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Une fenêtre intermédiaire facilitera l'attaque du puits
blindé et permettra de prendre les mesures nécessaires

au cas où des accidents surviendraient lors de la
traversée de la zone des sources de Repremier et du Confm

aux Renards, sources qui alimentent la région de

Vevey-Montreux.

e) La centrale
L'usine et le poste de couplage sont souterrains et la

figure 6 montre les dispositions générales prévues
actuellement.

Une galerie inclinée à 6,5 %.part de la route cantonale
et conduit à l'usine où trois 'groupes d'une puissance
totale de 165 000 CV sont installés. Chaque groupe sera

complété par une pompe débitant 3 m3/sec sous une
puissance de 45 000 CV. En première étape, une seule

pompe est prévue.
Le poste de couplage est constituéj)ar une caverne

dont les dimensions actuelles sont de 30 m sur 23 m et de
14 m de hauteur à la clé.

La figure 7 montre la coupe en travers de la dernière
variante étudiée pour ce poste.

f) Canal de fuite
Le canal de fuite, d'une longueur de 200 m environ,

passe sous la route cantonale, sous la voie CFF et
débouche dans le lac à proximité immédiate du châble
de Repremier.

g) Production d'énergie et programme des travaux
La chute brute maximum de l'installation est de

882 m. Le débit maximum dérivé a été fixé par l'acte de
concession à 16,7 m3/sec. La production annuelle

moyenne théorique, calculée sur les années 1935 à 1958,
sans les pompages, est de 196,5 millions de kWh, dont
185,6 millions en hiver, l'hiver étant calculé à 7 mois.

L'ensemble des travaux de l'aménagement peut être
réalisé en quatre ans, ce qui porterait en 1967-68 le
début de l'exploitation de l'aménagement hydro-électrique

de l'Hongrin.

ETUDE DE LA DIFFUSION DANS LES CORPS SOLIDES1

par J.-P. BOREL, professeur à l'Ecole polytechnique de Lausanne 2

Introduction

On convient d'appeler « imperfection » tout ce qui
distingue les cristaux réels de la description idéale que
fournit la cristallographie.

Cette définition semble procéder d'une position qui
donne tort à priori à la nature. Cependant, beaucoup
de phénomènes physiques importants sont liés à l'existence

des imperfections. On peut citer par exemple la

plasticité des métaux, certaines propriétés des

semiconducteurs, la croissance des cristaux et la diffusion.
L'étude de la diffusion présente un intérêt théorique et
pratique considérable. D'une part, elle permet de mieux
connaître la structure des corps solides et les énergies
qui lient une particule au réseau, d'autre part, elle est
nécessaire à une bonne compréhension des effets de

recristallisation et de frittage qui jouent un grand rôle
en métallurgie.

Nous allons donner un exposé thermodynamique de

la diffusion dans lequel il n'est pas nécessaire de préciser
au début le mécanisme exact du phénomène décrit. Cela

fournit un formalisme général que nous appliquerons
ensuite à des cas particuliers.

Dynamique de la diffusion dans les solides

La diffusion est un transport de substance ou de tout
autre élément de structure à l'intérieur d'un cristal.
Lorsqu'elle se produit naturellement, elle tend à faire
évoluer le système vers un état stable ou métastable.
C'est donc un phénomène irréversible au sens de la

thermodynamique.
Lorsque la concentration atomique ou encore la

concentration des défauts varie à l'intérieur d'un cristal,
celui-ci ne peut plus être considéré comme une phase

homogène. On le traite comme un continu en introduisant

des grandeurs intensives définies en chaque endroit.
Isolons par la pensée un petit volume co du solide

limité par une surface invariable Z (fig. 1). Appelons Ju
le vecteur densité de courant d'énergie(éner$.e traversant
une unité de surface pendant une unité de temps) et u
la densité d'énergie (par unité de volume).

La continuité s'écrit/ / Ju.dS X udœ

(1) ou encore :
-* du

div Ju + -^7 0
at

qui est l'expression du premier principe de la
thermodynamique sous forme locale.

