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DYNAMIQUE DE LA CHAINE LINEAIRE MONO-ATOMIQUE
DANS I’APPROXIMATION HARMONIQUE

par B. VITTOZ, professeur a I'Ecole polytechnique de Lausanne *

1. Introduction

I’étude de la dynamique des cristaux est extréme-
ment importante pour les propriétés thermiques, élec-
triques et évidemment dynamiques des solides. Afin de
simplifier, nous considérons un réseau cristallin 4 une
dimension constitué¢ d’un seul type d’atomes, c’est la
chaine linéaire mono-atomique. L’article qui suil est
une partie d’un exposé fait le 2 mars & PEPUL a un
colloque de Physique du solide et de Résonance
nucléaire.

Comme références de base, citons Ziman 1, Peierls 2 et

Brillouin 2.

2. Chaine mono-atomique et conditions cycliques

La chaine contient N atomes identiques repérés par
Iindice m. A Péquilibre; la position de chaque atome
est :

-0 — .
(1) Tin ma  ou " = ma

a = distance interatomique = dimension de la
maille élémentaire.
m = nombre entier + 1

51V

Dans I'espace a trois dimensions et pour un réseau

PR

primitif (1 atome par maille élémentaire), nous aurions :

oA =210 = 7 =
(1 bis) Ty = miaq; 3 somme sur 1 =1, 2, 3
ou a; = vecteurs de base = cotés de la maille élémen-

taire.
Si les atomes sont déplacés de leur position d’équi-

libre, on a:
— — —
Ty = mPa; -+ Um

(2) T = ma + wm ou (2 bis

Périodicité des posttions d’équilibre : Elle n’est pos-
sible que si la chaine est inflinie alin de négliger I'effel
des extrémités et de pouvoir considérer que tous les

* Cette étude est tirée du Recueil de travaux offert au professeur
A. Stucky, en hommage de reconnaissance, sur l'initiative de 1'Asso-

ciation amicale des anciens éléves de ' Ecole polytechnique de Lausanne,
le 27 octobre 1962, 'année de son 70° anniversaire.
)
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atomes sont identiquement placés dans le réseau
(mémes voisins). Pour cela, on répéte périodiquement
a gauche et a droite de la chaine initiale un nombre
infini de chaines identiques et on pose pour les dépla-
cements et les moments conjugués :

WU+ N = Un
3) conditions cycliques

Pmt N = DPm

On peut se représenter ces conditions cycliques en

refermant la chaine initiale sur elle-méme selon une
boucle : 'atome N + 1 sera I'atome 1, 'atome N -+~ m
sera I'atome m *. Nous supposons les conditions cycli-
ques (3) satisfaites quel que soit le modeéle utilisé.
L’hamiltonien du systéme sera :

(4) H(tm, pm) = Eec(pm) + V(um)
ou: E. = énergie cinétique totale.
V= énergie potentielle totale.

L’état du systéme sera représenté par la fonction
d’onde y :
ly> = |ug ... wm ... uy>

Si I'on effectue une permutation cyclique des dépla-
cements, c’est-a-dire attribuer le déplacement wu, a
I’atome n° 1, le déplacement w4, & atome n® m, etc.,
I'hamiltonien (4) reste inchangé, ainsi que 1'état du
systeme. Mais deux états identiques sont représentés
par deux fonctions y identiques & un facteur de phase
pres :

|wg oo Um o un > = Uy o Ut ... UNgy > €T

et pour une translation m’ quelconque :

B) |wug ... um ... uy> =

= | Ustm .. Umgm . .. U/ 4N > e2iTIm

Nous dirons que la fonction obéissant a la relation (5)
appartient au mode ¢, qui, pour I'instant, est un nombre
quelconque (non entier, car (5) serait une identité évi-
dente). Mais si I'on opére une translation IV, on retrouve
identiquement la chaine primitive (wmsy = wy) :

e 2N — 1|
d’ou
(6) q= % ;  n = entier

donc les modes ¢ sont quantifiés :
(7) A(]min = l/N
Ajoutons a4 ¢ un nombre entier quelconque A :

