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CALCUL DE BRIDE CIRCULAIRE
par un ingénieur des ACMVx ancien élève de l'EPUL 2

On peut s'étonner de traiter encore à notre époque
un problème aussi routinier que celui des brides
circulaires. En effet, depuis qu'il existe des tubes qu'il faut
relier entre eux par un assemblage à la fois étanche
et démontable, la solution la plus employée consiste à

brider les tubes et à serrer les brides au moyen de
boulons.

De plus, les dimensions de ces brides ont été depuis
longtemps normalisées, dans le but louable de diminuer
le travail de calcul et d'étude du constructeur. Cependant

cette normalisation ne donne aucune valeur des
contraintes et des déformations de l'assemblage et, en
outre, elle est limitée à un domaine restreint de
diamètres et de pressions.

Or, d'une part, ces limites sont souvent dépassées
en pratique, d'autre part le constructeur veut connaître
les contraintes et parfois même les déformations en
divers points de l'assemblage, de manière à obtenir la
sécurité au plus bas prix.

On est donc amené à calculer les contraintes et les
déformations d'une bride à construire ou, tout au
moins, à vérifier ces valeurs si la bride est déjà projetée.
On établira ainsi une table de normalisation donnant
ces différentes grandeurs en plus de la géométrie de
l'assemblage.

La méthode de calcul que nous présentons concerne
l'assemblage, par boulons et brides à talons, de deux
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Fig. 1.

tubes soumis à la pression intérieure p (voir fig. 1).
(Les équations des divers éléments peuvent d'ailleurs
être appliquées, avec quelques modifications, aux autres
types de brides.)

Elle fait intervenir deux facteurs importants, dont
l'influence est souvent négligée : le frottement sur la
circonférence de contact des brides et le serrage des
boulons avant la mise sous pression des tubes.

Les hypothèses servant de base à nos calculs sont les
suivantes :

1. Les tubes sont obturés à une distance suffisamment
grande pour que la flexion causée par les fonds ne se
fasse pas sentir au voisinage de l'assemblage.

1 Ateliers de Constructions Mécaniques, Vevey.
3 Cette étude est tirée du Recueil de travaux offert au professeur

A. Stucky, en hommage de reconnaissance, sur l'initiative de l'Association

amicale des anciens élèves de l'Ecole polytechnique de Lausanne,
le 27 octobre 1962, l'année de son 70e anniversaire.

2. La bride est divisée en quatre éléments : un anneau
extérieur, une zone intermédiaire formée de poutres
séparées par les trous de boulons, un anneau intérieur
et un talon unissant l'anneau intérieur au tube
cylindrique.

Pour le calcul des déformations, la bride réelle est
remplacée par une bride fictive de rigidité sensiblement
égale à celle de la bride réelle, mais de géométrie plus
simple : les poutres de la zone intermédiaire, de largeur
variable à cause de la forme circulaire des trous de
boulons, sont admises de largeur constante, et le talon,
d'épaisseur en général variable, est aussi admis
d'épaisseur constante.

3. Une autre hypothèse de calcul concerne la déformation
des anneaux : en coupe méridienne, ces anneaux ont
des sections rectangulaires dont la largeur (épaisseur
de la bride) est en général supérieure à la moitié de
la longueur. Dans ces conditions, on peut admettre
que le déplacement d'une section méridienne se compose

d'une rotation et d'une translation, sans changement
de forme de la section même de l'anneau.

Méthode de calcul

Nous calculons la rotation et le déplacement des
sections séparant les divers éléments, ainsi que l'allongement

et la rotation des boulons en fonction des efforts
extérieurs et intérieurs et nous égalons les déformations
correspondantes. Nous obtenons un système de 16 équations

à 16 inconnues dont les solutions sont les efforts
internes et les déformations de la bride fictive.

Ces efforts et déformations
permettent ensuite de calculer les
contraintes dans la bride réelle.

