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LE PROBLÈME DE LA SIMILITUDE DES CALCULS
HYPERSTATIQUES ET RADIOTÉLÉMÉTRIQUES H
par A. ANSERMET, ing.-prof.

Les lignes qui suivent porteront surtout sur des
systèmes hyperstatiques articulés et spatiaux. Récemment
à l'étranger, en Autriche en premier lieu sauf erreur,
quelques auteurs signalèrent l'analogie existant entre
certains calculs hyperstatiques et télémétriques. Dans
les deux cas il y a un problème de minimum à résoudre
ce qui se traduit, en général, par l'application de la
méthode des moindres carrés. L'élément fondamental
en statique est l'équation qui exprime le travail de
déformation (traction ou compression) :

(1) Zj 2ES ~ Li | \ES) 21 minimum

somme étendue à toutes les barres. Les T sont des
forces, l des .longueurs de barres, S des sections
transversales et E un- coefficient d'élasticité. L'identification
est immédiate avec la forme classique :

(2) Z (v*p) [pvv] minimum
où les v sont des allongements ou raccourcissements
des barres ; le coefficient de T dans v est aussi appelé
module. Quant aux poids p, ils sont déduits des
relations (1) et (2) :

ES s
(d) p -~T- et, en general, p -y ou, parfois,

p constante. En radiotélémétrie, p a une autre forme.
En statique, il faut tenir compte de la dimension de E.

Les calculs sont parfois un peu longs, mais on aura
recours aux calculatrices électroniques. A titre
documentaire, la figure 1 montre un fragment de réseau
radiotélémétrique donnant lieu à un nombre élevé
d'éléments surabondants et d'équations normales.

Une formule fondamentale, mais qui né peut pas
être ' démontrée rigoureusement, est : m? ç~ [pvv] : r
(r éléments surabondants).

Ce m que l'on peut appeler, par analogie, « déformation

moyenne quadratique relative à l'unité de poids »,
jouera un rôle pour le calcul des ellipses et ellipsoïdes
de déformation.

De plus, le calcul est susceptible d'être fractionné,
solution qui sera la bienvenue en statique comme en
géodésie. On aura- donc :

(4) v v' -\- v" i [pvv]

le terme en v'v" étant nul

[pv'v'] + {pv'v"]

409



^
1Ps

U D

1 TTS B A

*A

O N r a

Fig. 1. — Réseau radiotélémétré Hiran.

Les cas concrets qui seront traités ci-après sont, en-

principe, ceux développés par B. Mayor dans sa
publication de 1926 mais en rendant les systèmes hypersta-
tiques par l'adjonction d'éléments surabondants ; cela

change le caractère du problème posé.
La méthode qui sera appliquée est celle dite aux

variations des coordonnées, qui a fait ses preuves en
géodésie. Dans un réseau télémétrique hyperdéterminé,
les coordonnées des sommets ne sont pas connues sans
ambiguïté ; on a recours à des valeurs provisoires ou
transitoires à partir desquelles on fait varier les
coordonnées pour réaliser la condition [pvv] minimum.

Au côté mesuré lgk correspondent une valeur provisoire
Igh + fgh et une valeur compensée Igh -\- vgh telle que :

(5) Igh + vgh l3h + fgh + agh (dxg — dxh) + bgh

(dyg — dyh) + cgh (dzg — dzh)

les dx, dy, dz étant les variations de coordonnées telles

que

V
1.2 i 2
hgh + <>gh

1

tandis que" (xgygZg) et (xhyhzh) sont des valeurs
provisoires.

En statique, ce sont les coordonnées de deux nœuds
reliés par une barre ; si en géodésie on doit connaître
avec précision ces valeurs, ce n'est pas le cas en
statique, où elles servent seulement à déterminer les

coefficients a, b, c exprimant la structure du système
articulé spatial. Les exemples ci-après le montreront.

Le praticien a une certaine liberté pour déterminer
ces termes absolus /, tels que : [pff] ^ [p??].

Exceptionnellement, on peut avoir : [pff] —. [pvv].
Les géodésiens recherchent une valeur [pff] assez

voisine de [pw].

Fig. 2. — Système triplement indéterminé.

En résumé on' a, sous forme générale :

(6) v / + F
où F est une fonction linéaire des dx, dy, dz.