Si nous excluons les réactions chimiques, on a une
relation semblable pour la masse de chacun des constituants

du cristal.
de*

dt
div Jk + 0

où Jjt représente le vecteur densité de courant de masse
du constituant k et c* la concentration de ce constituant
(par unité de volume). Si la vitesse des particules k est

Vu, on sait que J* c*F*.

Le second principe de la thermodynamique postule que
l'augmentation d'entropie dans un volume est supérieure
ou égale au flux d'entropie au travers de la surface Z qui
le limite.

1 Dans le cadre de la recherche A 180.
8 Cette étude est tirée du Recueil de travaux offert au professeur

A. Stucky, en hommage de reconnaissance, sur l'initiative de l'.lsso-
cialion amicale des anciens élèves de l'Ecole polytechnique de Lausanne,
le 27 octobre 1962, l'année de son 70° anniversaire.
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Fig. 1.

En appelant Jj la densité de courant d'entropie et s

l'entropie par unité de volume on a donc

ds

(3)

dt

div Js

> — div Ja ou encore

dt
o

La grandeur o" est appelée source d'entropie.
On sait que le 1er et le 2e principe ne suffisent généralement

pas à étudier les phénomènes irréversibles [1],

On utilise encore le théorème de réciprocité d'Onsager.

Appelons Jj une densité de courant quelconque et Xj
la « force » qui produit ce courant. (Le mot force est pris
ici dans un sens généralisé.) On appelle équation
phénoménologique l'équation qui relie les densités de courants
aux forces :

(4) Ji / ,LikX}ç

La matrice phénoménologique L« est symétrique.
Dans la mesure où Jj et Xj sont conjugués, c'est-à-dire
lorsque

(5) To- ^TjXj
i

Nous allons calculer l'entropie ou plus précisément la
• 3s

quantité dt
En comparant la forme que nous aurons obtenue avec

l'expression (3), il sera possible de déduire la valeur de o\
Cela nous permettra de choisir des paramètres conjugués
au sens de la formule (5) et d'exprimer finalement les

équations phénoménologiques de la diffusion.
Comme point de élépart, on dispose des équations (1)

et (2), mais il nous manque une expression donnant
l'entropie. On peut utiliser l'équation de Gibbs qui est

encore valable pour les systèmes ouverts. (C'est-à-dire
pour les systèmes qui échangent de la masse avec l'extérieur.)

Elle s'écrit : dU — pdV -\- TdS -f- 2, V-tiïmk\
k

Appliquons cette équation au volume co. Comme il
est très petit, on peut définir les grandeurs intensives de
volume :

U S mt
u — s — c*= —

co co CO

On a donc : du Tds ^ \ikdck

Un peut aussi écrire : -=- 1 -x-v dt dt
* dt

dérivation partielle étant prise au sens de l'hydrodyna-

nuque (dérivée locale). Remplaçons sas et -^- dans cette

équation par leur valeur tirée de (1) et (2), on obtient
ds

dt V u* div Jt —
div Jv

T

que l'on peut mettre sous la forme :

ds
dt — div Û

T y, Wk ¦/„.grad — —

~ 2 Jigrad Pi

En comparant avec (3) on voit que
—>¦ ->

/a\ T Ju Y VkJk
(o) Jj -^— — £j courant a entropieT k T

(7) ct J«.grad — — 2} Jk-grad y
source d'entropie

Si l'on prend J« et Ji comme densités de courant, il
leur correspond des forces qui sont respectivement :

(8) Z„= T grad yet '% T grad
T

Pour étudier la diffusion dans les solides, il est souvent
utile de faire un autre choix de paramètres conjugués.
En effet, la diffusion de masse s'accompagne généralement

d'une diffusion des défauts de structure, plus
particulièrement de lacunes ou 4e dislocations qui peuvent
être considérées comme des éléments de structure sans
masse. Considérons une particule k.

