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COEFFICIENTS THERMODYNAMIQUES '

par LUCIEN BOREL, professeur à l'Ecole polytechnique de l'Université de Lausanne

I. Introduction

D'une manière générale, l'état thermodynamique
d'un système monophase, simple et fermé, est déterminé

par deux fonctions d'état indépendantes. On dit
qu'il s'agit d'un système bivariant.

Le fait de fixer l'une des fonctions d'état rend le
système univariant. Dans ce cas, deux fonctions d'état
quelconques sont liées par une relation qu'il est possible
d'exprimer par une grandeur caractéristique donnant
le taux de variation de l'une des fonctions d'état par
rapport à l'autre. Toutes les grandeurs de ce genre
caractérisent le comportement thermodynamique local
du système.

Etant donné le nombre élevé des fonctions d'état, les
spécialistes ont été amenés à choisir certaines grandeurs
caractéristiques suivant la nature des problèmes à

résoudre, c'est-à-dire de façon assez anarchique. Il en
est résulté une floraison de grandeurs caractéristiques

1 Cette étude est tirée du Recueil de travaux offert au professeur
A. Stucky, en hommage do reconnaissance, sur l'initiative de
l'Association amicale dee anciens élèves de l'Ecole polytechnique de Lausanne,
le 27 octobre 1962. l'année de son 70° anniversaire.

difficiles à faire rentrer dans le cadre d'une théorie
d'ensemble.

Le présent travail expose les résultats d'une étude
au cours de laquelle nous nous sommes proposé d'établir

une théorie d'ensemble aussi simple et aussi
systématique que possible.

Comme les grandeurs caractéristiques que nous
introduisons sont adimensionnelles, nous les appelons
coefficients thermodynamiques. Parmi ces derniers, nous
distinguons :

— les coefficients thermiques et
— les coefficients calorifiques.

H. Rappel de propriétés mathématiques

Etant donnée l'équation d'état :

F(X, Y, Z) 0

liant les trois fonctions d'état quelconques X, Y et Z,
nous avons les propriétés mathématiques suivantes :

(3Z\ idy
sy 9Z i (i)
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3ZZ 3*Z
dYdX ~~ 3X3Y

dx+m dYiZ-\dx)y— v \9Y]X

\3YJx \9XJe \dZJY
1

P™\ .(^\ J*L\
\3Z/x \dY)x \dW)x

où W est une autre fonction d'état.

(2)

(3)

(5)

HI. Rappel des équations-fondamentales

Dans ce qui suit, nous considérons les fonctions d'état
suivantes :

v
P
T

volume massique
pression
température

u énergie interne massique
h u -f- vP enthalpie massique
/ u — Ts énergie libre massique

g h — Ts enthalpie libre massique
s entropie massique

Fonctions d'état
thermiques

Fonctions d'état
calorifiques

Ces fonctions d'état sont liées par les équations fonda

mentales suivantes :

du — Pdv + Tds
dh vdP + T ds

df — Pdv — sdT
dg vdP~sdT

(6)
(7)
(8)
(9)

IV. Coefficients thermiques

Nous appelons coefficient thermique tout coefficient

dont la définition ne fait intervenir que les fonctions

d'état thermiques c, P et T.
Définissons les coefficients thermiques suivants :

— coefficient TP isochore

(10)

(H)

coefficient 1

roc T Up/„

V isobare

'
Pp= ¦

T\dv]p

coefficient vP isotherme

y< - v \dP)T (12)

Remarquons que tous ces coefficients sont adimen-
sionnels.

En appliquant la relation (4) aux fonctions d'état v,

P et T, nous obtenons :

RL\ (il9P\ ldv_

h \dT.
1

P(3T\ ^_(3P\ L (Êï\ _1
T \dPjv

' P \3v)t '
v \3T]P

En tenant compte des relations (10), (11) et (12),

nous voyons que les coefficients thermiques sont liés par
la relation :

a„ ßP y (13)

V. Relations de Maxwell

En vertu de la propriété différentielle (3), les

relations (6) à (9) donnent :

I dh
\3Pje \dPJT

3g (14)

(15)

(16)

(17)

En vertu de la propriété différentielle (2) et des défi-

'nitions des coefficients thermiques (10), (11) et (12), les

relations ci-dessus donnent :

'9u\
3v), \3vj T

- P

3u\
3s /„ \3sJp T

'3f\
JTJV \3Tjp — s

"lldv\ ldj_
\3sfp \3P.

