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SUR LA PROPAGATION DES VIBRATIONS TRANSVERSALES
LE LONG D’UNE POUTRE PRISMATIQUE OU LA SECTION SUBIT UNE
DISCONTINUITE SANS CHANGEMENT DU MOMENT DE RESISTANCE

par Henry FAVRE, professeur a I'EPF, Zurich *

§ 1. Introduction

Lorsqu'une vibration transversale sinusoidale se
propage le long d’une poutre prismatique ou d’une
barre cylindrique, et arrive en un point ou la section
subit une discontinuité, elle se décompose en une
vibration réfléchie et une vibration transmise, toutes
deux du méme type que la premiére (en abrégé, nous
parlerons de I'onde incidente et des ondes réfléchie et
transmise). in outre, les différentes parties de la poutre

— surtout celles voisines de la discontinuité sont en
général animées d’un mouvement périodique transversal,
non amorti. Il s’agit d’une sorte d’onde stationnaire,
qui vient se superposer aux trois ondes progressives

dont nous venons de parler.

* Etude tirée de la « Plaquette du centenaire de la Seclion gene-
voise » de la Société suisse des ingénieurs et des architectes. 1963.

Ce phénomeéne a été mis en évidence par Mugiono?
qui, dans un mémoire paru en 1955, a établi un systéeme
d’équations générales, permettant d’étudier I'influence
de la discontinuité de la section d’une barre sur la
propagation d’une vibration transversale incidente.
Cet auteur a en outre examiné en détail, dans le mémoire
cité, le cas particulier des barres prismatiques, de
section rectangulaire, ou la discontinuité consiste en une
brusque variation de la hauteur de cette section, la largeur
restant par contre constante. Des expériences adéquates
lui ont permis de vérifier 'exactitude de ses calculs.

Ripperger et Abramson ? ont étudié ensuite, a I'aide
des mémes équations générales, le cas des barres circu-

! Muciono : Messungen der Reflexion von Biegewellen an Quer-
schnittsspriingen auf Stiben. Acustica, Vol. 5, 1955, p. 182-186.

2 E. A. Rrerencer and H. Norman Awsravson: Reflection and
Transmission of Elastic Pulses in a Bar at a Discontinuity in Cross
Section. Proc. of the Third Midwestern Conf. on Solid Mechanies, The
University of Michigan Press, Ann Arbor, 1957, p. 135-145.
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laires, ou la discontinuité est due a une cariation du
rayon de la section. lls ont également vérifi¢ par des
expériences les résultats de leurs calculs.

Dans la présente étude, qui est purement théorique,
nous allons examiner un troisitme cas particulier,
celui de la propagation de vibrations transversales
sinusoidales le long dune barre prismatique, ow les
deux dimensions a, h de la section, supposée rectangulaire,
subissent en un point de Uaze des variations Aa, Ah
de signes contraires, choisies de fagon que le moment de
résistance reste constant, ¢ est-a-dire telles que

1 D ,
5 (a + Aa) (h+ Ah)? = s ah?, 1)

désignant la dimension paralleéle a la vibration.

Ce cas présente un triple intérét. D’abord, si un ingé-
nieur doit — pour une raison ou une autre — prévoir une
variation brusque de la section d’une poutre ou d’une
piéce prismatique de machine qu’il projette, il a un
avantage évident 4 maintenir le moment de résistance
constant le long de I'axe, afin d’éviter des discontinuités

des tensions normales (o, wax engendrées par une

min

flexion d’origine quelconque. De telles discontinuités
risqueratent en effet d’entrainer des valeurs inaccepta-
bles pour ces tensions. Ensuite, dans le cas particulier
étudié, nous verrons que londe stationnaire définie plus
haut n’existe pas, ce qui évite une autre cause d’aug-
mentation des tensions o,. Enfin, le calcul des vibrations
transyersales se révéle beaucoup plus simple, s1 la condi-
tion (1) est satisfaite, que lorsqu’elle ne 'est pas.