Notations

Soit p la pression à l'intérieur
des tubes. Comme tous les efforts,
déformations et contraintes sont
proportionnels à p, nous supposerons

que cette pression est égale
à l'unité.

Les rotations Ci et les déplacements

Y et Z (voir fig. 2) sont
multipliés par le module d'élasticité

du métal de l'assemblage.
Les efforts (moments et forces) sont comptés par

unité d'angle.
Appelons :

Re le rayon extérieur de la bride
le rayon du cercle des boulons
le rayon du trou de boulon
le rayon du noyau du boulon
le rayon moyen de la rainure du joint
le rayon intérieur des tubes
l'épaisseur de la bride
la largeur de la poutre fictive
l'épaisseur moyenne du talon

Rb

Tbl

Ri
R,
l
d

K
h
h

n

la longueur du talon
l'épaisseur du tube
le nombre de boulons
le serrage des boulons avant la mise sous pres¬

sion (en unité p)
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Fig. 2. — Géométrie de la
bride et efforts extérieurs.

En traits pleins : bride réelle.
En pointillés : bride fictive.

\x le coefficient de frottement sur la circonférence
de contact des brides

Ps la composante axiale de la réaction de contact
des brides

Mx le moment sur la face intérieure de l'anneau
extérieur

M% le moment sur la face extérieure de l'anneau inté¬
rieur

M0 le moment de flexion des boulons
Ma le moment à la jonction bride-talon
Afp le moment à la jonction talon-tube
Hx la force radiale sur la face intérieure de l'anneau

extérieur
/J2 la force radiale sur la face extérieure de l'an¬

neau intérieur
Ta la force radiale à la jonction bride-talon
Tf la force radiale à la jonction talon-tube
Cïe la rotation de l'anneau extérieur
Qb la rotation de la poutre en B
Qa la rotation de l'anneau intérieur
Qf la rotation à la jonction talon-tube
Zg le déplacement axial de B par rapport à E
Ye le déplacement radial au point de contact des

brides
Ya le déplacement radial à la jonction bride-talon
Yp le déplacement radial à la jonction talon-tube
Ob.tT la contrainte dans le boulon, due à la traction
Qb.flex la contrainte dans le boulon, due à la flexion
<Jb.t la contrainte maximum dans le boulon
Ob les contraintes radiales extrêmes dans la bride

entre les boulons
otA les contraintes axiales extrêmes à la jonction

bride-talon
ct2/1 les contraintes circonférentielles extrêmes à la

jonction bride-talon
a-iF les contraintes axiales extrêmes à la jonction

talon-tube
(32f les contraintes circonférentielles extrêmes à la

jonction talon-tube.

Pour le calcul de la rotation de l'anneau, ces efforts
peuvent être considérés comme uniformément répartis.

La rotation Ojb (rappelons qu'elle est multipliée par
E) est égale à

(1)

(2)

ÙE

OÙ

1

2 M

(Re + Rb + rb) est le rayon de centre de

(3)

gravité de la section méridienne de l'anneau ;

l3
I T7j (Re — Rb — Tb) est le moment d'inertie

de cette section, par rapport à un axe radial
passant par le centre de gravité ;

(4) ZM==M1+ (Re — Rb — r» — U

est la somme, par rapport au centre de gravité,
des moments s'exerçant sur l'anneau.

En remplaçant b, I et ZM dans l'équation (1), on
obtient

w (fe5S) l^-M** -«*-»-4)H
Le déplacement radial du centre de gravité (égal au

déplacement du point Em) est égal à

YEm -ô- ^-F

(6) S — 1(Re—Rb — Tb) est la section de l'anneau ;

(7) 2.F Jït — n Ps est la somme des forces
radiales.