è3s h
3s\
9v/t

3v ]s

\3TJV

(il) i^Éà
\3PJT- \3T)p

P
a» T

v

"P'

(18)

(19)

(20)

(21)

Toutes ces relations sont appelées relations de Maxwell.

Elles sont très importantes parce qu'elles sont tout à

fait générales et parce qu'elles expriment la variation
de l'entropie en fonction du volume ou de la pression
à l'aide des coefficients a» et ßp qui sont facilement
mesurables.

VI. Chaleurs spécifiques

Nous distinguons tout d'abord la chaleur spécifique
isochore et la chaleur spécifique isobare.

Nous appelons chaleur spécifique isochoreWi grandeur
définie par la relation :

mm (22)

En vertu de la relation (6), nous avons aussi :

ï | *=dï). i(23)
D'une façon symétrique, nous appelons chaleur spécifique

isobare la grandeur définie par la relation :

^7'(ff
En vertu de la relation (7), nous avons aussi :

* \3T)p

(24

(25)
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VII. Relations entre les grandeurs thermodynamiques
En vertu des propriétés différentielles (1) et (3) et des

définitions des coefficients thermiques (10), (11) et (12),
l'équation d'état se traduit par les relations différentielles
équivalentes suivantes :

àv ;

dP

dT

Ytf V

-W dp+ pYT
dT

P P
dv + —7f dT

ytv oc„ I
PpT avT

dP

(26)

(27)

(28)

Si nous considérons l'équation d'état sous la forme
explicite :

s s{v„ T)

nous avons, en vertu de la propriété différentielle (3) :

:'-vV; ;;;: ds=^)Fdi' + (ït)„dT '
¦ ..'.

En tenant compte des relations de Maxwell (20) et de
définition (22), nous avons donc :

qui, en vertu des définitions des coefficients thermiques
(10) et (11), peut s'écrire :

c -c -rldA -(^ (35)

VIII. Coefficients calorifiques
Nous appelons coefficient calorifique tout coefficient

dont la définition fait intervenir, non seulement les
fonctions d'état thermiques v, P et T, mais aussi les
fonctions d'état calorifiques u, h et s.

Il est possible de définir toute une série de coefficients
calorifiques correspondant aux coefficients thermiques
av, ßj, et y< en remplaçant dans les définitions (10), (11)
et (12) les grandeurs constantes v, P et T successivement
par les grandeurs u, h et s.

D'une façon encore plus générale, nous pouvons
remplacer ces grandeurs par le coefficient polytrope c défini
par la relation :

Tds
VdP (36)

ds —tti dv + ™ dT
oc, 7 T (29)

D'une façon symétrique, si nous considérons l'équation

d'état sous la forme explicite :

s s(P, T)

nous avons, en vertu de la propriété différentielle (3) :

*- (n)pdT

En tenant compte des relations de Maxwell (21) et
de définition (24), nous avons donc :

ds =-= dP +¦£ dT
ßp7 (30)

Si nous éliminons dT entre les relations (28) et (29)
ou (28) et (30), nous obtenons :

ds Pp cp avcv
dv -\—?r dP

v P (31)

L'élimination de ds entre les relations (6) et (29)
donne :

du
1 — oc0

oc„
P dv + cv dT (32)

D'une façon symétrique, l'élimination de ds entre les
relations (7) et (30) donne :

dh 1-P>
Pp

v dP -f- Cp dT (33)

Enfin, l'élimination de ds entre les relations (29) et
(30) permet, en tenant compte de la relation (20) ou
(21), d'établir entre les chaleurs spécifiques ta relation :

1 vP

ccßp T (34)

Remarquons que le coefficient polytrope a est adi-
mensionnel.

Nous distinguerons les coefficients calorimétriques
suivants :

— coefficients TP, Tv et vP .isénerges ;

— coefficients TP, Tv et vP isenthalpes ;

— coefficients TP, Tv et vP isentropes ;

— coefficients TP, Tv et vP polytropes.

Les définitions de tous les coefficients thermiques et
calorifiques sont groupés dans le tableau suivant :

Grandeur
constante ;/. P T u h S a

T \3P) a,. a« «A <x$ CCct

T \Vv) Pp Pu »Uli Ps Pa

v \3P) Y' Yu Yh Y' n
Remarquons que tous ces coefficients sont adimen-

sionnels.
En vertu de la propriété différentielle (5), les coefficients

calorifiques correspondant à la transformatHœâ
polytrope sont liés par la relation générale :

oto- — ßo y0 (37)

11 est évident que les coefficients calorifiques
correspondant aux transformations isénerge, isenthalpe et
isentrope sont liés par des relations analogues qui peu-

.vent être obtenues en remplaçant l'indice or par les
indices u, h et s.

