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SUR LA PROPAGATION DES VIBRATIONS TRANSVERSALES

LE LONG D'UNE POUTRE PRISMATIQUE OU LA SECTION SUBIT UNE

DISCONTINUITÉ SANS CHANGEMENT DU MOMENT DE RÉSISTANCE

par Henry FAVRE, professeur à l'EPF, Zurich *

§ 1. Introduction

Lorsqu'une vibration transversale sinusoïdale se

propage le long d'une poutre prismatique ou d'une
barre cylindrique, et arrive en un point où la section
subit une discontinuité, elle se décompose en une
vibration réfléchie et une vibration transmise, toutes
deux du même type que la première (en abrégé, nous
parlerons de l'onde incidente et des ondes réfléchie et
transmise). En outre, les différentes parties de la poutre
— surtout celles voisines de la discontinuité — sont en

général animées d'un mouvement périodique transversal,
non amorti. Il s'agit d'une sorte d'onde stationnaire,
qui vient se superposer aux trois ondes progressives
dont nous venons de parler.

* Etude tirée de lu <i Plaquette du centenaire de la Section genevoise

» de la Société suisse des ingénieurs et des architectes. 1963.

Ce phénomène a été mis en évidence par Mugiono 1

qui, dans un mémoire paru en 1955, a établi un système
d'équations générales, permettant d'étudier l'influence
de la discontinuité de la section d'une barre sur la
propagation d'une vibration transversale incidente.
Cet auteur a en outre examiné en détail, dans le mémoire
cité, le cas particulier des barres prismatiques, de

section rectangulaire, où la discontinuité consiste en une
brusque variation de la hauteur de cette section, la largeur
restant par contre constante. Des expériences adéquates
lui ont permis de vérifier l'exactitude de ses calculs.

Ripperger et Abramson a ont étudié ensuite, à l'aide
des mêmes équations générales, le cas des barres circu-

1 Mugiono : Messungen der Reflexion von Biegewellen an Quer-
schniUssprüngen auf Stäben. Acustica, Vol. 5, 1955, p. 182-186.

8 E. A. Ripperger and H. Norman abramson : Reflection and
Transmieeion of Elastic Puisée in a Bar at a Discontinuity in Cross
Section. Proc. of the Third Midwestern Conf. on Solid Mechanics, The
University of Michigan Press, Ann Arbor, 1957, p. 135-1 'i5.
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laires, où la discontinuité est due à une variation du

rayon de la section. Ils ont également vérifié par des

expériences les résultats de leurs calculs.
Dans la présente étude, qui est purement théorique,

nous allons examiner un troisième cas particulier,
celui de la propagation de vibrations transversales
sinusoïdales le long d'une barre prismatique, où les

deux dimensions a, h de la section, supposée rectangulaire,
subissent en un point de l'axe des variations Aa, Ah
de signes contraires, choisies de façon que le moment de

résistance reste constant, c'est-à-dire telles que

¦« (o + Aa) (h + Ah)2 -^ ah2, (1)

h désignant la dimension parallèle à la vibration.
Ce cas présente un triple intérêt. D'abord, si un

ingénieur doit — pour une raison ou une autre — prévoir une
variation brusque de la section d'une poutre ou d'une
pièce prismatique de machine qu'il projette, il a un
avantage évident à maintenir le moment de résistance
constant le long de l'axe, afin d'éviter des discontinuités
des tensions normales (ajmax engendrées par une

min

flexion d'origine quelconque. De telles discontinuités
risqueraient en effet d'entraîner des valeurs inacceptables

pour ces tensions. Ensuite, dans le cas particulier
étudié, nous verrons que l'onde stationnaire définie plus
haut n'existe pas, ce qui évite une autre cause
d'augmentation des tensions <jx. Enfin, le calcul des vibrations
transversales se révèle beaucoup plus simple, si la condition

(1) est satisfaite, que lorsqu'elle ne l'est pas.
Après avoir rappelé quelques points essentiels de la

théorie des vibrations transversales des barres (§ 2),
nous établirons les formules relatives au cas d'une
seule discontinuité satisfaisant à l'équation (1), et les

discuterons (§ 3). Pour terminer, nous donnerons, dans
le paragraphe 4, les formules relatives au cas où, en
deux points de la barre, existent des discontinuités
identiques, mais de sens inverses, satisfaisant chacune
à la condition (1).