Aprés avoir rappelé quelques points essentiels de la
théorie des vibrations transversales des barres (§2),
nous établirons les formules relatives au cas d'une
sceule discontinuité satisfaisant a 'équation (1), et les
discuterons (§ 3)
le paragraphe 4, les formules relatives au cas ou, en

Pour terminer, nous donnerons, dans

deux points de la barre, existent des discontinuités
identiques, mais de sens inverses, satisfaisant chacune
a la condition (1).

La présente étude a été faite dans le cadre de recher-
ches expérimentales sur la propagation des ondes dans
les solides, exécutées par le Laboratoire de Photo-
élasticité de 'E.P.F. et subventionnées par le Fonds
national suisse de la recherche scientifique.

§ 2. Rappel de quelques points essentiels de la théorie
des vibrations transversales des barres prisma-
tiques

Soit tout d’abord une barre cylindrique ou prisma-
tique, symétrique par rapport au plan z, z et faite d’une
matiere homogeéne et isotrope, satisfaisant a la loi de
Hooke (fig. 1). Si cette barre est animée d’une vibration
transversale parallele au plan de symétrie, la ligne

élastique est constamment située dans ce plan et peut

étre représentée par la fonction
{=2C(a1), (;
qui satisfait a I'équation aux dérivées partielles

EIT 2 g
oSt — o’

|8V

(3)

ot £ désigne le module d’élasticité, p la masse spécifique,
S l'aire de la section droite et [ le moment d’inertie de
cette section par rapport a I'axe central y, perpendi-
culaire a I'axe de symétrie z.

Dérivons les deux membres de (3) par rapport au
temps t et désignons par V (x,t) = J{[Jt la vitesse
transversale des points de la barre, nous obtenons
I'équation :

El 2V 2V

— = . {

oS gxt — o

N

Remarquons d’abord que (4) admet la solution parti-
culiére 3

V =Cel(rt—ir+8=Clcos (pt—fr +€)+isin(pt— fx + €)],

(5)

ou = \/ El p (6)

La fonction (5) représente une « onde sinusoidale de
vitesse » se propageant dans le sens des z croissants.
Les quantités p/(2m), f/(21w) = 1/A et € désignent res-
pectivement la fréquence de la vibration, I'inverse de la
longueur d’onde A, et la phase initiale pour z = 0. C
est une constante réelle ou imaginaire. Cette onde se
')!'I)P'r'l(_"(" avec une \’ilt‘s.\‘e

¢ 1 5 /L ‘1 -
=hoymAmm/ o

qui dépend de la pulsation p ou de la longueur d’onde
Al y a dispersion ®.

Cherchons ensuite une solution plus générale, en
posant

Via, t) = o(z) eirt. (8)

Iin substituant dans (4), on obtient aprés division
par e, pour la fonction ¢(x), I'équation différentielle
ordinaire :

EI d% 9}

- 31 = p° . b

pS dat i {
3 Ce sont — il va de sei — les pmllm réelles des quantités imagi-
naires utilisées dans les caleuls, qui représentent effectivement Io

grandeurs intervenant dans le probléme étudié.

4 L'équation (4) et la solution (5) supposent essentiellement que
la longueur d'onde A soit grande par rapport aux dimensions de la
section, ce que nous admettrons constamment dans la suite de ce
mémoire.

ey
B 4 e ¥ S ) W S 10| @ Q?(.g) X _+___,_,_.-—-_—__—_:i (.!
ik it . ; 7
. I ’ 2 I Sym ol
ligne elastigue | g = N
v v
Iig. 1. — Vibration transversale { — d’une barre cylindrique ou prismatique — paralléle au plan de symétrie @, z.
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dont la solution générale est
v(z) = Aje—i7 4 Azetilz 4 Bie—/ + Byetlz, (10)

Ay, Ay, By, B, étant des constantes arbitraires, réelles
ou imaginaires. En introduisant cette valeur dans (8),
nous obtenons :

V(z,t) = Ajeimi—iz) 1 A, eilpt+io) (11)
+ Bye—/#(cos pt + isin pt) + Bye +/z (cos pt + i sin pt).

