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RESOLUTION DE QUELQUES PROBLEMES DE STATIQUE
K I’AIDE D'UNE CALCULATRICE ELECTRONIQUE

par CH. BLANC, professeur a 'EPUL! et H. TRAN HOANG, ingénieur physicien, assistant a l'Institut

de mathématiques appliquées de I'EPUL

La mise en ccuvre de calculatrices électroniques
exige une adaptation parfois assez poussée des méthodes
de calcul. Clest le cas notamment en statique: en
effet, les méthodes que 'on a utilisées traditionnelle-
ment avaient souvent pour but d’éviter de longues
séries d’opérations fastidieuses, comme par exemple la
résolution de grands systéemes d’équations linéaires ;
en calcul automatique au contraire, on recherche une
simplification du schéma opératoire, quitte a la payer
d’un accroissement peut-étre notable des calculs for-
mels, que la machine exécute trés rapidement.

I Institut de mathématiques appliquées de 'EPUL
a établi, pour sa calculatrice ZEBRA, des programmes
pour quelques problemes concrets de statique. La
méthode utilisée revient en fait & remplacer les équa-
tions différentielles par des équations aux différences,
en passant pour cela par des propriétés d’extremum ;
on a montré en effet [1] que cette fagon de procéder est
particuliérement avantageuse.

[ étude des déformations d’un corps élastique (et
des contraintes qui leur sont lices) conduit, dans les cas

1 Ecole polytechnique de I'Université de Lausanne.

les plus généraux, a des calculs d’une complexité telle
quil n'est guére concevable de les aborder d’une
maniére uniforme. Si le corps est de révolution, et si les
contraintes présentent la symétrie voulue, le probleme
se simplifie beaucoup. La présente étude correspond a
une circonstance encore plus particuliére, celle ou le
corps a la forme d’un cylindre creux, d’épaisseur éven-
tuellement variable mais toujours assez petite vis-a-vis
du rayon du cylindre. La méthode décrite est appli-
quée a deux cas : celui d’un réservoir eylindrique rempli
de liquide et celul d’un tube encastré a l'une de ses
extrémités et sollicité a l'autre. La méthode est du
reste générale et le programme élaboré peut étre faci-
lement adapté a d’autres cas.

[ Institut de mathématiques appliquées a également
élaboré un programme, utilisant la méme méthode, et
valable pour le cas général des corps de révolution : il
fera I'objet d’une publication ultérieure.

Déformation d’un cylindre creux d’épaisseur variable

Le probleme envisagé ici a été déja traité par de nom-
breuses méthodes et la solution que nous en donnons
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n’est nouvelle ni dans sa conception, ni dans son appli-
cation. Elle se fonde sur les propri¢tés de minimum
d’une certaine expression, qui représente la différence
entre I'énergie de déformation du cylindre et le travail
(virtuel) des forces extérieures. Pour la théorie générale
de la déformation des surfaces, on peut toujours se
reporter a l'ouvrage classique de Love [2] ; dans le cas
qui nous occupe ici, voir par exemple [4], p. 129 et suiv.

Nous allons d’abord examiner le probleme sous sa
forme « rigoureuse » ; il conduit, & la recherche de fonc-
tions rendant minimum une intégrale, done & un pro-
bleme de calcul des variations. Ce probleme peut se
transformer en un probleme d’équations différentielles,
malheureusement en général dépourvues d’intégrales de
nature élémentaire. Il est alors nécessaire de résoudre
le probléme par une méthode approchée. Nous indique-
rons une méthode qui s’adapte particulierement bien au
calcul électronique.