La présente étude a été faite dans le cadre de recherches

expérimentales sur la propagation des ondes dans
les solides, exécutées par le Laboratoire de
Photoélasticité de l'E.P.F. et subventionnées par le Fonds
national suisse de la recherche scientifique.

§ 2. Rappel de quelques points essentiels de la théorie
des vibrations transversales des barres prismatiques

Soit tout d'abord une barre cylindrique ou prismatique,

symétrique par rapport au plan x, z et faite d'une
matière homogène et isotrope, satisfaisant à la loi de

Hooke (fîg. 1). Si cette barre est animée d'une vibration
transversale parallèle au plan de symétrie, la ligne

élastique est constamment située dans ce plan et peut
être représentée par la fonction

£ £(*, *). (2)

qui satisfait à l'équation aux dérivées partielles

Eld% d%

ps da? dt2
(3)

où E désigne le module d'élasticité, p la masse spécifique,
S Faire de la section droite et / le moment d'inertie de

cette section par rapport à l'axe central y, perpendiculaire

à l'axe de symétrie z.
Dérivons les deux membres de (3) par rapport au

temps t et désignons par V (x, t) dl^fdt la vitesse
transversale des points de la barre, nous obtenons
l'équation :

p5 dx dt2

Remarquons d'abord que (4) admet la solution parti-

V Ce''<?' - i1 + E> C[cos(p< —fx +s)+ t sin (pi —/t + e)],

(5)

où / V / PA p3 •/-Vë'5
La fonction (5) représente, une « onde sinusoïdale de

vitesse » se propageant dans le sens des x croissants.
Les quantités p/(2tt), //(2tt) 1/Â et e désignent
respectivement la fréquence de la vibration, l'inverse de la
longueur d'onde À, et la phase initiale pour x 0. C
est une constante réelle ou imaginaire. Cette onde se

propage avec une vitesse

p */EI 1
n

V EI -1
(7)

qui dépend de la pulsation p ou de la longueur d'onde

\ : il y a dispersion 4.

Cherchons ensuite une solution plus générale, en

posant
V(x, t) v(x) ëv'. (8)

En substituant dans (4), on obtient après division
par e*P', pour la fonction v(x), l'équation différentielle
ordinaire :

El d*v

* Ce sont — il va de soi •— les parties réelles des quantités imaginaires

utilisées dans les calculs, qui représentent effectivement les
grandeurs intervenant dans le problème étudié.

4 L'équation (4) et la solution (5) supposent essentiellement que
la longueur d'onde X soit grande par rapport aux dimensions de la
section, ce que nous admettrons constamment dans la suite de ce
mémoire.

:°Jrl-

ligne e/asfigue

~*ï
AT

cp

vZ

<y m
sum

^
Fie. 1. Vibration transversale Ç — d'une barre cylindrique ou prismatique — parallèle au plan de symétrie x.
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dont la solution générale est

v{x) Axe-*l* + Atf+V* + Bie-I* + B2e+Ix, (10)

Alf A2, Blt B2 étant des constantes arbitraires, réelles
ou imaginaires. En introduisant cette valeur dans (8),
nous obtenons :

V(x, t) A^i*-!*) + A2e(<P'+lx> + (11

+ Ble~l-C [cos pt -\- i sin pi) + B2e+Ix (cos pt + i sin pt).

Le premier des quatre termes du second membre
représente une onde (de vitesse) se propageant dans le
sens des x croissants, le deuxième terme, une onde se

propageant dans le sens contraire 5. Le troisième terme
correspond à une onde stationnaire (de vitesse) dont
l'amplitude tend vers zéro lorsque x croît indéfiniment.
Enfin, le quatrième représente une onde stationnaire
dont l'amplitude tend vers zéro lorsque x décroît.