Par cette méthode, on peut calculer des ellipses et
ellipsoïdes de déformation ; il n'est même pas nécessaire

de connaître les / pour déterminer la forme et
l'orientation de ces courbes et surfaces.

En statique, la solution provisoire de la géodésie a
comme analogue un état à partir duquel on fait varier
les coordonnées des nœuds pour réaliser la condition
du minimum. Ces variations dx, dy, dz peuvent même
être éliminées, comme on le verra. Cet état est obtenu
en opérant des coupures fictives et le calcul des
déformations pour cette première phase est un problème
connu ; analytiquement, on a pour ces déformations
une expression de la forme :

9o + 9 (xi > ^2. -^s (16) ci-après)
(principe de la superposition)

où q> est une fonction linéaire des inconnues hyperstatiques

Xl7 X2, X3, Il n'est pas possible de dire à

priori quel mode de calcul est préférable ; chaque cas
est à examiner séparément.

Pylône articulé à quatre barres et une liaison

Dans la figure 2, c'est le pylône ayant ^comme sommet

le nœud (1) ; c'est le seul qui soit libre. La liaison
prend la forme suivante : la distance l-A est connue
exactement ; pour le moment il en est fait abstraction.
Télémétriquement, les quatre distances servant à
déterminer le sommet ne sont pas compatibles ; il y a ambiguïté.

On aura donc recours à un point auxiliaire 10,
déterminé même graphiquement ; il constitue la solution

provisoire :

l0-2 ^ + /1;l0-3 Z2 + /2 3-0 ^ — '3 ~r /3 j
1„ h + h

Ce point 10 est l'origine des variations de cordonnées
dx, dy, dz devant rendre minimum l'expression [pw]',
d'où le système :

(7) — fi -f- Vi otdx + bidy -f ctdz

{< + g + c? 1)

i 1, 2, 3, 4 ; les poids sont pt.

Cette équation (7) se déduit de (5) ; pour les équations

normales, on a :
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(8) [pac] 0; [pbv] 0; [pcc] 0

(forme implicite)

Avec les termes absolus [pa/], [pbf], [pcf] et [pff] ^
=^ [pcc], de plus, on a la matrice des coefficients et sa

réciproque :

[paa] [pab] [pac]
[pba] [pbb] [pbc]
[pca] [pcb] [pcc]

Qn Q12 Qis

Y21 V22 \T23

Qsi Qn Qas\
(voir [4], [6])

Ces Qu, Qn, ¦ ¦ ¦ Qs3 sont les coefficients de poids
des inconnues.

Ces deux matrices peuvent être diagonales, d'où,
dans ce cas :

[paa]Qn [pbb]Q22 [pcciQ^ 1.

Dans le système hyperstatique, il n'y a qu'une
coupure à faire et, à cause de la symétrie, le choix de la
barre est indifférent ; il en résulte l'état dit principal
ou de référence, considéré comme état initial pour la
variation des coordonnées.

Exemple numérique : il a un caractère didactique.

Barre Oi bi Ci P<

1-2
1-3
1-5
1-4

+ 0,577
+ 0,577
— 0,577
— 0,577

+ 0,577
— 0,577
+ 0,577
— 0,577

+ 0,577
+ 0,577
+ 0,577
+ 0,577

1
1
1
1

[pab] [pac] [pbc] 0 Q12

[paa] [pbb] [pcc] 4/3
Qn Qn Qn 3/4

Q*

Ces valeurs, on le verra, caractérisent une sphère de

déformation.
Au centre, on a [pvv] minimum.
Les équations (8) deviennent :

vi + "2 "3 + vn 5 "1 + "s "2 + vi ;

c4 0 d'où
v, + v,

/On peut aussi éliminer les trois inconnues dx, dy, dz :

et [pvv]

(9) + vx -

/i — k — fz + ft
¦ minimum

V., Cs

La différence ([pff] —• [pcc]) est un élément important

du problème.

