul peut être poussé fort loin sans connaître
les fi, comme les exemples le montreront. Le système
d'équations aux déformations (1) suffit en général pour
résoudre le problème.

Equivalence : Grâce à la théorie de l'équivalence on

peut, dans certains cas et au point de vue des

déformations, substituer à un système hyperstatique un
autre, fictif, statiquement déterminé. Il y a équivalence
entre deux systèmes d'équations aux déformations
quand ils donnent lieu aux mêmes valeurs pour les

inconnues, leurs poids et pour les poids de fonctions des

inconnues ([6] p. 75). Certains auteurs basent la théorie
des ellipses et ellipsoïdes d'erreur sur celle de
l'équivalence ; ici on a des déformations. Les centres de ces

courbes et surfaces se déduisent de la condition [pw]
minimum.
L'exemple numérique ci-après porte sur diverses

solutions : dans le système à quatre barres, on calcule les

poids des inconnues et les poids Pi des barres à posteriori

(poids des (— fi X vi) ; on obtient ainsi des paires
de plans tangents mutuellement parallèles et distants

du centre de ± m0 \ 1 : P{ ; mais m20 0 : 0 quand il
n'y a plus d'éléments surabondants. L'échelle de l'ellipsoïde

de déformation moyen n'est pas connue si m0

n'est pas déterminé d'une autre façon ; le système est
devenu statiquement déterminé et, de plus, trois plans
tangents suffisent pour calculer l'ellipsoïde si les trois
points de contact coïncident avec les extrémités de trois
diamètres mutuellement conjugués. Il n'y a plus de

barre surabondante.
Dans le second exemple traité ci-après, on s est

affranchi de deux barres sur trois ; dans le plan, deux

tangentes à l'ellipse de déformation suffisent si elles

sont parallèles à deux diamètres conjugués. Ici encore
on réalise l'équivalence ; on verra de plus, dans les deux
exemples traités, que des propriétés d'invariance existent

entre les poids à posteriori des barres. Elles
traduisent des propriétés géométriques connues.

Un contrôle judicieux consiste à former les quotients
(p,- : P{) des poids à priori et à posteriori des barres

(dans les réseaux télémétriques des côtés) ; la somme
[pt : Pi] est égale au nombre des inconnues ([6] p. 68).
Dans le second exemple traité, on a : [pt : Pi][ 4

puis, pour le système équivalent fictif : [p,- : P,]^ 4 ;

en d'autres termes les poids sont, en moyenne, amplifiés

7:4 1,75 fois, puis 5:4= 1,25 fois. Ces valeurs
constituent des maxima ; c'est un critère de la méthode
des moindres carrés. Pour l'étude des déformations des

systèmes hyperstatiques, on combinera avec avantage
la solution basée sur les équations aux déformations (1)

et la théorie de l'équivalence ; cette méthode qui a fait
ses preuves pour les réseaux télémétriques est aussi à

appliquer aux systèmes articulés.

Exemple : Nœud 1 libre ; dxi, dy/, dz 0.

Barres ai 6» Ci P' Pi

1-2 + 0,817 0,00 + 0,577 0,64 0,915
1-3 0,00 -0,817 + 0,577 0,96 1,20
1-4 — 0,817 0,00 + 0,577 0,64 0,915
1-5 0,00 + 0,817 + 0,577 0,96 1,20

Equations normales (forme implicite) :

[pav] [pbv] [pcv] 0
Coefficients : [paa], [pbb] [pbc]

1 : 0,915 1,093 ; 1:1,20 0,833
Termes absolus : [pa/], [pi/], [pcf]
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Les matrices des équations normales et aux coefficients

de poids sont inverses et diagonales :

0,854 0,00 0,00
0,00 1,28 0,00
0,00 0,00 1,067

1,170 0,00 0,00 '

0,00 0,781 0,00
0,00 0,00 0,937

Qu Qtt <?is"

Q«. <?22 <?23

L<?I1 <?32 <?33

l:P1=i:P3 0,8172xl,17 + 0,5772X 0,937= 1,093
de même : 1 : P2 1 : P4 0,833 (voir [1]).