— Examinons maintenant la transformation subie
par une onde incidente, se propageant dans le sens des

x croissants, lorsqu'elle arrive en un point O [x 0), où la
section subit une discontinuité (fig. 2). Nous supposerons

que la première partie de la barre (x^O) et la
seconde (a^O) admettent le même plan de symétrie x, z.

Désignons respectivement par Elt plt Slt /, et E2, pg,
S2, I2 les constantes caractéristiques de ces parties
et par v±{x), v2(x) les fonctions v(x) relatives à chacune
d'elles. Nous basant sur la solution (10), nous pouvons
poser :

v1 e~'hx + Re+<hx + R'e+hx,

v, De—*/«* + D'e-I'T,
(12)

P2J>2

E2 12
(13)

et où R, R', D, D'désignent des constantes. Les deux parties

de la barre sont supposées suffisamment longues pour
qu'aucune réflexion à leurs extrémités opposées au
point O n'intervienne dans le phénomène étudié.

Le terme e—*A* représente, au facteur é& près, l'onde
de vitesse incidente donnée, dont on suppose l'amplitude
égale à l'unité. Les termes Re+'l'x et De~'I*1
représentent respectivement — toujours au facteur é&
près — l'onde réfléchie par la discontinuité dans la
première partie de la barre et l'onde transmise dans la
seconde. Quant aux termes R'e+I'x, D'e—I*0, ils
correspondent à l'onde stationnaire dont il a déjà été question
§ 1, et qui est esquissée dans la figure 3.

Pour déterminer les coefficients R, R', D, D' (qui
sont en général imaginaires, exceptionnellement réels
ou nuls), remarquons d'abord que, pour toute section
d'abscisse x, positive ou négative, existent les relations :

dv
M: EI_cPv

ip dx2
Q

ip dar

où co (x) désigne — au facteur éPl près — la vitesse de
rotation de la section, Mix) le moment fléchissant et
Q(x) l'effort tranchant.

D'autre part, en affectant comme précédemment de
l'indice 1 les grandeurs concernant la partie x^Q de la
barre, et de l'indice 2 celles concernant la partie x^O,
nous avons, pour x 0, les quatre conditions :

M1 M2, Q1 Q2 (15)

6 Soulignons qu'il s'agit ici — comme dans toute la suite de ce
mémoire — d'ondes de vitesse et non des ondes de déplacement qui se
produisent simultanément, les secondes étant liées aux premières par
la relation V ,hj^t. Le choix de la vitesse V, et non du déplacement 3,
comme principale inconnue du problème, est justifié par le fait que
l'énergie transmise par une onde sinusoïdale quelconque se propageant
le long d'une barre est directement proportionnelle à (f*)mas-

Si

Ifz

Onde incidente
>¦

Ei.Pt.St.it (y)

Onde réfle'chie

Onde transmise

—>

^2,P2>^S>h

k discontinuité'
\z

m<r

yz

Fig. 2. — Barre cylindrique ou prismatique, symétrique par rapport à un plan x, z, et dont la section droite subit une
discontinuité en un point O de l'axe.

V,= R(R'e'pf)e^x it-nWO f**
^—w>

t, 1

*_ j- —
u-£¦7-

1 I2rtf-f0 t2-fi tg ~<7 ~ T8 p

Fig. 3.

hi discontinuité
vAv2

Onde stationnaire produite, au voisinage du point O où la section de la barre est discontinue, par une vibration
incidente transversale.
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Si l'on introduit successivement les valeurs (12)
de vu v2 dans les formules (14), puis les valeurs de coj,
oo2, Mj, M2, Qlt Q2 ainsi obtenues, ainsi que celles de vlt
v2, dans les conditions (15), on obtient finalement le

système de quatre équations algébriques linéaires 6 :

R + R'—D—D' —1,
iR + R' + iKD + KD' i,
R + R' + yD — yD' 1,

iR + R' — iKyD + ÜTvjyZ)' — i,

K=ff1 y?^Eihl(?iS1E2I2),

V II "8 *2

he1i1 y p2'S2£2/2/(p1s1£1/1).