Le premier des quatre termes du second membre
représente une onde (de vitesse) se propageant dans le
sens des z croissants, le deuxiéme terme, une onde se
propageant dans le sens contraire ®. Le troisiéme terme
correspond a une onde stationnaire (de vitesse) dont
Pamplitude tend vers zéro lorsque @ croit indéfiniment.
Enfin, le quatriéme représente une onde stationnaire
dont I'amplitude tend vers zéro lorsque @ décroit.

— Examinons maintenant la transformation subie
par une onde incidente, se propageant dans le sens des
@ croissants, lorsqu’elle arrive en un point O (z = 0), ou la
section subit une discontinuité (fig. 2). Nous suppose-
rons que la premiére partie de la barre (z=0) et la
seconde (2=0) admettent le méme plan de symétrie z, z.

Désignons respectivement par Ey, p, Sy, I, et Ey, p,,
Sy, Iy les constantes caractéristiques de ces parties
et par ¢;(x), vo(z) les fonctions ¢(z) relatives a chacune
d’elles. Nous basant sur la solution (10), nous pouvons

et o R, R’, D, D' désignent des constantes. Les deux par-
ties de la barre sont supposées suflisamment longues pour
qu'aucune réflexion a leurs extrémités opposées au
point O n’intervienne dans le phénoméne étudié.

Le terme e—#= représente, au facteur et prés, onde
de eitesse incidente donnée, dont on suppose Uamplitude
égale a lunité. Les termes Retihz et De—if repré-
sentent respectivement — toujours au facteur eirt
prées — Uonde réfléchie par la discontinuité dans la pre-
miére partie de la barre et Uonde transmise dans la
seconde. Quant aux termes R'e+/w, D’e—/-t ils corres-
pondent & l'onde stationnaire dont il a déja été question
§ 1, et qui est esquissée dans la figure 3.

Pour déterminer les coellicients R, R', D, D’ (qui
sont en général imaginaires, exceptionnellement réels
ou nuls), remarquons d’abord que, pour toute section
d’abscisse z, positive ou négative, existent les relations :

dy EI d?¢ EI d3
ol w (z) désigne — au facteur e prés — la vitesse de

rotation de la section, M(z) le moment fléchissant et
Q(z) Ieffort tranchant.

D’autre part, en affectant comme précédemment de
I'indice 1 les grandeurs concernant la partie 2==0 de la
barre, et de I'indice 2 celles concernant la partie =0,
nous avons, pour 2 = 0, les quatre conditions :

poser : Pr= 9y =y, My=M, (=0, (15)
— e—thz L +if,z o+ 1z
¢ e~he + Retihe + R'ethe, (12) 5 Soulignons qu'il s’agit ici — comme dans toute la suite de ce
o = De—ifx -+ D'g‘/z—"’ mémoire — d'ondes de vilesse et non des ondes de déplacement qui se
b produisent simultanément, les secondes étant liées aux premiéres par
—_— o — larelation V = Jz/)t. Le choix de la vitesse V, et non du déplacement 3,
4 p1 S 1 4 0y S 1 comme principale inconnue du probléme, est justifi¢ par le fait que
ou fl = \ Al P, f2 = L P (13) Pénergie transmise par une onde sinusoidale quelconque se propageant
E I E, I, le long d'une barre est directement proportionnelle a (V) ..
Onde rncidente Onde lransmise
|
S, | - — Sz,
7 s
'—>X <
- A e e iy e e e e e v e o e 5 e T B R e 5 S 5 e B s Bt . o
q E.0081.L (1Y) 14
i I £2,02,82, 72 %
v vz
Zz 3 o e 21 7
Onde reflechre ke arscontinuite
Fig. 2. — Barre cylindrique ou prismatique, symétrique par rapport a un plan x,z, et dont la section droite subit une
discontinuité en un point O de 'axe.
K discontinuite
A
IYig. 3. — Onde stationnaire produite, au voisinage du point O oi la section de la barre est discontinue, par une vibration

incidente transversale.

