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DYNAMIQUE DE LA CHAÎNE LINEAIRE MONO-ATOMIQUE
DANS L'APPROXIMATION HARMONIQUE
par B. VITTOZ, professeur à l'Ecole polytechnique de Lausanne *

1. Introduction

L'étude de la dynamkjue des cristaux est extrêmement

importante pour les propriétés thermiques,
électriques et évidemment dynamiques des solides. Afin de

simplifier, nous considérons un réseau cristallin à une
dimension constitué d'un seul type d'atomes, c'est la
chaîne linéaire mono-atomique. L'article qui suit est

une partie d'un exposé fait le 2 mars à l'EPUL à un
colloque de Physique du solide et de Résonance
nucléaire.

Comme références de base, citons Ziman 1, Peierls 2 et
Brillouin 8.

2. Chaîne mono-atomique et conditions cycliques

La chaîne contient N atomes identiques repérés par
l'indice m. A l'équilibre, la position de chaque atome
est :

(1) ma ou xr,

a distance interatomique dimension de la
maille élémentaire.

m nombre entier -|- 1 N.
Dans l'espace à trois dimensions et pour un réseau

primitif (1 atome par maille élémentaire), nous aurions :

(1 bis) Xm m'ai ; somme sur i 1, 2, 3

où ai vecteurs de base côtés de la maille élémentaire.

Si les atomes sont déplacés de leur position d'eqsESi
libre, on a :

—»¦ ,—*• —>¦

(2) Xm — ma + um ou (2 bis) Xm m'ai + Um

Périodicité des positions d'équilibre : Elle n'est
possible que si la chaîne est infinie afin de négliger l'effet
des extrémités et de pouvoir considérer que tous les

* Cette étude est tirée du Recueil de travaux offert au professeur
A. Stucky, en hommage de reconnaissance, sur l'initiative de VAssociation

amicale des anciens élèves de l'Ecole polytechnique de Lausanne,
le 27 octobre 1962. l'année de son 70e anniversaire.
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atomes sont identiquement placés dans le réseau
(mêmes voisins). Pour cela, on répète périodiquement
à gauche et à droite de la chaîne initiale un nombre
infini de chaînes identiques et on pose pour les
déplacements et les moments conjugués :

(3)
Um ±N

Pm±N Pm
conditions cycliques

On peut se représenter ces conditions cycliques en
refermant la chaîne initiale sur elle-même selon une
boucle : l'atome N -\- 1 sera l'atome 1, l'atome N -\- m
sera l'atome m *. Nous supposons les conditions cycliques

(3) satisfaites quel que soit le modèle utilisé.
L'hamiltonien du système sera :

(4) H(um, pm) Ec(pm) + V(um)

où : Ec énergie cinétique totale.
V — énergie potentielle totale.

L'état du système sera représenté par la fonction
d'onde u; :

| Vf > \ux Um UN >
Si l'on effectue une permutation cyclique des

déplacements, c'est-à-dire attribuer le déplacement u2 à

l'atome n° 1, le déplacement um+i à l'atome n° m, etc.,
l'hamiltonien (4) reste inchangé, ainsi que l'état du
système. Mais deux états identiques sont représentés
par deux fonctions vu identiques à un facteur de phase
près :

| UX Um ¦ ¦ UN. > | Ua Um+! UN+l > e2'11«

et pour une translation m' quelconque :

(5) \ux Um UN>
| U1+m' lim+m- Um'+N > e2i^m

Nous dirons que la fonction obéissant à la relation (5)
appartient au mode q, qui, pour l'instant, est un nombre
quelconque (non entier, car (5) serait une identité
évidente). Mais si l'on opère une translation N, on retrouve
identiquement la chaîne primitive (um+N — Um) •

gZiirqN _ ^

d'où :

(6)
n

~N n entier

donc les modes q sont quantifiés :

(7) Aqmin 1In

Ajoutons à q un nombre entier quelconque h :

(8) q' q + h

Si la relation (5) est vérifiée pour le mode q, elle l'est
encore pour le mode q' (car hm' — entier) ; donc le
mode q -f- h est le même que le mode q. On peut donc
limiter le domaine-de définition de q à tout intervalle
de longueur unité. Par souci de symétrie, on prend :

(9)
1 1

-2<*-2
Le mode — 1/2 est le même que le mode + 1/2, car

ces modes diffèrent d'un nombre entier. Dans l'espace à

* Un autre modèle possible est constitué par la répétition infinie de
chaînes identiques à gauche et à droite de la chaîne initiale.

trois dimensions, qm devient q^m*, où la sommation
doit s'effectuer sur l'indice identique répété haut et bas.