(8) ¢ =q+h

Si la relation (5) est vérifiée pour le mode g, elle I'est
encore pour le mode ¢" (car hm’ = entier); donc le
mode ¢ + A est le méme que le mode ¢. On peut donc
limiter le domaine-de définition de ¢ & tout intervalle
de longueur unité. Par souci de symétrie, on prend :

1 g!
Le mode — 1/2 est le méme que le mode + 1/2; car

ces modes différent d’un nombre entier. Dans Iespace a

* Un autre modéle possible est constitué par la répétition infinie de
chaines identiques a gauche et a droite de la chaine initiale.
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trois dimensions, gm devient ¢;mf, ou la sommation
doit s’effectuer sur I'indice identique répété haut et bas.
Posons :

gm = q.m ou gim* = q.m pour le réseau a trois
dimensions.
Avec :
— = — - —5 —
m=ma = mla; q = qb = q;b
(7) ACImin = 1/.\' ou AQi,min = 1/4\'i
N; = nombre de mailles selon az?.
On a donce:
- — . == ==
g.m = qi.mt = q;b*. mia;

Il faut alors :

- o
(10) P PN bt

9l g=J5

8;i = symbole de Kronecker

- i o . A
a; = définit la maille élémentaire, donc le réseau.
b? = vecteurs de base du réseau réciproque par défi-

nition de (10).

Pour le réseau linéaire : b = 1/a = maille réciproque.
Dans l'espace a trois dimensions, la relation (8)
devient :

(8 bis) g =q+nh
avec
= -, .
h = hib* ; h; = entier
= . .
Les vecteur h définissent le réseau réciproque.

— — — . .
Les modes ¢ et ¢ 4+ A sont identiques car :

- =, L. . L
h.m' = hym’® = entier. Et e¢2i7™¢-m ne change pas.

On peut donc également limiter le domaine de défini-
s - ! S A ’
tion de ¢ dans I'espace réciproque & un volume centré

s
sur I'origine et qui contient & la limite les vecteurs A
les plus courts : c¢’est la premiére zone de Brillouin B

(fig. 1).

9.

= réseau réciproque (4 deux dimensions)
= premiére zone de Brillouin




Au point limite 4 de la zone, il doit correspondre un
autre point limite A’ tel que :

> — >
0A = 04"+ h
1 '
d4.. ey
s o i 1L LN S T g ! . 4 7
+ T S A——— + >
g i 77 0////',/1/n | 7
o
1
Fig. 2.
. = réscau linéaire
+ = réseau réciproque

Donc A est sur le plan 14 bissecteur du vecteur h
centré en 0. La zone B est un polyédre défini par I'en-
semble des plans T4, et son volume est le méme que
celut de la maille ¢lémentaire du réseau réciproque.

Le domaine (9) de définition de ¢ considéré pour le
réseau linéaire devient pour le réseau spatial :

. _—
(9 bis) qe B
La figure 2 représente le réseau linéaire et son

réseau réciproque.

Comme Agmin = !/x et comme les modes ¢ occupent
un intervalle unité, le nombre de modes différents pos-
sibles est égal & NN, qui est aussi le nombre de cellules
élémentaires et le nombre de degrés de liberté du solide.

3. Spectre de Fourier et coordonnées principales

Pour satisfaire aux conditions cycliques (3) on est

amené a poser :

U ~ e-2imnm|N avec n entier quelconque.