Soit un corps élastique, en forme de cylindre de révo-
lution creux, d’épaisseur variable. Introduisons les
notions suivantes (sans fixer le systéme d’unités choisi ;
nous supposons seulement qu’il est cohérent) :

I longueur du cylindre;

x  abscisse le long de 'axe;

a  rayon moyen du cylindre ;

h épaisseur de la paroi a Pabscisse @ ; on suppose que
h est assez petit vis-a-vis de a ;

w  déformation longitudinale ;

s déformation radiale (positive vers I'extérieur) ;

E  module d’¢lasticité ;

v inverse du module de Poisson ;

Eh¥

DY —r

M moment de flexion, rapporté a I'unité de longueur
sur un parallele, compté positivement s’il donne
lieu & une courbure interne convexe ;

Q  effort tranchant, rapporté a lunité de longueur sur
un paralléle ;

S effort annulaire, rapporté a 'unité de longueur sur
un méridien.

On suppose que les forces qui agissent et les liaisons
appliquées ont toutes la symétrie cylindrique (d’ou il
résulte qu’il n’y a pas de déformation dans la direction
d’un cercle parallele).

Soient les forces appliquées :

f(x) dx force répartie le long d’un méridien, par unité
de longueur d’un parallele ;

@i effort tranchant sur le paralléle a I'abscisse ay, par
unité de longueur de ce paralléle ;

M; moment d'un couple appliqué au parallele &
Pabscisse @j, par unité de longueur de ce parvalléle ;

Iy force longitudinale (effort normal) exercée sur le
parallele a abscisse g, par unité de longueur de ce
parallele.

De plus, on suppose que 'on a iimposé au cylindre
des liaisons de caractére géométrique (par exemple
encastrement), donnant licu & des conditions pour
et w, notées « conditions Gy, Alors les fonctions u et gy,
qui décrivent la déformation du cylindre, sont celles
qui rendent minimum la fonctionnelle :

2

J[u, w] =

— N0 w@) =N Mo (z)— N Fi.u@w),
— — i
¢ i k

les fonctions concurrentes devant satisfaire aux condi-
tions G définies par les liaisons géométriques (par
exemple u =0, w =0, @' =0 s’il y a encastrement).

Par les équations d’Euler-Lagrange, ce probleme de
calcul de variation peut se ramener a U'intégration d’un
systeme d’équations différentielles avec conditions aux
limites ; ce systéme est linéaire, et peut s'intégrer
exactement lorsque I'épaisseur est constante (et dans
quelques cas trés particuliers qu’il est inutile d’examiner
ici). Dans le cas d'une épaisseur variable, il faut done
recourir & une méthode approchée. On en peut ima-
giner de nombreuses, parfois trés ingénieuses, mais dont
le défaut est souvent de se préter fort mal au calcul
automatique. En effet, si 'on veut utiliser rationnelle-
ment une calculatrice électronique, il faut rechercher
des algorithmes pouvant se décrire assez simplement,
et surtout n'exigeant pas de fréquentes interventions
intermédiaires ; alors qu'il est raisonnable, lorsqu on
calcule a la main, de rechercher tous les moyens d’allé-
ger le volume des opérations formelles, il sera au con-
traire favorable d’adopter, en caleul automatique, une
voie qui comporte peut-étre beaucoup d’opérations,
mais d'un type aussi standard que possible. La méthode
que nous voulons exposer ici (et qui, répétons-te, n’est
pas nouvelle), consiste & ramener la recherche du mini-
mum a la résolution d'un systéme d’équations ‘algé-
briques linéaires, systéeme dont les coellicients sont
calculés  automatiquement par la calculatrice elle-
méme et dont la résolution se fait rapidement méme si
le nombre des inconnues est relativement élevé.

