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RÉSOLUTION DE QUELQUES PROBLÈMES DE STATIQUE |i|S§
À L'AIDE D'UNE CALCULATRICE ÉLECTRONIQUE

'
'^):

par CH. BLANC, professeur à l'EPUL x et H. TRAN HOANG, ingénieur physicien, assistant à l'Institut
de mathématiques appliquées de l'EPUL

La mise en œuvre de calculatrices électroniques
exige une adaptation parfois assez poussée des méthodes
de calcul. C'est le cas notamment en statique : en
effet, les méthodes que l'on a utilisées traditionnellement

avaient souvent pour but d'éviter de longues
séries d'opérations fastidieuses, comme par exemple la
résolution de grands systèmes d'équations linéaires ;

en calcul automatique au contraire, on recherche une
simplification du schéma opératoire, quitte à la payer
d'un accroissement peut-être notable des calculs
formels, que la machine exécute très rapidement.

L'Institut de mathématiques appliquées de l'EPUL
a établi, pour sa calculatrice ZEBRA, des programmes
pour quelques problèmes concrets de statique. La
méthode utilisée revient en fait à remplacer les équations

différentielles par des équations aux différences,
en passant pour cela par des propriétés d'extremum ;

on a montré en effet [1] que cette façon de procéder est

particulièrement avantageuse.
L'étude des déformations d'un corps élastique (et

des contraintes qui leur sont liées) conduit, dans les cas

1 Ecole polytechnique de l'Université de Lausanne.

les plus généraux, à des calculs d'une complexité telle
qu'il n'est guère concevable de les aborder d'une
manière uniforme. Si le corps est de révolution, et si les

contraintes présentent la symétrie voulue, le problème
se simplifie beaucoup. La présente étude correspond à

une circonstance encore plus particulière, celle où le

corps a la forme d'un cylindre creux, d'épaisseur
éventuellement variable mais toujours assez petite vis-à-vis
du rayon du cylindre. La méthode décrite est appliquée

à deux cas : celui d'un réservoir cylindrique rempli
de liquide et celui d'un tube encastré à l'une de ses

extrémités et sollicité à l'autre. La méthode est du
reste générale et le programme élaboré peut être
facilement adapté à d'autres cas.

L'Institut de mathématiques appliquées a également
élaboré un programme, utilisant la même méthode, et
valable pour le cas général des corps de révolution : il
fera l'objet d'une publication ultérieure.

Déformation d'un cylindre creux d'épaisseur variable

Le problème envisagé ici a été déjà traité par de
nombreuses méthodes et la solution que nous en donnons



n'est nouvelle ni dans sa conception, ni dans son
application. Elle se fonde sur les propriétés de minimum
d'une certaine expression, qui représente la différence
entre l'énergie de déformation du cylindre et le travail
(virtuel) des forces extérieures. Pour la théorie générale
de la déformation des surfaces, on peut toujours se

reporter à l'ouvrage classique de Love [2] ; dans le cas
qui nous occupe ici, voir par exemple [4], p. 129 et suiv.

Nous allons d'abord examiner le problème sous sa
forme « rigoureuse » ; il conduit, à la recherche de fonctions

rendant minimum une intégrale, donc à un
problème de calcul des variations. Ce problème peut se

transformer en un problème d'équations différentielles,
malheureusement en général dépourvues d'intégrales de

nature élémentaire. Il est alors nécessaire de résoudre
le problème par une méthode approchée. Nous indiquerons

une méthode qui s'adapte particulièrement bien au
calcul électronique.

Soit un corps élastique, en forme de cylindre de
révolution creux, d'épaisseur variable. Introduisons les
notions suivantes (sans fixer le système d'unités choisi ;

nous supposons seulement qu'il est cohérent) :

H longueur du cylindre ;

x abscisse le long de l'axe;
a rayon moyen du cylindre ;

h épaisseur de la paroi à l'abscisse x ; on suppose que
h est assez petit vis-à-vis de a ;

u déformation longitudinale ;

(v déformation radiale (positive vers l'extérieur) ;

E module d'élasticité ;

v inverse du module de Poisson ;

Eh3

-12(l-vV
M moment de flexion, rapporté à l'unité de longueur

sur un parallèle, compté positivement s'il donne
lieu à une courbure interne convexe ;

Q effort tranchant, rapporté à l'unité de longueur sur
un parallèle ;

S effort annulaire, rapporté à l'unité de longueur sur
un méridien.