Ellipsoïde de déformation

C'est l'analogue de l'ellipsoïde d'erreur. A cet effet,
considérons un système de coordonnées fj, T|, £ parallèle

au système x, y, z ; la nouvelle origine coïncide

avec le point compensé ([pcc] minimum).
A cause du parallélisme des axes, les coefficients ai,

bi, Ci subsistent et aux valeurs ct- il faut en substituer
d'aulres telles que :

(10) v'i — OiÇ + btr\ + Cil + Vi ([Pw'] [pH)-

En tenant compte des équations normales (8), on a :

(11) [pv'v'] [pvv] + [paa] + 2[pab] fr + +
+ [pcc] Ç2

ou [pv'v'] [pvv] + (QT)

où (QT) est une forme quadratique ternaire en §, T), £ ;

si les coefficients quadratiques [paa], [pbb], [pcc] sont
seuls différents de zéro, on a :

(12) [paa]f+[p&fcK + [pCC]£>

~ Qu + Q22 ilÇ33

C'est l'ellipsoïde dit moyen qui intéresse les géodésiens
mais on peut avoir d'autres termes absolus ; statiquement,

ce sont des surfaces caractérisées par un travail
de déformation constant : [pv'v'] constante. Elles sont
concentriques et se réduisent à un point pour [pc'c']

[pcc]. C'est la manière la plus simple d'aborder cette
face du problème, mais il y en a d'autres ([4], [6]) ;

dans le plan, on a des ellipses.
Le raisonnement ci-dessus subsiste dans le cas où

(13) [pff] constante.

Solution générale. Si dans les matrices (8') les
éléments non diagonaux ne sont pas nuls, le calcul est

-moins simple, car il faut résoudre une équation cubique
dite aux axes principaux ; en géodésie, on a recours
en général à l'équation dite en K :

(14)

(15)

(Qu-K) Qn
Q21 (Q22

Qai V32

racines K1, K.

K)

2) "-S

Qi*
<?2S

(Qss-K)
(voir [4], [6])

0

(Qll + <?22 + Q*S) K2 +
QllQl2
Q21 Q22

Qll Ql2 Çl3

V2I V22 V2S

VSI V32 Qs3

Q22 &3
Y82 V38

0.

&3&1
Qiz Qn

K

Les racines Klt K2, K3 sont proportionnelles aux
carrés des axes principaux. Au lieu des coefficients
Qn> Qi2> - • • Qsa on aurait pu calculer avec les coefficients

[paa], [pab], [pcc], d'où l'équation dite en S

avec les racines St, S2, Ss telles que :

i_ 1 1

Aj : K% : K3 — ç : ç : „ •

°l °2 °s
Plus loin, nous verrons encore d'autres développements

de ce problème.

Liaisons; fractionnement des calculs

La figure (2) montre qu'il y a une liaison : la distance
du point A au sommet 1 est exactement connue. Une
solution consisterait à exprimer cette condition sous
forme linéaire en fonction des dx, dy, dz du nœud 1.

Une de ces inconnues serait alors éliminée. Certains
praticiens préfèrent fractionner le calcul pour mieux
se rendre compte du rôle joué par la liaison ou pour
une autre raison. Il est fait abstraction de la liaison
au cours d'une première phase ; en seconde phase on
ajoute, aux variations dx, dy, dz, de nouvelles variations

(dx), (dy), (dz) liées par la condition :

A,(dx) + A2(dij) + A3(dz) + A0 0
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la condition : [pcc] minimum subsistant, mais ici il
y a aussi fractionnement, comme on l'a déjà
mentionné :

[pcc] [pv'v'] + [pv"v"].

Il n'est pas possible d'entrer dans plus de détails
(voir [5]).

Cas où trois éléments sont surabondants

On pourrait dire qu'il s'agit d'un double pylône ; le
système principal ou de référence fut traité aussi par
B. Mayor (p. 41). Cet eminent professeur ayant trouvé
cet exemple dans l'ouvrage de A. Fôppl : « Vorlesungen
über technische Mechanik», T. II, appliqua sa méthode
de représentation plane, qui se révéla plus simple. Il
y avait six barres et deux nœuds articulés libres (1)
et (6) jouant le rôle de sommets de pylônes ; maintenant

(figure 2) il y a neuf barres, d'où :

m2 Ç^ [pvv] : 3 ([pcc] minimum).

Admettons des valeurs numériques susceptibles de
faciliter le calcul tout en réalisant une certaine symétrie

; l'équation (7) devient :

— fi + fi Oidxx + btdy- + c{dz- +
+ a'idx,- + b'idye + c'tdze (poids p<)

et pour la matrice des équations normales et sa
réciproque, en partant du système : [pac] 0, [pèc] 0,

[pc'v] 0
Tableau A

Le coefficient ou élément non diagonal qui n'est pas
nul exprime la corrélation entre dxx et dxe. Les axes
des ellipsoïdes de déformation en (1) et (6) sont parallèles

aux axes de coordonnées. Quant aux axes
principaux, ils sont dans le rapport :

V/0,610 : 01,758 : \/0,694.