Contrôle :
[Pi : p£ 2 (0,64x1,093 + 0,96x0,833) 3,00 u

Les longueurs des axes principaux sont proportionnelles

à y 1,17, \/ 0,781, V 0,937 mais dans ce cas

particulier ; en général ces valeurs fournissent des plans
tangents normaux aux axes de coordonnées. Si l'orientation

de ces axes varie, les Qn, Q22, Q33 varient aussi
mais pas la somme {Qu -f- Q22 -f- Q33), ce qui traduit
une propriété connue (sphère orthoptique). Toutes ces

paires de plans tangents parallèles sont distants du
centre de la surface de quantités :

± m„ \J Qn, ± m0 \J Q22, ±m0 \ Q33 ± m0 \ 1 : Pi.

{i 1, 2, 3, 4).

Ces perpendiculaires abaissées sur les plans tangents
sont des rayons vecteurs de la surface podaire de l'ellipsoïde

par rapport au centre (voir [8]).

Equivalence : Il n'y a plus que trois barres ; les poids
Pi et Pi sont les mêmes. Quant aux matrices réciproques

ci-dessus, elles subsistent. Développons deux des

solutions, toujours pour le nœud libre 1 :

Barres ai bi Ci Pi p,

f ¦
0
0
0

1-2'
1-3'
1-4'

+ 0,653
0,00

— 0,653

m2

+ 0,490
— 0,817
+ 0,490

0:0

+ 0,577
+ 0,577
+ 0,577

1,00
1,20
1,00

l"1

rl"3
0
0
0

1-2"
1-3"
1-4"

+ 0,633
+ 0,633

0,00

+ 0,775
— 0,775

0,00

0,00
0,00

+ 1,00

1,067
1,067
1,067

Il y a une propriété d'invariance entre les poids
fictifs :

1,0 + l-,20 + 1,0 3 X 1,067 0,854 + 1,28 +
+ 1,067 3,20

Cette invariance traduit une propriété de géométrie
spatiale ([8] p. 72) :

1 1 1 1 1 1

a2 "¦" b2 + c2 ~~ r2 "r s2 f t2

où r, s, t sont les distances du centre de l'ellipsoïde aux
trois plans tangents ayant leurs points de contact
respectifs aux extrémités de trois diamètres mutuellement
conjugués. Les la, Ib, le sont les axes principaux. Les

termes absolus fi sont aussi calculés pour réaliser
l'équivalence.

En statique, comme en géodésie, on pourra en

général connaître m0 d'une autre façon ; ce n'est pas
l'élément le plus important.

Equivalence dans le plan : Ici encore, un exemple très
simple sera choisi, mais permettant le calcul de m0 ;

on a :

(2) — fi + <>i a, {dxg — dxh) + bf {dyg — dyh)

(poids pt ; a? + b\ 1)

avec les équations normales sous forme implicite :

[pav] [pbv] 0.

fi est encore la déformation révélée après la coupure
des barres surabondantes. A partir de cet état, on fait
varier les coordonnées, ce qui distingue cette solution
de celle de B. Mayor ; ces barres sont remplacées par
des forces (1 tonne).

Si on admet les liaisons : dx^ 0 et dy^ 0, l'ellipse
de déformation au point g a pour équation :

[paa] dx2 + 2 [pab] dx.dy -\- [pbb] dy2 constante.
Le centre est le point pour lequel [pvv] minimum ;

c'est l'origine de ces nouveaux dx, dy. C'est le même
problème qu'en télémétrie ; dans la citation non
traduite en première page, on lira : « espace à deux dimensions

».

La solution la plus usuelle consiste encore à inverser
la matrice des équations normales ; pour chaque ellipse,
il faut déterminer deux coefficients aux poids Qn et
Qji et Qij non quadratique (voir [1]).

