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LE PROBLEME DE LA SIMILITUDE DES CALCULS
HYPERSTATIQUES ET RADIOTELEMETRIQUES

par A. ANSERMET, ing.-prof.

Les lignes qui suivent porteront surtout sur des sys-
témes hyperstatiques articulés et spatiaux. Récemment
a I'étranger, en Autriche en premier lieu sauf erreur,
quelques auteurs signalérent I’analogie existant entre
certains calculs hyperstatiques et télémétriques. Dans
les deux cas il y a un probléme de minimum & résoudre
ce qui se traduit, en général, par 'application de la
méthode des moindres carrés. 1’élément fondamental
en statique est U'équation qui exprime le travail de
déformation (traction ou compression) :

T2l ((TL\2ES >
A 2. 953 L \\&s) o f minimum

somme étendue a toutes les barres. Les 7 sont des
forces, [ des longueurs de barres, S des sections trans-
versales et £ un coeflicient d’élasticité. L’identification
est immédiate avec la forme classique :

(1)

(2) 2 (¢v2p) = [pe¢] = minimum

ou les ¢ sont des allongements ou raccourcissements
des barres ; le coeflicient de 7 dans ¢ est aussi appelé
module. Quant aux poids p, ils sont déduits des rela-
tions (1) et (2):

ES . S :
(3) P= 57 et, en général, p = 7 o parfois,
p = constante. En radiotélémétrie, p a une autre forme.
En statique, il faut tenir compte de la dimension de E.

Les calculs sont parfois un peu longs, mais on aura
recours aux calculatrices électroniques. A titre docu-
mentaire, la figure 1 montre un fragment de réseau
radiotélémétrique donnant lieu a4 un nombre élevé
d’éléments surabondants et d’équations normales.

Une formule fondamentale, mais qui ne peut pas
étre  démontrée rigoureusement, est: m? =< [pop]:r
(r éléments surabondants).

Ce m que I'on peut appeler, par analogie, « déforma-
tion moyenne quadratique relative a I'unité de poids »,
jouera un réle pour le calcul des ellipses et ellipsoides
de déformation.

De plus, le calcul est susceptible d’étre fractionné,
solution qui sera la bienvenue en statique comme en
géodésie. On aura- donc :

(@) v=v ot (o] = [pr'e] + [po"v’]

le terme en ¢’¢” étant nul.
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Fig. 1. — Réseau radiotélémétré Hiran.

Les cas concrets qui seront traités ci-aprés sont, en-

principe, ceux développés par B. Mayor dans sa publi-
cation de 1926 mais en rendant les systémes hypersta-
tiques par I'adjonction d’éléments surabondants ; cela
change le caractére du probléme posé.

La méthode qui sera appliquée est celle dite aux
variations des coordonnées, qui a fait ses preuves en

géodésie. Dans un réseau télémétrique hyperdéterminé,

les coordonnées des sommets ne sont pas connues sans
ambiguité ; on a recours a des valeurs provisoires ou
transitoires a partir desquelles on fait varier les coor-
données pour réaliser la condition [pe¢] = minimum.

Au coté mesuré [y, correspondent une valeur provisoire
lon + fon et une valeur compensée lgy + vg telle que:

() lgn + vgn = lgn + fon + agn (dxg — day) + by
(dyy — dyn) + cqn (dzg — dzp)

les dx, dy, dz étant les variations de coordonnées telles
que

2 2 2 _

ag/: - bgh + Cgh =

tandis que (a,yy3,) et (wpypz,) sont des valeurs provi-
soires.

En statique, ce sont les coordonnées de deux nceuds
reliés par une barre ; si en géodésie on doit connaitre
avec précision ces valeurs, ce n’est pas le cas en sta-
tique, ou elles servent seulement a déterminer les
coeflicients a, b, ¢ exprimant la structure du systéme
articulé spatial. Les exemples ci-aprés le montreront.

Le praticien a une certaine liberté pour déterminer
ces termes absolus f, tels que: [pff] = [poe].

Exceptionnellement, on peut avoir: [pff] = [pye].

Les géodésiens recherchent une valeur [pff] assez
voisine de [pye].
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Fig. 2. — Systéeme triplement indéterminé.

