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ÉTUDE THÉORIQUE DE L'INFLUENCE D'UNE DISCONTINUITÉ DE LA
SECTION DROITE D'UNE BARRE CONIQUE SUR LA PROPAGATION

DES VIBRATIONS ÉLASTIQUES LONGITUDINALES

par HENRY FAVRE, professeur à l'EPF, Zurich

§ 1. Introduction

On sait qu'une barre rectiligne peut être le siège de
trois types de vibrations élastiques : 1° des vibrations
longitudinales, où le déplacement — supposé petit —
d'un point quelconque est constammentl^fparallèle à
l'axe ; 2° des vibrations de torsion, où toute section
droite effectue une petite oscillation autour de cet axe ;

et 3° des vibrations transversales, où les points d'une
même section droite subissent, dans tout intervalle
infinitésimal de temps, de petits déplacements, égaux et
parallèles, dans une direction perpendiculaire à l'axe.
Chacun de ces types peut être encore divisé en deux
catégories : celle des ondes progressives et celle des ondes
stationnaires.

Les vibrations des barres cylindriques ou prismatiques
ont été l'objet de très nombreuses études, non seulement

théoriques, mais aussi expérimentales h Mais on
a également entrepris un certain nombre de recherches
relatives au cas de barres, où la section varie <Eune façon
continue le long de l'axe 2. Par contre, très peu d'études
ont été faites jusqu'à présent en supposant que la

section subisse une discontinuité. Et dans ces dernières
recherches, on a toujours, à notre connaissance, admis
que les deux parties de la barre, situées de part et
d'autre de la discontinuité, étaient cylindriques ou
prismatiques s.

Nous nous proposons d'étudier ici l'influence d'une
discontinuité! de la section d'une barre conique sur la
propagation des vibrations longitudinales sinusoïdales
(ondes progressives sinusoïdales) le long de cette barre.
Nous traiterons en réalité un problème plus général,
celui où la barre est formée de deux troncs de cône
coaxiaux, solidaires, d'angles solides différents, mais
très petits, en supposant que les propriétés mécaniques
de la matière de chacune de ces parties soient
différentes (comme nous le verrons, les seules constantes
physiques intervenant ici sont les masses spécifiques et

1 Voir par exemple [1], Ch. VII et VIII ; [2], Ch. I à IV ; [3],
Ch. V et VI ; [4], Ch. XX ; [5], Ch. III à VIII. Les crochets [] se
rapportent k la bibliographie placée à la fin de ce mémoire.

» Citons [2], p. 32-34 et 118-124 ; [3], p. 385-392 ; [5], p. 75-79
et 193-194.

* Voir principalement [1], p. 250 et 251 ; [6] ; [7].
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les modules d'élasticité de ces deux parties, supposées

homogènes et isotropes). Au point de jonction et dans

le cas le plus général, non seulement la section, mais

aussi l'angle solide des deux parties coniques et les

propriétés mécaniques de la matière subiront donc des

discontinuités. Les calculs seront basés sur la théorie
élémentaire de la propagation des petites vibrations
longitudinales élastiques dans une barre conique. Cette
théorie suppose que les points appartenant à toute
section droite subissent, dans chaque intervalle de

temps, des déplacements égaux entre eux. En outre,
elle néglige l'influence des frottements internes.

Après avoir rappelé quelques équations fondamentales

(§ 2), nous établirons les formules générales pour
le calcul de l'onde réfléchie et de l'onde transmise,
produites par les discontinuités définies ci-dessus, et provenant

d'une onde incidente sinusoïdale (§ 3). Dans le
paragraphe 4, nous ferons plusieurs remarques essentielles

sur ces formules, puis nous étudierons un certain
nombre de cas particuliers intéressants (§ 5).

La présente étude théorique a été faite dans le cadre

de recherches expérimentales sur la propagation des

ondes élastiques dans les solides, exécutées par le
Laboratoire de photoélasticité de l'EPF et subventionnées

par le Fonds national suisse de la recherche scientifique.

§ 2. Rappel des équations régissant la propagation des
vibrations élastiques longitudinales le long d'une
barre conique, d'angle solide très petit

Désignons par £î l'angle solide, E le module d'élasticité

et p la masse spécifique de la barre (fig. 1). Soit

encore r la distance, avant la vibration, d'une section
droite * au sommet O, u la valeur, au temps t, du petit
déplacement, sensiblement parallèle à l'axe de la barre,
d'un point quelconque de cette section, pendant le

mouvement.
Le déplacement u doit satisfaire à l'équation 6 :

m
*-—s«

£pj Ä angle solide

k- y

Fig. 1. — Vibrations élastiques longitudinales u, dans une
barre conique.

CT= E
Bu

(4)

d'où :

E E
o — -<D'(rf — r) — p (D(c_ — r) +

E E
+ -<p'(ct + r)— -acp(cî + r). (5)

Dans le cas d'une onde sinusoïdale s'éloignant du
sommet O, par exemple, on peut poser :

Q
u — sin (pt — fr -\- e), (6)

où C est l'amplitude de la vibration pour r 1, g la

phase initiale pour r O, p/2tt la fréquence, et où

2tt p In
(7)

À étant la longueur d'onde. Nous mettrons la fonction

(6) de préférence sous la forme e :

A A
u — sin (pt — fr) -\ cos (pt — fr), (8)

A C cos s, A — C sin e. (9)

3*(ru) 32(ru)
d fi dr*

dont la solution générale est :

lj\ Si A et A sont donnés, on calculera l'amplitude C

(que l'on choisira positive) et la phase e (— ir ^ s ^= it)
è. l'aide des formules suivantes, tirées du système (9) :

<3>(ct — r) + 9 (ct + r) (2)

où O et <p désignent des fonctions quelconques
représentant, la première, une onde se propageant en s'éloi-

gnant du sommet O, la seconde, une onde se dirigeant
vers ce point. Ces deux ondes <t>, <p, qui ont la même

vitesse de propagation

\/I- (3)

ne se déforment pas en se propageant. Le déplacement u
résulte des deux ondes O/r, <p/r, qui se déforment par
contre en se propageant, par suite de la présence du
facteur 1/r.

La tension normale o dans le section r est donnée

par la loi de Hooke

' 11 s'agit en réalité d'une section sphérique, mais qui peut être
assimilée ici à une surface plane, O étant supposé très petit.