Ce qui satisfait bien a:
Um+N = Um

Or d’apres (6): ¢ = n/N, donc:
Uy ~ -20Tqm

Pour toutes les valeurs de ¢ possibles selon (6), on
aura une combinaison linéaire :

1 )
Up = —— >1 uge 2 pour les N valeurs de g.
s
1/\,/A_' est un facteur de normalisation. Or :
N
(11) E e2imgm  — Arsq,h — 1\"8,]'0

m=1 [il < a
en tenant compte de (6) ¢ = n/N :
(]')) Y e i, m —

E i
v N medesq

N&pmm' aveem’ =0 ou N

Au moyen de (11), on obtient :

1
E O R AL — E ["’,,‘-‘.'i'mn (a"~1) —
m \/1\: q’ym
1 .« . .
= =—— ,\_J [J'I;‘\_J,,-szn(q-:,) — VA L [J(IIS'I'.’,‘” _

7 m q
SO,

N 5/127,//

= \"’A\_'['ll =N8y40 car |yq] <1

donce :

1
U'I = E Uy, e’.’i'n'qm

\/ﬁ m

C’est le théoréme d’inversion de Fourier qui donne
le spectre U, de la distribution wuyy,.

® i ® < 1} ®
a r a a a a
I

o
e
X
ES

Nous avons done :
1 Sw . . )
Lq& 29gm : Uq — ume.?z'nqm
VN 7 VN %

Pour les moments conjugués p,, nous aurons égale-
ment :

(13) um =

1 1 )
(14) pn= — ¥V P,etimm 5 Py = S‘ Pme2imam
Vv 4 VN <

Les opérateurs correspondant aux variables canoni-
P P

quement conjugués u; et p, doivent vérifier les rela-
tions de commutation :

(15) [Um Um‘} =10 [Pm Prn'} =0et [llm Pnl’} — i]18m771

On vérifie ensuite que les opérateurs coordonnées prin-
cipales U, et P, satisfont aux mémes relations de com-
mutation.

(15 bis) [UgUg] =0 [PyPy] =0 [UyP,] = ihSy

On remarque que U, satisfait a la relation de trans-
lation (5), ce qui est une raison de plus de passer a la
transformation de Fourier.

4. Hamiltonien dans 'approximation harmonique

L’hamiltonien s’écrit :

(16) H = 2—111 N Pt Vi ou)
m
ou M = masse d'un atome de la chaine.

Pour le réseau linéaire, mous sommes obligés de
prendre le potentiel entre deux atomes m et m -~ n ne
dépendant que de la distance entre ces deux atomes.
A trois dimensions, cela signifierait que les atomes
interagissent par des forces centrales, ce qui n’est pas
toujours le cas.

Posons :

f(r) = potentiel entre deux atomes distants de r.
Alors :
Vinnin = [(|Xmsn — am|) = potentiel entre atomes

m - n et m.
Le potentiel total s’écrira :
. o ‘
V= L ]’(lAl'ern%-'l'ml)
mmn>o

Grace aux conditions cycliques (3), la somme sur n
peut se faire de n = 1 & N — 1 quel que soit atome m
dans la chaine, ce qui assure I’équilibre du systeme pour
les positions réguliéres :

T = % = ma ou uy = 0 quel que soit I'atome m.
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Développant f(r) en série de Taylor, on trouve en
s'arrétant aux termes du deuxiéme degré en w:

(17) W = L Gy, 3 sommation sur indices iden-
2 tiques.
(est 'approximation harmonique.
Les coefficients de couplages G sont :
: —— 5.\ P
Gmm — G(OJ =— = 32 L ”(na) = Zg
t?U"m, 0
Gmm' — Gm'm — ()-I ST
D Umd Un
= G (lm—nm'|)

n=>0

18
\15) {7 (|m—m'|a) =

I’hamiltonien devient :

1 ;
(19) H = W E [)Zm -}* G UmUm’

lvl)—\

Si 'on se limite & linteraction d'un atome sur ses
deux plus proches voisins, le tenseur de couplages G
devient : i
I Glo) = 2f"(a) = 28

G(m) =10 si |m| >1

(20)
‘ Gm) = —["(a)=—g si|m|=1

g est alors la constante de rappel du ressort fictif reliant
deux atomes voisins.