En résumé on a, sous forme générale :
(6) p=1 4 F

ou [ est une fonction linéaire des dz, dy, dz.

Par cette méthode, on peut calculer des ellipses et
ellipsoides de déformation ; il n’est méme pas néces-
saire de connaitre les [ pour déterminer la forme et
I’orientation de ces courbes et surfaces.

En statique, la solution provisoire de la géodésie a
comme analogue un état a partir duquel on fait varier
les coordonnées des nceuds pour réaliser la condition
du minimum. Ces variations dz, dy, dz peuvent méme
étre éliminées, comme on le verra. Cet état est obtenu
en opérant des coupures fictives et le calcul des défor-
mations pour cette premiére phase est un probléeme
connu ; analytiquement, on a pour ces déformations
une expression de la forme :

oo+ ¢ (X;, X5, X5 ...) (voir (16) ci-apres)
(principe de la superposition)

ou ¢ est une fonction linéaire des inconnues hypersta-
tiques X, X,, X5, ... Il n’est pas possible de dire a
priori quel mode de calcul est préférable ; chaque cas
est a4 examiner séparément.

Pylone articulé a quatre barres et une liaison

Dans la figure 2, c’est le pyldone ayant,comme som-
met le nceud (1) ; c’est le seul qui soit libre. La liaison
prend la forme suivante : la distance 1-A est connue
exactement ; pour le moment il en est fait abstraction.
Télémétriquement, les quatre distances servant a déter-
miner le sommet ne sont pas compatibles ; il y a ambi-
guité. On aura donc recours a un point auxiliaire 1,
déterminé méme graphiquement ; il constitue la Solu-
tion provisoire :

le—2=bL+h;1lo—3=bL+fisly—4=1l+fs;
1o—5=1l+ s
Ce point 1, est I'origine des variations de cordonnées

dz, dy, dz devant rendre minimum 'expression [pev],
d’ou le systéme :

(7) — fi + ¢ = aydx 4+ bidy + cidz
@+ 8+ =1)
t=1,2,3,4; les poids sont p;.

Cette équation (7) se déduit de (5); pour les équa-
tions normales, on a:




(8) [pav]=0; [pbe]=0; [pes] =0

(forme 1mplicite)

Avec les termes absolus [paf], [pbf], [pcf] et [pff] =
= [py¢], de plus, on a la matrice des coeflicients et sa
réciproque :

[paa] [pab] [pac] Qn Q1 015
(8) [[pba] (pbb] [PZ’C_]] [021 Qa2 023] (voir [4], [6])
[pea] [peb] [pec] (% ()32 Q35

Ces Qyq, Q1o ... Qg3 sont les coeflicients de poids
des Inconnues.

Ces deux matrices peuvent étre diagonales, d’ou,
dans ce cas:

[paa]Qy, = [pbb]Qa = [pec]Qss = 1.

Dans le systéme hyperstatique, il n’y a qu'une cou-
pure a faire et, a cause de la symétrie, le choix de la
barre est indifférent ; il en résulte I'état dit principal
ou de référence, considéré comme état initial pour la
variation des coordonnées.

Exemple numérique : il a un caractére didactique.

Barre a; bi ci pi
1-2 + 0,577 + 0,577 -+ 0,577 1
1-3 -+ 0,577 — 0,577 -+ 0,577 1
1-5 — 0,577 -+ 0,577 -+ 0,577 1
1-4 — 0,577 — 0,577 -+ 0,577 1

[pab] = [pac] = [pbe] = 0 = Q1 = Q13 = Qa3
[paa] = [pbb] = [pec] = 4/3
Qu — 022 = Qsa = 3/4

Ces valeurs, on le verra, caractérisent une sphére de
déformation.

Au centre, on a [py¢] = minimum.

Les équations (8) deviennent :

o1t ve=v3F 95 91+ v3=94 953
v+t o3+ v, =0 d’ou

T o= —py=—py=<F vy
On peut aussi éliminer les trois inconnues dz, dy, dz :

nw——vntou=hHh—fh—fith=w
et [pv¢] = minimum
2
(9) +"1:_"z:—"3:+"4:%; mz:%_

La différence ([pff] — [pv¢]) est un élément impor-
tant du probléme.