Posons :

qm q.m ou qtm'

Avec :

q. m pour le réseau à trois
dimensions.

ma m'en q

àqmin 1I»

qtb*qb

(7) kqmin 1I» OU

Ni nombre de mailles selon &,

On a donc :

q.m qt.m' qib'. rrOa^

Il faut alors :

10 si i ^ j
(10) ¥. at si i j:

ymbole de Kronecker

Oj définit la maille élémentaire, donc le réseau.

h' vecteurs de base du réseau réciproque par défi¬
nition de (10).

Pour le réseau linéaire : b 1/a maille réciproque.
Dans l'espace à trois dimensions, la relation (8)

devient :

(8 bis) f'M <T+"£

avec
—»¦ —>•_

h hib' ; fit entier

Les vecteur h définissent le réseau réciproque.

Les modes q et q -f- h sont identiques car :

h.m' him' entier. Et e2iwKi-m ne change pas.
On peut donc également limiter le domaine de définition

de q dans l'espace réciproque à un volume centré
—*¦

sur l'origine et qui contient à la limite les vecteurs h
les plus courts : c'est la première zone de Brillouin B

' "B

Fig. 1.

réseau réciproque (à deux dimensions)
B première zone de Brillouin
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Au point limite A de la zone, il doit correspondre un
autre point limite A' tel que :

donc :

OA OA' + h

J-

///////&/•/////> 1

Fig. 2.

réseau linéaire
+ réseau réciproque

Donc A est sur le plan tta bissecteur du vecteur h
centré en O. La zone R est un polyèdre défini par
l'ensemble des plans tta, et son volume est le même que
celui de la maille élémentaire du réseau réciproque.

Le domaine (9) de définition de q considéré pour le
réseau linéaire devient pour le réseau spatial :

(9 bis) ~q~eR

La figure 2 représente le réseau linéaire et son
réseau réciproque.

Comme Aqmm 1/n et comme les modes q occupent
un intervalle unité, le nombre de modes différents
possibles est égal à N, qui est aussi le nombre de cellules
élémentaires et le nombre de degrés de liberté du solide.

3. Spectre de Fourier et coordonnées principales

Pour satisfaire aux conditions cycliques (3) on est
amené à poser :

Um <~ g-itremnlN avec n entier quelconque.

Ce qui satisfait bien à :

Um+N Um

Or d'après (6) : q n/N, donc :

um~<r2,"n'«m

Pour toutes les valeurs de q possibles selon (6), on
aura une combinaison linéaire :

1
— y Uqe'1'^"1 pour les N valeurs de q.

il\N est un facteur de normalisation. Or :

JVS,tJt JV&1.0(11) V ê*"*™

en tenant compte de (6) q n/N :

(12) V e2ilr*m NSmm avec m' O ou N
q N medes f/

Au moyen de (11), on obtient :

1 «-iV Ume2ilTvm — __ V (J^e-2i-nm(q'-t/) _-^ v//V ^m \ iy q,m

^=r y uq- y e-2iTm>(v'-i) sJW Y Uq'5,^,0

N8P--%h

\JN Uq =N5.i'-q,o car |«,<., | < 1

v^§ um éli'nim

C'est le théorème d'inversion de Fourier qui donne
le spectre Uq de la distribution Um.

3 6 jr*i

Nous avons donc :

1 1
(13) Um —t— V Uqe t^l™ ; Uq — y Urne2***™

VOV
s VÏV~ m

Pour les moments conjugués pm, nous aurons également

:

1 1

(14) P»
v/iV y pmer2i^m
V./V -7- V^V

Les opérateurs correspondant aux variables canoni-
quement conjugués Um et pm doivent vérifier les
relations de commutation :

(15) [Um Um'] 0 [pm pm'] 0 et [llm pm'] ihSmm

On vérifie ensuite que les opérateurs coordonnées
principales Uq et Pq satisfont aux mêmes relations de
commutation.

(15 bis) [Uq Uq-] 0 [jyVJ 0 [UqP,'] ihSqq-

On remarque que \Jq satisfait à la telation de translation

(5), ce qui est une raison de plus de passer à la
transformation de Fourier.

4. Hamiltonien dans l'approximation harmonique

L'hamiltonien s'écrit :

1
(16) iï= ^ y\p*m+ V(U!2AT UN

où M masse d'un atome de la chaîne.
Pour le réseau linéaire, nous sommes obligés de

prendre le potentiel entre deux atomes m et m -\- n ne
dépendant que de la distance entre ces deux atomes.
A trois dimensions, cela signifierait que les atomes
interagissent par des forces centrales, ce qui n'est pas
toujours le cas.

