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Une fenétre intermédiaire facilitera I'attaque du puits
blindé et permettra de prendre les mesures nécessaires
au cas ou des accidents surviendraient lors de la tra-
versée de la zone des sources de Repremier et du Confin
aux Renards, sources qui alimentent la région de
Vevey-Montreux.

e) La centrale

L’usine et le poste de couplage sont souterrains et la
figure 6 montre les dispositions générales prévues actuel-
lement.

Une galerie inclinée 4 6,5 9 part de la route cantonale
et conduit & I'usine ol trois ‘groupes d’une puissance
totale de 165 000 CV sont installés. Chaque groupe sera
complété par une pompe débitant 3 m3/sec sous une
puissance de 45000 CV. En premiére étape, une seule
pompe est prévue.

Le poste de couplage est constitué par une caverne
dont les dimensions actuelles sont de 30 m sur 23 m et de
14 m de hauteur a la clé.

La figure 7 montre la coupe en travers de la derniére
variante étudiée pour ce poste.

f) Canal de fuite

Le canal de fuite, d’une longueur de 200 m environ,
passe sous la route cantonale, sous la voie CFF et
débouche dans le lac a proximité immédiate du chable
de Repremier.

g) Production d’énergie et programme des travaux

La chute brute maximum de linstallation est de
882 m. Le débit maximum dérivé a été fixé par l'acte de
concession a 16,7 m?[sec. La production annuelle
moyenne théorique, calculée sur les années 1935 a 1958,
sans les pompages, est de 196,5 millions de kWh, dont
185,6 millions en hiver, I'hiver étant calculé a 7 mois.

L’ensemble des travaux de 'aménagement peut étre
réalisé en quatre ans, ce qui porterait en 1967-68 le
début de D'exploitation de I'aménagement hydro-élec-
trique de I'Hongrin.

ETUDE DE LA DIFFUSION DANS LES CORPS SOLIDES'

par J.-P. BOREL, professeur a I'Ecole polytechnique de Lausanne 2

Introduction

On convient d’appeler «imperfection » tout ce qui
distingue les cristaux réels de la description idéale que
fournit la cristallographie.

Cette définition semble procéder d’une position qui
donne tort a priori a4 la nature. Cependant, beaucoup
de phénoménes physiques importants sont liés a I'exis-
tence des imperfections. On peut citer par exemple la
plasticité des métaux, certaines propriétés des semi-
conducteurs, la croissance des cristaux et la diffusion.
L’étude de la diffusion présente un intérét théorique et
pratique considérable. D’une part, elle permet de mieux
connaitre la structure des corps solides et les énergies
qui lient une particule au réseau, d’autre part, elle est
nécessaire 4 une bonne compréhension des effets de
recristallisation et de frittage qui jouent un grand role
en métallurgie.

Nous allons donner un exposé thermodynamique de
la diffusion dans lequel il n’est pas nécessaire de préciser
au début le mécanisme exact du phénomeéne décrit. Cela
fournit un formalisme général que nous appliquerons
ensuite a des cas particuliers.

Dynamique de la diffusion dans les solides

La diffusion est un transport de substance ou de tout
autre ¢lément de structure & lintérieur d’un cristal.
Lorsqu’elle se produit naturellement, elle tend a faire
évoluer le systéme vers un état stable ou métastable.
C’est donc un phénomene irréversible au sens de la
thermodynamique.

Lorsque la concentration atomique ou encore la
concentration des défauts varie a 'intérieur d’un cristal,
celui-ci ne peut plus étre considéré comme une phase

B . o= 7 e N : = =
La continuité s’écrit Ju. dS

homogeéne. On le traite comme un continu en introdui-
sant des grandeurs intensives définies en chaque endroit.
Isolons par la pensée un petit volume w du solide

limité par une surface invariable T (fig. 1). Appelons 714
le vecteur densité de courant d’énergie (énergie traversant
une unité de surface pendant une unité de temps) et u
la densité d’énergie (par unité de volume).
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ou encore: div Jy + 5

qui est I'expression du premier principe de la thermo-
dynamique sous forme locale.

S1 nous excluons les réactions chimiques, on a une
relation semblable pour la masse de chacun des consti-
tuants du cristal.