On suppose que les forces qui agissent et les liaisons
appliquées ont toutes la symétrie cylindrique (d'où il
résulte qu'il n'y a pas de déformation dans la direction
d'un cercle parallèle).

Soient les forces appliquées :

f(x) dx force répartie le long d'un méridien, par unité
de longueur d'un parallèle ;

Qi effort tranchant sur le parallèle à l'abscisse ay, par
unité de longueur de ce parallèle ;

Mj moment d'un couple appliqué au parallèle à
l'abscisse Xj, par unité de longueur de ce parallèle ;

Fie force longitudinale (effort normal) exercée sur le
parallèle à l'abscisse x^, par unité de longueur de ce
parallèle.

De plus, on suppose que l'on a imposé au cylindre
des liaisons de caractère géométrique (par exemple
encastrement), donnant lieu à des conditions pour u
et w, notées « conditions G ». Alors les fonctions u et w,
qui décrivent la déformation du cylindre, sont celles
qui rendent minimum la fonctionnelle :

J [u, w]
D Eh

1 2(1-
Eh

¦ y Qi-w(Xi) — y m,-

dx

— y Fk. u (xn),

les fonctions concurrentes devant satisfaire aux conditions

G définies par les liaisons géométriques (par
exemple u 0, w 0, w 0 s'il y a encastrement).

Par les équations d'Euler-Lagrange, ce problème de
calcul de variation peut se ramener à l'intégration d'un
système d'équations différentielles avec conditions aux
limites ; ce système est linéaire, et peut s'intégrer
exactement lorsque l'épaisseur est constante (et dans
quelques cas très particuliers qu'il est inutile d'examiner
ici). Dans le cas d'une épaisseur variable, il faut donc
recourir à une méthode approchée. On en peut
imaginer de nombreuses, parfois très ingénieuses, mais dont
le défaut est souvent de se prêter fort mal au calcul
automatique. En effet, si l'on veut utiliser rationnellement

une calculatrice électronique, il faut rechercher
des algorithmes pouvant se décrire assez simplement,
et surtout n'exigeant pas de fréquentes interventions
intermédiaires ; alors qu'il est raisonnable, lorsqu'on
calcule à la main, de rechercher tous les moyens d'alléger

le volume des opérations formelles, il sera au
contraire favorable d'adopter, en calcul automatique, une
voie qui comporte peut-être beaucoup d'opérations,
mais d'un type aussi standard que possible. La méthode
que nous voulons exposer ici (et qui, répétons-ïe, n'est
pas nouvelle), consiste à ramener la recherche dû minimum

à la résolution d'un système d'équations
'algébriques linéaires, système dont les coefficients sont
calculés automatiquement par la calculatrice elle-
même et dont la résolution se fait rapidement même si
le nombre des inconnues est relativement élevé.

Supposons qu'il n'y a pas de forces Ft, donc pas de
forces longitudinales, et que le cylindre n'est fixé que
pour une valeur de x, soit par exemple pour x x0.
La fonction u ne figure dans la fonctionnelle J que par

le terme lit' w\ > dont la contribution est forcément
\ a j

supérieure ou égale à zéro ; le minimum exige donc que
l'on ait, pour tout x,

0;
V
— w
a

lorsque w aura été déterminé, on obtiendra ainsi u par
une quadrature, la constante étant fixée par la donnée

pour x x0. Il reste donc à rendre minimum la
fonctionnelle

J [w]
u

— y Qi »' (*»•)

Eh

y Mtw'{x,)

dx

Dans le cas où il n'y a pas de forces ou de couples
concentrés sur certains parallèles (donc si les termes en
Pi et Mj sont absents), l'équation d'Euler-Lagrange de
ce problème de variation est

Eh
(M) +^T /;



s'il y a des forces ou des couples appliqués sur certains
parallèles, cette équation est encore valable entre ces

parallèles, le raccordement des solutions se faisant avec
des discontinuités qui résultent des valeurs des P,
et Mj ; nous renonçons à développer ici ce point, car
la méthode que nous utiliserons fait abstraction de

l'équation différentielle et permet de tenir compte sans

aucune difficulté des forces concentrées.
Pour rendre le problème résoluble par des moyens

élémentaires, on opère une discrétisation, qui consiste

simplement à remplacer l'intégrale de J par une somme,
et à substituer ainsi à la recherche de la fonction
inconnue w la recherche des valeurs (approchées) de

cette fonction en un nombre fini de points de l'intervalle

-[0, H].
Nous traiterons ainsi deux cas : tout d'abord celui

d'un réservoir cylindrique à axe vertical encastré au
bas et rempli d'un liquide pesant ; nous traiterons
ensuite le problème d'un tube cylindrique, encastré à

une extrémité et soumis à l'autre extrémité à un couple
de moment donné. L'épaisseur pourra toujours varier
selon une loi quelconque.