319




Si l'on introduit successivement les valeurs (12)
de ¢, ¢, dans les formules (14), puis les valeurs de co;,
Wy, My, My, Qy, Q, ainsi obtenues, ainsi que celles de v¢;,
vy, dans les conditions (15), on obtient finalement le
systeme de quatre équations algébriques linéaires © :

R+R—D—D =1,
R+ R+ 1KD + KD’ = I (16)

— R4 R+ yD—yD = 1, [ °

— iR+ R —iKyD + KyD" = — |,
4

ou K= % = \/stzEl I [ (pr Sy Ep Iy), (17)

3 E, ,
\p—ffElj \/poSEIZ/pISEI) (18)

En substituant dans les relations (12) les valeurs de
R, R', D, D" tirées du systéme (16), on obtient, aprés
multiplication par e7t, les fonctions V, (x, t), V,(x, t),
dont les parties réelles représentent la solution du
probléme. On remarquera que les coeflicients R et D
étant en général imaginaires, les vibrations engendrées,
au point O, par les ondes réfléchie et transmise, n’auront
— sauf dans certains cas exceptionnels — pas la méme
phase que celle de la vibration engendrée en ce point
par 'onde incidente.

§ 3. Cas ou la section d’une barre prismatique rectan-
gulaire subit une discontinuité sans changement
du moment de résistance, et ou les deux parties
de la barre sont faites de la méme matiére

Désignons par a,, h; la largeur et la hauteur de la
section droite de la premiére partie (z==0) de la barre, et
par a,, hy les quantités analogues relatives a la seconde
partie (z==0). Nous avons ici (fig. 4):

[ 6 1 R
*Gﬂalhf =Ea2h§, E,=E;=E, pi=p;=0p;

ay hi

12

(19)
S, = ay by,

’ Szzazhz, 12'——

et les formules (17), (18) donnent, pour les constantes
K et , les valeurs :

En posant ¢ = 1 dans les équations (16), et en résol-
vant ce systéme par rapport aux coeflicients cherchés
R,R',D,D’, on obtient :

1 —K
T+K’

2

i = TTK

D = ) R=D =0

@)

et les expressions des vitesses V;, V, deviennent, en

vertu de (8), (12), (13), (19) et (22):
Vi (z, t) = o; (x) et = eilpt—hz) |- i: 7 el(wt+ha) ’ ‘
9 (23)
I/Z (x, t) = ¥y (l) et — 1 + )74 gi(Plg./zl'), J
3p\1* (2p 3p

1/4
R

1/2 1/4
o 1= ("

Aux signes pres, les coeflicients R et D représentent
les amplitudes des ondes (de vitesse) réfléchie et transmise,
I'amplitude de l'onde incidente étant choisie comme
unité de vitesse.

Ainsi, et comme nous 'avons déja mentionné dans
I'introduction, il n’y a pas d’onde stationnaire (puisque
R =D"=0). De plus, le coeflicient D étant réel et
positif, la phase de la vibration transversale, engendrée
au point O par Uonde transmise, est la méme que celle
de la vibration engendrée en ce point par Uonde incidente.
Les phases des oibrations transeersales analogues,
engendrées au point O par les ondes incidente et réfléchie,
sont les mémes st 0 << K < 1 (car R est dans ce cas réel et
positif) ; elles différent par contre de + 1w, si 1 < K < oo
(R étant alors réel et négatif).

Les deux courbes de la figure 5 représentent, d’apres
(22), les valeurs des coellicients R et D, c¢’est-a-dire des
amplitudes des ondes (de vitesse) réfléchie et transmise,
en fonction du rapport K = (h[hy)V/2 = (ay/a;)V/*. 11
va de soi qu’une faible partie de ces courbes interviendra
dans les applications, ou K est nécessairement de
Iordre de 1 (pour la barre représentée figure 4, on a

K =1]/4/2 = 0,707).