~

Ellipsoide de déformation

C’est I'analogue de I'ellipsoide d’erreur. A cet effet,
considérons un systéme de coordonnées §, m, { paral-
lele au systéme @, y, z; la nouvelle origine coincide
avec le point compensé ([pe¢] = minimum).

A cause du parallélisme des axes, les coeflicients ai,
bi, ¢; subsistent et aux valeurs ¢; il faut en substituer
d’autres telles que :

(10) ¢ =a;&+ bin + {4+ v

En tenant compte des équations normales (8), on a:

([pov’] = [poe)).

(11)  [pe'e’] = [pev]
+ [pec] O
ou [pe's'] = [po] + (QT)
ou (QT) est une forme quadratique ternaire en §, n, {;
si les coeflicients quadratiques [paa), [pbb], [pec] sont
seuls différents de zéro, on a:

(12)  [paa] € + [pbb]n? + [pec] T* =
— _Ez_ i n_z ik __2- = m?
- Ou On O '

C’est Pellipsoide dit moyen qui intéresse les géodésiens
mais on peut avoir d’autres termes absolus ; statique-
ment, ce sont des surfaces caractérisées par un travail
de déformation constant : [pe’v’] = constante. Elles sont
concentriques et se réduisent a un point pour [pe’e’| =
= [pov]. C’est la maniére la plus simple d’aborder cette
face du probléme, mais il y en a d’autres ([4], [6]);
dans le plan, on a des ellipses.

[paa) € + 2[pab] &n + ... +

Le raisonnement ci-dessus subsiste dans le cas ou
(13) [pff] = constante.

Solution générale. Si dans les matrices (8) les élé-
ments non diagonaux ne sont pas nuls, le calcul est

-moins simple, car il faut résoudre une équation cubique

dite aux axes principaux; en géodésie, on a recours
en général a I'équation dite en K :

(Qu—K) 0O Q1
(14) Qn (Qea— K) Qs =10
Qs U3 (Q35 — K)
racines K, K,, K; (voir [4], [6])

(15)  K®— (Qu + Qp + Q) K2 +
I { On Qr Q22 O3
O O Qs2 Qs

Qll le 013
o 021 Q‘z‘z 023 = 0.
Qsl Q32 Qg3

Les racines K, K,, K; sont proportionnelles aux
carrés des axes principaux. Au lieu des coeflicients
Q115 Q1a, ... Q43 on aurait pu calculer avec les coefli-
cients [paal, [pab], ... [pcc], d’ot I'équation dite en S
avec les racines Sy, S,, S; telles que :

1 4 4
Sy 7S, T S

Plus loin, nous verrons encore d’autres développe-

ments de ce probléme.

033 031
013 Qll

bl
| K

Ky Kye Ky=

Liaisons; fractionnement des calculs

La figure (2) montre qu’il y a une liaison : la distance
du point A au'sommet 1 est exactement connue. Une
solution consisterait & exprimer cette condition sous
forme linéaire en fonction des dz, dy, dz du nceud 1.
Une de ces inconnues serait alors éliminée. Certains
praticiens préférent fractionner le calcul pour mieux
se rendre compte du role joué par la liaison ou pour
une autre raison. Il est fait abstraction de la liaison
au cours d’une premiére phase; en seconde phase on
ajoute, aux variations dz, dy, dz, de nouvelles varia-
tions (dz), (dy), (dz) liées par la condition :

Ay(da) + Aydy) + Agldz) + 4= 0
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la condition : [pe¢] = minimum subsistant, mais ici il
y a aussi fractionnement, comme on I'a déja men-
tionné :
[poe] = [po'e’] + [pev”].
Il n’est pas possible d’entrer dans plus de détails
(voir [5]).