Posons :

/(r) potentiel entre deux atomes distants de r.

Alors :

Vm.m+n f {\xm+n — Xm\) potentiel entre atomes
m -f- « et m.

Le potentiel total s'écrira :

V= J] fUXm+n-Xml)
m,n>o

Grâce aux conditions cycliques (3), la somme sur n
peut se faire de n= 1 à TV — 1 quel que soit l'atome m
dans la chaîne, ce qui assure l'équilibre du système pour
les positions régulières :

xm x°m ma ou Um 0 quel que soit l'atome m.
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Développant f(r) en série de Taylor, on trouve en
s'arrêtant aux termes du deuxième degré en u :

(17) V Gmm'umUm" ; sommation sur indices iden-
¦^ tiques.

C'est l'approximation harmonique.
Les coefficients de couplages G sont :

d2V\

(18)

G" G(0)

Qmm' ==z Qm'rt
d*v

dUmdUn

2 2 f'{na) 2g
n>o

—/"(|m —m'|o)

G (|m — m'|)

L'hamiltonien devient

(19) ff=^Sp!» Gmm'umUm>

Si l'on se limite à l'interaction d'un atome sur ses

deux plus proches voisins, le tenseur de couplages G

devient :

j G(o) 2f" (a) 2g

(20) G(m) 0 si \m\ >1
G[m) — /"(a) — g si | m\ 1

g est alors la constante de rappel du ressort fictif reliant
deux atomes voisins.

Sans se limiter à cette approximation, appliquons les

développements de Fourier (13) et (14) à l'hamiltonien

(19) :

(21)
H=—Y, PqPq + — y M03\UqUq

2M ^ 2 ^
h ec + y»

Ec énergie cinétique.
F2 potentiel harmonique.

Pq P—ii complexe conjugué de Pq (voir (14)

Uq U—q complexe conjugué de Uq (voir (13)

Les coefficients co2? sont donnés par :

(22)
>

— > Gm cos 2
M éé.

Go — G(o) — G""" g
2 2

¦nqm spectre des coef¬
ficients de couplage

harmoniques Gm.

Gm G(m) Gm'<m'^

S. Energies propres

L'hamiltonien s'écrivait

1

IM
1 ^(21) 11= - - y PqPq + — y M^qUqUq

- y ».

Avec

(23) Hq 2^" W + T "V^* #«

(hamiltonien hermitien)

H est l'hamiltonien d'un ensemble d'oscillateurs
harmoniques de pulsations coq. En effet, les équations
canoniques de Hamilton s'écrivent :

dH_ 1 -
?m
dH

(24) u' jprMp'
dUq

— Mco2o[/0

(2!SÏ M032qUq(M) Va --

D'après (24), l'équation (25) devient :

(26) Üq + œ2C/g 0

qui est bien l'équation classique d'un oscillateur harmonique

dont la pulsation est cos. La solution classique est :

Uq Cqe^é

d'où les déplacements (13) pour un seul mode q :

1
Um,q —

Comme :

2irqm

s/jv
Q^gifaqt-snqm) — 0nde progressive.

2-rr — x°,
a m car xftr,

le nombre d'ondes K vaut
2-rr

Ä
2tt<7 '•¦'

a A

et la longueur d'onde :

À — ; mais (9) \q\ ^= -k- entraîne Â=S:2a

Le déplacement total i*m vaut d'après (13) :

Um / "m,? superposition d'ondes progressi¬
ves et rétrogrades (co.q co?)

Pour déterminer l'énergie propre Eq du mode q, il
faut résoudre l'équation d'onde :

Ht | y j> £j | y?>

On pose selon Dirac * :

{2Mh^q)-1U (Pq—iMWqÜq) ; h 2ttA
constante de Planck

äq (2MÄoo?)-V. (Ps + iMcogUj)

et l'on obtient :

1 ^
(28)

H — -y V ha>q(aqaq + a,a9) V #',

£. n? + ~2
h<*>i "« entier ^0

On dit que le mode q contient riq phonons d'énergie
ho3q. La fonction d'onde correspondante sera I n<»> :

(29) H'q\nq> Eq\ nq> K+ -jjhù*t| n,>

L'hamiltonien total if étant la somme des hamilto-
niens partiels Hq, l'équation de Schödinger

H\y> £|y>
est à variables séparables :
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(30)

I y> | nql> | ng2> | nqN>
et :

y Eq V fn, + 1^ loo,
i _

3 \
énergie totale.