Au lieu de prendre J* ctVk comme densité de cou-
—>¦ ->

rant, prenons : J0k HkVt où n* est la densité numérique

des particules k et J0k la, densité de courant de ces
particules. Si m0t désigne là masse d'une de ces particules,

on a évidemment c* ntm0k. La force conjuguée
\ikHlokde Jot est alors — T grad T

Nous appelons [ikfftok potentiel chimique élémentaire :

Mok-

1
p est la pression, V le volume, S l'entropie, \ik le potentiel

chimique do l'espèce k, mjfc la masse de cette espèce, V l'énergie.
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Cette grandeur peut garder un sens lorsque la masse
mou tend vers zéro.

On peut en effet calculer statistiquement l'entropie
des lacunes dans un cristal et en déduire le potentiel
chimique élémentaire par l'équation de Gibbs-Duhem.
(Dans le cas des solutions idéales \Xok R/N T Log ni,
RjN constante de Bolzmann.)

On aura finalement :

Ji

(9)

Forces Densités de courant

-s- -> 1

A, T grad -=¦
—>¦

Ju

aj — 1 grad -=r Jok nicVt

Ce qui nous permet d'écrire les équations
phénoménologiques de la diffusion.

Remarque
Nous avons résolu le problème de la diffusion en

calculant les courants dans un espace fixe et non par
rapport au barycentre comme cela se fait généralement [1].
L'inconvénient de la méthode est de ne pas pouvoir

écrire / J{ 0 comme dans le traitement barycentri-
i

que. Toutefois, dans un réseau cristallin .sans atome
interstitiel où la position des particules est fixée
géométriquement et où chaque nœud est occupé par une
particule ou une lacune on a :

(10-) V Joi 0 dans la mesure où l'on considère
i

l'ensemble des courants de particules et de lacunes. C'est

pour cela que ce formalisme a été développé ici.

Dans ces conditions, la relation V LaX* doit
k

être satisfaite identiquement, ce qui entraîne les équations

(11) ^ La 0

i
D'autre part, lorsque tous les X* sont égaux entre

eux, la quantité a est nulle, ce qui signifie qu'il n'y a

pas de processus irréversible. Alors, chaque «/< est nulle,

ce qui n'est possible que si (12) > La 0

k
Les relations (11) et (12) limitent comme dans le

cas classique le nombre de coefficients indépendants de
la matrice phénoménologique [1].

L'introduction des lacunes comme éléments de structure

n'est pas indispensable pour l'étude de la diffusion
dans les solides. Comme nous le verrons, elle peut, dans

certains cas, présenter un intérêt.

Diffusion simple

Une espèce chimique considérée comme impureté
dans un cristal peut diffuser sans entraîner le déplacement

d'une autre particule, ni d'un défaut. Cela se
produit si l'impureté occupe une position interstitielle.
Avec les paramètres conjugués -de la formule (8),
l'équation phénoménologique se réduit à :

LnT grad ~r

Dans le cas isotherme, et en tenant compte de la

relation grad \xx
dVi
dc1

grad cl on retrouve la loi

dVi
classique de Fick [2]. (13) J1 — Lu ^— grad ci

t/Ci

avec le coefficient de diffusion/) d\iy
dcx

Diffusion multiple
Etudions la diffusion de deux espèces chimiques 1

et 2 présentes dans un cristal. On suppose :

1° que la structure cristalline comporte des lacunes
qui peuvent aussi diffuser ;

2° qu'il n'y a pas de position interstitielle pour les

particules 1 et 2.

Le mécanisme qui intervient alors est un échange de

positions entre particule 1 et particule 2 ou entre ces

particules et les lacunes. (Fig. 2.) *

1 2 2 1 2

2

\
1

\
2 1

1 1
i
2 1

2 - 1 1

1 1 2 1

-

2

Fig. 2. — Schéma de diffusion par
échange dans un cristal.

Plaçons-nous dans le cas isotherme et utilisons les

paramètres conjugués donnés par (9).

J01 — Lu gradu01 — L12 gradua — Llt gradu^

(14) J0 Ai gradpoj — Ljjjj gradu^ — L^ graduai

ou

et

J0i — Lix gradpoj — Lj2 graduM — Lu gradu„j

•Mil ~t~ "A)2 "T »o' "
ni "I" n2 "f" ni c* en vertu de la continuité.