Il est maintenant facile de calculer, pour I'unité de
temps, lénergie E, réfléchie par la discontinuité et
Pénergie E; transmuse par celle-ci. St Uon prend comme

E

2p\1/2
2p

hy

unité Uénergie incidente arrivant- par seconde a la dis-

conlinuité, on a :

1—K\2 : i 4K

B =R= () E=l— =
14K (14 K)2

On peut aussi calculer cette derniére grandeur en

(25)

hy\1/2 a,\1/4 ay h} } )
K = <h—1) = (a_2> v (20) Yy = a2 /z; =1. (21) utilisant les relations (20), (22), (24) et en remarquant
4 2 o L que
B — pr 2 ( 2 ) ash, f; 4 K
¢ Voir par exemple Mucrono, loc. cit., équations (9). ! -Sl 1+ K a, hy f o (l +- K)? '
Onde incidente Onde transmise |
_—> ? _
o ! ¥
Zr ’ b a 0 ‘ & ]
L EE I A ey SR i = e e e > s
Y %) ~ * Ep.851.0 " (Y) : '
| . I~ - £est i £,0,52.02 v
R--‘-qlA.‘v ﬂ 1 . . . ’, B
vZ Onde reflechie b grscontinuite
vz
Fig. 4. — Barre prismatique rectangulaire, symétrique par rapport au plan a,z, et dont la section droite subit, au
point O de I’axe, une discontinuité sans changement du moment de résistance.
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ot ¢, = p/fy, ¢ = p/f; désignent
les vitesses de propagation des

ondes dans les deux parties de
la barre.
de temps,

[’énergie, par unité

propagée par une
vibration transversale sinusoi-
dale le long d’une barre est en

Amplitude de / onde (de vitesse) incidente

effet proportionnelle au carré
de la vitesse maximum (1, R
ou D) des particules. Elle est
en outre proportionnelle & I'aire

S~

de la section, a la vitesse de pro-
pagation et a la masse spécifi-
que (qui a ici la méme valeur

pour les deux parties). On a |

’ . / \

évidemment 0 =FE, =1, 0 < E, — |

= 1. Les valeurs de E, et E, |

sont représentées graphique-

ment, en fonction de K, par Fig. 5. — Amplitudes R et D des ondes (de vitesse) réfléchie et transmise par la discon-
les deux courbes de la figure 6. tinuité définie § 3, en fonction du rapport K = (hy/h,)1/2 = (ay/a;)}/* ('amplitude de

[ci également, seules les por-
tions des courbes dont les
abscisses different peu de I'unité interviendront dans
les applications.

— Pour permettre au lecteur d’apprécier la simpli-
cité des formules (22), obtenues en posant y = 1, voiei,
a titre de comparaison, les valeurs des coeflicients R et
D relatives au cas général, ot y est différent de 'unité ?

(1 =K% —iK (1 —y)

R=3 Ty (I + K% F K (I F g i
1
u——tr“"h—z{ () (1 + BY) + A* (1—K) +
—|—i[(1~1{)(1+B‘)—‘1'(‘l—}—K)}}, (27)
. W 29(1—FY
o A S G IF R FR AT P
YA TR FRAT 9P

Ces valeurs de ? et D sont imaginaires, et on verrait
quiil en est de méme de R’ et D’. Ceci confirme le fait
que, lorsque y est différent de I'unité (cas général), il
existe une onde stationnaire, et les vibrations engen-
drées en O par les ondes incidente, réfléchie et trans-
mise, n'ont pas la méme phase.

7 Voir RirpEnGeEr el Apramson, loc. cil., form. (23) et (28). L
premiére de ces deux formules a déja été publiée en 1955 par Mucrono,
loc. cit., form. (10).

[,.T £
+]

I'onde incidente a ¢té choisie comme unité de vitesse).

Relevons encore le fait que les formules (22), (23) et
(25) ne sont pas seulement applicables au cas parti-
culier défini par la figure 4 et les relations (19), mais
qu’elles le sont ausst toutes les fois que la constance
est égale a 'unité, ce qui exige simplement, d’aprés (18),
que :

W:\/P252E212/(P131E1[1):1- (28)

Le cas traité ici répond donc a une définition plus
générale que celle que nous avons donnée au début de
ce paragraphe.