En remplaçant dans (5) on obtient

(8) YEm (r -Rb Tb 21 »p;

Equations

a) Anneau extérieur (fig. 3a)
Sur cet anneau s'exercent les forces axiales Ps et

V1 P3, les forces radiales p P, et Ht et le moment Mt.

b) Zone intermédiaire (fig. 3b)
Cette zone est constituée par la partie percée de la

bride et par les boulons. Les poutres, de forme > ',
sont remplacées par des poutres de largeur constante d.
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Posons

2-TT
(9) K —

Appelons

1 rf

- KM1 ; M2 KM2 ; Mb KMb

(10) Pa <y
jR? la force axiale exercée par la pres¬

sion unitaire sur l'anneau intérieur de la bride.

Chaque poutre est soumise aux efforts suivants :

M\

P\ --= KPS ; PA KPa ; Pb KPb

H\ KHX ; H'2 KHa.

Les conditions d'équilibre de la poutre imposent :

(11) H\ H2 d'où Ex H2.

(12) p'b p'A + Ps d'où Pb PA + Ps.

(13) M'6 + M; - M\ + rb (P\- P'A) 0

d'où

Mb + Mt — Mt + r6 (Ps — PA) 0.

d'où

(17) aB-aD + j,(rf1-P\%=ai> + K%(M1-P.r-ï

irb

/' nS=/
i 3r*

/' \ü\i + (M2~2PArb) rb + PA I_*

r6(M; — p;^ + m;_ pâ
r>

A 2
d'où

(18) QC nD+K j,(m1 + m2— r4Ps— t4pa)

iïs+Kr-p (M, — ^Pj.

'¦îdx m^x — p'^ + i'Qb

l'y M\ -^ — P', -q + I'CiL X + I'J/D

l'yB I'yD + l'Q.vTb-\- -k \M1—-^ P.

/•Ps

f Em

V,

M,

»,

©

Pa,

D
\f

H)

« ®
B y.J

r
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Fig. 3. — Efforts extérieurs
et intérieurs sur les différents
éléments de la bride.

Cherchons les rotations de la poutre au centre et à

l'extrémité C, ainsi que la flèche au centre. L'élastique
de cette poutre est donnée par l'équation

dû. d*y M(x)
(14) &=£-« - "Z - (VMr fig- 3f>

ou

(15) I' IH
12

et

(16)
M (x) — M1 + Pa x pour 0 < x < rb

M (x) — M'3 + PA (2 rb — x) pour rb<x<2rb
rb

d'où

Tb
(19) yB yD + TbaD+KjT,\M1—^Ps

Remplaçons :

ys par — Zb ; Oo par Çïe ; Cïc par flu ; Pa par -s-

if 24 TT

j-, par -j-« et j/i) par £îe (Re — Rb — rb).

Les équations (13), (17), (18) et (19) deviennent
respectivement

R,
(II) - Mi + n P, + Mb + M% rb -j-

1' | n |S =: J (M\ - P\x) dx rh (m\ - P\ fj (III) n, +
24TTr6 12TTr|

nrf/3 Mx ndl* P, — riB 0.
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<IV) «- + W*« ClA ndl3
RI

(V) (Re — Rb)CIe +
12-

^M* ndl3
0.

Dans ces relations,

(30) H^Hi-,
R!

(31) -P^=y; (32) P,
RJ—RJ

Calculons maintenant la déformation des boulons

sous l'effet de la pression unitaire.
Le boulon, avant la mise sous pression, est serré à

la tension u0 (en unité p). Sous l'effet de la pression,

il est soumis à la force de traction Pb P + PA et

au moment de flexion Mb.

Supposons que la section du boulon dans le plan de

contact des brides ne subisse ni déplacement ni rotation.

(Ceci est vrai dans le cas de brides identiques
et dans le cas d'une bride fixée par vis ou goujon sur
une pièce très massive.)

Sous l'effet du moment M., le boulon de longueur l
subira une rotation

(20) na — — Mt=— K-j-Mh

L'expression de la rotation Çïa de l'élément donne :

(vin) m2-ma+ ^ta + {nBsZrrbb + R)-6^

—tH-Rb — n — Ri—ô-) ö—[Rß—Tb ö—I*

Le déplacement radial du point Am est égal à

(Rb — n + Ri\ 1
(33) Y, Rs — Tb — Rif 21 Hi+TA+lRi).