(16)

(17)

(18)

En substituant dans les relations (12) les valeurs de

R, R', D, D' tirées du système (16), on obtient, après
multiplication par e'J", les fonctions Vx (x, t), V2 (x, t),
dont les parties réelles représentent la solution du
problème. On remarquera que les coefficients R et D
étant en général imaginaires, les vibrations engendrées,
au point O, par les ondes réfléchie et transmise, n'auront
— sauf dans certains cas exceptionnels — pas la même
phase que celle de la vibration engendrée en ce point
par l'onde incidente.

§ 3. Cas où la section d'une barre prismatique rectan¬
gulaire subit une discontinuité sans changement
du moment de résistance, et où les deux parties
de la barre sont faites de la même matière

Désignons par Oj, hx la largeur et la hauteur de la
section droite de la première partie (x^O) de la barre, et
par a2, h2 les quantités analogues relatives à la seconde

partie (a;^0). Nous avons ici (fig. 4) :

É 6 1

~î\ai hî "g «2 *ii Ex E2 E, pi

"1 °ï "il A »2 ' ^2==a2^l2> '

?2

a2 h\
(19)

et les formules (17), (18) donnent, pour les constantes
K et y, les valeurs :

K
Au \ 1/2"l\ ' «,\V«

(20) V
«2 h\
axh\

1. (21)

En posant vy 1 dans les équations (16), et en résolvant

ce système par rapport aux coefficients cherchés
R, R', D, D', on obtient :

Ä
1 — K
TTk: D

1 + K R' D' 0, 122\

et les expressions des vitesses Vx, V2 deviennent, en
vertu de (8), (12), (13), (19) et (22) :

1/j (x, t) — Vy (x) ev1 e»G*—A«) ¦

1 — K
K e»'(jx+/i*)

V2 (x, t) v2 (x) e'P' e*6*-/•*),

(23)

/l (i) (¦£) ' hi.r apr^Y". (24)

Aux signes près, les coefficients R et D représentent
les amplitudes des ondes (de vitesse) réfléchie et transmise,
l'amplitude de l'onde incidente étant choisie comme
unité de vitesse.

Ainsi, et comme nous l'avons déjà mentionné dans
l'introduction, il n'y a pas d'onde stationnaire (puisque
R D' 0). De plus, le coefficient D étant réel et
positif, la phase de la vibration transversale, engendrée
au point O par l'onde transmise, est la même que celle
de la vibration engendrée en ce point par l'onde incidente.
Les phases des vibrations transversales analogues,
engendrées au point O par les ondes incidente et réfléchie,
sont les mêmes si 0 < K < 1 (car R est dans ce cas réel et
positif) ; elles diffèrent par contre de ^ tt, si 1 < K < oo
(R étant alors réel et négatif).

Les deux courbes de la figure 5 représentent, d'après
(22), les valeurs des coefficients R et D, c'est-à-dire des

amplitudes des ondes (de vitesse) réfléchie et transmise,
en fonction du rapport K (h^fh^1!2 (ajctj)1/4. II
va de soi qu'une faible partie de ces courbes interviendra
dans les applications, où K est nécessairement de
l'ordre de 1 (pour la barre représentée figure 4, on a

K= l/-v/2"= 0,707).