Supposons qu'il n’y a pas de forces Fy, donc pas de
forces longitudinales, et que le cylindre n'est fixé que
pour une valeur de z, soit par exemple pour x = z,.
La fonction u ne figure dans la fonctionnelle J que par

2
N o )
le terme (u'w — w) » dont la contribution est forcément
a

supérieure ou égale a zéro ; le minimum exige donce que
I'on ait, pour tout x,

v
W——-w=20;
a

lorsque @ aura é1é déterminé, on obtiendra ainsi w par
une quadrature, la constante étant fixée par la dounée

pour @ = 2,. Il reste donc & rendre minimum la fone-
tionnelle
{’ .
J[w] = ’ (l—)) w'? | % w2 — /'n') da
< 2 2a® y

0
Y ’ R ’
— L 01 (8] (.ri\ — .\_J 4‘/,"\‘ (y

i j

Dans le cas o il n’y a pas de forces ou de couples
concenlrés sur certains paralleles (done si les termes en
P et M; sont absents), I'équation d’Euler-Lagrange de
ce probleme de variation est

" Eh
(I)\\‘"\ I = W= /;
: 3 a*




s'il y a des forces ou des couples appliqués sur certains
paralleles, cette équation est encore valable entre ces
paralleles, le raccordement des solutions se faisant avec
des discontinuités qui résultent des valeurs des P;
et M;; nous renongons a développer ici ce point, car
la méthode que nous utiliserons fait abstraction de
I'équation différentielle et permet de tenir compte sans
aucune dilliculté des forces concentrées.

Pour rendre le probléeme résoluble par des moyens
élémentaires, on opére une discrétisution, qui consiste
simplement a remplacer Uintégrale de J par une somme,
et a substituer ainsi a la recherche de la fonction
inconnue w la recherche des valeurs (approchées) de
cette fonction en un nombre fini de points de I'inter-
valle [0, H].

Nous traiterons ainsi deux cas: tout d’abord celui
d’un réservoir cylindrique & axe vertical encastré au
bas et rempli d’'un liquide pesant; nous traiterons
ensuite le probléme d’un tube cylindrique, encastré a
une extrémité et soumis a l'autre extrémité a un couple
de moment donné. L’épaisseur pourra toujours varier
selon une loi quelconque.

Réservoir a axe vert'cal, rempli d’un liquide pesant

Comptons les abscisses « depuis le haut ; il n’y a pas
ici, par hypothése, de forces ou de couples concentrés
donnés ; en désignant par y le poids spécifique du
liquide, on a simplement :

b4
D E} \
J[w]= f <-,)— "2 Ta_; w?—y :rw) dx

0
avec w(l) =0, w'(H)= 0. Faisons quelques change-
gements d’écriture (voir [4); en remplagant D par sa

valeur, on a

H
ol — E { W3 i
SIS —w ) 2%

0
12 %(}; v o 12 (1E— v?) " m] e

posons x = Il §,
12 (1—v?) H* _12(1~vz)yll5_

k= P P A Y
a? E ’

on a alors :

1
! EN B d? w2
1=y | o (7g) -

0
/\'/l 5 [ g
+ m W= - '[—[T H'] ([ g,

E
12vHE (1 —v?) '

qui ne joue pas de role ici; on a a rendre minimum la

done, en laissant de c¢oté un facteur

fonctionnelle :

1

avee w = 0 et @' = 0 pour § = 1.

h3 (dZw\? fel
' (l “) -+ T_)—’w -lgw‘ dg,

Ce probleme de variation ne pouvant pas élre résolu
sous forme finie, sauf dans des cas trés particuliers, on
va le traiter par une méthode approchée : on divise
Pintervalle [0, 1] en n intervalles égaux ; soit § I'abs-
cisse  du  point  milien du j-eéme intervalle, done

—1 1 1.4 1
& = 5,3 posons encore Eo——ﬂet = +-g2

Soit enfin w (§) = w;; on a, d’'une maniére approchée,
si n est assez grand,

2w (&)

-TEZ— = n?(wir1— 2w; + wi—1);

la condition d’encastrement peut étre remplacée (tou-
jours approximativement) par @, = w1 = 0; la
fonctionnelle donnée est donc remplacée par 'expres-
sion approchée

N
A* (w;) = nd V
s
i=1
h3 Jeh; L(2; —1)
i DR S Y )2 LI . - e
[ 5 (i1 — 2w + wit1)? + o Vi 0 (sl]

avec w, = wy+1 = 0, ou encore, en explicitant les
sommes,

w

h s y 3
. [_1) (wo— 2wy + wy)® + —.22 (w1 — 2wy + wg)? +

Iehy 5 khy

Tk g wt

2n In

l 3l )
Tt T e T o

c’est donc une fonction quadratique des n inconnues
Wy W1y « -y W1 ; ces s doivent rendre A* minimum ;
on les obtient donc en annulant les dérivées de A™ par
rapport aux inconnues. En dérivant par rapport a
on obtient (apres division par la constante n?)