La suite du calcul ne présente pas d'intérêt spécial ;

ici encore on pourrait éliminer les six inconnues dxlt
dylt dz6 dans les neuf équations.

Les forces extérieures peuvent être quelconques.

Calcul en représentation plane

L'intérêt de la représentation plane pour le calcul
de systèmes spatiaux statiquement déterminés n'est
plus contesté ; la question se pose de savoir jusqu'à
quel point on peut appliquer cette méthode en
hyperstatique. Que devient, en particulier, la notion d'ellipsoïde

de déformation une telle surface est le lieu des
points pour lesquels le travail de déformation est constant.

En d'autres termes, si la condition [pvv]
minimum est remplie pour le sommet (1) du pylône'

articulé de la figure 2, ce nœud, d'après l'équation (11),
est en position au centre de la surface définie par la
condition [pc'c'] constante. Une autre définition,
plus générale, sera développée plus loin ; en représentation

plane cette notion d'ellipsoïde de déformation
devient caduque ou en tous cas précaire.

Il est clair que ce mode fHparepresentation présente
de l'intérêt surtout lorsqu'on calcule par voie graphique

; en hyperstatique, la solution numérique joue-un
plus grand rôle. Analytiquement on procède à un
changement de variables ; dans le plan un nœud du
système gauche est matérialisé par une plaque
indéformable et mobile. Les barres issues d'un nœud,
spatialement, ne sont plus*.concourantes en plan mais, en
général, sont liées à la plaque en des points distincts.
Chaque barre donne lieu à une équation exprimant sa
déformation ; on substitue alors à trois éléments linéaires

de nouvelles variables ou inconnues : une rotation
élémentaire de la plaque et les coordonnées planes du
centre de rotation. Les équations exprimant les
déformations des barres ne sont plus linéaires par rapport
à ces inconnues. On ne voit guère là de simplification.

Le but de la représentation plane, en hyperstatique
spatiale des systèmes articulés, est surtout de fournir,
pour les équations fondamentales ci-après, les valeurs
des termes absolus et coefficients :

(16) Tt T^ + lXtTa I S5]' I 68'

c s; i tcy s: < (A* lnc0
Oi Oo,- + iAiO«

292).
inconnue hyperstatique).

TALEAU A

Barre i «»• h Ci a'i b'i c'i

1-2 1 + 0,557 + 0,575 + 0,60 0 0 0 i <. 9
1-3 2 + 0,557 — 0,575 + 0,60 0 '. .O*:-.-' 0 2 2 —2
1-5 3 — 0,557 + 0,575 + 0,60 0 0 0 0,557 + 0,575 + 0,6 =1
1-4 4 — 0,557 — 0,575 + 0,60 0 0 0
1-6 •s,. + 1,00 0 0 — 1,00 0 0 Poids 0,6 p5.
6-7 6 0 0 0 + 0,557 + 0,575 + 0,60
6-8 7 0 0 0 + 0,557 — 0,575 + 0,60 Les autres poids
6-10 8 0 0 0 — 0,557 + 0,575 + 0,60 sont égaux à 1.
6-9 -"9 0 0 0 — 0,557 — 0,575 + 0,60

1,84 0 0 — 0,60 0 0 "i
0 1,32 0 0 0 0
0 0 1,44 0 0 0

0,60 0 0 1,84 0 0
0 0 0 0 1,32 0
0 0 0 0 0 1,44

0,610 0 0 + 0,20 0 0
0 0,758 0 0 0 0
0 0 0,694 0 0 0

0,20 0 0 0,610 0 0
0 0 0 0 0,758 0
0 0 0 0 0 0,694
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Ces formules connues expriment les tensions T et
déformations 5 pour la barre i. A chaque état du
système spatial correspond un système de valeurs Xt. Il
s'agit de réaliser la condition du minimum ; c'est l'état
final cherché. Quant à l'état initial, il n'est pas toujours
exempt d'arbitraire ; il faut choisir les coupures
judicieusement, ce qui n'est pas toujours facile. Ce n'est
pas le but de ces lignes de traiter cette face du
problème mais d'étudier la suite, la recherche du
minimum. C'est le même problème qui se présente en radio-
télémétrie une fois que la solution dite provisoire est
connue.