6 Voir par exemple [5], p. 77.

m A A
C \A*+A*. sin £ 7;. cos 6 7^« (10)

C

Remarquons que si l'onde sinusoïdale s'approchait
du sommet O au Heu de s'en éloigner, les relations (7),

(9), (10) resteraient applicables ; par contre, dans les

arguments de (6) et (8), le terme — fr devrait être

remplacé par + fr.
En introduisant l'expression (8) de u dans la relation

(4), on obtient, en remarquant encore que, en

vertu de (7),

a Les calculs que nous ferons plus loin, basés sur des formules

analogues à (8), pourraient aussi être faits en utilisant des fonctions
exponentielles, avec exposants imaginaires. L'emploi de telles fonctions

étant surtout justifié lorsque des facteurs amortissants réels

interviennent, ce qui ne sera pas le cas ici, nous n'avons pas jugé
indiqué de les utiliser. Ajoutons que si nous avons préféré représenter

une onde sinusoïdale par la relation (8) plutôt que par la relation (6),

c'est que les formules donnant les valeurs de A ct A que nous obtiendrons

plus loin pour les ondes réfléchie et transmise sont plus simples

que celles donnant les valeurs de C et s relatives à ces ondes.
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Onde incidente ct 1/

>

angles solides I Onde réfléchie cJ= c,= l/&
I

_ 'Pi

k-

On de transmise c,= I/-Ä

Pi

C2,P

-*
-a«>t<-

Fig. 2. — Cas général d'une barre conique, formée de deux parties de caractéristiques différentes
culier 1, § 5.

3, 4), et cas parti-

Ef=\J Epp (11)

A y Ep pr-1 cos (pt — fr) — AEr-3 sin (pt—fr)+

§ 3. Formules générales pour le calcul de l'onde réflé¬
chie et de l'onde transmise, produites par des
discontinuités en un point d'une barre conique, et
provenant d'une vibration incidente sinusoïdale

Une coupe longitudinale de la barre est représentée
figure 2. Nous désignons par rlt r2 les distances, au
point de discontinuité O, des sommets 0lt 02 des deux
parties coniques, par x l'abscisse d'une section
quelconque (r1} r, sont positifs, x est par contre négatif
pour les sections situées à gauche de O dans la figure,
positif pour les sections situées à droite de ce point).

Soient encore Q1; Q8, Elt E2, p1( p2 les angles solides,
les modules d'élasticité et les masses spécifiques des

deux parties de la barre.

' Voir [5], p. 76.

/l \

d'abscisse x [—

+ 1 Ve? P1*1 sin (pt—fr)—ÄEr->cos (pt—fr). (12) par la fonction '

On remarquera que, par suite de la présence des

termes où figure le facteur r-8, l'onde de tension (12)
se déforme, en se propageant, selon une loi différente
de celle régissant la déformation de l'onde de déplacement

(8).
Les formules (8) et (12) — ou les formules analogues

que nous utiliserons plus loin — ne sont valables que
si, dans le domaine r considéré, les dimensions des
sections droites sont partout petites par rapport à la
longueur d'onde À7. En outre, et pour des raisons
évidentes, ces formules seront d'autant plus exactes que
la section droite sera plus voisine d'un cercle. Un polygone

régulier satisfera par exemple d'autant mieux à

cette condition que le nombre de ses côtés sera plus
grand. Enfin, les formules en question ne sont pas
applicables au voisinage du point O, u et ct devenant infiniment

grands si, dans (8) et (12), on fait tendre r vers
zéro. C'est pourquoi nous limiterons l'application de ces
formules à des barres où l'une des extrémités ¦— celle

correspondant à la plus petite section — est en un
point A, où r r* (fig. 1), ce point étant choisi de

façon que, dans le tronc de cône r* ^ r ^ 00 la
tension ct soit partout et à chaque instant inférieure à la
limite de proportionnalité de la matière.

Supposons qu'une onde incidente sinusoïdale donnée,
de fréquence p/2tt, se propage le long du tronc de cône
AO de sommet 0lt à partir du point A. Le déplacement
Uj (elongation), au temps t, d'un point d'une section

- r*) ^ x ;= 0] peut être représenté

rt + x
àa.'{pt — hx) (13)

où A1 désigne une constante donnée, que nous supposerons

positive, et où

2tt p .y(fc_, tf_/i V^_Pi (14)

Àj étant la longueur d'onde de la vibration incidente
et cx (Ej^/pj)1/' sa vitesse de propagation.

Au point O, la vibration (13) se transforme en une
onde réfléchie et une onde transmise, dont les elongations

Mj, w2 peuvent être respectivement représentées par les

fonctions 9 :

A,
(pt + fxx) + —m cos (pt +ftx), (15)

»1 + 1

A, A,
"a mczsin (p1—M + T tx cos (p*—k x)> (16)

r2 + x

oùAv
et où

A,, A, A„ désignent des constantes (cherchées)

/_
i-rr VÏ' *'• \E2pzP> (17)

À2 étant la longueur d'onde de la vibration transmise
u2 et c2 (-Ej/pj)1/1 la vitesse de propagation de cette
onde (les quantités flf Àx, clt relatives à l'onde réfléchie

Up sont les mêmes que celles de l'onde incidente). La
formule (15) concerne la partie —¦ (rx — r*) _^ x __= 0
de la barre, la formule (16), la partie x ^ 0.

8 On admet ici que la phase initiale de la vibration incidente est
nulle au point O [x 0), où la section est discontinue. La vibration

(13) peut être engendrée en donnant à l'extrémité A un déplacement

{uj^ At [r^- sin [pt — ^ (r* — rj].
9 Si le phénomène étudié dure suffisamment longtemps, aux ondes

(13), (15) et (16) viendront s'ajouter celles provenant des réflexions
successives à l'extrémité A et au point O. Les calculs qui suivent
n'ont pas à tenir compte de ces nouvelles ondes, puisqu'il s'agit
ici essentiellement de déterminer comment une onde incidente
sinusoïdale (13) est transformée, au point O, par les discontinuités définies
plus haut.
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L'onde réfléchie et l'onde transmise peuvent être
considérées, chacune, comme la somme de deux ondes

sinusoïdales dont les phases sont décalées entre elles

TT * —
de Tj- Lorsque les constantes Ax, A2 auront été

déterminées, il sera facile de calculer, au point x 0,

à l'aide des formules (10), les amplitudes Cxfrx, C2/r2

et les phases initiales ex, s2, des vibrations provenant
en ce point des ondes résultantes réfléchie et transmise.