Réservoir à axe vertical, rempli d'un liquide pesant

Comptons les abscisses x depuis le haut ; il n'y a pas
ici, par hypothèse, de forces ou de couples concentrés
donnés ; en désignant par y le poids spécifique du

liquide, on a simplement :

H

J [w] I I— w"2 + y-j»2 — y xwj dx

0

avec w(H) 0, w'(H) 0. Faisons quelques change-

gements d'écriture (voir [4]); en remplaçant/) par sa

valeur, on a

J [w]
E

12(1 —v2)

12(1 —v2) 12(1
-r 2a2

posons x H%,

A
12(1 — v2)//4

d'

on a alors

J[,ni
EH

vJ~12 (1 - v2)

+
kh
Th*w

dx;

12(1 — v2) y IP
Ë '

h3 id2w\2

11
H* dl

donc,
E

c, en laissant de côté un facteur tf;—,,„ 57 1

Ï2^H3 (1 — v2)

qui ne joue pas de rôle ici, on a à rendre minimum la
fonctionnelle :

1

r \h3 id2w\2 kh

w 0 et w' 0 pour Ç 1.

d%,

Ce problème de variation ne pouvant pas être résolu

sous forme finie, sauf dans des cas très particuliers, on

va le traiter par une méthode approchée : on divise
l'intervalle [0, lj en n intervalles égaux ; soit Çy l'abscisse

du point milieu du /-ème intervalle, donc

& 4- 1
; posons encore f0 :

; et £„_! 1 + 2n
Soit enfin w (Ç,-) Wj ;

si n est assez grand,

d2 w (t.)

i, d'une manière approchée,

dï? vi+l Wi-l)

la condition d'encastrement peut être remplacée
(toujours approximativement) par wn wn+i 0 ; la
fonctionnelle donnée est donc remplacée par l'expression

approchée
N

A* (wi) n3 2
1=1

2

i
¦ (w.'-i - 0 « khi *(2i —1)

2 Wi + w-j+i)2 + 2n4 w? 2n5 Wi

avec wn wn+\ 0, ou encore, en explicitant les

sommes,
A* (w-)

n3
'h s

1 1

-2"(«V- 2Wl + wzf + -î- H — 2«v, + w3f +

+ 2r? W 1 + %? W* + ¦ ¦ ¦

l 31 1

~2rJWl '~2r?Wi~~ '" '

c'est donc une fonction quadratique des n inconnues

^oi wu • • •> wn— 1 ; ces Wi doivent rendre A* minimum ;

on les obtient donc en annulant les dérivées de A* par
rapport aux inconnues. En dérivant par rapport à w0

on obtient (après division par la constante n3)

h\w0 — 2h\Wl + h\<

puis en dérivant par rapport à w-,

0

4 Ä» + A» + ^'
2 (AJ + AJK + A* w, 2!? ;

a dérivée pard'une manière générale, en annulant
rapport à w,- (2 ^ i sS n — 3), on a

- 2 (At, + h3) «,hU -1 +

+ K-1 + 4AÏ

2 (lu3 + Af+1) wi

hl+1

hUi'

khi
W{ —

2i— 1 J_
n52

(pour i n o2 et 1 1, on a des équations
semblables, où il faut simplement remplacer wn et wn+i
par zéro à cause de l'encastrement). On constate
immédiatement que ce système a une forme particulière :

il est symétrique (ce qui résulte du fait qu'on l'a obtenu
en dérivant une fonction quadratique) et de plus il a

la forme pentadiagonale, c'est-à-dire que les seuls coefficients

non nuls se situent sur la diagonale principale et
sur les deux paires de codiagonales adjacentes. Ces

circonstances entraînent une grosse économie de place
dans la mémoire de la machine et de temps dans la
résolution du système.

Le programme qui a été confectionné pour ce
problème effectue les opérations suivantes :
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Fig. 1. — Déformée d'un réservoir cylindrique en béton.
Cas 1 : Réservoir à épaisseur constante.
Cas 2 : Réservoir à épaisseur variant linéairement.