B w, —2 /1? Wy + /z? w, =0

puis en dérivant par rapport a wy :

kh
— 2 /1'? Wy =+ (4 /1‘;’ - lzg’ -+ 114l> Wy —

— 2B+ Byw, + R ow, = 5=
1 2/ ¥'g 3 W3
d’une manicre générale, en annulant la dérivée par
rapport 4 w; (2 <1< n—3), on a

l'f—l wy_g — 2(h; 4 + /1?) Wy +

4 (1,;;1 + 4R 4R+

-2 (/I,'3 ‘;_‘ /1;}7."1) Vi1 T /l;+1 Wit

(pour i =n-—2et i =n-—1, on a des équations sem-
blables, ot il faut simplement remplacer oy, el oy
par zéro a cause de 'encastrement). On constate immeé-
diatement que ce systéme a une forme particuliere :
il est symétrique (ce qui résulte du fait quon I'a obtenu
en dérivant une fonction quadratique) et de plus 1l a
la forme pentadiagonale, ¢’est-a-dire que les seuls coelli-
cients non nuls se situent sur la diagonale principale et
sur les deux paires de codiagonales adjacentes. Ces
circonstances entrainent une grosse économie de place
dans la mémoire de la machine et de temps dans la
résolution du systéme.

e programme qui a été confectionné pour ce pro-
bleme effectue les opérations suivantes :
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Tig. 1. — Déformée d’un réservoir cylindrique en béton.

Cas 1: Réservoir a épaisseur constante.
Cas 2: Réservoir a4 épaisseur variant linéairement.

-05

Fig. 3. — Répartition du moment fléchissant pour un
réservoir eylindrique en béton.

Cas 1: Réservoir a épaisseur constante.
Cas 2: Réservoir & épaisseur variant linéairement.

a) calcul, a partir des données géométriques et
physiques, des coellicients des équations ;

b) résolution des équations, done calcul des ¢w;:

c¢) caleul, a partir des ¢;, du moment

Eh? d?
12 (1 —v2) da?

M =

d’ou
Eh3 1 d? o,
Mi=tma—w w ag *
Eh3 n?
T2(T — v I (Wie1

\

— 2wy + Wit1)
d) calcul de Peffort tranchant () a partir de la relation

dM- 1 dM

U= T T mag

on calcule une valeur approchée de @ en remplagant la
dérivée par un quotient de différences

r

0# %(A/Hl M) o j=1,2,...,n—1;

&

Ieffort tranchant est ainsi calculé aux (n 1) points
de subdivision de intervalle {0, 1] il est évidemment
utile de le connaitre aussi pour @ = 0 et pour x = /1.
Dans notre cas, il est nul pour @ = 03 pour @ = /1, il
peut se caleuler en considérant I'équilibre statique du

)

systeme. On a en effet, pour chaque valeur de €

dz M IS 11?

T&Z \ ”—2/1\\"’ Y/I’}E

3
g/
gl

30

20 |

X
) 1 2 3 5 5 6

Tig. 2. — Répartition de 'effort annulaire pour un réservoir
cylindrique en béton.

Cas 1: Réservoir a épaisseur constante.

Cas 2: Réservoir a épaisseur variant linéairement.

1R
0%,

o5

1 2 3 4 5 6 m

O

Fig. 4. — Répartition de I'effort tranchant pour un réservoir
cylindrique en béton.