Sans se limiter a cette approximation, appliquons les
développements de Fourier (13) et (14) a I’hamilto-
nien (19) :

1 — 1 5
H=—N PP, + — Y Mw}U,T,
()1-)l oM Ld TR )
q q
l H=E+1V,
avec
E, = énergie cinétique.
}', = potentiel harmonique.
P, = P_, = complexe conjugué de P, (voir (14) ).
U, = U_, = complexe conjugué de Uy (voir (13) ).
Les coeflicients w? sont donnés par
2w
WPy =— ‘\_‘ G cos 2mmgm = spectre des coef-
M ==, fictents de coupla-
ve harmoniques Gy,.
22) 3 f |
( 4 ("u = (l’((l) = — Gmin — g
2 2
G = G(m) = G +m

5. Energies propres

I hamiltonien s’écerivail :

‘ 1.~ = RN L =
@) H= Y, PP 4 5 N MerqU, U, =
q 4
R
=Y, H,
[
Avec
. L o5 oM
(l.)y} /I,/ W Ill q 1 “.l* OO“,,( ,11 q I/‘I

(hamiltonien hermitien)
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H est I'hamiltonien d’un ensemble d’oscillateurs har-
moniques de pulsations w,. En effet, les équations cano-
niques de Hamilton s’écrivent :

w JH 1 -
oy S i N
(24) U, ob, — M P,
H -
D= — ;—q =— Mw?U,
(25) P, =— Mw%U,

D'apres (24), Péquation (25) devient :
(26) Uy + w2U;=0

qui est bien I'équation classique d’un oscillateur harmo-
nique dont la pulsation est w,. La solution classique est:

Uy = Cyeiodt

d’ott les déplacements (13) pour un seul mode ¢ :

Umg = —— Cgei(@gt2mm) — onde progressive.
VN
Comme :
’ q ‘
2mrgm = 21 i 2o car 2%, = ma,

le nombre d’ondes K vaut :

21q 21T

a A

et la longueur d’onde :

a

o el 1
A= —; mais (9) |g| = 5 entraine A=2a

Le déplacement total w, vaut d’apres (13):

\ | .. 3 .

Um = _\_4 Ung = superposition d’ondes progressi-
o ves et rétrogrades (w.; = wy)
<

Pour déterminer I'énergie propre E; du mode ¢, il
faut résoudre I'équation d’onde :

Hy |y > = Eglye>

On pose selon Dirac *:

constante de Planck

I g = (2Mhag)*ls (Pq— iMwoUy) 3 h = 2mh =
(27)
l 17,, = (2Mhay,) "/ (1—,1 + itMw,U,)
et 'on obtient :
i — _
' Hi= s E heog(agag + agag) = E H'y
q q
: L \— .
E, = (n,, + & howy, n, = entier =0

On dit que le mode ¢ contient ng, phonons d’énergie
hw,. La fonction d’onde correspondante sera | ng> :
q q

: . : 1
(29) H'y|n,> = Eg|ng> = (nq + T)/I(,Oql ng=>

I hamiltonien total // étant la somme des hamilto-
nicns partiels /1, U'équation de Schodinger
y>

est a variables séparables :

Hly>=E




|W> = |np>|nge> ... | ngy>

et :
(30) E:EE,I:E W-%%)Wooq:
q 1 =

= énergle totale.

D’apres 1'équation (29), 'hamiltonien partiel /', ne
peut pas modifier le nombre de phonons du mode ¢;
I'état | ng> est stationnaire. Donc I'énergie de chaque
mode est constante, ce qui entraine que I'énergie totale
est également constante. En s’arrétant a I'approxima-
tion harmonique, il ne peut pas y avoir de dissipation
d’énergie dans un mode.

On peut le montrer d’une autre fagon en étudiant de
plus prés les opérateurs a, et a, ; on trouve :

(31) ag| ng> \‘/nq ng— 1>

a, = opérateur d’annihilation. Il fait passer I'état
] ny > contenant n, phonons en I’état [ ng—1>
ot un phonon a disparu.