En d'autres termes, au point de vue des déformations

et grâce à l'équivalence, on peut escamoter
certaines barres tandis que le système est modifié. En
statique c'est, sauf erreur, une notion nouvelle. Le
système initial et l'autre, équivalent mais fictif,
donnent lieu aux mêmes équations normales, aux mêmes
poids pour les inconnues ou pour des fonctions des
inconnues.

Exemple numérique : Considérons une paire de nœuds
N et N' donnant un système :

— f> X vi <Hdx -\- bi dy -\- Ci dx' -\- d{ dy'

(poids Pi ; a] + b\ c2 + d2 1)

Le nombre de barres sera réduit se sept à cinq (une
barre surabondante).

La valeur m0 dans le système équivalent n'est donc
pas indéterminée. On exprime l'équivalence entre les
matrices des équations normales puis on forme la
matrice réciproque ; ces matrices ne sont pas diagonales.

Les axes principaux des deux ellipses sont
respectivement parallèles et normaux à NN' ;

en N, leurs longueurs sont 2m0 \ 0,485, 2m, y 0,667 ;

en N' : 2m0 \/ 0,430, 2m0 \J 0,556.

Poids à posteriori Pt des barres : Bornons-nous au
système équivalent à cinq barres :

1 : P1 fX82x 0,485 + 0^62x 0,667 0,55 ;

de même 1 : P3 0,60
1 : P3 0,485 + 0,430 — 2x0,149 0,617 ;

1 : P4 1 : Ph 077Ô72(0,430 + 0,556) 0,493

Contrôle : [Pi : Pt][ 1,5 (0,55 + 0,60) + 0,8 X

X 0,617 + 1,8 (0,493 + 0,493) 4,00 u.

De plus :

0,485 + 0,667 0,55 + 0,60 et

0,430 + 0,556 0,493 + 0,493.
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Barres a; bi Ci di P' Barres ai bi Cl di Pi Pi

-Y—1 + 0,342 + 0,940 1,0 A 1' + 0,8 + 0,6 Pi Pl
A—2 -J- 0,643 — 0,766 1,0 JV —2' + 0,6 — 0,8 Pi P2 g c

.Y —3 — 0,985 — 0,174 1,0 Y A" + 1,00 -1,00 0,8 P3 -o ce

.V — A" + 1,00 — 1,00 0,8 A" — 3' + 0,707 + 0.707 Pi P4 co .C. -

A" — 4 + 0,375 + 0,927 1,2 A' -4' + 0,707 — 0,707 Pi Pj ir. er ;

A" — 5 + 0,616 -0,788 1.2
JV' —6 — 0,990 — 0,139 1,2 1

2,3 0,0 -0,8 0,0
0,0 1,5 0,0 0,0

— 08 0,0 2,6 0,0
0,0 0,0 0,0 1,8

/>!+ 0,8 0,0 —0,8 0,0
0,0 Pl 0,0 0,0

— 0,8 0,0 p2+ 0,8 0,0
0,0 0,0 0,0 p2

0,485 0,0
0,0 0,667
0,149 0,0
0,0 0,0

+ 0,149
0,0
0,430
0,0

0,0
0,0
0,0
0,556

matrice aux
coefficients de poids

Pi 1,5, 1,8, Qu 0,485, Q22 0,667 Q13 + 0,149

Ces égalités expriment la propriété connue : les rec- de

tangles circonscrits à une ellipse sont inscrits dans un hy
même cercle. On constate en outre jusqu'à quel point
les calculs peuvent être poussés sans que les termes mi

absolus fi interviennent. Il y a cinq valeurs fictives /; [2]

pour réaliser l'équivalence, y compris celle de m0.

Quant aux sept termes absolus des équations aux défor- m
mations initiales, donc non fictives, leur détermination
est facile. Si le système était spatial, on pourrait appliquer

la représentation plane d'après B. Mayor pour le rgi
calcul de ces termes. [6]

En conclusion, on voit que l'application de la théorie
de l'équivalence fournit dans certains cas une solution
nouvelle ; on peut même s'affranchir de barres surabondantes.