"%
3

-0.5

Fig. 3. — Répartition du moment fléchissant pour un
réservoir cylindrique en béton.

Cas 1 : Réservoir à épaisseur constante.
Cas 2 : Réservoir à épaisseur variant linéairement.

a) calcul, à partir des données géométriques et
physiques, des coefficients des équations ;

b) résolution des équations, donc calcul des Wj ;

c) calcul, à partir des W{, du moment

M
Eh3 d2i

d'où

Mi

- 12(1—v2) dx2

Eh? 1 d2 Wi

12(1—v2) H2 dÇ2

Eh? n2
[wi+i — 2wi-\- W{+i)m

12(1 —v2)//2

d) calcul de l'effort tranchant Q à partir de la relation

dM 1 dM
^ " " Ux ~ ~ II dÇ '

on calcule une valeur approchée de Q en remplaçant la
dérivée par' un quotient de différences

Q * — H (Mf+i — Mj) où
^

/ .,n -1;
l'effort tranchant est ainsi calculé aux (n — 1) points
de subdivision de l'intervalle [0, H] ; il est évidemment
utile de le connaître aussi pour x 0 et pour x //.
Dans notre cas, il est nul pour x 0 ; pour x H, il
peut se calculer en considérant l'équilibre statique du
système. On a en effet, pour chaque valeur de £,

d2M EH2— + —hw yff»Ç

Fig. 2. — Répartition de l'effort annulaire pour un réservoir
cylindrique en béton.

Cas 1 : Réservoir à épaisseur constante.
Cas 2 : Réservoir à épaisseur variant linéairement.

-1

¦2

¦5

-4

-5

-6

6 m

Fig. 4. — Répartition de l'effort tranchant pour un réservoir
cylindrique en béton.

Cas 1 : Réservoir à épaisseur constante.
Cas 2 : Réservoir à épaisseur variant linéairement.

donc

dQ _
EHh

~dj ~ ~^~

et comme Ç(0) 0, il reàte

y#2ç

i
EH Ç

&=i -tf- \ hwdÇ
Y H2

en remplaçant l'intégrale par une somme, on a

EH A yh*
Q^1#aJn 2j ^•«'»•-¦L2"-;

t'=i

e) calcul de l'effort annulaire ; on a, pour l'effort
annulaire S rapporté à l'unité dé" longueur

Eh
ö =.— w\' a

il se calcule donc, directement à partir des w,, pour les

points .r,.

Exemples numériques
Exemple 1. — Réservoir cylindrique en béton, d'épaisseur

constante ; données numériques :

H 6,0 m E 2.109 kg/m2
a 9,65 m v 0,2
h 0,16 m (constant) y 1000 kg/ms (eau)



Tableau 1 Tableau 2

DéformaEffort Moment Effort
cisse tion annulaire de flexion tranchant
m 10-a m kg/m kgm/m kg/m