Il est maintenant facile de calculer, pour l'unité de

temps, l'énergie Er réfléchie par la discontinuité et
l énergie Et transmise par celle-ci. Si l'on prend comme
unité l'énergie incidente arrivant- par seconde à la
discontinuité, on a :

E R2
i—K\2

E'=i-E^jrnctK w

Voir par exemple Muciono, loc. cit., équations (9).

i+K)
On peut aussi calculer cette dernière grandeur en

utilisant les relations (20), (22), (24) et en remarquant
que

F — m ^ Ü? - 2 Y aafeg tl - 4Jf
' St c, \l + K) ailh f% - (1 + K)*'

jM
a,
"T"

•Pi

Onde /neidente Onde transmise
> >

0_ ¦-\h2 -

iv fui£,P. Stlt E.PtSz.h

Onde réfléchie k discontinuité'

S,

y i2

i

.i
M

i

Fig. 4. — Barre prismatique rectangulaire, symétrique par rapport au plan x, z, et dont la section droite subit, au
point O de l'axe, une discontinuité sans changement du moment de résistance.
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où c2 p//2, Cy pif j désignent
les vitesses de propagation des
ondes dans les deux parties de
la barre. L'énergie, par unité
de temps, propagée par une
vibration transversale sinusoïdale

le long d'une barre est en
effet proportionnelle au carré
de la vitesse maximum (1, R
ou D) des particules. Elle est
en outre proportionnelle à l'aire
de la section, à la vitesse de
propagation et à la masse spécifique

(qui a ici la même valeur
pour les deux parties). On a
évidemment 0 ^ ET ^ 1, 0 ^ Et

^ 1. Les valeurs de ET et Et
sont représentées graphiquement,

en fonction de K, par
les deux courbes de la figure 6.

Ici également, seules les
portions des courbes dont les
abscisses diffèrent peu de l'unité interviendront
les applications.

— Pour permettre au lecteur d'apprécier la simplicité

des formules (22), obtenues en posant vp 1, voici,
à titre de comparaison, les valeurs des coefficients R et
D relatives au cas général, où y est différent de l'unité ' :

£>

ondeplirude

K=

h, P.-®

Fig. 5. — Amplitudes R et D des ondes (de vitesse) réfléchie et transmise par la discontinuité

définie § 3, en fonction du rapport K (h1lh2)ll2 (ag/oj1/* (l'amplitude de
l'onde incidente a été choisie comme unité de vitesse).

dans Relevons encore le fait que les formules (22), (23) et
(25) ne sont pas seulement applicables au cas particulier

défini par la figure 4 et les relations (19), mais
qu'elles le sont aussi' toutes les fois que la constance vjy

est égale à l'unité, ce qui exige simplement, d'après (18),
que :

2y(l-K2)-iK(i-y)2
2 y (1 + K2) + K (1 + y)»

' (26)

1 + w 1

-K) +2y(l + Ä») j(1 ' K}{1 ' U ' A (1

+ »[(1 —tf)(l + B*) —A*(l + X)]}, (27)

2u,(l-tf3)
2y(l + K2) + K(l + y)2'

-K(l-y)2~ 2y(l + K2) + K(l + y)2

V V p2 S2 E2121 (Pi Sx Ex I,) — 1. (28)

Ces valeurs de R et D sont imaginaires, et on verrait
qu'il en est de même de R' et D'. Ceci confirme le fait
que, lorsque y est différent de l'unité (cas général), il
existe une onde stationnaire, et les vibrations engendrées

en O par les ondes incidente, réfléchie et transmise,

n'ont pas la même phase.

' Voir RippEBGEn et Abramson, loc. cit., form. (23) et (28). La
première de ces deux formules a déjà été publiée en 1955 par Mugiono,
toc. cit., form. (10).

Le cas traité ici répond donc à une définition plus
générale que celle que nous avons donnée au début de

ce paragraphe.