Pour simplifier le langage, nous désignerons dans la
suite le premier terme (celui où figure le sinus) de

chacune des expressions de u, et u2 sous le nom d'onde

primaire — réfléchie ou transmise — et le second terme
(celui où figure le cosinus) sous le nom d'onde secondaire.

Les conditions au point de discontinuité O vont nous

permettre de déterminer les valeurs des constantes

A., Ax, A», A2. On doit avoir en effet, pour x 0 et

quel que soit t :

»x + u[ u3, Oj rf (<?! + ctJ) iî3 r| ct3, (18)

où CT,, CTj, ct« désignent les tensions engendrées en ce

point, respectivement par les ondes (13), (15) et (16).

La première des conditions (18) exprime la continuité
des déplacements, la seconde, la loi d'égalité de l'action
et de la réaction, pour x 0.

Calculons d'abord les tensions CTj, ctx engendrées par
les vibrations (13), (15) dans le domaine—(rx—r*)^x^ 0

et la tension u2 produite par la vibration (16) dans la

zone x ^ 0 :

c ^"i Ax\l Expxp

ÜH

(20), (21) de Ci, CTp c«, toutes spécifiées pour x 0 ;

nous obtenons deux relations de la forme :

Wm. ¦) sin (pt) + cos (pt) — 0.

En égalant à zéro les coefficients de sin (pt) et de

cos (pt) dans chacune d'elles, on obtient, après quelques
transformations, les quatre équations :

I 1 rl 2 — r2 "¦!' ra Ax — rx Aa 0.

Qx Ex A'x + Ûx rx y7 -Ei Pi P A[-

n2 E2 A2 + Qa ra \J E2p2p A2 — ax Ex Ax,

Qj rx \]ExpxpAx — Q,1ExAx +

(22)

+ Qara y/E2p2 pA% + Q.% E2A2- Qxrx V-Ej Pi p Av

Le système (22), résolu par rapport à Ax, Ax, A„, A2,
donne finalement pour les valeurs des constantes
cherchées :

A'^Dri^SlE^-SÎEtpJp*
- (S%^E, — S1rfE^]A1,

A\ 2D'1 Sx sJex Pl (St rfE2-Sx rfE^ PAX,

A2 2D-i Si n r2 y7 Ex Pi (Si \l Expx +

+ S2 \fË^p~2) p* Ax,

sin (pt — fxx), (19)

^=2D-i Sxr"1 r2 yjExpx {S, r? E2

-S1r-1E1)pA1,

Sj Qj rx, S2 Q3 r3 (23)

du\ A\sJ ExpxV
dx

A\EX

>!+ *)*

cos (pt + fxx) —

(pt + hx)

Ax \JE.pxp g
inyna{pt + flx)-

rx + x

TXEX
cos (pt + fx x),

(20)

désignent les aires des sections de la barre, au point O,
de part et d'autre de la discontinuité, et où :

D (S. vTËTpi + S2 v^sP.)2 pa

(S3 ra E2 Sx rx Ex)
(24)

Les valeurs (I) des constantes sont exprimées en
fonction de la fréquence p/2ir. En remarquant que

p 2tt jEj'* px '* AJ (voir (14) on peut également exprimer

ces constantes en fonction de la longueur d'onde A*.

On obtient ainsi les formules (II) ci-dessous :

ct =Eg"-= A* V^.PsP cos (pt — /ax)
dx

A3E3
sin (pt — f2x) +

A2 \lE2p2p
_l .—: sm fj,t — /a *)

A2H2
cos (pt—fsx).

(21)

Introduisons maintenant, dans les équations (18), les

valeurs (13), (15), (16) de «j, u\, u3, et les »leurs (19),

A[=*D?
Ss E2 p3\ 4 tr rj

- 1

Sf Ex pj A*

S2rxE%\*}
Sx ra Ex Ai,

Sx r2 Ex) Aj

~D?f?r. (l+ S*^E*P*
Sx \J ExpxJ A?

Su«

D-1 r"1 r 11 —
S* fl Ei\ 47Trl A

sT^WJ ^T l'

(II)
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Dx 1 +
s2\Ie2P2

Sx\j Expx

r 2 _24ir r\ S2 r1 E2

Sx r2 Ex

(25)

§ 4. Remarques essentielles sur les formules obtenues

Nous ne ferons pas une discussion détaillée des
formules (13), (15), (16) et (I), (II) ; elle nous entraînerait
trop loin et sortirait du cadre de cette étude. Mais avant
d'appliquer ces formules à un certain nombre de cas

particuliers, nous voulons, dans ce paragraphe, faire à

leur sujet plusieurs remarques essentielles :

1. L'onde réfléchie et l'onde transmise sont en général
formées, chacune, d'une onde primaire et d'une onde

secondaire, les coefficients Ax, Ax, A2, A2 étant, sauf

exception, différents de zéro. Or, nous verrons plus loin
(§ 5, 2.)10 que lorsque les deux parties de la barre sont
cylindriques ou prismatiques, les ondes secondaires
réfléchie et transmise disparaissent. Ces ondes existent
par contre en général sitôt qu'au moins une des deux
parties est conique (voir par exemple § 5, 3. et 4.).
On peut donc dire que la conicité entraîne l'existence
des ondes secondaires réfléchie et transmise. Sans cette
conicité, seules les ondes primaires existeraient.

En se basant sur les relations (10), on voit alors que,
dans le cas de la conicité, la vibration provenant, au
point O, de l'onde résultante réfléchie ux, et celle provenant

en ce point de l'onde résultante transmise u2, accusent
toutes deux des différences de phase par rapport à la vibration

due à l'onde incidente ux. Ces différences disparaissent

si les deux parties de la barre sont cylindriques ou
prismatiques.

2. Comme le montrent les formules (I) et (II), les

coefficients A-,, A2 dépendent en général de la

fréquence commune p/2-rr des trois ondes (13), (15), (16),
ou, ce qui revient au même, de la longueur d'onde At.
Mais cette dépendance n'existe pas dans les deux cas

exceptionnels suivants :
a) Les distances rx, r2 sont finies et du même ordre

de grandeur, et la longueur d'onde Ax est très petite par
rapport à 2-nrx (cas des hautes fréquences p/2-n). On a

en effet ici, d'après les formules (II) :

A _ Sx\fË~p1- S3 s/Esp,
à

1= 1 / Aii
Si V Ex px -f S2 V E2 p2

2Sxr-\r2SjExpx
Sx V^iPi + S2 V-E2Ps

Ai,

(26)

Z.^0.