0 0
+ 0,018 + 609 0

0,2 — 7,4
+ 0,079 + 2617 + 1,5

0,4 — 3,1
+ 0,140 + 4 628 + 4,1

0,6 — 17,2
+ 0,200 + 6 646 + 7,6

0,8 — 19,5
+ 0,262 + 8 679 + 11,5

1,0 — 19,6
+ 0,324 + 10 733 + 15,4

1,2 — 17,2
+ 0,386 + 12 815 + 18,8

1,4 — 11,6
+ 0,450 + 14 933 + 21,1

1,6 2,1
+ 0,515 + 17 090 + 21,5

1,8 + 12,1
+ 0,582 + 19 287 + 19,1

2,0 + 31,9
+ 0,649 + 21 520 + 12,7

2,2 + 57,9
+ 0,717 + 23 777 + 1,2

2,4 + 90,7
+ 0,785 + 26 036 — 17,0

2,6 + 130,3
+ 0,852 + 28 263 — 43,0

2,8 + 176,0
+ 0,917 + 30 410 — 78,2

3,0 + 226,3
+ 0,977 + 32 411 — 123,5

3,2 + 278,0
+ 1,031 + 34 181 — 179,1

3,4 + 326,4
+ 1,074 + 35 618 — 244,4

3,6 + 364,6
+ 1,104 + 36 599 — 317,3

3,8 + 383,1
+ 1,115 + 36 988 — 393,9

4,0 + 369,7
+ 1,105 + 36 642 — 467,8

4,2 + 309,1
+ 1,068 + 35 424 — 529,7

4,4 + 183,3
+ 1,002 + 33 218 — 566,3

4,6 — 28,2
+ 0,903 + 29 955 — 560,7

4,8 — 347,4
+ 0,773 + 25 647 — 491,2

5,0 — 795,8
+ 0,616 + 20 422 — 332,0

5,2 — 1392,6
+ 0,440 + 14 578 — 53,5

5,4 — 2150,4
+ 0,260 + 8 635 + 376,6

5,6 — 3071,5
+ 0,102 + 3 393 + 990,9

5,8 — 4141,2
0 0 + 1819,1

6,0 0 + 2292,2 — 5321,4

DéformaEffort Moment Effort
cisse tion annulaire de flexion tranchant

m 10-a m kg/m kgm/m kg/m

0 0
+ 0,069 + 1 451 0

0,2 + 10,1
+ 0,140 + 3 086 2,0

0,4 + 14,0
+ 0,212 + i 831 — 4,8

0,6 + 14,1
+ 0,282 + 6 674 — 7,6

0,8 + 12,5
+ 0,352 + 8 606 — 10,1

1,0 + 10,8
+ 0,420 + 10 617 — 12,3

1,2 + 10,8
+ 0,486 + 12 700 — 14,5

1,4 + 14,1
+ 0,551 + 14 848 — 17,3

1,6 + 21,8
+ 0,614 + 17 053 — 21,7

1,8 + 35,2
+ 0,675 + 19 303 — 28,7

2,0 + 55,3
+ 0,733 + 21 581 — 39,8

2,2 + 82,6
4- 0,788 + 23 858 — 56,3

2,4 + 117,0
+ 0,839 + 26 097 — 79,7

2,6 + 157,9
+ 0,885 + 28 246 — 111,3

2,8 + 203,3
+ 0,923 + 30 242 — 151,9

3,0 + 250,1
+ 0,953 + 32 004 — 201,9

3,2 + 293,4
+ 0,972 + 33 438 — 260,6

3,4 + 326,4
+ 0,978 + 34 440 — 326,0

3,6 + 340,2
+ 0,968 + 34 901 — 393,9

3,8 + 323,5
+ 0,941 + 34 710 — 458,7

4,0 + 262,9
+ 0,895 + 33 768 — 511,2

4,2 + 142,8
+ 0,830 + 31 997 - 539,8

4,4 — 54,1
+ 0,746 + 29 357 — 529,0

4,6 — 345,7
+ 0,643 + 25 862 — 459,8

4,8 — 749,7
+ 0,526 + 21 602 — 309,9

5,0 — 1282,0
+ 0,400 + 16 763 — 53,5

5,2 — 1954,5
+ 0,273 + 11 651 + 337,4

5,4 — 2773,1
+ 0,154 + 6 716 + 892,0

5,6 — 3733,9
+ 0,058 + 2 567 + 1638,8

5,8 — 4820,7
0 0 + 2602,9

6,0 0 + 3144,0 — 6000,7

Exemple 2. — Même problème, mais avec une épaisseur
variant suivant une loi linéaire :

h 0,10 + 0,12 xjH [m].

Dans les deux cas, le calcul a été fait en divisant la
hauteur totale en 30 tranches égales, 'donc en faisant
n 30. Les résultats numériques sont reportés aux
tableaux 1 et 2, et sur les figures 1 à 4. La durée des

calculs (y compris la sortie des résultats) est, pour
chacun de ces exemples, inférieure à 4 min. On remarquera

que, du fait de la méthode employée, l'effort
tranchant est calculé aux points de subdivision de la
hauteur totale, alors que les autres grandeurs sont
calculées aux points milieux -des intervalles de subdivision.

Il convient de noter qu'il n'est pas nécessaire que
l'épaisseur h soit exprimée analytiquement : il suffit de

donner ses valeurs au milieu de chacun des n intervalles
de subdivision du cylindre. Si h varie peu, il suffira de*
prendre n de l'ordre de 20 ou 30 ; pour une épaisseur
plus irrégulière, il conviendra de choisir n plus grand
(le programme permet d'aller jusqu'à n 200).

Tube encastré à une extrémité et soumis à l'autre
extrémité à un moment de flexion et à un effort
tranchant.