Coupole Schwedler

Considérons une coupole d'un type très simple mais
avec des barres surabondantes (fig. 3). L'état initial
sera celui dit principal, mais pas nécessairement. Les
coordonnées des quatre nœuds 5, 6, 7, 8 seules varient,
et le système est défini par les valeurs :

Nœuds x ?-%*¦ Nœuds x V «

1 + 6 + 6 0 5 + 3 + 3 + 5,66
2 + 6 — 6 0 6 + 3 — 3 + 5,66
3 — 6 — 6 0 7 — 3 — 3 + 5,66
4 — 6 v+'a 0 8 — 3 + 3 + 5,66

+ hdys + kdza— fi + ^ — Oidx5 + biiys + Cidz6 +
i := 16 pt Si : li.

Voici le tableau des coefficients :

Tableau B

On forme ensuite, comme précédemment, la matrice
des équations normales ; 16 des 65 coefficients rectangles

sont seuls différents de zéro. La matrice réciproque
fournit les valeurs Qu, Q12, Q22, relatives aux inconnues

; considérons en particulier le nœud 5, avec les
coefficients quadratiques Qlu Q22, Q^ pour dx6, dy6, dzs.
Les équations (14) et (15) sont applicables (voir aussi

[4], [6]). On a successivement :

A2 mHi-, ; 52 m*K2 ; C2 m?Ka
où m2 [pcc] : r

Fig. 3. — Coupole Schwedler.

avec r éléments surabondants. A, B, C sont les demi-
axes principaux.

De plus, d'après l'équation (12), on a les valeurs :

± "A/Qii ; ± ™\JQ& ; ± ^VVm
définissant trois paires de plans parallèles ; chaque paire
est perpendiculaire à un des axes de coordonnées. En
faisant varier l'orientation de ces axes, les trois paires
de plans enveloppent l'ellipsoïde. C'est là une définition
plus générale que la précédente. Les Qn, Q^, Qgg varient
mais pas leur somme :

A* + B* + C*|j m2 (Qn + Qn + Qss) M2

ce qui exprime la propriété connue de la sphère orthop-
tique, laquelle est le lieu des sommets des trièdres tri-
rectangles enveloppant l'ellipsoïde.

Ce M2 est un élément important en géodésie. Le
calcul des probabilités, la théorie dite de l'équivalence
(voir [6]) sont aussi à la base de la théorie de l'ellipsoïde

d'erreur.
Dans le système des 16 équations ci-dessus, on pourrait

éliminer les douze inconnues dx5, dy6, dzg,
d'où les quatre équations :

[Av] + ^ 0 ; [Bv] + w2 0 -,

[Ce] + «.3 0; [Dv] + wt 0

TABLEAU B

Barres dx, dys dz, dx* dy» dz. dx, dy, dz, dxg dy» dz.

5-6 0,00 + 1,00 0,00 — 1,00
6-7 + 1,00 0,00 — 1,00 0,00
7-8 0,00 — 1,00 0,00 + 1,00
8-5 + 1,00 0,00 — 1,00 0,00
5-1 — 0,424 — 0,424 + 0,80
6-2 — 0,424 + 0,424 + 0,80
7-3 + 0,424 + 0,424 + 0,80
8-4 + 0,424 — 0,424 + 0,80
6-1 — 0,271 — 0,814 + 0,512
5-2 — 0,271 + 0,814 + 0,512
7-2 l — 0,814 + 0,271 + 0,512
6-3 + 0,814 + 0,271 + 0,512
8-3 + 0,271 + 0,814 + 0,512
7-4 + 0,271 — 0,814 + 0,512 \

5-4 + 0,814 — 0,271 + 0,512
8-1 — 0,814 — 0,271 + 0,512
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Fig. 4. — Coupole d'après Zimmermann.

l'emploi de calculatrices électroniques étant alors indiqué.

Le nombre des équations normales serait réduit
à quatre. En géodésie, on peut aussi établir directement
ces équations ; le calcul des ellipses et ellipsoïdes d'erreur

est moins aisé.