Cas 1: Réservoir a épaisseur constante.
Cas 2: Réservoir a épaisseur variant linéairement.
done
40  EHh

TE = voviPe

et comme Q(0) = 0, il redte

1
) EH H?
Qe=1 = w { hew d & — Y) :
0

en remplacant 'intégrale par une somme, on a

n
EH 3 y HE
Qg=1# —— 21 hi i — 5=

e) caleul de I'effort annulaire ; on a, pour I'effort
annulaire S rapporté a I'unité dé longueur

Eh

‘a

0 S = W

N
il se calcule done directement a partir des oy, pour les
Imillls T,

Exemples numériques

Lwemple 1. — Réservoir ceylindrique en béton, d’épaisseur
constante ; données num(‘riquos:

I — 6,0 m E = 2.10° kg/m?
a = 9,66 m v =02
ho = 0,16 m (constanl) Yy = 1000 kg/m? (eau)




Tasreau 1

TaBrLEAaUu 2

Abs- | Déforma- Effort Moment Effort Abs- | Déforma- Effort Moment Effort
cisse tion annulaire de flexion tranchant cisse tion annulaire de flexion tranchant
m 10-* m kg/m kgm /m kg /m m 10-8 m kg/m kgm/m kg/m
0 0 0 0

+ 0,018 + 609 0 + 0,069 + 1451 0
0,2 — 7.4 0,2 + 10,1
+ 0,079 + 2617 + 1,5 + 0,140 + 3086 = 2,0
0,4 — 3.1 0,4 + 14,0
+ 0,140 + 4628 -+ 4,1 + 0,212 + 4831 == 4,8
0,6 — 17,2 0,6 + 141
+ 0,200 + 6646 + 7,6 + 0,282 + 6674 — 7,6
0,8 — 19,5 0.8 + 12,5
+ 0,262 + 8679 + 11,5 + 0,352 + 8606 = 10,1
1,0 — 19,6 1,0 + 10,8
+ 0,324 + 10 733 + 154 + 0,420 + 10 617 — 12,3
1,2 — 17,2 1,2 + 10,8
+ 0,386 + 12 815 -+ 18,8 + 0,486 + 12 700 — 14,5
1,4 — 11,6 1,4 + 14,1
+ 0,450 + 14 933 + 21,1 4+ 0,551 + 14 848 == T3
1,6 — 2,1 1,6 + 21,8
+ 0,515 + 17 090 + 21,5 + 0,614 + 17 053 — 21,7
1,8 + 12,1 1,8 + 35,2
+ 0,582 + 19 287 + 19,1 + 0,675 + 19 303 — 28,7
2,0 & 31,9 2,0 + 55,3
+ 0,649 + 21520 + 12,7 + 0,733 + 21 581 — 39,8
2,2 ke 57,9 2,2 + 82,6
+ 0,717 + 23777 + 1,2 + 0,788 + 23 858 — 56,3
2,4 <k 90,7 2,4 + 117,0
+ 0,785 + 26 036 = T%,0 + 0,839 + 26 097 —  79,¥
2,6 + 130,3 2,6 4 157,9
+ 0,852 + 28 263 — 43,0 + 0,885 + 28 246 — 111,3
2,8 + 176,0 2,8 + 203,3
+ 0,917 + 30 410 — 8,2 + 0,923 + 30 242 — 151,9
3,0 + 226,3 3,0 + 250,1
+ 0,977 + 32 411 — 123,5 -+ 0,953 + 32 004 — 201,9
3,2 + 278,0 3,2 + 2934
+ 1,031 + 34181 — 179,1 + 0,972 + 33 438 — 260,6
3.4 + 326,4 3,4 + 326,4
+ 1,074 + 35618 = Gdd 4 + 0,978 + 34 440 — 326,0
3,6 + 364,6 3.6 + 340,2
+ 1,104 + 36 599 — 317,3 + 0,968 + 34 901 — 393,9
3,8 + 383,1 3,8 + 323,5
4 1,115 + 36 988 — 393,9 + 0,941 + 34710 — 458,7
4,0 + 369,7 4,0 + 262,9
+ 1,105 + 36 642 — 467,8 + 0,895 + 33 768 — 511,2
4,2 + 309,1 4,2 + 142,8
+ 1,068 + 35424 — 529,7 + 0,830 + 31 997 — 539,8
4,4 + 183,3 4.4 — 54,1
+ 1,002 + 33 218 — 566,3 + 0,746 + 29 357 — 529,0
4,6 — 28,2 4,6 — 345,7
+ 0,903 + 29 955 — 560,7 -+ 0,643 + 25 862 — 4598
4,8 — 3474 1.8 — 749,7
+ 0,773 + 25 647 — 491,2 + 0,526 + 21 602 — 3099
5,0 — 795,8 5,0 — 1282,0
+ 0,616 + 20 422 — 332,0 + 0,400 + 16 763 — 53,5
5,2 — 1392,6 5,2 — 1954,5
+ 0,440 + 14 578 — 53,6 + 0,273 + 11 651 + 3374
5,4 — 2150,4 5,4 —2773,1
+ 0,260 + 8635 + 376,6 + 0,154 + 6716 + 892,0
5,6 — 3071,5 5,6 —3733,9
+ 0,102 + 3393 + 990,9 + 0,058 + 2567 + 1638,8
5,8 — 4141,2 5.8 — 4820,7
0 0 + 1819,1 0 0 + 2602,9
6,0 0 + 2292,2 — 5321,4 6,0 0 + 3144,0 — 6000,7
Ezemple 2. — Méme probléme, mais avec une épaisseur Tube encastré a une extrémité et soumis a l'autre