Les équations (11) et (12) s'écrivent :

/-u + Au + LH 0 Ai + As+ Ai 0

(15) L12 + LM + Li2 0

Llt + Lii + La 0
Ai + %à+ Hi — 0

Lh + Li% + Lu | 0

Lu LoiLe principe de la réciprocité JLal Lla Ai Mi *&
Ljg est automatiquement satisfait.

Comme ru, /ig et ni sont reliés par l'expression

ni + "2 + ni à.
On peut choisir arbitrairement deux variables

indépendantes. Prenons n\ et ni.

1 L'indice 1 se rapporte à l'espèce 1, l'indice 2 à l'espèce 2 et
l'indice aux lacunes.
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Fig. 3. — Thermo-diffusion dans une éprouvette de laiton,
grossissement 240 fois. Région claire : laiton enrichi en zinc.
Région foncée : laiton appauvri en zinc.

Les gradients des potentiels chimiques peuvent alors
se remplacer par les expressions suivantes :

gradpo
dPoi

dei grad cx + -y— grad c.

(16) gradn02 -~ grad Cl

^C(

dp02
grad q

->, dlV ->, dn0i -»",gradu0, 3— grad Ci + -^r— grad c,
(/Cj (/Cl

En tenant compte des relations (14), (15) et (16), les
équations de diffusion prennent la forme :

Jn grad nx L,
d(p0i — Pot)

1

dnx
L

— grad ni

(17)

J02 — grad nx

—*¦

— grad ni

Jgl Jg

'
j d(Poi —PoO

11 3b, + 12

d(Po2 — Ppi
12 -3«!

d(P02 — P(/

3(Pq2 — M0l)
2 3nj
d(P02 — Po/)

2 dm

+ Ai

+ Ai

dm

d(Poi —Poi)
d«i

d(Poi — Poi)

dm

Dans le cas particulier où la concentration de lacunes
est constante et où le flux de lacunes est nul, ces équations

se réduisent à :

''oi —

^02 —

grad nx

grad n

d(Poi — P02)

dnx

d(P02 — P01)

d«i
L,

On retrouve une loi de Fick classique avec les coefficients

de diffusion
d(Poi — P02)

(18) D, 02= Al d«i

Kirkendall [2, 3, 4] a montré expérimentalement que
les deux coefficients de 'diffusion ne sont pas toujours
égaux. Dans le cas du laiton ou des alliages or, cuivre,
par exemple, les deux constituants diffusent de manières
différentes. On peut expliquer ce fait en admettant qu'il
existe un courant de lacunes J0, =f= 0) ou éventuellement

une diffusion interstitielle. Dans la plupart des

métaux qui ont une structure compacte, ou presque
compacte, une diffusion interstitielle semble peu

probable, et l'on peut penser que J0, =£ 0. Ce fait est
confirmé par l'expérience, puisqu'on observe dans l'effet
Kirkendall une formation de pores dus probablement
à la condensation des lacunes.

Effet Soret

Lorsqu'on a un gradient de température, il faut
-k i -»-

introduire la force grad -=r et le courant d'énergie Ju en

plus des courants de particules et des forces correspondantes.

On peut alors prévoir l'existence de phénomènes

croisés tels que diffusion sous l'effet d'un gradient
de température.

Le phénomène de thermo-diffusion prévu par cette
théorie est connu sous le nom d'effet Soret.

La figure 3 montre la thermo-diffusion dans une
éprouvette de laiton. L'expérience a été réalisée par
notre collaborateur M. Rieben, au laboratoire de physique

de l'EPUL, dans les conditions suivantes : température

variant de 750°C à 200°C sur quelques
centimètres, durée de la cuisson, 10 jours sous atmosphère
neutre dans un tube d'alumine. La photo a été prise
après polissage et attaque à l'acide nitrique. On remarque

un très net gradient de concentration à l'endroit où
l'on avait le gradient de température.

Conclusion

L'étude de la diffusion simple et croisée peut se faire
avantageusement par la méthode thermodynamique.
Le calcul exposé ici introduit explicitement la concentration

des lacunes, car celles-ci jouent un rôle important

dans certains phénomènes, particulièrement dans
l'effet Kirkendall, la recristallisation et le frittage.
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