Remarque. E, et E, peuvent aussi étre considérés
comme les coefficients de réflexion et de transmission de
Uénergie, par la discontinuité. Or E, et E, ne changent
pas de valeur si 'on remplace K par 1/K dans les for-
mules (25). Cela signifie que les coeflicients en questlon
restent les mémes si 'onde incidente, au lieu d’arriver
au point O en se propageant de gauche a droite dans la
partie de la barre située a gauche de ce point (fig. 4),
y arrive en se propageant (en sens contraire) dans la
partie de la barre située a droite de O. En d’autres
termes, les coefficients de réflexion et de transmission de
Uénergie par la discontinuité sont indépendants de la
partie de la barre o se propage Uonde incidente. En
calculant d’autre part E, =|R|2 et E,=1—|R|?
a I'aide de I'expression générale (26), on s’apergoit que

E, (K,y) = E, (K, y), E (K, y) = E (K, ),

_fnergie incidente par unite de temps

8 9 10 1 //2 (3, Vi

Y

Fig. 6. — Energies rélléchie et transmise [0, [ (par unité de temps) par la discontinuité définie § 3, en fonction du

rapport K = (hy/hy)1/2 = (ay/a;)1/1 (I'énergie incidente a été choisie comme unité).
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ce qui montre que la propriélé énoncée est également
applicable aw cas de la barre représentée figure 2. Elle
'est d’ailleurs aussi dans le cas des pibrations longitu-
dinales se propageant le long d’une barre cylindrique
ou prismatique, et dans celui des vibrations de torsion
se propageant le long d’une barre circulaire, lorsque
la section est discontinue en un point de I’axe, comme
on le reconnait immédiatement en appliquant les
formules classiques relatives a ces deux cas, formules
qui sont identiques & (25), a la signification de K
pres.

§ 4. Cas ou la section d’une barre prismatique rectan-
gulaire subit, en deux points de l’axe, des discon-
‘tinuités égales, mais de sens inverses, sans chan-
gement du moment de résistance, et ou les trois
parties de la barre sont faites de la méme matiére

La figure 7 est une vue de la barre, dont chacune
des trois parties est un prisme de section rectangulaire.
Cette figure montre le systéme d’axes choisi et précise
les notations utilisées. La premiére et la troisieme
parties ont la méme section (a; = a, h; = hy). La
longueur de la partie intermédiaire est désignée par L.

Nous avons ici :
1 1 1
! = Gazhg — 6—(13/13, E, = E, = Ey = E,;

3
9 h3

P1=Pe=pP3=0p; SIZSSZalhh L=1,= 197" (29)

S

= @y hy, L, =

5]

et nous pouvons poser, en nous basant sur la solution
générale (10) 8 :

v1(x) = e—ihe £ Ry etihe + Cy ethe, l

09(x) = Ay et 4 Ryetihz 4 Cye—he+ Cyefols—D, 1 (30)

0y(x) = Ag e—ihia—1) 1 C, sz, [

ou les fonctions ¢y, ¢,, ¢, désignent — au facteur eirt

prés — les vitesses transversales des points des trois

parties 2 =0, 0 =z =1, a>1, et ou R, C,, A,, R,,

C,, C;, A, C, sont des coeflicients constants, imaoinaires
2 2 3 3 ) =)

ou réels. Quant aux quantités f,, f,, fs, elles ont les

valeurs suivantes (voir aussi les formules (24)) -

* Voir aussi Mucrono, loc. cil., formules (12).

Onde rncrdente

Les deux parties extrémes de la barre sont supposées
suflisamment longues pour qu’aucune réflexion aux
extrémités opposées aux points O et O’ n’intervienne
dans le phénoméne étudié.