variant suivant une loi linéaire :

h=10,10 + 0,12 z/H [m].

Dans les deux cas, le calcul a été fait en divisant la
hauteur totale en 30 tranches égales, ‘done en faisant
n = 30. Les résultats numériques sont reportés aux
tableaux 1 et 2, et sur les figures 1 a 4. La durée des
calculs (y compris la sortie des résultats) est, pour
chacun de ces exemples, inférieure & 4 min. On remar-
quera que, du fait de la méthode employée, 1effort
tranchant est caleulé aux points de subdivision de la
hauteur totale, alors que les autres grandeurs sont
calculées aux points milicux ales intervalles de subdivi-
sion,

Il convient de noter qu’il n’est pas nécessaire que
I'épaisseur h soit exprimée analytiquement : il sullit de
donner ses valeurs au milieu de chacun des n intervalles
de subdivision du cylindre. Si b varie peu, il suflira deg
prendre node Pordre de 20 ou 30 ; pour une épaisseur
plus irréguliere, 1l conviendra de choisiv n plus grand
(Ie programme permet d’aller jusqu’a n = 200).

extrémité a un moment de flexion et a un effort
tranchant,

On désignera par

M, le moment de flexion par unité de longueur de
circonférence (a I'origine) ;

() leffort tranchant par unité de longueur de circon-
férence (a l'origine).

Nous supposons de plus qu'il n’y a pas de forces dans
le sens longitudinal ; on doit donc rendre minimum la
fonctionnelle

H
* 4D El T
J[w] = J (; sp"2 |- T[: ;\'2) dz—Qy w (0)— Mgy w' (0) ;

0

faisons le méme changement de variable que dans le
premier probléme, et introduisons les mémes nota-
tions ; on a ainsi la fonctionnelle