N
2) div Ji + 5{" =0

—

ou Ji représente le vecteur densité de courant de masse
du constituant k et ¢z la concentration de ce constituant
(par unité de volume). Si la vitesse des particules k est

Vi, on sait que Jp = ¢ V.

Le second principe de la thermodynamique postule que
Uaugmentation d’entropie dans un volume est supérieure
ou égale au flux d’entropie aw travers de la surface Z qui
le limzte.

! Dans le cadre de la recherche A 180.

2 Cette étude est tirée du Recueil de travaux offert au professeur
A. Stucky, en hommage de reconnaissance, sur l'initiative de 1'Asso-
ciation amicale des anciens éléves de ' Ecole polytechnique de Lausanne,
le 27 octobre 1962, I'année de son 70° anniversaire.
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Fig. 1.

- . ’ .
En appelant J; la densité de courant d’entropie et s
Ientropie par unité de volume on a donc

f% > — div J ou encore
(3) div 7, =+ [(7% =oavec:o=0

La grandeur o est appelée source d’entropie.
On sait que le 1¢T et le 2¢ principe ne suflisent généra-
lement pas a étudier les phénoménes irréversibles [1].

On utilise encore le théoréme de réciprocité d’Onsager.

Appelons?f,- une densité de courant quelconque et j\)',-
la « force » qui produit ce courant. (Le mot force est pris
ici dans un sens généralisé.) On appelle équation phéno-
ménologique I'équation qui relie les densités de courants
aux forces :

N
(4) Ji= Y LaX,
k

La matrice phénoménologique L;j est symétrique.
8 y q
- —
Dans la mesure ou J; et X; sont conjugués, c’est-a-dire

lorsque

(5) To = NI X,
i

Nous allons calculer I'entropie ou plus précisément la

quantité =
7

En comparant la forme que nous aurons obtenue avec
Iexpression (3), 1l sera possible de déduire la valeur de o.
Cela nous permettra de choisir des parameétres conjugués
au sens de la formule (5) et d’exprimer finalement les
équations phénoménologiques de la diffusion.

Comme point de départ, on dispose des équations (1)
et (2), mais il nous manque une expression donnant
I'entropie. On peut utiliser I'équation de Gibbs qui est
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encore valable pour les systémes ouverts. (C’est-a-dire
pour les systémes qui échangent de la masse avec I’exté-
rieur.)

Elle s'écrit: dU = — pdV + TdS + 3 wdmy*
k
Appliquons cette équation au volume w. Comme il
est trés petit, on peut définir les grandeurs intensives de
volume :

U S mg
U= — §= == Cp = ——
w w )
On a donc: du = E Urdcr
k
... Jdu ek
On peut aussi écrire : 5 = — + Z Wk cr la

dérivation partielle étant prise au sens de l hydrodyna-

mique (dérivée locale). Remplagons = - - et 9% dans cette

at It

équation par leur valeur tirée de (1) et (2), on obtient

aJs 1 . = di ‘7;
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&

que I'on peut mettre sous la forme :

s . Ju v 1
— = — div T—Ei—k + Jy.grad .

En comparant avec (3) on voit que

J
(6) ¥ T E u—;:]—k courant d’entropie
P
1
) ozfu.gr*éd? S‘Tkg?;dﬁ
T

source d’entropie

Si I'on prend Tu et j; comme densités de courant, il
leur correspond des forces qui sont respectivement :
®) B Tg?ad%et?,F—TgEd“i

T

Pour étudier la diffusion dans les solides, il est souvent
utile de faire un autre choix de paramétres conjugués.
En effet, la diffusion de masse s’accompagne générale-
ment d’une diffusion des défauts de structure, plus par-
ticulierement de lacunes ou de dislocations qui peuvent
étre considérées comme des éléments de structure sans
masse. Considérons une particule k.

— —
Au lieu de prendre J; = ¢V comme densité de cou-
e .
rant, prenons : Jo = n; Vi ol ng est la densité numé-

oy
rique des particules k et Jo la densité de courant de ces
particules. Si mg; désigne la masse d’une de ces parti-
cules, on a évidemment ¢ = ngmgg. La force conjuguée
- L= BEMok
de Jo est alors — 7" grad T
Nous appelons pimor potentiel chimique élémentaire
PP q
Mok

' p est la pression, V le volume, S I'entropie, pk le potentiel chi-
mique de 'espéce k, my la masse do cette espéce, U I'énergie.