Remarque. Er et Et peuvent aussi être considérés

comme les coefficients de réflexion et de transmission de

l'énergie, par la discontinuité. Or Er et Et ne changent
pas de valeur si l'on remplace K par 1/K dans les
formules (25). Cela signifie que les coefficients en question
restent les mêmes si l'onde incidente, au lieu d'arriver
au point O en se propageant de gauche à droite dans la
partie de la barre située à gauche de ce point (fig. 4),

y arrive en se propageant (en sens contraire) dans la

partie de la barre située à droite de O. En d'autres
termes, les coefficients de réflexion et de transmission de

l'énergie par la discontinuité sont indépendants de la
partie de la barre où se propage l'onde incidente. En
calculant d'autre part Er | R | a et E, 1 — | R |

2

à l'aide de l'expression générale (26), on s'aperçoit que
Er (K, y) Er (K-\ arJ), Et (K, a.) Et (K-\ »r»),

£r\Et
+1

t

i

Energie incidente par unile' de temps

"-t 0.5

Axe de sgmetrie_
des courbes £r,£.

0.5

i.l
8 9 10 11 12 iht )» fa, )%m®

Fig. 6. — Energies réfléchie et transmise Er, Et (par unité de temps) par la discontinuité définie § 3, en fonction du

rapport K (h1lh1)1l2 (^/"î)1'4 (l'énergie incidente a été choisie comme unité).
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ce qui montre que la propriété énoncée est également
applicable au cas de la barre représentée figure 2. Elle
l'est d'ailleurs aussi dans le cas des vibrations longitudinales

se propageant le long d'une barre cylindrique
ou prismatique, et dans celui des vibrations de torsion
se propageant le long d'une barre circulaire, lorsque
la section est discontinue en un point de l'axe, comme
on le reconnaît immédiatement en appliquant les
formules classiques relatives à ces deux cas, formules
qui sont identiques à (25), à la signification de K
près.

§ 4. Cas où la section d'une barre prismatique rectan¬
gulaire subit, en deux points de l'axe, des
discontinuités égales, mais de sens inverses, sans
changement du moment de résistance, et où les trois
parties de la barre sont faites de la même matière

La figure 7 est une vue de la barre, dont chacune
des trois parties est un prisme de section rectangulaire.
Cette figure montre le système d'axes choisi et précise
les notations utilisées. La première et la troisième
parties ont la même section (a1 a3, A, h3). La
longueur de la partie intermédiaire est désignée par l.

Nous avons ici :

1 1
: Oj h\ — g a2 h\ g a3 h\, JS, E2 E3 E,

Pi p2 P3 Pi S1 S3 a1h1, l!-—I3 "12

Wrt &Q Iv9 j h
hl

12

(29)

et nous pouvons poser, en nous basant sur la solution
générale (10) 8

:

vx(x) — e-V'x + R1 e+*A* + Ct e+hx,

v2{x) A 2 e-*l* + R2 e+V'* + C2 er-te + C2 e«*

v3{x) A3 e~iMx~D + C3 «-/.(*-'),

(30)

où les fonctions vlt v2, v3 désignent — au facteur e'P'

près — les vitesses transversales des points des trois
parties x ^ 0, 0 ^ x l, a; l, et où Rlt Clt A2, R2,
Cz, C2, A3, C3 sont des coefficients constants, imaginaires
ou réels. Quant aux quantités /1( /2, /3, elles ont les
valeurs suivantes (voir aussi les formules (24)) :

* Voir aussi Mugiono, toc. cit., formules (12).

¦.-A-srfër- '¦=($)'"©"• (31)

Les deux parties extrêmes de la barre sont supposées
suffisamment longues pour qu'aucune réflexion aux
extrémités opposées aux points O et O' n'intervienne
dans le phénomène étudié.

En substituant successivement les expressions (30)
de vx(x), v2(x), v3(x) dans les formules (14), puis en
appliquant des conditions analogues à (15) à chacun
des points de discontinuité O et O', à savoir :

v1=v2, co1=co2, M1=M2, Qx=Q2, (poura;=0)

Qz=Qs, (poura;=Z)"2=co8, M2=M3,
(32)

on obtient un système de huit équations algébriques
linéaires, permettant de déterminer les coefficie^œ
inconnus Rlt C3. On trouve pour ces derniers, sans
négliger aucun terme dans les équations :

Rx D-i (1 — K2) («-W — e+W)

A2 — 2Z)-i (1 + K) e+W,

R2 2 LH (1 — K) e-W, — 4 ÜTjD-i

C\ — ^-2 — ^2 — Vs — ^ i

où D (1 — Kf e-W — (1 + K)2 e+W,

et où, d'autre part :

K hm2 M1" a2\V*

(33)

(34)

(35)

(pour les deux discontinuités, la constante Vf/, définie
par la relation (18), est égale à l'unité).