En substituant successivement les expressions (30)
de ¢)(2), vy(z), vy(x) dans les formules (14), puis en
appliquant des conditions analogues a (15) a chacun
des points de discontinuité O et 0', a savoir :

P17=0y, W=y, Mi=DM,, (=0, (pourz=0) (32)
V=93, Wy=wy, My=Mj;, Qy,=0Q,, (pourz=1)

on obtient un systéme de huit équations algébriques
linéaires, permettant de déterminer les coefficients
inconnus Ry, ..., C;. On trouve pour ces derniers, sans
négliger aucun terme dans les équations :

R, = D1 (1 — K?) (e—td — etildl),
Ay = —2D-1 (1 + K) e+ild,
(33)
Ry = 2D-1(1 — K) e—ild, Ay = —4 KD,
Ci=0C=C3=C3=0;
ou D= (1 —K)?eild — (1 + K)2e+ild, (34)

et ou, d’autre part :

A G A _[an\ME ag\1i4 £
K=" = (7" = G =" e

(pour les deux discontinuités, la constante y, définie
par la relation (18), est égale & 'unité).

On constate qu'ici également, il n’y a pas donde
stationnaire (ni au voisinage de I'une, ni au voisinage
de l'autre discontinuité), puisque C,, C,, Cj et Cy sont
nuls. Par contre, les coeflicients Ry, A,, Ry, A, étant
imaginaires, les vibrations engendrées au point O par
les deux ondes progressives sinusoidales arrivant en ce
point et les deux ondes du méme type qui en partent,
auront en général des phases différentes les unes des
autres. Il en sera de méme pour les vibrations engen-
drées au point O" par I'onde qui arrive en ce point
et par les deux ondes qui en partent. A I'aide des for-
mules (33) et (34), il serait facile de déterminer les
amplitudes et les phases de toutes ces vibrations.

Onde transmise

—
X
A 0 i

o i e s i 10 _ . i PR
i £.p.5.1, (4)[(origine i
(a;) aes k) v
’ (a)

Onde reflechre : 2

= grscontinurte
Z

k discontinuite
|

Fig. 7. — Barre prismatique rectangulaire, symétrique par rapport au plan @, z, et dont la section droite subit, aux

points O et 0, des discontinuités égales, mais de sens inverses, sans changement du moment de résistance.
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Nous nous contenterons de calculer, pour I'unité de
temps, I'énergie L, réfléchie, dans la premiére partie
de la barre, par la discontinuité O, et énergie E, trans-
mise, dans la troisitme partie, par la discontinuité 0,
en prenant I'énergie de 'onde incidente arrivant en
O comme unité. Les deux grandeurs E, et E, sont ici
respectivement égales aux carrés des amplitudes des
ondes (de vitesse) correspondantes, c’est-a-dire égales
aux carrés des modules des coeflicients complexes R,
et A, et ont pour valeurs :

(1 — K2)2 sin®(f,])

) — 2 —
=Ml = e ra—rrsm 7))
L e (36)
. 2 —
Ei=14= = (1— K2)2sin (fyl).
On peut vérifier que I'on a bien E, -+ E, = 1 (énergie

incidente par unité de temps), comme 'exige le principe
de conservation de l'énergie. Il est également intéres-
sant de constater que I, = 0, si f, I = k m (k étant un
nombre entier positif), ¢’est-a-dire — puisque [,/ (21) =
=1/A, —s1 =k (Ay/2). Pour de telles valeurs de [,
on a E; = 1. Tout se passe donc — en ce qui concerne la
réflexion et la transmission de I'énergie — comme si les
deux discontinuités n’existaient pas. L’énergie réfléchie
est aussi nulle, et I'énergie transmise égale a l'unité,

lorsque K =1, ce qui est évident, car dans ce cas il n’y a
effectivement pas de discontinuité. Remarquons encore
que pour I =k (Ay/2) 4+ Ay/4, on a fol=km -+ /2,
sin®(fy [) = 1, et E,, E, passent par les valeurs extrémes :

1 — K22 4 K? )
(Er)u_mx = (m@) ’ (El>min —! m)_z‘ (3/>

En comparant ces valeurs & celles données par les
formules (25) du § 3, on constate que si [ =k (A,/2) -
+ Ag/4, tout se passe, en ce qui concerne la réflexion et la
transmission de I'énergie, comme si la section de la barre
n'avait qu'une seule discontinuité, mais ou le rapport K
aurait la valeur K2.