On voit en outre que seules les ondes primaires existent
ici.

b) Les distances rx, r2 sont finies et du même ordre
de grandeur, la longueur d'onde 7ix est très grande par
rapport à 2irr1 (cas des basses fréquences) et S2rxE2 ^=

zfc Sxr%Ex. Les mêmes formules (II) montrent que, dans

vm W* A„ 0. !7)

1 Voir également [1], p. 235 et 251, ainsi que [7], p. 136 et 137.

Il n'y a pratiquement aucune onde transmise, et pas
d'onde réfléchie secondaire. L'onde incidente et l'onde
réfléchie primaire (cette OTgrnière est égale à la première,
au signe et au sens près) interfèrent dans la partie AO
de la barre et donnent une onde stationnaire, avec un
nœud de vibration en O. Comme Ax est très grand par
rapport à 2jrrx, le ventre (virtuel) de la première onde
stationnaire est à gauche du sommet Ox et très éloigné,
en sorte que les déplacements des points du tronc de

cône AO sont quasi nuls, comme le sont ceux des points
du second tronc de cône (fig. 2). Dans ce cas, tous les

points de la barre sont approximativement immobiles. Il
s'agit d'un état quasi statique. L'état statique rigoureux
serait réalisé si la longueur d'onde Aj était infiniment
grande.

3. Le fait que les constantes Ax, A« dépendent
en général de la fréquence p/2tt (ou de la longueur
d'onde Aj) a deux conséquences importantes. Avant de

les énoncer, remarquons d'abord que si l'onde incidente

u1 est sinusoïdale, comme nous l'avons admis jusqu'à
présent, les vibrations en tout point — (rx — r*) ^=x ^=0
dues à cette onde sont harmoniques, et, abstraction
faite du facteur (rx + x)-1, le diagramme représentant
ux en fonction de x, au temps t, est une sinusoïde. Les
ondes résultantes réfléchie et transmise fouissent des mêmes

propriétés, la première pour — (rx —¦ r*) :=! x ^ 0, la
seconde pour x ^ 0. En d'autres termes, ces deux
dernières ondes sont, au temps t, et toujours sans tenir
compte des facteurs (rx + a;)-1 ou (r2 -j- a;)-1, représentées

par des courbes de même forme que celle de l'onde
incidente, à des transformations par affinité près. On
voit maintenant par contre que :

a) Si — contrairement à ce que nous avons supposé
jusqu'ici — l'onde incidente était une fonction périodique
non sinusoïdale de l'argument cxt — x, les ondes
résultantes réfléchie et transmise seraient, au temps t, en
général représentées en fonction de x par des courbes
essentiellement différentes de celle de l'onde incidente. Cela
découle du fait que l'onde partielle sinusoïdale
correspondant à tout terme de la série trigonométrique
représentant au temps t l'onde incidente (abstraction faite
du facteur (rx -\- x)-1) serait, en arrivant à la
discontinuité, transformée par la réflexion et la transmission
en deux ondes partielles sinusoïdales, dont les amplitudes

et les phases dépendraient de la fréquence de
l'onde incidente partielle considérée.

b) Et si la vibration incidente n'était pas une fonction

périodique de l'argument, mais était par exemple
une courte impulsion de forme déterminée, les courbes

représentant, au temps t, les impulsions réfléchie et transmise

seraient aussi essentiellement différentes de la courbe

représentant l'onde incidente.
Or ce® différences (définies sous a) et b) n'existent

pas si les deux parties de la barre sont cylindriques ou
prismatiques, comme nous le verrons plus loin (§ 5,2.)10.
Ainsi la conicité est en définitive la cause du fait que les
ondes réfléchie et transmise n'ont en général pas la même

forme que l'onde incidente. Il n'y a exception que si cette
dernière est représentée par une sinusoïde, qui comprend
un très grand nombre d'ondulations, comme nous l'avons
implicitement supposé.

4. Une autre remarque de caractère général est la
suivante. En admettant que toutes les grandeurs interve-
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nant dans les formules (I) ou (II) soient finies, on voit
que A2 est toujours différent de zéro, tandis que A,

Ax, A2 peuvent être nuls. Quelles que soient les circonstances,

il y a donc nécessairement une onde primaire
transmise. Il n'en est pas de même des trois autres
ondes engendrées par l'onde incidente. Nous reviendrons

d'ailleurs sur ce point dans le paragraphe suivant
(le cas b) du point 2 ci-dessus fait exception à cette
règle, car la longueur d'onde Xx est supposée très
grande).

5. Remarquons également que les formules (I) ou (II),
basées sur les conditions (18), seront d'autant plus
exactes que les deux courbes limitant les sections Sx,

S2, au droit de la discontinuité, seront plus voisines
l'une de l'autre. Si ces courbes diffèrent notablement,
la discontinuité de la section engendrera, de part et
d'autre du point O, des zones perturbées, où les déplacements

u et les tensions ct ne seront plus uniformément
répartis dans une section droite, comme il a été
implicitement admis en écrivant les deux équations (18). Il
ne faudrait cependant pas exagérer l'importance des

erreurs dues à ces zones perturbées, la longueur de

chacune d'elles étant probablement du même ordre de

grandeur que la plus grande dimension de la section
droite correspondante.

6. Signalons encore que les relations établies (I) et (II)
sont non seulement applicables au cas de la figure 2,
où les sommets Ox et 02 sont situés à gauche de l'origine

O, mais qu'elles le sont encore si l'un ou l'autre
de ces sommets, ou même les deux, sont situés à droite
de ce point. Il suffira, dans chaque cas particulier,
d'examiner quels sont les termes qui changent de signe
dans les relations (13), (15), (16) et (I), (II), pour obtenir
les formules adéquates. Nous montrerons plus loin
(§ 5, 5. et 5'.), à l'aide de deux exemples, comment il
faut alors procéder.

7. Enfin, il est essentiel de remarquer, que lorsqu'on
aura calculé les « ondes de vibration » à l'aide des

formules générales (13), (15), (16) et (I) ou (II) — ou à

l'aide des formules particulières que nous établirons
dans le paragraphe suivant — on en déduira sans
difficulté les « ondes de tensions » (stress waves) en

appliquant les formules (19), (20) et (21).