(34)

Le déplacement radial du point A est égal à

l
Y, Qa

TT ri
(21) Ib —-,— est le moment d'inertie, par rapport

à l'axe neutre, de la section du noyau
du boulon

Sous l'effet de la force Pb, le boulon s'allonge de

(22) EAl=iy-f — <yc Hs7Pft-CT'

(23) EAl est égal au déplacement Zb et

d'où

1 (Rb — n + Ri 1 (Rb —¦ n + R,
Ta +(IX) 2l\RB — rb — Ri)Hl 2l\RB — rb — Ri

4.
l

O -L. Y - Ri (RB-Tb + Ri
+ -2CiA+YA--2\RB-Tb-Ri

Déplacement radial du point Em :

Ce déplacement s'obtient en ajoutant, au déplacement

YAm, l'allongement de la poutre sous l'effet de

2 rb
(35) * Em — ¦» Âm ld **

(24) Sb TT r\\ est la section du noyau du boulon.

En remplaçant K, Ib, Sb et EAl dans les équations (20)

et (22), nous obtenons :

(VI) Mb + -gP CIb 0

(VII)
21

V nrM>
l l <J0

En égalant avec YEm donné par la relation (8), on
obtient :

(X)
RE + RB + Tb

VPs +

+

RE — Rs — n
Rs + Ra + Tb Rb — rb + Rt 8iTr6
Re — Rb — rb Rb — rj — i?<

TA lRi

+ nd Hi +

R£ — rb — Ri Ri
n + RA
Tb — Ril

c) Anneau intérieur (fig. 3c)

Cet anneau se calcule comme l'anneau extérieur :

(25) b =j(Rt +Rs — Tb);

(26) S l(RB — rb — Ri);

(27) I ^(RB — n — Ri).

(28) IF IR{ + TA — H2.

(29) ZM — M3 + Ma — Ta2 +

—PAl (rb — r» — A—hj) —PAi (Rb — n — ^y"1

d) Talon (fig. 3d)

Le talon est calculé comme un tube de longueur lx

et d'épaisseur constante hu soumis à une pression
intérieure unitaire et soumis à ses extrémités aux efforts

MA, Ta, Pau Mf, Tf et PAx.
La rotation Q. et le déplacement radial Y des extrémités

A et F sont donnés par les relations suivantes :

(XI) Ha — ku MA — ha Ta +
hi —h

+ klt(Mjp — PAi ¦ «i» Tf.

(XII) YA — kuMA — kuTÄ — kuT,+

+ ku (Mr — PAi
hi—h £[*(*-*^§
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(XIII) Ür — ku Ma — kls TA

.(Mr — PAi \-^\ —k12 TF-

(XIV) Yr kltMA + k„TA + knTr

— k12 [Mr — PAi
h,— h\ 1

1

VK A(A +-2~l-
M Rl

2

dans lesquelles

(36) ku AAKn ; k12 BAK12 ; klt AAK14t ;

kit BAK1S ; k22 CAK22 ; k25 CAK2i.

(37) A,

Ct

4 m3

Ri + k-)'i

hi

B,
2 m2

~~hj

Ri + -j) ai

v coefficient de Poisson.

(38) m= + ./3(l — v2).V1

(39)

if, sh<f ch<p + sin 9 cos 1

:

D ¦IK,

ch 9 sin 9 + 5/19 cos 9if 14 ~ß '. > if 15

sA29 -f- sin29
D

2 sh 9 sin 9
2) ;

sh(fch<f — sin9cos9 C/19SH19 — SA9COS9
if 22 n j if 2s ^

Contraintes

Nous nous Hmiterons à calculer les contraintes dans
les sections les plus dangereuses de la bride, c'est-à-dire
les sections B-B, A-A, F-F et dans les boulons.

f) Section B-B
Les moments s'exerçant sur cette section sont,

d'après (16) :

(41) M,m -M'1 + P,trb et

(42) Aï„ - il/, + P'A rb M'm + M'b

(Ces moments diffèrent de M'b> du fait que nous avons
supposé Mb localisé en B-B.)