On constate qu'ici également, il n'y a pas d'onde
stationnaire (ni au voisinage de l'une, ni au voisinage
de l'autre discontinuité), puisque Clt C2, C2 et C3 sont
nuls. Par contre, les coefficients Rlt A2, R2, A3 étant
imaginaires, les vibrations engendrées au point O par
les deux ondes progressives sinusoïdales arrivant en ce
point et les deux ondes du même type qui en partent,
auront en général des phases différentes les unes des
autres. Il en sera de même pour les vibrations engendrées

au point O' par l'onde qui arrive en ce point
et par les deux ondes qui en partent. A l'aide des
formules (33) et (34), il serait facile de déterminer les
amplitudes et les phases de toutes ces vibrations.

Onde incidente
>

— \h,

(Si)

Onde réfléchie

£,p,S,.It (y)
O
'(origine

oesx)

f—
fa)

I discontinuité'

E.p, Si,h

O1

Onde transmise
>

\hs=hf

fa=a,)

I« discontinu/te'

f.P.SsJs

Fig. 7. — Barre prismatique rectangulaire, symétrique par rapport au plan x, z, et dont la section droite subit, aux
points O et O', des discontinuités égales, mais de sens inverses, sans changement du moment de résistance.
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Nous nous contenterons de calculer, pour l'unité de

temps, l'énergie ET réfléchie, dans la première partie
de la barre, par la discontinuité O, et l'énergie Et transmise,

dans la troisième partie, par la discontinuité O',
en prenant l'énergie de l'onde incidente arrivant en
O comme unité. Les deux grandeurs Er et Et sont ici
respectivement égales aux carrés des amplitudes des
ondes (de vitesse) correspondantes, c'est-à-dire égales
aux carrés des modules des coefficients complexes R1
et A3, et ont pour valeurs :

£,= 1^1

Et \AA2

(1 — K2)2 sin2(f2Z)

4Ä2+(1 — K2)2 sin2 {f2l)'

4 K2

4Ä2+(1 — K2)2 sin2 (f2l).

(36)

On peut vérifier que l'on.a bien Er + Et 1 (énergie
incidente par unité de temps), comme l'exige le principe
de conservation de l'énergie. Il est également intéressant

de constater que Er 0, si f2 l k tt (/t étant un
nombre entier positif), c'est-à-dire — puisque /2/ (2-rr)

1/Â2 — si l k (A2/2). Pour de telles valeurs de l,
on a Et 1. Tout se passe donc — en ce qui concerne la
réflexion el la transmission de l'énergie — comme si les
deux discontinuités n'existaient pas. L'énergie réfléchie
est aussi nulle, et l'énergie transmise égale à l'unité,

lorsque K 1, ce qui est évident, car dans ce cas il n'y a
effectivement pas de discontinuité. Remarquons encore
que pour l k (À2/2) + A2/4, on a /2 l k tt + tt/2,
sin2(/2 l) 1, et Er, Et passent par les valeurs extrêmes :

(rV)max — a

1 #2.2
-r2r {Et) min —

4K2
(1 + K2)2

(37)

En comparant ces valeurs à celles données par les
formules (25) du § 3, on constate que si l k (A2/2) +
+ À2/4, tout se passe, en ce qui concerne la réflexion et la
transmission de l'énergie, comme si la section de la barre
n'avait qu'une seule discontinuité, mais où le rapport K
aurait la valeur K2.