§ 5. Examen de plusieurs cas particuliers

Nous allons maintenant supposer successivement que
certaines des caractéristiques de chacune des deux parties

de la barre étudiée sont égales entre elles, ou
infiniment grandes.

c

&_CU___---= S,=SZ=S2 __

E>PK--> Ci=C

-^K- *r
-HK-

1. Admettons tout d'abord que les deux parties soient

faites avec la même matière. On a (fig. 2) :

Ex — E2 E, px

et les formules (I) deviennent :

P2

jfifi- S\) p p2 - (S, r?- Sx r-\Y E
A

mm

Aa

(51 + s2y pp + (s* 'I1--SxrfyE

2SX(S2 2 -Si TTv/^ÊPPi + SJ pp2 + (s3 4-¦SxrtyE

m n 2 (Si + St) PP'

g + s,y pp2 + {S3 rf~ .sxr?yE
2 Sx r-1 r2 m rf- Sxrf sJ^PP

(S, + S2y p p8 + (S, rf- Sx rfyE

Ai,

Ai,

Ai,

Les valeurs des constantes Ax,.. .A2 dépendent non
seulement de rx, r2, Sx, Sa, Alt mais aussi de E, p, p.
Remarquons également que les vitesses de propagation
et les longueurs d'onde sont les mêmes dans les' deux

parties de la barre, de sorte que, d'après (14) et (17),

on doit poser fx — f2 f p pVi £-Vi dans (13), (15),
(16).

1'. Supposons en outre qu'au point O, l'aire de la
section ne soit pas discontinue, c'est-à-dire que Sx

Sa S (fig. 3). Les expressions (lx) se réduisent
alors aux suivantes :

A'

Ax

¦-i?YE
4pp2+(r3-r1)3JE

Ifà — rï1) JË~PP

*pp2 + W—*¦

P P

E

A,=

4PP + (r2

2T1r3(ra1-

Ai:

Ai,
(Iv)

r?) yTËp'p

*PP2+(r?-r?y
Ai.

Fig. 3. — Cas particulier 1', § 5.

Ces formules font ressortir F influence d'une discontinuité

de l'angle solide au point O — à l'exclusion de toute

autre discontinuité en ce point — sur la propagation d'une
onde incidente sinusoïdale le long de la barre (si S1

S2= S et rx ^ ra, on a, en effet, Çix ^ f^). Elles

montrent que les constantes Ax, A2 dépendent ici
seulement de fx, r2, E, p, p, Ax, donc pas de S. Elles

montrent également que si rx tend vers rg (supposé

constant), Ax, Ax et A2 tendront vers zéro, tandis que
A2 tendra vers la valeur Ax : à la limite, l'onde
incidente sera transmise sans modification par le point O,

et il n'y aura pas d'onde réfléchie. Ce résultat est d'ailleurs

évident, toute discontinuité ayant alors disparu.
On peut dire aussi que, si rx diffère peu de r2, l'onde
transmise primaire A2(r2 -\- x)-1 sin (pt — f^x) différera

peu de l'onde incidente Ax(rx -f- x)-1 sin (pt — fxx) au
voisinage du point O, où x est petit par rapport à rx, ra u,
tandis que l'onde transmise secondaire et les ondes réfléchies

primaire et secondaire auront de faibles amplitudes
et seront quasi négligeables.

11 Rappelons qu'on a ici /x =/, /= p p*'« £-'/!.
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Mais nous allons voir qu'il n'est pas nécessaire que
rx diffère peu de ra pour que les propriétés que nous
venons d'énoncer soient valables. Il suffit que la
longueur d'onde Ax Ag A soit petite par rapport aux
distances rx, r2. En effet, supposons que ces distances
soient différentes l'une de l'autre, mais du même ordre
de grandeur (rx r+j ra ^* r), et que A soit petit par rapport
à r. On déduit des formules (Ir), si l'on tient compte
du fai t. que 16 ttV/A2 est ici un très grand nombre :

A,
A*

4r2pp2 „ 16-rrar2 „161 1 :tô r- 1
(28)

E n A2

2 r \]~p~ÎÊ p 2 r \TpJË p A
4 r2 p p2

1 + 1
rr2 r2 4 TT r
ft— + 1

(29)

rslri './'i
Ax — 1 + £/4r2pp2 — 1 + A2/16-rr2r2 ~ rx

(30)

de Vautre, les ondes réfléchie et transmise jouiront de
propriétés totalement différentes de celles énoncées ci-
dessus, les rapports A.fAx, Ax/Ax et A2fAx n'étant en
général plus petits par rapport à 1. Dans ce cas,
l'influence de la discontinuité de l'angle solide ne sera plus
du tout négligeable.

Remarquons encore que si rx, ra sont du même ordre
de grandeur (rx ~ ra <>_• r) et si A est très grand par
rapport à r, les constantes Ax, A2 deviennent égales
aux valeurs (27), conformément à ce que nous avons
vu § 4, 2. b).

2. Considérons ensuite le cas où les deux parties de la
barre sont des cylindres ou des prismes, c'est-à-dire où
rx oo, ra oo (fig. 4) Pour obtenir les formules
adéquates, partons des expressions générales (I) des
constantes A,, A2 et faisons tendre dans ces formules Ax
vers l'infini en même temps que r1 et r2, mais de façon que le
quotient Axjrx tende vers une limite Bx, choisie arbitrairement.

Les quotients Axjrv Axfrx, A3/ra et A2/ra tendront
vers les limites :

Ainsi, d'après (28) et dans les conditions admises,
l'onde réfléchie primaire est très petite par rapport à
l'onde!|Qcidente, puisque le rapport des amplitudes en O
de ces deux ondes est de l'ordre de A2/16 ir2 r2. D'autre
part, les ondes secondaires réfléchie et transmise sont
petites par rapport à l'onde incidente, le rapport des
amplitudes en O de chacune des deux premières ondes,
à l'amplitude de la dernière en ce point, étant d'après
(29) de l'ordre de A/4 tt r. Enfin, puisque, d'après (30),
A2/r2 Si A-ifrx, on voit que, au voisinage du point O,
l'onde transmise primaire — qui est ici sensiblement
égale à l'onde transmise résultante — différera peu de
l'onde incidente 12. Ce sont lô^grécisément les propriétés
déjà trouvées plus haut, en supposant que rx diffère
peu de r,.