Nous calculerons les contraintes de flexion produites
par le plus grand de ces deux moments, c'est-à-dire
par M'Br

La largeur de la poutre en B-B étant égale à

Rb
(43) tB 2 TT 2 rb et sa hauteur étant égale à Z,

les contraintes extrêmes en B-B seront :

(44) aB ltB

K_
ltB

K±

¦H.±

6 (M, -PA Tb)

6 (M,

l

-Pa Tb)

as
{RB — -Tb

—H2± 6(M2—PArb)
l

D

D sh* 9 —¦ sin2 9 ;

D

mli

Ri + yM

g) Section A-A
Cette section est soumise à la force de traction

A2
PAi -?r et au moment MA.

e) Tube (fig. 3e)

Le tube est supposé suffisamment long pour que les

efforts de flexion et de cisaillement aux raccordements
des fonds n'aient pas d'influence sur la rotation et le

déplacement radial de la section F.
Dans ce cas, la rotation et le déplacement radial en F

sont donnés par les relations suivantes :

(XV) O? — AT Mr — BF TF

1

(XVI) YF -BFMF-CFTF + -^

dans lesquelles

4 m'4 m3

40) AF

AlA+^l—vy

2 m2

Ri+ p'
; *, -p-;

Cr TV A +2>

où m a la valeur indiquée en (38).

Remarquons que, pour de l'acier

v 0,3 m 1,285407

2 m 2,570814 2m' 3,304542 4 m8 8,495364

La hauteur de cette section est Amax. et son rayon
moyen

"max.
(45) RAm. Ri

Les contraintes axiales et circonférentielles extrêmes
en A-A seront

(46) &A ax*
"max. -ti -

R\ 6 M,

(47) dA cire. V CT.*

h) Section F-F

2 -51 hi* '*max.

YA
Rm

(48) C.F ax.

1 r-R,? 6MF
[2 ± h

h(m + ±)

(49) Ci? ciro. V CT^ax. H
Yr

i
A

i) Boulons
Les boulons sont soumis à la force de traction Pb

et au moment de flexion Mb.
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Le rayon du noyau étant rj,-, les contraintes extrêmes
dans les boulons seront :

(50) CT6 :

1
(P. + P, TM»

Ob

Commentaires

2 R*\-t (p. + i)
'bi

8
Mb

Les équations (I) à (XVI) et les relations (44), (46),
(47), (48), (49) et (50) permettent de calculer les
déformations et les contraintes dans un assemblage donné.

Elles tiennent compte de la géométrie de la bride,
du frottement sur la circonférence de contact des brides
et du serrage des boulons avant la mise sous pression
des tubes.

Rappelons l'influence de la géométrie de la bride :

l'augmentation d'épaisseur l diminue les contraintes
dans tout l'assemblage ; cette diminution est grande en
B-B, moindre en A-A, petite en F-F et dans le boulon.

L'augmentation du rayon extérieur Re et la
diminution du rayon RB réduisent les contraintes dans le
boulon et dans les sections A-A et F-F ; dans la
section B-B par contre, la contrainte peut augmenter.

La force de frottement, suivant son sens, augmente
ou diminue fortement la contrainte maximum des
boulons. Si p est positif, c'est-à-dire si la force de frottement
est dirigée dans le sens indiqué par la figure 3a, la
contrainte dans le boulon est augmentée. (Le sens de

cette force, c'est-à-dire le signe de pi, dépend du déplacement

du cercle de contact d'une des brides par rapport
à l'autre ; si les brides sont identiques, ce déplacement
relatif est nul et p 0 ; si les brides sont différentes,
[X sera positif pour l'une et négatif pour l'autre.)