D'une façon générale, nous appelons chaleur spécifique

polytrope la grandeur définie par la relation :

ca T
\9Tla (38)
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Etablissons tout d'abord les relations entre les

chaleurs spécifiques c„, Cp et ca.

La relation (29) peut se mettre sous la forme :

ca

dT
P_ dv

oc» dl
qui, dans le cas particulier où ct est constant, devient :

r&). * cxv T v \3T)c

En tenant compte des définitions de Ca et de ß<j, cette
relation s'écrit :

1 vP
Ca~ Cv o~ßo^ "F (39)

D'une façon symétrique, la relation (30) peut se mettre
sous la forme :

Cp~ T dT ~ JpdT

qui, dans le cas particulier où a est constant, devient :

Up
(3s\ J. «P T (d±\
\dTJa ~ pp T P \3T)a

En tenant compte des définitions de ca et de aa cette
relation s'écrit :

1 vP

^-CCT=ß7^T (40)

Remarquons que la relation (34) apparaît comme un
cas particulier, aussi bien de l'équation (39) que de

l'équation (40).
Dans tout ce qui suit, il sera commode d'introduire

les deux grandeurs adimensionnelles suivantes :

(41)

(42)

En vertu de la définition de ccCT et des relations (36)

et (38), nous avons :

L'élimination de ocCT entre cette relation et la relation

(40) donne :

A -

CT

e

e

ßP(i-0)
ßpCX

l.+ ßpCJ

[43)

D'une façon générale, les relations (42) et (43)
montrent que :

ßp Cj,CT

l + ßPCT
(44)

Nous voyons immédiatement que les valeurs de ca

correspondant aux transformations isochore, isobare,
isotherme et isentrope sont c„, Cp, cj oo et cs 0.

Pour la transformation isénerge, la relation (6)
devient :

Pdv= Tds

de sorte que la relation (29) donne :

avcv dT
1 ds — -.

1 — oc

et que la définition (38) donne :

OCCt

1 — oc„

Pour la transformation isenthalpe, la relation (7)
devient :

vdP — Tds

de sorte que la définition (36) donne :

CT —1

Les valeurs de c, ca et 9 correspondantes sjehk obtenues.

aisément à l'aide des relations (41), (42) et (43).
Toutes les valeurs de c, ca et 0 correspondant aux

transformations typiques considérées sont groupées
dans le tableau ci-dessous.

En vertu des définitions précédentes»1) et (42) ainsi

que des relations (34), (37), (39) et (40), les coefficients

calorifiques correspondant à • la transformation
polytrope sont donnés par les expressions générales :

(45)

(46)

(47)

OCa 1 —A
1 — 6

ß* 1—A
ßp A —0

15 -
Y'

a —e
i —e

Il est évident que les coefficients calorifiques
correspondant aux transformations isf||erge, isenthalpe et

isentrope peuvent être obtenus en fonction des coefficients

thermiques av, ßp et yt et du coefficient calorifique
A en substituant à 0 les valeurs qui figurent dans le
tableau ci-dessous. Afin de ne pas alourdir notre exposé,

nous ne donnerons pas tous ces coefficients et nous
contenterons de donner ceux qui correspondent à la
transformation isentropique :

C" P p T u h S o

a
A

oo
1

~Bp
—ytA -1 0 O"

ßp(l-A) 1—<x,.(l-A)

Co Cv Cp oo
aac0 PpCp

1-rV
0

Pp cp or

1+ßpff1— cc„

e A 1 oo
a„A

1—o.
Pp

l-ßP
0

ß„ff
1 +ßpa
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Os
1 —A

Pp

1 —A
A

Yi-
Yt

A

(48)

(49)

(50)

En éliminant A et 0 entre les relations (45), (46) et (47),
nous constatons que les coefficients calorifiques
correspondant à la transformation polytrope sont liés par les

relations générales suivantes :

P*
Otç

oc„

ßp

1
ßp

1 — Yi.
Yt

(51)

Il est évident que les coefficients calorifiques
correspondant aux transformations isénerge, isenthalpe et
isentrope sont liés par des relations analogues.