(32) aq] N> = \/nq | [nq + 1>

ag, = opérateur de production. Il a créé un phonon
dans le mode ¢

Mais dans [1,, il intervient l'opérateur ag.a, par

exemple qui, appliqué sur I'état | n; > donne :

l'ng 1> =
1|nq>

agoy | g = ag\/nq

—\n +1 \nq

Le nombre de phonons n, reste donc stationnaire. [l
ne peut pas y avoir d’'interactions phonon-phonon dans
I'approximation harmonique.
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LA COUVERTURE DE L’ORANGERIE pu NOUVEL ETABLISSEMENT
HORTICOLE DE LA VILLE DE LAUSANNE A LA BOURDONNETTE

par G. ROUBAKINE, ing. EPUL?!

Dans le groupe de constructions constituant le nouvel
établissement horticole que le service des pares et pro-
menades de la Direction des travaux de Lausanne a
ion de Vidy, figure une orangerie, c¢’est-

érigé dans la ré
a-dire une serre de grandes dimensions destinée a
Ihivernage des grandes plantes décoratives (palmiers,
lauriers, orangers).

La couverture de cette serre est constituée par une
coque autoportanté, dont la forme trés particuliere,
assemblage de plusieurs formes simples (et qui résulte
d’ailleurs d’un programme fort précis élaboré par
M. A. Desarzens, chef du service des pares et prome-
nades) a ceci de particulier qu’elle échappe totalement
au calcul et que, de ce fait, Pauteur du projet s’est trouvé
entierement a la merci des résultats d’essais sur
macquelte.

On sait que certains voiles dont la forme simple peut
étre définie par des équations de la géométrie analytique
(surfaces de révolution, conoides, paraboloides hyper-
boliques, par ex.) sont calculables avec une approxima-
tion suflisante sans recours a des essais de laboratoire.
D’autres formes (coupoles elliptiques, absides semi-
sphériques, ete.), tout en exigeant des essals sur
maquette, permettent un caleul trés approximatif qui
peut fournir les bases d’un premier dimensionnement et
permet d’autre part un certain controle des résultats
d’essais.

L’orangeriec de la Bourdonnette appartient a une
Lroisieme catégorie : tout calecul approché que on pour-
rait tenter conduirait a des résultats complétement

erronés. La seule voie possible consiste a réaliser un
modele, a 'essayer et & le modifier ensuite, voire méme
a le recommencer, de maniére & obtenir des efforts inté-
ricurs et des déformations compatibles avec le matériau
utilisé et le type de construction étudié. Le prix d’une
maquette et celui des essais étant élevés, 1l est important
de réduire au minimum ces tatonnements.

La premiére condition pour cela est que le projeteur
posséde une certaine « intuition statique » qui lui évitera
de se lancer dans une voie sans issue. Il peut étre trés
utile, d’autre part, de réaliser d’abord une maquette trés
primitive en carton, qui pourra donner une premiére
idée de la rigidité et de la stabilité des formes choisies.
(A ce point de vue, il est intéressant d'utiliser des sur-
faces développables.) 1l sera possible ensuite de passer

la construction d’une maquette de laboratoire, en
prenant soin de prévoir d’emblée des modifications sim-
ples permettant d’éviter la réalisation d’un second,
voire méme d’un troisieme modéle.

Programme et conception générale de l'orangerie

Le programme de cette serre avait été défini ainsi :
couvrir une surface de 400 m?, sans appuis intérieurs,
par une construction aux fagades entiérement vitrées.

! Cette étude est tirée du Recueil de travaux offert au professeur
A. Slucky, en hommage de reconnaissance, sur l'initiative de I'Asso-
ciation amicale des anciens éléves de ' Ecole polytechnique de Lausanne,
le 27 octobre 1962, 'année de son 70° anniversaire.
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