Cette grandeur peut garder un sens lorsque la masse
mor tend vers zéro.

On peut en effet calculer statistiquement ’entropie
des lacunes dans un cristal et en déduire le potentiel
chimique élémentaire par I’équation de Gibbs-Duhem.
(Dans le cas des solutions idéales por = R/N T Log ng,
R|N constante de Bolzmann.)

On aura finalement :

Forces Densités de courant

= - 1 -
(9) Xy =T grad i I
—> . Mok ==

— —
Xi = —T grad — Jor = ne Vi

T

Ce qui nous permet d’écrire les équations phénomé-
nologiques de la diffusion.

Remarque

Nous avons résolu le probléme de la diffusion en cal-
culant les courants dans un espace fixe et non par rap-
port au barycentre comme cela se fait généralement [1].
L’inconvénient de la méthode est de ne pas pouvoir

écrire 2 71 = 0 comme dans le traitement barycentri-
1

que. Toutefois, dans un réseau cristallin sans atome

interstitiel ou la position des particules est fixée géomé-

triquement et ol chaque neceud est occupé par une

particule ou une lacune on a:

(10) 27‘" = (0 dans la mesure ou ’on considére

I'ensemble des courants de particules et de lacunes. C’est
- p . .
pour cela que ce formalisme a été développé ici.

s
Dans ces conditions, la relation ELikXL- doit
P

étre satisfaite identiquement, ce qui entraine les équa-

tions (1) M La=0

=
D’autre part, lorsque tous les X; sont égaux entre
eux, la quantité o est nulle, ce qui signifie qu’il n’y a

pas de processus irréversible. Alors, chaque 71 est nulle,
ce qui n’est possible que s1  (12) E L =0
k

Les relations (11) et (12) limitent comme dans le
cas classique le nombre de coefficients indépendants de
la matrice phénoménologique [1].

L’introduction des lacunes comme éléments de struc-
ture n’est pas indispensable pour I'étude de la diffusion
dans les solides. Comme nous le verrons, elle peut, dans
certains cas, présenter un intérét.

Diffusion simple

Une espéce chimique considérée comme impureté
dans un cristal peut diffuser sans entrainer le déplace-
ment d’une autre particule, ni d’un défaut. Cela se pro-
duit si I'impureté occupe une position interstitielle.
Avec les paramétres conjugués ‘de la formule (8),
I’équation phénoménologique se réduit a :

My
T

- -
Jy=— LT grad -

Dans le cas isotherme, et en tenant compte de la

s x 9“1 —> 5
relation grad p; = —— grad ¢; on retrouve la loi
901
classique de Fick[2].  (13) _>1 =—1Lg 3':1 gr—gd c1
1
avec le coeflicient de diffusion D = Ly, %
1

Diffusion multiple

Etudions la diffusion de deux espéces chimiques 1
et 2 présentes dans un cristal. On suppose :

19 que la structure cristalline comporte des lacunes
qui peuvent aussi diffuser ;

20 qu’il n’y a pas de position interstitielle pour les
particules 1 et 2. ’

Le mécanisme qui intervient alors est un échange de
positions entre particule 1 et particule 2 ou entre ces
particules et les lacunes. (Fig. 2.)?

- ol N
N~

Fig. 2. — Schéma de diffusion par
échange dans un cristal.

Plagons-nous dans le cas isotherme et utilisons les
paramétres conjugués donnés par (9).

— — — —

Jor = — Ly gradug, — Ly, gradpg, — Ly gradug

— — — —
(14)  Joy = — Ly gradpg — Ly, gradpg, — Ly gradpg

— — — —

Jo = — Ly gradpg; — Liy gradpg, — Ly gradpg

R — — —
ou Joo+ Joz+ Jue =0

et ny + ny, + ny = ¢t en vertu de la continuité.

Les équations (11) et (12) s’écrivent :

Ly + Ly + Ly =0 Ly + Lygt+ Lu=0
(15)  Lyp + Loy + Liy =10 Loy + Lgy+ ey = 0
Ly+ Ly+ Ly=0 Liy+ Lig+ Lu=0

Le principe de la réciprocité Ly, = Lyy Ly = Ly Ly =
= Iy, est automatiquement satisfait.