L'élimination de c„ et cp entre les relations (34), (41)
et (44) montre que la chaleur spécifique à or constant
est donnée par la relation générale :

ct vP
C CC(1 — A)(l + ß,CT) T (52)

Il est évident que les chaleurs spécifiques correspondant

aux autres transformations typiques considérées

peuvent être obtenues en substituant à ct les valeurs
qui figurent dans le tableau ci-dessus. En particulier,
nous obtenons :

_
A vP

^"ocß^l—A) T
1 vP

Cp=a„ßP(l—A)T
Posons enfin :

A 1 —A

Ta 1 — y<r

(53)

(54)

(55)

L'élimination de A, 0 et ya entre les expressions de 0

(tableau), ya (relation 47), A et Va (relations 55) per-
met d'établir la relation générale :

rCT=l — y, + y*A(l+J3j,CT) (56)

Il est encore évident que les grandeurs ru, I"* et f"s

peuvent être obtenues en substituant à ct les valeurs
qui figurent dans le tableau ci-dessus.

Il est facile de vérifier que les grandeurs ci-dessus

sont également liées par les relations suivantes :

To — T, (r, — Ta) ct

Ya — Y* T, — T* a» A

(57)

(58)

Pour terminer, indiquons que la substitution de A

(relation 55) et de 0 (tableau) dans les relations (45),
(46) et (47) donne les relations suivantes :

ex»

I?
Y«

A(l + ßpCT)

A(lH-ßpQ-)
1 — A(l + ßj,cx)

1 —A(l + ßpCT)

(59)

(60)

(61)

Ces relations sont plus complexes et moins
symétriques que les relations (45), (46) et (47), mais elles

permettent de calculer cco, ßa et ya sans passer par
l'intermédiaire de la grandeur 0.

Toutes les relations figurant dans le présent chapitre
présentent un intérêt considérable à cause de leur caractère

de généralité. Elles donnent une vision très claire
de tous les coefficients calorifiques qui caractérisent le

comportement thermodynamique d'un système monophase,

simple et fermé. Elles permettent de calculer

n'importe lequel de ces coefficienllffibalorifiques à partir
des coefficients thermiques av, ßp et yt et du coefficient
calorifique A.

Comparaison avec les coefficier^kutilisés dans la littérature
technique

Dans la littérature technique, de nombreux auteurs
définissent les coefficients suivants :

P
1 I3P
P\3T,

a
v \3TJp

Y -mm
v \3P]t

K
Cp

Cv

Ce système ne nous semble pas heureux à cause du
fait que les trois premiers coefficients ainsi' définis ne

sont pas adimensionnels.
Pour échapper à cet inconvénient, L. S. Dzung [8] a

proposé en 1944 les coefficients suivants :

|| fl|P - P \9TJv

T (3v\"= 7(3?),
3P\

P \3v)t

K

Ce système nous paraît bien meilleur que le précédent.
C'est pourquoi nous avons retenu son principe. Toutefois,

nous l'avons modifié pour les raisons suivantes :

Un très grand nombre de calculs de thermodynamique

appliquée font intervenir des expressions qui,
dans ce système, s'écrivent :

1 1 K — 1 a — 1

7 » - > et —
k K CCK K

Comme ces expressions doivent souvent figurer en

exposant, ce système conduit à une écriture assez malaisée.

D'autre part, le calcul de ces expressions n'est pas
immédiat et ne peut pas en général se faire de tête.

Au contraire, dans le système que nous proposons,
ces expressions s'écrivent :

ya, A cxs et A

Pour la raison indiquée ci-dessus, ce système conduit
à une écriture plus aisée. D'autre part, le calcul des

expressions est immédiat puisqu'en particulier l'opération

A 1 — À se fait de tête.
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Par exemple, dans le cas d'un gaz parfait et pour une
transformation isentropique, nous avons la relation
simple :

AA cp 7\ (pA — 1)

et

AA A2 — Ax est l'accroissement d'enthalpie

le rapport de pression.Pi

Remarquons en outre que, dans le système proposé,
les coefficients a et ß sont permutés. Nous avons jugé
ce changement opportun pour des raisons d'ordre, car
cela permet d'obtenir une certaine symétrie dans tous
les développements mathématiques. En effet, l'examen
des relations ci-dessus montre déjà que les grandeurs
thermodynamiques s'associent en formant les deux
groupes suivants :

Premier groupe

— Pdv

Deuxième groupe

vdP

df Y'

dh dg ßp —

Très souvent, il sera possible de passer d'une relation
à la relation symétrique en permutant les grandeurs
selon la règle de correspondance des deux groupes définis
ci-dessus.