TaBLEAU 3 TABLEAU &

Abs- | Déforma- Effort Moment Effort Abs- | Déforma- Effort Moment Effort
cisse tion annulaire de flexion tranchant cisse tion annulaire de flexion tranchant
mm mm kg /mm kgmm /mm kg/mm mm mm kg /mm kgmm /mm kg/mm
0 — 21 978 o — 21978
+ 1225 + 404 740 + 241 760 + 639 4 566 290 + 241 760
20 — 14 939 20 — 12 129
+ 995 + 328 860 + 540 530 + 527 + 380 090 + 484 340
40 — 9219 40 — 5519
+ 783 + 258 670 + 724 920 + 415 + 238 650 + 594 720
60 — 4721 60 — 1369
+ 593 + 196 110 + 819 340 + 308 + 136 660 + 622 100
80 — 1310 80 + 1008
+ 430 + 142 160 + 845 550 + 208 + 68 802 + 601 940
100 + 1162 100 + 2204
+ 294 + 97 116 + 822 310 + 128 + 42 255 + 557 850
120 + 2852 120 + 2939
+ 184 + 60 721 + 765 290 + 65 + 21577 + 499 070
140 + 3907 140 + 3315
=t 98 + 32378 + 687 150 + 19 + 6151 4+ 432 780
160 + 4470 160 + 3421
+ 34 + 11 265 + 597 750 — 14 — 4722 + 364 340
180 + 4666 180 + 3339
— 11 — 3559 + 504 420 — 35 — 11762 + 297 560
200 + 4604 200 + 3135
— 40 — 13076 + 412 340 — 4T — 15671 + 234 860
220 + 4377 220 + 2862
— 85 — 18 254 + 324 810 — 52 — 17 109 + 177 610
240 + 4059 240 + 2565
— 60 — 20015 + 243 620 — 50 — 16 678 + 126 320
260 =+ 3T 260 + 2275
— 58 — 19 212 + 169 400 — 45 — 14 919 + 80825
280 + 3377 280 + 2015
— 50 — 16 628 + 101 860 — 37 — 12 308 + 40520
300 . + 3088 300 + 1801
— 39 — 12971 + 40102 — 28 — 9272 + 44 967
320 + 2862 320 + 1640
— 27 — 8893 — 17 144 — 19 — 6188 — 28 302
340 + 2708 340 + 1532
— 16 — 4994 — 71296 — 10 — 3402 — 58 948
360 + 2621 360 + 1473
— 6 — 1846 — 123 710 — 4 — 1236 — 88411
380 + 2589 380 1452
0 0 — 175 480 0 0 — 117 440
400 0 — 201 370 + 2589 400 0 — 131 960 + 1452
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Fig. 6. — Répartition de I'effort annulaire pour un tube en
Fig. 5. — Délformée d'un tube en acier. GeLSE,
Cas 3+ Tibe 4 énaissenr . B =19 Cas 3: Tube a épaisseur constante & = 19 mm.
(ffls [ Tul“: f.l (}lp:'f»(m_ ('.('m:\'lln;\‘tc == 20 Iih. Cas 4 : Tube & épaisseur variable.
- e D e T Cas 5: Tube a épaisseur constante i = 56 mm.
Cas 5: Tube a épaisseur constante & = 56 mm.
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Iig. 7. Reépartition du moment fléehissant pour un tube I'ig. 8. — Répartition de Peffort tranchant pour un tube
en acier. en acier.
jas 3@ Tube & épaisseur constante h = 19 mm. Cas 3: Tube & épaisseur constante o = 19 mm.
: Tube & épaisseur variable. Cas 4 : Tube & épaisseur variable,
Cas 5: Tube a épaisseur constante h = 56 mm. 5: Tube & épaisseur constante i = 56 mm.