Coupole du Reichstag, à Berlin, d'après Zimmermann

Ce problème n'est pas nouveau mais fut traité comme
système statiquement déterminé ; des barres sont ajoutées

ici, ce qui confère au calcul bien plus d'intérêt.
On a encore pj Si : I4.

Enumérons sommairement les particularités de cette
coupole ; comme dans l'exemple précédent, les forces
extérieures ne sont pas indiquées sur la figure. On

comptait 24 barres et 12 nœuds, soit 36 coordonnées,
mais 12 de celles-ci ne sont pas susceptibles de varier.
En fait, on a 12 liaisons simples, en ce sens que les

variations dz sont nulles pour les nœuds de 5 à 12 ;

de plus, comme la figure 4 le montre, on a encore
dx6 dx10 0 et dy8 dy12 0. Il y a en tout 24

variables et non 36, tandis que le nombre des barres

est porté de 24 à (24 + r) ; sur la figure sont tracées,
mais non en traits pleins, les diagonales (4-5), (1-7),
(2-9), (3-11). On a m? ^ [pvv] : r ; en géodésie, on fait
des comparaisons entre les valeurs m2 de divers réseaux,
et en statique ce serait intéressant. Voici les coordonnées,

toutes positives, en mètres :

Nœuds x y z

1 13,5 22,88 14,9
2 26,7 22,88 14,9
3 26,7 11..12 14,9
4 13,5 11,12 14,9
5 2,0 22,88 0
6 13,5 32,0 0

Nœuds x y z

7 26,7 32,0 0

8 38,2 22,88 0
9 38,2 11,12 0

10 26,7 2,0 0

11 13,5 2,0 0

12 2,0 11,12 0

Le calcul est analogue au précédent ; il n'y a des

ellipsoïdes qu'aux nœuds 1, 2, 3, 4. Aux nœuds 5, 7, 9,
11 ce sont des ellipses, et en 6, 8, 10, 12 de petits
segments linéaires. On peut calculer les déformations des

divers éléments du système ; en géodésie, c'est courant.

Conclusions et résumé

La solution basée sur le principe du travail de
déformation minimum présente de l'intérêt en hyperstatique
spatiale des systèmes articulés quand le nombre des

éléments surabondants est élevé. Le mode de calcul
préconisé ici ne doit donc pas être opposé à d'autres
méthodes ; il faut examiner chaque cas. La statique
peut s'inspirer d'expériences faites en géodésie quant
à l'application de la méthode des moindres carrés. Il
y a ceci de commun entre les réseaux constitués par
des sommets et côtés mesurés d'une part, les systèmes
de barres et nœuds d'autre part, qu'une solution
provisoire intervient ; en statique c'est un état dit
principal, de référence (Grundsystem). Les éléments
surabondants sont éliminés momentanément dans les

réseaux et font l'objet de coupures dans les systèmes.
Mathématiquement ce n'est pas l'étape la plus
intéressante du calcul ; puis vient la seconde phase du

problème avec la condition [pcc] minimum. Les

poids sont bien déterminés en hyperstatique : p ES : l;
on ne peut pas toujours en dire autant en radiotélé-
métrie. La solution par les variations de coordonnées
des nœuds a fait ses preuves en géodésie bien avant
l'existence de calculatrices électroniques. La notion
d'ellipsoïde de déformation est nouvelle ; en statique
les praticiens seront vite familiarisés avec le calcul de

ces surfaces ; d'autant plus, les exemples traités le

montrent, que ces surfaces peuvent être calculées à

l'échelle près dès que la structure du système et les

poids sont connus. C'est ce que l'on fait couramment
en géodésie, où l'ordre de grandeur de l'échelle est

estimé, par voie de comparaison, à titre provisoire.
Des progrès sont donc réalisables en hyperstatique des

systèmes articulés.
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ACTUALITE INDUSTRIELLE 17

Paillard S.A. agrandit son département des études

Le 11 octobre 1961, la Direction de Paillard S.A.
avait convié des représentants des autorités, du monde

industriel, de l'enseignement et de la presse à l'inau¬

guration du nouveau bâtiment du département des

études. Les participants entendirent une allocution de

M. Pagan, directeur général, assistèrent à la projection
d'un film intitulé « Images vivantes », visitèrent les

différents locaux du nouveau bâtiment du département
des études, et eurent ensuite l'occasion, au cours d'un
cocktail, d'échanger leurs impressions.
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