On désignera par

M0 le moment de flexion par unité de longueur de
circonférence (à l'origine) ;

Qa l'effort tranchant par unité de longueur de circon¬
férence (à l'origine).

Nous supposons de plus qu'il n'y a pas de forces dans
le sens longitudinal ; on doit donc rendre minimum la
fonctionnelle

J[w] /(? là2 w2\dx-Q0w(0) — M0w'(0);

faisons le même changement de variable que dans le
premier problème, et introduisons les mêmes notations

: on a ainsi la fonctionnelle



Tableau 3 Tableau 4

DéformaEffort Moment Effort
cisse tion annulaire de flexion tranchant
mm mm kg/mm kgmm /mm kg/mm

0 — 21 978
+ 1225 + 404 740 + 241 760

20 — 14 939
+ 995 + 328 860 + 540 530

40 — 9 219
+ 783 + 258 670 + 724 920

60 — 4721
+ 593 + 196 110 + 819 340

80 — 1 310
+ 430 + 142 160 + 845 550

100 + 1 162
+ 294 + 97 116 + 822 310

120 + 2 852
+ 184 - 60 721 + 765 290

140 + 3 907
+ 98 - 32 378 + 687 150

160 + 4470
+ 34 + 11 265 + 597 750

180 + 4 666
— 11 — 3 559 + 504 420

200 + 4 604
— 40 — 13 076 + 412 340

220 + 4 377
— 55 — 18 254 + 324 810

240 + 4 059
— 60 — 20 015 + 243 620

260 + 3 711
— 58 — 19 212 + 169 400

280 + 3 377
— 50 — 16 628 + 101 860

300 + 3 088
— 39 — 12 971 + 40 102

320 + 2 862
— 27 — 8 893 — 17 144

340 + 2 708
— 15 — 4 994 — 71 296

360 + 2 621
— 6 — 1 846 — 123 710

380 + 2 589
0 0 — 175 480

400 0 — 201 370 + 2 589

¦n m
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W0200 Î00

Déformée d'un tube en acier
Cas 3 : Tube à épaisseur constante h 19 mm.
Cas 4 : Tube à épaisseur variable.
Cas 5 : Tube à épaisseur constante h 56 mm.
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Fig. 7. — Répartition du moment fléchissant pour un tube
en acier.

Cas 3: Tube à épaisseur constante /( 19 mm.
Cas 4 : Tube à épaisseur variable.
Cas 5 : Tube à épaisseur constante h 56 mm.

DéformaEffort Moment Effort
cisse tion annulaire de flexion tranchant
mm mm kg/mm kgmm/mm kg/mm

0 — 21 978
+ 639 + 566 290 + 241 760

20 — 12 129
+ 527 + 380 090 + 484 340

40 — 5 519
+ 415 + 238 650 + 594 720

60 — 1 369
+ 308 + 136 660 + 622 100

80 + 1 008
+ 208 + 68 802 + 601 940

100 + 2 204
+ 128 + 42 255 + 557 850

120 + 2 939
+ 65 + 21 577 + 499 070

140 + 3 315
+ 19 + 6 151 + 432 780

160 + 3 421
— 14 — 4 722 + 364 340

180 + 3 339
— 35 — 11 762 + 297 560

200 + 3 135
— 47 — 15 671 + 234 860

220 + 2 862
— 52 — 17 109 + 177 610

240 + 2 565
— 50 — 16 678 + 126 320

260 + 2 275
— 45 — 14 919 + 80 825

280 + 2 015
— 37 — 12 308 + 40 520

300 + 1 801
— 28 — 9 272 + 44 967

320 - 1 640
— 19 — 6 188 — 28 302

340 + 1 532
— 10 — 3 402 — 58 948

360 + 1 473
— 4 — 1 236 — 88 411

380 + 1 452
0 0 — 117 440

400 0 — 131 960 + 1 452

y/îim

10.

900 iOD

Fig. 6. —• Répartition de l'effort annulaire pour un tube en
acier.

Cas 3 : Tube à épaisseur constante h 19 mm.
Cas 4 : Tube à épaisseur variable.
Cas 5 : Tube à épaisseur constante h 56 mm.

15

10.