Relevons pour terminer que les principales formules
obtenues, à savoir (33), (34) et (36), ne sont pas seulement

applicables au cas particulier défini par la figure 7

et les relations (29), mats qu'elles le sont aussi toutes
les fois que la constante y, définie par (18), est égale à 1

pour les deux discontinuités, c'est-à-dire lorsque :

V y P2S2EZI2I {p1S1E1I1)

(38)

y p2 S2 E2121 (p3 S3 E3 /s) 1.

Zurich, le 31 janvier 1963.

ACTUALITE INDUSTRIELLE (25)

Journées 1963 du Mont-Pèlerin

Aspects scientifiques et économiques
de la recherche

Organisées conjointement, les 4 et 5 mai, par :

— la Société vaudoise des ingénieurs et des archi¬
tectes de Lausanne ;

— le Groupe des ingénieurs de l'industrie de la SIA,
section genevoise, Genève ;

¦— la Société d'études économiques et sociales, Lau¬
sanne ;

— le Cercle d'études économiques et sociales du Haut-
Léman, Vevey,

ces Journées 1963 du Mont-Pèlerin ont connu un très
beau succès, puisque plus de 80 personnes y participèrent.

Rappelons que les Journées du Mont-Pèlerin ont été
créées en 1959 par le Groupe des ingénieurs de l'industrie

de la SIA, section genevoise, et qu'elles ont eu
lieu ensuite chaque année, répondant à un réel besoin
et traitant successivement les thèmes suivants :

1959 : L'ingénieur suisse et l'Europe.
1960 : L'Automatique et l'homme.
1961 : L'interdépendance de l'économie et de la tech¬

nique.
1962 : L'ingénieur et l'économiste dans l'entreprise,

leur formation et leur collaboration.

Les Journées 1964 auront lieu les 25 et 26 avril et
traiteront du planning dans l'entreprise.

Nous donnons un compte rendu de ces journées, en
rappelant que le texte intégral des conférences et des

interventions sera publié dans la Revue économique et

sociale, qui présentera, à cet effet, un numéro spécial,
comme ce fut le cas ces deux dernières années.

Introduction de M. Eric Choisy, Dr h. c, ingénieur,
président de Grande-Dixence S.A., Lausanne.

M. Choisy montre que « Capital et Travail » ne suffisent
plus à expliquer la croissance économique que connaît
actuellement notre société ; d'autres facteurs interviennent,
dont notamment la recherche, qui conditionne le même
progrès.

Notre industrie, clef de voûte de notre économie (machines
et chimie), ne pourrait se maintenir sans la recherche. On
constate, cependant, un certain ralentissement dû à ce qu'on
pourrait appeler la fin de la « période artisanale de la recherche

scientifique ».

Il est actuellement indispensable pour la recherche de
disposer de moyens financiers importants, d'où intervention
nécessaire de l'Etat, ce qui implique quelques dangers (application

militaire, aspects spectaculaires au détriment de
branches plus discrètes, par exemple la biologie).

Les crédits consacrés à la recherche doivent être attribués
non par des politiciens mais par des savants.

Malgré ces précautions, il existe des « privilégiés » ; par
exemple, on dispose de crédits considérables pour les recherches

sur la matière mais de fort modestes crédits pour le
développement des villes et pour les études sur l'alimentation.

En passant, on peut signaler que ces études sur l'alimentation

— qui devraient porter sur la production, les moyens
de conservation et la protection des aliments — occupent
actuellement en Suisse environ 500 chercheurs.

Dans la recherche fondamentale, la liberté de recherche
apparaît comme une condition nécessaire. Par contre, on
peut envisager une certaine orientation ou coordination
dans la recherche appliquée.

Il y a lieu également de remarquer que certaines recherches,

qui présentent un intérêt général, méritent amplement
d'être développées sur le plan international ; comme par
exemple les recherches sur la corrosion des coques de
navires, la pollution de l'atmosphère, la documentation.

L'un des caractères de la recherche actuelle est la
polyvalence, dans le sens qu'un résultat obtenu dans un domaine
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