TasLEAU 5

Abs- | Déforma- Effort Moment Effort
cisse tion annulaire de flexion tranchant
mm mm kg /mm kgmm /mm kg /mm

0 — 21978
+ 246 + 239 940 + 241 760

20 — 17 805
+ 220 + 214 580 + 597 850

40 — 14073
+ 195 + 189 950 + 879 310

60 — 10 769
4 171 + 166 380 + 1094 700

80 — 7876
+ 148 + 144 140 + 1252 200

100 — 5369
+ 127 + 123 410 -+ 1359 600

120 — 3223
+ 107 -+ 104 330 + 1424 100

140 — 1408
+ 89 + 86 978 4+ 1452 200

160 + 104
+ 73 + 71 382 + 1450 100

180 + 1346
+ 59 4+ 57 543 + 1423 200

200 + 2346
+ 47 + 45427 4+ 1376 300

220 . + 3137
+ 36 + 34979 + 1313 600

240 + 3745
+ 27 + 26121 + 1238 700

260 + 4199
+ 19 + 18 764 + 1154700

280 + 4525
+ 13 + 12 805 + 1064 200

300 4+ 4748
+ 8 } 8135 + 969 190

320 + 4890
+ 5 + 4639 + 871 390

340 + 4970
+ 2 + 2198 + 771 980

360 + 5009
+ 1 + 6921 + 671 810

380 + 5021
0 0 + 571 400

400 0 0 + 521 190 + 5020

1

h3 (d2enN? ki
awl= [ |5 (78) + 7| @

0

Lt R iaE
(@ e

avec w = 0 et ' = 0 pour § = 1.
Le probléme sera résolu d’une fagon approchée en
remplagant I'intégrale par une somme ; on remplacera

dsy
(}E)E:O par n (wy — w,)

et

(wo + wq).

WE=o par

B[ =~

On obtient ainsi I'expression a rendre minimum

n

hd khi
A* (wi) = n® 24 _’QL_ (i1 — 20, 4 wip1)? -+ _2—11 i
i=1
12(1-—v?) H?n 12 (1 — y2) 13
‘¥A Ao (w1 — o) — ( QE—) Qo (o + wy) 3

ici encore, on annule les dérivées de cette expression par
rapport aux «, ; on obtient ainsi un systéme de n équa-
tions & n inconnues, dont la matrice est strictement la
méme que celle que l'on a trouvée dans le probleme du
réservoir ; seuls les seconds membres sont changés ; ils
sont

12 (1 —v2®) H2 (H Q,
X ( —n A/,,)

X 2

4

pour la premiére équation,

9 (1 —v2) 2 g
12 (1 Ev)H (HQ() J,~nM,,>

pour la seconde équation,

0 pour toutes les autres équations.

Le calcul ne difféere donc que peu de celui qui a été
fait plus haut. On calcule de la méme maniére la

déformée s, puis M, Q et S.

Exemples numériques

Exemple 3. — Données numériques :

H = 400 mm

a = 1150 mm

h =19 mm (constant)

E =2, 10* kg/mm? (acier)

v =103

M, = —2,19778. 10* kgmm/mm

Q, = 2,19778. 10* kg/mm

Exemple 4. — Mémes données, a part 'épaisseur h qui

est variable :

B — J (7,4833 — 0,034715 z)% pour 0 =2 = 90 mm
YT\ 19 mm pour x = 90 mm
Exemple 5. — Mémes données, a part 'épaisseur A qui

est constante :
h =56 mm

On a fait le calcul en subdivisant la longueur en
n = 20 parties égales; les résultats numériques sont
donnés aux tableaux 3, 4 et 5 ; ils sont reportés sur les
figures 5 & 8. Ces trois exemples sont repris d’une étude
due au professeur J. Paschoud [3], ou ils ont été traités
par une méthode tout a fait différente ; on remarquera
que l'accord des résultats est excellent.

La durée des calculs pour chacun de ces exemples
est inférieure 4 3 minutes ; on doit faire a propos de la
variation de I’épaisseur i la méme remarque que pour
le cas du réservoir cylindrique.

Conclusions

Les problémes envisagés ict ne peuvent étre résolus,
en général, d’'une maniére exacte (ce qui constituerait
au reste une exigence inutile du point de vue pratique).
La méthode exposée a 'avantage de se préter mieux
que d’autres au calcul automatique; c’est pour cette
raison qu’elle nous parait devoir &tre préférée.
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