IX. Conclusion

Dans ce travail, nous avons présenté une théorie
d'ensemble des coefficients thermodynamiques qui caractérisent

le comportement thermodynamique local d'un
système monophase, simple et fermé. Ces coefficients ont
été classés en coefficients thermiques et coefficients
calorifiques qui tous sont adimensionnels.

Les coefficients thermiques ont été définis. Ils ont été
utilisés, conjointement avec les chaleurs spécifiques
isochore et isobare, dans un certain nombre de relations
entre les grandeurs thermodynamiques.

Les coefficients calorifiques ont été définis également
de façon systématique. Il a paru logique d'accorder une
importance prépondérante à la transformation
polytrope et de considérer les transformations isochore,
isobare, isotherme, isénerge, isenthalpe et isentrope comme

des cas particuliers de la transformation polytrope.
Cette dernière a été caractérisée par :

— le coefficient polytrope :

Tds
° VdP

— et la chaleur spécifique polytrope :

¦•'; ¦';•¦ ¦;¦ •. ¦
c° T df).- " ^''0

Il a été possible d'établir des relations très simples
entre les coefficients thermiques et calorifiques, grâce
à l'introduction judicieuse de deux paramètres
nouveaux. Ces derniers sont définis par les relations :

Cp

0=1-
Cp

D'une manière générale, les coefficients
thermodynamiques introduits permettent une écriture aisée et
conduisent à des relations très symétriques.

Nous pensons que la théorie d'ensemble proposée dans

cette étude offre un caractère systématique qui est
susceptible d'apporter de l'ordre et de la clarté dans le

problème du comportement thermodynamique d'un
système monophase, simple et fermé.

BIBLIOGRAPHIE

[1] Y. Rocard : Thermodynamique, 1952.

[2] E. Schmidt : Thermodynamik, 1953.

[3] G. Brun : Thermodynamique des machines à fluide
compressible, 1959.

[4] E. Guggenheim : Thermodynamics, 1957.

[5] W. Traupel : Thermische Turbomaschinen, 1958.

[6] G. Eichelberg : Der ideale Dampf, Schweizer Arch. 7,
69-72 (1941).

[7] W. Traupel : Zur Dynamik realer Gaze, Forschung 18,
3-9 (1952).

[8] L. S. Dzung : Beiträge zur Thermodynamik der realen
Gaze, Schweizer Arch. 10, 305-313 (1944).

[9] L. S. Dzung : Thermostatische Zustandsänderungen des
trockenen und des nassen Dampfes, Zeitschrift für
angewandte Mathematik und Physik (ZAMP), vol. VI,
Fase. 3 (1955).

BIBLIOGRAPHIE
Annuaire de l'équipement des industries mécaniques

(1961-1962), par M. Coyaud, chef de service Méthodes
et Outillage. Paris, Dunod, 1962. — Un volume 21X
30 cm, 574 pages. Prix : relié toile, 25 NF.
Cet annuaire est un outil de travail utile à tous ceux

qui ont à choisir ou à commander du matériel ou de
l'équipement d'industrie mécanique : industriels,
ingénieurs ; services d'achats, services d'entretien ; bureaux
de méthode, d'outillage, d'études.

A ces utilisateurs de matériel et d'équipement, il permet

de trouver rapidement et avec précision la liste
des fournisseurs français et étrangers à consulter pour
un matériel ou un produit considéré. Il comporte les
renseignements suivants :

— Une Liste alphabétique de constructeurs français et importateurs,

avec adresse, téléphone, télégraphe, indiquant pour chacun

d'eux tous les symboles correspondant à leurs matériels.

— Une Liste méthodique de matériels, classés avec les
symboles figurant dans la liste alphabétique et donnant pour.
chaque matériel tous les fournisseurs français et importateurs.

Précisons ici — car c'est un des importants avantages de
l'Annuaire — que pour les matériels dont il existe de
multiples types à caractéristiques de construction et d'emploi
bien spécialisées, les tableaux des fournisseurs de ces matériels

sont subdivisés en autant de spécialisations. Ainsi, sans
tâtonnement, l'utilisateur trouvera immédiatement le
fournisseur qui répond justement à cette spécialisation.

— Une Liste alphabétique des trade names et trade marks,
indiquant les fournisseurs de tous les matériels connus
essentiellement sous le nom de leur marque commerciale. La
mention des symboles de ces matériels permet de les retrouver

dans la Liste alphabétique des constructeurs et la Liste
des matériels.

— Une Liste par pays des constructeurs étrangers représentés

en France fournit l'indication de leurs agents. L'adresse
de ceux-ci et leurs matériels sont de même donnés
instantanément par les deux dernières listes.
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