2Ù0 500 «10 mm

Répartition de 1 effort tranchant pour un tubt
pu aciei

Cas 3 : Tube à épaisseur constante h 19 mm.
Cas 4 : Tube à épaisseur variable.
Cas 5 : Tube à épaisseur constante h — 56 mm.
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Tableau 5

DéformaEffort Moment Effort
cisse tion annulaire de flexion tranchant
mm mm kg /mm kgmm/mm kg/mm

0 — 21 978
+ 246 + 239 940 + 241 760

20 — 17 805
+ 220 + 214 580 + 597 850

40 — 14 073
+ 195 + 189 950 + 879 310

60 — 10 769
+ 171 + 166 380 + 1 094 700

80 — 7 876
+ 148 + 144 140 + 1 252 200

100 - 5 369
+ 127 + 123 410 + 1 359 600

120 — 3 223
+ 107 + 104 330 + 1 424 100

140 — 1 408
+ 89 + 86 978 + 1 452 200

160 + 104
+ 73 + 71 382 + 1 450 100

180 + 1 346
+ 59 + 57 543 + 1 423 200

200 + 2 346
+ 47 + 45 427 + 1 376 300

220 + 3 137
+ 36 + 34 979 + 1 313 600

240 + 3 745
+ 27 + 26 121 + 1 238 700

260 + 4 199
+ 19 + 18 764 + 1 154 700

280 + 4 525
+ 13 + 12 805 + 1 064 200

300 + 4 748
+ 8 + 8 135 + 969 190

320 + 4 890
+ 5 + 4 639 + 871 390

340 + 4970
+ 2 + 2 198 + 771 980

360 + 5 009
+ 1 + 6 921 + 671 810

380 + 5 021
0 0 + 571 400

400 0 0 + 521 190 + 5 020

A
h3 /d*w\* kh
2 \J? dx

12 (1 — v2) H2 jdw
0 UVî

12(1 — va) H3

E Qo wt=o

avec w 0 et w' 0 pour £ 1.

Le problème sera résolu d'une façon approchée en

remplaçant l'intégrale par une somme ; on remplacera

iç\-. par n^~^
et

«'§=0 par K- [w0 + wx).

On obtient ainsi l'expression à rendre minimum

i=l
12(l-v2)H2n

h? khi
A* (wi) n3 2j -«r (w«_i — 2wt + wi+i)2+ -y- w?

E
12(l-v2)#»

M0(w1--w0) 2~î? Qo\wo + wj) ;

ici encore, on annule les dérivées de cette expression par
rapport aux Wi ; on obtient ainsi un système de n équations

à n inconnues, dont la matrice est strictement la
même que celle que l'on a trouvée dans le problème du
réservoir ; seuls les seconds membres sont changés ; ils
sont

12 (1 — v2) H2 (H Q0
— nM0

pour la première équation,

12(i-V2)H2(HQ0
¦

g \—- + nMe

pour la seconde équation,

0 pour toutes les autres équations.

Le calcul ne diffère donc que peu de celui qui a été
fait plus haut. On calcule de la même manière la
déformée w, puis M, Q et S.

Exemples numériques
Exemple 3. — Données numériques :

H 400 mm
a 1150 mm
h =19 mm (constant)
E 2. 101 kg/mm2 (acier)
v 0,3
Mo — 2,19778. 10" kgmm/mm
Qo 2,19778. 104 kg/mm

Exemple 4. — Mêmes données, à part l'épaisseur h qui
est variable :

h l I7-4833 — 0,034715 a;)2 pour 0 ^ x ^ 90 mm
\ 19 mm pour x ^ 90 mm

Exemple 5. — Mêmes données, à part l'épaisseur h qui
est constante :

h 56 mm

On a fait le calcul en subdivisant la longueur en

n 20 parties égales ; les résultats numériques sont
donnés aux tableaux 3, 4 et 5 ; ils sont reportés sur les

figures 5 à 8. Ces trois exemples sont repris d'une étude
due au professeur J. Paschoud [3], où ils ont été traités
par une méthode tout à fait différente ; on remarquera
que l'accord des résultats est excellent.

La durée des calculs pour chacun de ces exemples
est inférieure à 3 minutes ; on doit faire à propos de la
variation de l'épaisseur' h la même remarque que pour
le cas du réservoir cylindrique.

Conclusions

Les problèmes envisagés ici ne peuvent être résolus,
en général, d'une manière exacte (ce qui constituerait
au reste une exigence inutile du point de vue pratique).
La méthode exposée a l'avantage de se prêter mieux

que d'autres au calcul automatique ; c'est pour cette
raison qu'elle nous paraît devoir être préférée.
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