Comme ny, n, et m sont reliés par I'expression
n, 4+ ng 4+ = ch.

On peut choisir arbitrairement deux variables indé-
pendantes. Prenons ny et ng.

! L'indice 1 se rapporte & l'espéce 1, l'indice 2 a I'espéce 2 et
I'indice [ aux lacunes.
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Fig. 3. — Thermo-diffusion dans une éprouvette de laiton,
grossissement 240 fois. Région claire : laiton enrichi en zinc.
Région foncée : laiton appauvri en zinc.

Les gradients des potentiels chimiques peuvent alors

se remplacer par les expressions suivantes :

¥ 2 g Juoy

—a = 01 . 3 2
gradpg, 5t grad ¢; o
. = dbgg > Vs
16 radpg, = —— grad -
(16)  gradpg, e, grad ¢; + s
= U Jug

-
gradyy = Je grad ¢; + e
1

-
grad ¢

—
grad ¢

>
grad ¢

En tenant compte des relations (14), (15) et (16), les
équations de diffusion prennent la forme :

5 = d(Po1 — Mot) d(Moa — Mgl
Joo = — grad ny | Lyy 0})”1”0' + Ly, - 02'1 L4 [
1
i [ (M1 — Kot ) .
—grad ny | Ly mm{)m Hot) . Ly" (Uoiz)”l Uoll
(17) )
- N ides — L) N s — 110)
Joz = *g‘l'xl ny /,22( uo?)nl Hot) + [le(ﬂobxfol?l o
: 1
b I{vor— ba) it s
— grad ny | Ly, Di)”[ Bl e (,g 01)'” Mot)
=3 - -
Jor = Jo1 Jo2

Dans le cas particulier ot la concentration de lacunes

est constante et ou le flux de lacunes est nul, ces équa-

tions se réduisent a :
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5 ~> d(Mo1 — Wo2)

Jop = — grad ny '***%17 Ly
702 = — g‘r_;d ny %Qn:l Bor) Ly,

On retrouve une loi de Fick classique avec les coefli-
cients de diffusion
2 J Mo1 — Mos
(18) Dy=—Dy = Ly, 2o —tu)

an,

Kirkendall [2, 3, 4] a montré expérimentalement que
les deux coeflicients de ‘diffusion ne sont pas toujours
égaux. Dans le cas du laiton ou des alliages or, cuivre,
par exemple, les deux constituants diffusent de maniéres

différentes. On peut expliquer ce fait en admettant qu’il
. = ’
existe un courant de lacunes (Jyu + 0) ou éventuelle-

ment une diffusion interstitielle. Dans la plupart des
métaux qui ont une structure compacte, ou presque
compacte, une diffusion interstitielle semble peu pro-

bable, et I’on peut penser que 701 =+ 0. Ce fait est con-
firmé par l'expérience, puisqu’on observe dans Ieffet
Kirkendall une formation de pores dus probablement
a la condensation des lacunes.

Lffet Soret

Lorsqu’on a un gradient de température, 1l faut
; ; = d RN .
introduire la force grad et le courant d’énergie Jy, en

plus des courants de particules et des forces correspon-
dantes. On peut alors prévoir I'existence de phéno-
meénes croisés tels que diffusion sous I'effet d’un gradient
de température.

Le phénomeéne de thermo-diffusion prévu par cette
théorie est connu sous le nom d’effet Soret.

La figure 3 montre la thermo-diffusion dans une
éprouvette de laiton. L’expérience a été réalisée par
notre collaborateur M. Rieben, au laboratoire de physi-
que de PEPUL, dans les conditions suivantes : tempé-
rature variant de 750°C a 200°C sur quelques centi-
métres, durée de la cuisson, 10 jours sous atmosphére
neutre dans un tube d’alumine. La photo a été prise
aprés polissage et attaque a 'acide nitrique. On remar-
que un tres net gradient de concentration a 'endroit on
I'on avait le gradient de température.

Conclusion

L’étude de la diffusion simple et croisée peut se faire
avantageusement par la méthode thermodynamique.
Le calcul exposé 1ei introduit explicitement la concen-
tration des lacunes, car celles-ct jouent un role impor-
tant dans certains phénomeénes, particulierement dans
Ieffet Kirkendall, la recristallisation et le frittage.
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