9.

D'après l'équation (29), l'hamiltonien partiel H'q ne

peut pas modifier le nombre de phonons du mode q ;

l'état | riqt> est stationnaire. Donc l'énergie de chaque
mode est constante, ce qui entraîne que l'énergie totale
est également constante. En s'arrêtant à l'approximation

harmonique, il ne peut pas y avoir de dissipation
d'énergie dans un mode. ¦

On peut le montrer d'une autre façon en étudiant de

plus près les opérateurs aq et aq ; on trouve :

(31) nQ> \1q •— 1>

opérateur d'annihilation. Il fait passer l'état
| nq > contenant nq phonons en l'état | nq— 1 >
où un phonon a disparu.

(3S nQ> \Jnq + lk+l>
aq — opérateur de production. Il a créé un phonon

dans le mode q.

Mais dans Hq, il intervient l'opérateur aq.aq par
exemple qui, appliqué sur l'état I riq > donne :

aqaq \riq> aq\nq + 1 n» + 1>
V«s 1. \Jnq + 1 Uq>

Le nombre de phonons riq reste donc stationnaire. Il
ne peut pas y avoir d'interactions phonon-phonon dans

l'approximation harmonique.
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LA COUVERTURE DE L'ORANGERIE du nouvel établissement
HORTICOLE DE LA VILLE DE LAUSÄNNE A LA BOURDONNETTE

par G. ROUBÄKINE, ing. EPUL1

Dans le groupe de constructions constituant le nouvel
établissement horticole que le service des parcs et pro-
mena'des de la Direction des travaux de Lausanne a

érigé dans la région de Vidy, figure une orangerie, c'est-
à-dire une serre de grandes dimensions destinée à

l'hivernage des grandes plantes décoratives (palmiers,
lauriers, orangers).

La couverture de cette serre est constituée par une

coque autoportanté, dont la forme très particulière,
assemblage de plusieurs formes simples (et qui résulte
d'ailleurs d'un programme fort précis élaboré par
M. A. Desarzens, chef du service des parcs et promenades)

a ceci de particulier qu'elle échappe totalement
au calcul et que, de ce fait, l'auteur du projet s'est trouvé
entièrement à la merci des résultats d'essais sur

maquette.
On sait que certains voiles dont la forme simple peut

être définie par des équations de la géométrie analytique
(surfaces de révolution, conoïdes, paraboloïdes
hyperboliques, par ex.) sont calculables avec une approximation

suffisante sans recours à des essais de laboratoire.
D'autres formes (coupoles elliptiques, absides semi-

sphériques, etc.), tout en exigeant des essais sur

maquette, permettent un calcul très approximatif qui
peut fournir les bases d'un premier dimensionnement et

permet d'autre part un certain contrôle des résultats
d'essais.

L'orangerie de la Bourdonnette appartient à une
troisième catégorie :.tout calcul approché que l'on pourrait

tenter conduirait à des résultats complètement

erronés. La seule voie possible consiste à réaliser un
modèle, à l'essayer et à le modifier ensuite, voire même
à le recommencer, de manière à obtenir des efforts
intérieurs et des déformations compatibles avec le matériau
utilisé et le type de construction étudié. Le prix d'une

maquette et celui des essais étant élevés, il est important
de réduire au minimum ces tâtonnements.

La première condition pour cela est que le projeteur
possède une certaine « intuition statique » qui lui évitera
de se lancer dans une voie sans issue. Il peut être très
utile, d'autre part, de réaliser d'abord une maquette très
primitive en carton, qui pourra donner une première
idée de la rigidité et de la stabilité des formes choisies.

(A ce point de vue, il est intéressant d'utiliser des
surfaces développables.) Il sera possible ensuite de passer
à la construction d'une maquette de laboratoire, en

prenant soin de prévoir d'emblée des modifications simples

permettant d'éviter la réalisation d'un second,
voire même d'un troisième modèle.

Programme et conception générale de l'orangerie

Le programme de cette serre avait été défini ainsi :

couvrir une surface de 400 m2, sans appuis intérieurs,
par une construction aux façades entièrement vitrées.

1 Cette étude est tirée du Recueil de travaux offert au professeur
A. Stucky, en hommage de reconnaissance, sur l'initiative de l'Association

amicale des anciens élèves de l'Ecole polytechnique de Lausanne,
le 27 octobre 1962, l'année de son 70° anniversaire.
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