Les inconnues sont encore les variations des

coordonnées des nœuds ; la notion d'ellipses ou ellip- mi
soldes de déformation subsiste. La forme et la position

ces courbes et surfaces peuvent jouer un rôle en

perstatique.
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unités, dimensions, par Raymond Allard. Paris,
Gauthier-Villars, 1963. — Un volume 21 x 27 cm, 64 pages.
Prix : broché, 9 F.

Dans la préface de cet ouvrage, le professeur Escande
dit notamment :

« Consacré à la présentation des règles d'énoncia-
tion et d'écriture correctes du langage scientifique,
particulièrement en ce qui concerne les grandeurs des

sciences physiques, les unités, les symboles, ce formulaire,

rempli de renseignements pratiques, est, avant
tout, un instrument de travail.

C'est en effet un outil dont ne peuvent se passer tous
ceux qui s'occupent de science et de technique. Son
actualité et son importance ont été amplifiées par la

promulgation en France du décret du 3 mai 1961
rendant seul légal et obligatoire le Système international
de Mesures, irrévocablement universel et abrogeant toutes

les unités non cohérentes.
Il s'adresse donc aux professeurs, aux ingénieurs, aux

physiciens, aux techniciens, et enfin aux élèves des

grandes écoles, des facultés et de l'enseignement
technique. Il doit être pour chacun d'eux la base de toute
normalisation de l'expression scientifique et technique...

»

Sommaire :
Tableau des espèces physiques. - Définitions, unités,

dimensions : Grandeurs fondamentales, de la géométrie, de
la cinématique, de la statistique, de la dynamique, de la
thermodynamique, de l'électricité, de l'électromagnétisme,
de la Photometrie énergétique, de la photométrie physiologique,

de l'acoustique énergétique, concernant les mélanges,
titres, concentrations PII, de la radio-activité et de l'ato-
mistique.

Grandeurs physiques et définitions normalisées de leur unité :
Longueur, masse, temps, intensité de courant électrique.
Température, intensité lumineuse. Angle plan, angle solide,
fréquence, force, énergie, puissance. Viscosité dynamique.
viscosité cinématique. Tension électrique, quantité d'électricité,

résistance. Capacité, inductance, conductance, flux
et induction magnétiques. Chaleur. Luminance, flux
lumineux, éclairement. Vergence, gain.

Tableaux d'équivalence entre unités de même espèce :

Longueurs. Aires, surfaces. Volumes, capacités. Masses. Vitesses.
Vitesses angulaires. Angles plans, angles solides. Forces,
poids. Pressions, contraintes, taux de travail. Energie.
Puissances.

Constantes physiques universelles : Propriétés du vide
absolu. Relativité. Atomistique. Physique moléculaire.
Thermodynamique. Rayonnement énergétique.

Hydrologie de surface, par M. Roche, ingénieur hydrologue
à l'Electricité de France, en coédition avec l'ORSTOM.
Ed. Gauthier-Villars, Paris. — Un volume 18x26 cm,
430 pages, tableaux, figures et photographies (1963).
Prix : cartonné, 75 F.

L'ouvrage est avant tout destiné aux spécialistes de

l'hydrologie et plus spécialement de l'hydrologie
tropicale. Les différents problèmes relatifs à cette discipline
y sont traités dans la double optique de l'organisme
d'études appliquées et de recherche fondamentale d'une
part, du « Service hydrologique » à vocation organisa-
tionnelle d'autre part.

La rédaction de l'ouvrage est toutefois suffisamment
claire et simple pour que ce dernier puisse être utilisé
avec profit par tous les professionnels qui s'intéressent
de près ou de loin aux problèmes de l'écoulement naturel
des eaux, en particulier les spécialistes de l'agriculture,
du génie rural, des travaux publics et des aménagements
hydro-électriques. Il est indispensable aux étudiants qui
veulent s'initier aux méthodes d'investigation modernes
concernant l'hydrologie de surface.
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