Relevons pour terminer que les principales formules
obtenues, a savoir (33), (34) et (36), ne sont pas seule-
ment applicables au cas particulier défini par la figure 7
et les relations (29), mais quelles le sont aussi toutes
les fois que la constante , définie par (18), est égale a 1
pour les deux discontinuités, c’est-a-dire lorsque :

Y= 7\/ P2Se Ey 1o/ (py Sy Eq 1) =
(39

= —\// P2 So By Iy [ (py Sz Ey I3) = 1.

Zurich, le 31 janvier 1963.

ACTUALITE INDUSTRIELLE (25)

Journées 1963 du Mont-Pélerin

Aspects scientifiques et économiques
de la recherche

Organisées conjointement, les 4 et 5 mai, par :

— la Société vaudoise des ingénieurs et des archi-

tectes de Lausanne ;

— le Groupe des ingénieurs de I'industrie de la SIA,

section genevoise, Genéve ;

— la Société d’études économiques et sociales, Lau-

sanne ;

— le Cerele d’études économiques et sociales du Haut-

Léman, Vevey,
ces Journées 1963 du Mont-Pélerin ont connu un tres
beau succes, puisque plus de 80 personnes y partici-
pérent.

Rappelons que les Journées du Mont-Pelerin ont été
créées en 1959 par le Groupe des ingénieurs de I'indus-
trie de la SIA, section genevoise, et qu’elles ont eu
lieu ensuite chaque année, répondant a un réel besoin
et traitant successivement les thémes suivants :

1959 :  L’ingénieur suisse et I'Europe.

1960 :  L’Automatique et I'homme,

1961 :  L’interdépendance de 'économie et de la tech-
nique.

1962 :  L’ingénieur et I'économiste dans I'entreprise,

leur formation et leur collaboration.

Les Journées 1964 auront lieu les 25 et 26 avril et
traiteront du planning dans I'entreprise.

Nous donnons un compte rendu de ces journédes, en
rappelant que le texte intégral des conférences et des
interventions sera publié dans la Revue économique et

sociale, qui présentera, a cet effet, un numéro spécial,
comme ce fut le cas ces deux derniéres années.

Introduction de M. Eric Cmoisy, DT h.ec., ingénieur,
président de Grande-Dixence S.A., Lausanne.

M. Choisy montre que « Capital et Travail » ne suffisent
plus & expliquer la croissance ¢conomique que connait
actuellement notre société ; d’autres facteurs interviennent,
dont notamment la recherche, qui conditionne le méme
progres.

Notre industrie, clef de voite de notre ¢économie (machines
et chimie), ne pourrait se maintenir sans la recherche. On
constate, cependant, un certain ralentissement dii a ce qu’on
pourrait appeler la fin de la « période artisanale de la recher-
che scientifique ».

Il est actuellement indispensable pour la recherche de
disposer de moyens financiers importants, d’ot intervention
néeessaire de I'Etat, ce qui implique quelques dangers (appli-
cation militaire, aspects spectaculaires au détriment de
branches plus discrétes, par exemple la biologie).

Les crédits consacrés a la recherche doivent étre attribués
non par des politiciens mais par des savants.

Malgré ces précautions, il existe des « privilégiés » ; par
exemple, on dispose de crédits considérables pour les recher-
ches sur la matiére mais de fort modestes crédits pour le
développement des villes et pour les é¢tudes sur 'alimenta-
tion.

En passant, on peut signaler que ces études sur I'alimen-
tation — qui devraient porter sur la production, les moyens
de conservation et la protection des aliments — occupent
actuellement en Suisse environ 500 chercheurs.

Dans la recherche fondamentale, la liberté de recherche
apparait comme une condition nécessaire. Par contre, on
peul envisager une certaine orientation ou coordination
dans la recherche appliquée.

Il 'y a lieu également de remarquer que certaines recher-
ches, qui présentent un intérét général, méritent amplement
d’étre développées sur le plan international ; comme par
exemple les recherches sur la corrosion des coques de
navires, la pollution de I'atmosphere, la documentation.

L’un des caractéeres de la recherche actuelle est la poly-
valence, dans le sens qu’un résultat obtenu dans un domaine
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