En définitive, nous pouvons dire que si la longueur
d'onde A est petite par rapport à rx et r2 13, ou si rx diffère
peu de r2, tout se passe comme si l'onde incidente provenant

de la première partie de la barre passait, au point O,
sans modification appréciable dans la seconde partie, ce
qui signifie que, dans l'un ou l'autre de ces deux cas,
l'influence de la discontinuité de l'angle solide est quasi
négligeable. En particulier, il n'y aura pas d'onde
réfléchie.

Par contre, si A est du même ordre de grandeur que
rx, ra et si ces deux distances diffèrent notablement l une

12 On arrive aux mêmes conclusions en posant S, — 52, P, » p3,
El — Ea dans les formules (26).

13 Nous supposons cependant que cette longueur d'onde soit grande
par rapport aux dimensions de la section, dans tout le domaine considéré

de la barre. Voir à ce sujet le dernier alinéa du paragraphe 2.

B,
11

S2 \1 E2p2
Bi>

si yj Ex px + S2 \J E2 p2

A,
B' M lim —¦ 0

B, m lùn -5 2SxsJË^x
Bi,M Sx\/Expx+S2 \/E2p2

Ai.
B2 M lim l

En remarquant encore que si x reste constant, et si
Ax, rx, ra tendent vers l'infini comme il-a été précisé plus
haut, on a :

lim [Axl(rx + x)] I lim (^) Bx,

[A'i\lira [Axl(rx + x)] lim — l — Bx, etc.

Dans ces conditions, les formules (13), (15) et (16)
deviennent :

«! Bx sin (pt^rfix), (13a) (onde incidente donnée)

ux » Bx sin (pt + fx x), (15a)

Ug i|pin (pt — f2x), (16a)

Bx, B2 ayant les valeurs (I3), que l'on pourrait d'ailleurs
également déduire du système (26).

f/./>r

Cf -l/Ù
'Pf

S,*"*
E2.Pi

Ct C,

Fig. 4. — Cas particuliers 2 et 2', § 5.

ni
E1.P1

Cr Cf

Ci- m
S-f ~ S2 S

o

Fig. 5. — Cas particulier 2*, § 5.

Fi.Pz

•»I

¦¦*
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E,
eg s nrEi PiC1

Pi

Qi~-
Et.Pimm

c; c

r* >K

Ot--

C/=C= /¦=- c,=c

E,P\0 E.p
*¦-••*(

Ci C

Fig. 6. — Cas particulier 3, § 5. Fig. 7. — Cas particulier 3', § 5.

Nous retrouvons ainsi un résultat en principe connu1*:

si les deux parties de la barre sont cylindriques ou
prismatiques, les ondes résultantes réfléchie et transmise se

réduisent à leurs ondes primaires, et ces deux ondes —
comme l'incidente — se propagent sans se déformer.

Il est essentifEpe remarquer que Bx et B2 ne dépendent

pas de la fréquence p/2ir, mais seulement de Sx, S2,

Ex, E2, px, p2, Bx. En conséquence une onde incidente,
représentée par une fonction périodique quelconque de

l'argument cxt — x, sera transformée, par la discontinuité

en O de la section, en une onde réfléchie et une
onde transmise, ayant toutes deux la même forme que
l'onde incidente, à des transformations par affinité

près ls. Une impulsion incidente sera également
transformée en deux impulsions (réfléchie et transmise) de

même forme16.

2'. Si l'on a non seulement ^ 00, r2 00, mais

encore Ex E2 E, px pa p, les formules (Ia) se

réduisent aux suivantes :

_ Sx S2

"l M Si + S2 °x ' B, #, 0. B^S1
2SX A.

les expressions de ux, ux, u2 restant les mêmes que ci-

dessus, en remarquant cependant que, d'après (14) et

(17), on a ici fx g / p pV. Em
Les formules (la'}WÉnt ressortir l'influence d'une

discontinuité, en un point O, de l'aire de la section d'une
barre cylindrique ou prismatique — à l'exclusion de toute

autre discontinuité en ce point — sur la propagation
d'une onde incidente sinusoïdale.

2". Si l'on a par contre rx 00, ra 00, et en outre
Sx Sa, les formules (I2) deviennent (fig. 5) :

ß,
y/ Ex px — s/ E2 pa

V Ex pi + \/ E2 pä
ßi. Bi Ba 0,

#2
2 vTËi Pi

V Ex px + \j E2 p2
Bi,

les expressions (132), (152) et (162) conservant leur
validité. Les formules (Ir) montrent l'influence d'une

discontinuité, en un point O, des propriétés mécaniques
de la matière d'une barre cylindrique — à l'exclusion de

11 Voir [1], p. 251, et [7], p. 136 et 137.
l* Ceci suppose que les principaux termes de la série trigonomé-

trique représentant l'onde incidente au temps t, correspondent à des

ondes partielles dont les longueurs d'onde sont beaucoup plus grandes

que les dimensions de la section, sans quoi la théorie élémentaire
utilisée ici ne serait pas applicable.

16 Voir [7], p. 136, 1" alinéa.

toute autre discontinuité en ce point — sur la propagation
d'une onde sinusoïdale.

On remarquera l'analogie parfaite entre les formules

(la') d'une part, (Ig') d'autre part, les quantités \Expx,
y E2pt jouant, dans les secondes, le rôle que jouent les

quantités Sx, S2 dans les premières.

3. Admettons maintenant que la première partie de

la barre soit comme précédemment un tronc de cône, la
seconde étant par contre un prisme ou un cylindre, c'est-

à-dire que rx soit fini, mais ra 00 (fig. 6). Si l'on fait
tendre ra vers l'infini dans les formules (I), on voit que

Ax, Ax, A2jr2, A2jr2 tendent respectivement vers les

limites :

A' (Sf Ex px — S\ E2 H p8 — S% r? E\
1 (sw^+sW^V + s^iï2 M

Mm
%*?%*>/* p

Si sjExPx + S2S/ E2pa)2 p2 + S\ rT2 E\2
A\

_2Sxrf y/Ë^ (Sx y/£lPl+ S2 JE2?2) p2
A

2 " || ExPx + S2 jE2p2y p* + Si r, £• X '

— 2 S* r? £*;• ifç^p
B2

[Si sjExPx + S2Sf E2 Pa)2 p2 + S\ j? E\»
Ax

(Is

Les formules (13), (15) et (16) s'écrivent ici :

A,
sin (pt—fxx), (13s (onde incidente

donnée)

Ai
ri + x

ûn(pt + fxx)
A,—L_ cos (pt +/!-!), (15a)

§ + x

u2 B2 sin (pt — f2x) -f- B2 cos (pt — f2 x) (16»)

Toutes les constantes Ax, B2 dépendent non
seulement de rx, Sx, S2, Ex, E2, px, pa, Ax, mais encore
de la fréquence p/2ir. Comme l'onde incidente u^, l'onde

réfléchie résultante ux se déforme en se propageant, ce

qui n'est pas le cas de l'onde transmise résultante ua.