Le serrage initial des boulons a pour effet de diminuer
les déformations et par suite les contraintes dans les
sections A-A et F-F de la bride, tandis que dans la

section B-B les contraintes seront augmentées.
L'influence du serrage sur la contrainte maximum dans le
boulon dépend de la géométrie de la bride. Cette
influence (pouvant causer, suivant le cas, soit une
augmentation, soit une diminution de la contrainte) reste
cependant très faible ; de sorte que, si la section B-B
est peu sollicitée, il est avantageux de serrer fortement
les boulons.

On voit donc qu'il peut être économique d'employer
des boulons d'acier à haute résistance, ce qui permet
soit d'augmenter le serrage initial (si la section B-B
est peu sollicitée), soit de diminuer le rayon du trou
de boulon et par conséquent la contrainte dans la
section B-B.

Conclusion

Ces remarques montrent que les contraintes dans
l'assemblage dépendent de nombreux paramètres.
Cependant, avec un peu d'habitude, on parvient, après
deux ou trois modifications, à réaliser un assemblage
dans lequel les contraintes sont voisines de leur valetBR
admissible, aussi bien dans les boulons que dans les
sections A-A, B-B et F-F de la bride.

Comme le temps de calcul d'une bride de géométrie
donnée est de l'ordre de trois minutes sur une
calculatrice électronique moyennement rapide, on voit que
le temps total pour le calcul d'une bride n'est pas
prohibitif et que la sécurité et l'économie réalisées
compensent largement la dépense supplémentaire causée

par la mise en compte de facteurs importants et
généralement négligés.
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matériaux de construction.

Le premier tome est consacré à l'étude des roches et
des pierres de construction, aux granulats, aux chaux
et ciments ainsi qu'aux mortiers et bétons hydrauliques.
Un chapitre définit les nouvelles normes d'essais des
ciments.

Le deuxième tome traite des techniques particulières
d'emploi des ciments, des enduits et mortiers de rejoin-
tement, du béton armé en tant que matériau ; il
contient en outre une synthèse très complète de la corrosion

sous toutes ses formes ainsi que des techniques
d'étanchéité.

Le troisième tome forme un tout pour l'étude des
liants noirs, des enrobés et de l'ensemble des techniques
concernant la construction des chaussées et des pistes
d'aviation (voir sommaire détaillé ci-après).

Débordant du cadre de l'enseignement, cet ouvrage
possède, en plus de ses qualités didactiques, une grande
valeur d'information qui en font un ouvrage de
référence pour les ingénieurs des ponts et chaussées, les
ingénieurs des travaux publics, les chefs d'entreprjsjdjï
de travaux publics et ingénieurs des bureaux d'études,
les ingénieurs spécialistes de laboratoires, les architectes

et maîtres d'oeuvre, etc.

Sommaire du tome III :
1. Généralités. — 2. Les liants de base. — 3. Les dérivés

des liants de base. — 4. La rhéologie des liants routiers. —
5. L'adhésivité des liants aux minéraux. — 6. L'influence
du temps, de la chaleur et des ambiances sur les caractéristiques

rhéologiques et le comportement des liants. Le
vieillissement. — 7. Essais, analyses et spécifications concernant
les liants routiers. — 8. Les associations de liants
hydrocarbonés et de matériaux durs, autres que les mortiers et
bétons compacts exécutés à chaud. — 9. Les mortiers et
bétons bitumineux compacts exécutés à chaud, en technique
routière et en technique d'aérodromes. — 10. Les enrobés
denses à chaud et les sand-asphalt. — 11. Applications aux
techniques d'étanchéité dans les travaux publics et le
bâtiment. — 12. Essais sur les mastics, mortiers et bétons liilii-
mineux. — 13. Processus opératoires concernant les liants
et les matériaux utilisés dans les revêtements hydrocarbonés.

-- 14. Compléments intéressant les revêtements à
base de liants hydrocarbonés. -- 15. Les éléments de la
chaussée. Nomenclature routière. Calcul des chaussées. —
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