3'. Supposons que non seulement rx soit fini, r2 00,
mais en outre que

Ox Oa IJ, Ex £a E, Pi P2 P-

Il s'agit donc ici d'un tronc de cône, prolongé, sans

solution de continuité de l'aire de la section droite H,

par un cylindre fait avec la même matière (fig. 7). Les

17 La forme de cette section peut cependant être discontinue au

point O.
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Fig. 8. — Cas particulier 4, § 5. Fis Cas particulier 4', § 5.

équations (138), (153), (16s) restent applicables, avec
cette simplification qu'ici fx f2 f p p'/s £-V«, tandis

que les valeurs des constantes deviennent :

m 4r2pp2+£-Ai, -, — 2rx\JEpp
^-4r2pp2+£^'

4 r, p p*
"2 — / 2 2 i c -"-l >

4rxpp +E
—2 sjEp p

4r? PP -E
-.Ai'

Les constantes A,, .B2 ne dépendent pas de S,
mais seulement de rx, E, p, p, Ax.

4. Supposons au contraire que la première partie de

la barre soit un cylindre ou un prisme, la seconde étant

un tronc de cône, c'est-à-dire que r2 soit fini, mais

ri ^Seifig. 8). En faisant tendre, dans les formules (I),
Ax vers l'infini en même temps que rx, mais de façon

que le quotient Axjrx tende vers une limite Bx choisie

a\ I;
arbitrairement, les quantités

^î
respectivement vers les limites :

A2, A2 tendront

„/ _
fUS Ei Pi — sl E2 p2) p2 — S22 rf E%

1

{SxV£Tp7+ S2Sf-Ë^y P2 + Si r~l El B' '

ßi
2 Sx S2 r3 <J Ex p! E2 p

(SiV Expx + S2\JE2p2) p + S2r~ E22 t& "i,

2Sxr2S/ Expx (Sx \jElPl + Sg y/£apa) p2
A* ~ —-- " ^2 _-2 c* ^1 l(5lV/ £, px + pa sjE^y p2+ S3, r;2 £2

A3
2Si5a \jExpxE2p

Blt
(52V/jEiPi+ sav/-B2P2)2P2+ S|r22E;

tandis que les formules (13), (15), (16) deviendront :

Bx sinJpt — Ugl (13.)
(onde incidente donnée)

Bx sin (pt + /i a;) + 1^ cos (pt + /i 2), :i5_

a,
U, :

ra + a;
sin (pt — /aa;) + A,

r2 + x
cos (pt—/ü-t). (16.

4'. Admettons que non seulement ra soit /Eni, rj 00,
mais en outre que

SX S2 s, EX=E2 E, Pi:

Nous avons affaire à un cylindre ou à un prisme,
prolongé, sans solution de continuité de l'aire de la
section droite 17, par un tronc de cône fait avec la même
matière (fig. 9). Les équations (13.), (15.), (16.) sont
toujours valables, avec cette simplification que fx

f2 f pp1'" E-1!', mais les valeurs (I.) des

constantes deviennent :

B'1
Aripp*+E

4r3pp2

Bi: *1 4rf
/cV-Epp

4 r| p p2 + E

lpp- + E

2 ri yEp p

4rlpp2 + E

B,

Bx.

(hi

Ces valeurs ne dépendent pas de S, mais seulement
de r2, E, p, p, Bx.

5. Nous allons maintenant appliquer successivement
les formules établies à deux cas, où l'un des deux sommets

Ox, 02 est situé à droite de l'origine 0. Considérons
d'abord celui de la figure 10, où l'on suppose que Ox

soit le sommet en question, et où l'on admet en outre

que

r2 00, Sx= S2— S, Ex E2 E, pi pg p.

Les formules (13a), (15$), (I63) et (Is'), qui concernent
le cas de la figure 7, ne sont pas ici directement
applicables. Les expressions de u^, Uj, u2 doivent être en

effet remplacées par les suivantes, si l'on remarque
que dans la première partie de la barre, l'abscisse x
d'une section quelconque est négative ou nulle :

Ax

-rx+x

(pt — fxx)

i(pt + fxx)

-Ax

A,

sin (pt — fxx),

(pt + fx x),

u2 B2 sin (pt — f^x) -{- B2 cos (pt — /a x),

avec fx /g / p p'/. £-7..

Les constantes Bv A2 dépendent non seulement
de ra, Sx, 5g, Ex, E2, px, p2, Bx, mais aussi de la

fréquence p/2tt. Comme l'onde incidente, l'onde réfléchie
résultante ne se déforme pas en se propageant, tandis

que l'onde transmise résultante se déforme.

On voit qu'on obtient ces expressions en remplaçant,
dans (13g), (158), (16g), les quantités rx, Ax, Ax, Ax

respectivement par —rx, — Ax, — Ax, — Ax. Faisons la

même opération dans les formules (Is'). Elles deviennent

:
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Cf C

cz c

E,P

Sf=Sï=S~-

K-

Fig. 10. — Cas particulier 5, § 5.

0/ x

i

E,P

Fie. 11.

m.
c)=c

Cas particulier 5', § 5.

0f O2=S
-*=!-n

^,p *---*
y -*

-"2k -x

¦E

— A,

#,=

#2

4 ri pps + E

2 AU PP
4 A.PP2 + E

-4r, PP2i r?PP3 + E

-2 s/£p~p

i-Ax),

4 'i P P2 + E

Ax)

(-Ax).

En définitive, nous obtenons pour le cas de la figure 10

les formules (où f p p'I'E-1/') :

Ai sin (pt— fx), (136)

(onde incidente donnée)

A,
sin (pt + fx) +

Ai
cos (ptmfx), (156)

ua Ba sin (pt — fx) + ßg cos (pt—fx),

dans lesquelles :

— E

(166

_41=-

B9

4r2pp2-f-2ï
Ai, ^;=ÄiiÄ-^)

4rxpp2
4r2pp2 + £

Ax, B2

irlpp' + E

2\/¥p~p
4 »i P P2 + E

A,

Comparons les formules (Is-) (relatives au cas où la
première partie de la barre est un tronc de cône divergent

dans le sens des x croissants, fig. 7) aux nouvelles
formules (I6) (cas où la première partie est un tronc
de cône convergent, fig. 10). On constate que les ondes

primaires réfléchie et transmise ont respectivement les

mêmes signes dans les deux cas, tandis que les ondes

secondaires réfléchie et transmise sont de signes
contraires.

5'. Considérons ensuite le cas de la figure 11, où l'on
suppose que 02 soit le sommet situé à droite de l'origine O,

et où l'on admet en outre que

ri oo, Sx S2= S, Ex — E2 E, p, pa p.

Un raisonnement analogue à celui que nous venons
de faire nous conduit aux formules suivantes (où

/ p p'/. £-*/•), déduites de (13.), (15.), (164), (1./)
(fig. 9) :

|| Bx sin (pt — / x), (13,/)
(onde incidente donnée)

ttj Bx sin (pt -f- / x) + Bx cos (pt -f- fx), (15.0

Ug -—*- sin (pt — fx)+ * cos (pt—fx) ; (16V)

B,
— E

4r3ppa + £ Bi:
>Ph

4r2pp2
4 rl P P8 + E Bi,

B,= 4r2pp2 + £

^2
— 2i\sfË~pp
4r|pp2 + £

Blt

Bx-

(Ib

En comparant les formules (I.») au système (I0')>

on reconnaît de nouveau que les ondes primaires réfléchie

et transmise ont respectivement les mêmes signes
dans le cas où la seconde partie de la barre est un
tronc ajkcône divergent (fig. 9), que dans celui où cette
partie est un tronc de cône convergent (fig. 11), tandis

que les ondes secondaires réfléchie et transmise sont de

signes contraires.

6. Admettons encore que les sommets Ox, 02 des troncs
de cône coïncident, et que les deux parties de la barre
soient faites de là même matière (fig. 12). En posant

r2 r, EX E2 E. Pi Pa

dans les formules (13), (15), (16) et (I), celles-ci deviennent

:

"i i1 „ sin (P' — fix), (i3<s)

'(P*+ /_*) +

(onde incidente donnée)

cos (pt + /i as), (15,)

r + x
i(pt—f2x) +

A„
cos (pt—/g x), (16„)

(S2-S2)pp2-r-2(Sa-Si)2JBA'

A2

a:

(S> mm PP2 + r-2(Sa- Si)2E

25 i(Si + Sa) p p8

(Si + Sa)2 PP8 + r*{S,-Sx? E

A -
2r-lSi(Sa -s_WÈp~P

3 (S1+5a)2pp2 + 7-2(5a-51)2£

Ax,

Ax,

Ax,

oùfx h f Pp1l>E->L.

6'. Supposons toujours que les sommets des deux

troncs de cône coïncident, mais que l'aire de la section

droite n'ait pas de discontinuité au point O (fig. 13). On

a, dans ce cas :

rx r3 r, Sx= S% S,
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Fig. 12. — Cas particulier 6, § 5.

l -iß -1P2

âyHf38->i —L_ £*>^

Fig. 13. — Cas particulier 6', § 5.

et les valeurs (I) des constantes Ax, A2 deviennent :

A\
(Ex Pl- E2 p3) p2- r-2 (E2 — Exf

{\fExPx + v/£2p2)2P2 + r-2(£g-£i)2 ^i,

A - 2vrËrpi(v/£lPi+ s/ggpglp2 ^2
(s/^Pi+v/£ap_)2P2+^2(£2—-Ei)2

^i ^a
2r-iy/£1p1(£a-£i)p

v/£iPi+ \/£M)2P2 + ^2 (E2-Exf
Ai,

tandis que les formules (136), (156), (166) sont encore

applicables, mais avec fx p px Ex f2 p p2 E£'".
On voit que, dans les cas 6. et 6 les amplitudes des

ondes secondaires réfléchie et transmise sont égales, au
facteur (r -\- x)-1 près. Le lecteur remarquera aussi

l'analogie entre les formules (I9) et (I,')- Cette analogie
n'est toutefois parfaite que si r est infiniment grand
(cas où les deux parties de la barre sont cylindriques,
voir le dernier alinéa du point 2.).

Les formules (le') permettes» d'apprécier l'influence
d'une discontinuité des propriétés mécaniques de la
matière — à l'exclusion de toute autre discontinuité —
sur la propagation d'une onde sinusoïdale dans une barre

conique.

7. Supposons que Ox, 02 soient à gauche de l'origine

O (fig. 2) et examinons pour terminer deux cas très

particuliers, mais intéressant|||Nous définissons le

premier en admettant que

S2rl1E2 — Sxr-1Ex 0, Sx y1'Ex Pl — 52 Je2 p2 =£ 0,

rx et ra étant finis. Les formules (I) deviennent :

A,

A*

SxyJ Ex pt — S2\IE2 p2

Sx V Ex pi + Sa y E2 p2

2 Sx M r2 y/ Ex px

Ax, AX=Q,

si V-EiPi + S2\J E2pt
Ax: mm*

Ainsi, les ondes réfléchie et transmise se réduisent à

leurs ondes primaires, et les amplitudes de ces ondes

ne dépendent pas de la fréquence p/2 ir.

7'. Pour définir le second des deux cas en question,

posons :

S2r21E2 — S1rx1E1 0, Sx\Je, pi — 5a \JE2 pa 0,

rx, ra étant finis. Les valeurs (I) des constantes Ax,
A2 sont ici

AX^AX 0, A, ?AV A2 0. (lv

Seule l'onde transmise existe. Elle ne comprend que
l'onde primaire, et la vibration qu'elle engendre au
point O a même amplitude A2fr2 Axfrx et même phase

que celles de la vibration engendrée en ce point par
l'onde incidente. Cette dernière est donc transmise sans

aucune modification par la discontinuité, et sans
réflexion.

Zurich, le 22 août 1962.
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