Cas ou trois éléments sont surabondants

On pourrait dire qu’il s’agit d’un double pylone ; le
systéme principal ou de référence fut traité aussi par
B. Mayor (p. 41). Cet éminent professeur ayant trouvé
cet exemple dans 'ouvrage de A. Féppl : « Vorlesungen
iiber technische Mechanik», T. 11, appliqua sa méthode
de représentation plane, qui se révéla plus simple. 11
y avait six barres et deux nceuds articulés libres (1)
et (6) jouant le role de sommets de pylones; mainte-
nant (figure 2) il y a neuf barres, d’ou :

m? = [pee] : 3 ([pr¢] = minimum).

Admettons des valeurs numériques susceptibles de
faciliter le calcul tout en réalisant une certaine symé-
trie ; ’équation (7) devient :

— fi + vi = aidzy + bidy, + cidz, +
+ a’idzg + bydyg + ¢’idzg (poids p)

et pour la matrice des équations normales et sa réci-
proque, en partant du systéme : [pae] = 0, [pbe] = 0,
[pe'v] =0
Tableau A

Le coeflicient ou élément non diagonal qui n’est pas
nul exprime la corrélation entre da; et dzg. Les axes
des ellipsoides de déformation en (1) et (6) sont paral-
leles aux axes de coordonnées. Quant aux axes prin-
cipaux, 1ls sont dans le rapport :

V0,610 : /0,758 : 1/0,694.

La suite du calcul ne présente pas d'intérét spécial ;
ici encore on pourrait éliminer les six inconnues dx,
dy,, ... dzg dans les neuf équations.

Les forces extérieures peuvent étre quelconques.

Calcul en représentation plane

L’intérét de la représentation plane pour le calcul
de systémes spatiaux statiquement déterminés n’est
plus contesté ; la question se pose de savoir jusqu’a
quel point on peut appliquer cette méthode en hyper-
statique. Que devient, en particulier, la notion d’ellip-
soide de déformation ? une telle surface est le lieu des
points pour lesquels le travail de déformation est cons-
tant. En d’autres termes, si la condition [pe¢] =
= minimum est remplie pour le sommet (1) du pyléne’
articulé de la figure 2, ce neeud, d’apres 'équation (11),
est en position au centre de la surface définie par la
condition [pe’¢’| = constante. Une autre définition,
plus générale, sera développée plus loin ; en représen-
tation plane cette notion d’ellipsoide de déformation
devient caduque ou en tous cas précaire.

Il est clair que ce mode te représentation présente
de l'intérét surtout lorsqu’on calcule par voie graphi-
que ; en hyperstatique, la solution numérique joue un
plus grand réle. Analytiquement on procéde a un
changement de variables ; dans le plan un nceud du
systéme gauche est matérialisé par une plaque indé-
formable et mobile. Les barres issues d’un nceud, spa-
tialement, ne sont plus concourantes en plan mais, en
général, sont liées a la plaque en des points distincts.
Chaque barre donne lieu & une équation exprimant sa
déformation ; on substitue alors a trois éléments linéai-
res de nouvelles variables ou inconnues : une rotation
élémentaire de la plaque et les coordonnées planes du
centre de rotation. Les équations exprimant les défor-
mations des barres ne sont plus linéaires par rapport
a ces inconnues. On ne voit guére la de simplification.

Le but de la représentation plane, en hyperstatique
spatiale des systémes articulés, est surtout de fournir,
pour les équations fondamentales ci-apres, les valeurs
des termes absolus et coeflicients :

([3], p.- 68, 292).
Xi = inconnue hypersta-
tique).

(16) Ti= Toi + SXaTu |
8 = 8o + X8y ’

TALEAU A
Barre I a; bi ci a’; b’ c’;
1-2 4l + 0,557 + 0,575 -+ 0,60 0 0 0 =<9
1-3 ) + 0,557 — 0,575 -+ 0,60 0 0 0 - g 9 —39
1-5 3 — 0,557 + 0,575 -+ 0,60 0 0 0 0,557 + 0,575 4+ 0,6 =1
1-4 4 — 0,557 — 0,575 -+ 0,60 0 0 0
1-6 5 + 1,00 0 0 —1,00 0 0 Poids 0,6 = p;.
6-7 6 0 0 0 + 0,557 -+ 0,575 -+ 0,60 :
6-8 7 0 0 0 + 0,557 — 0,575 -+ 0,60 Les autres poids
6-10 8 0 0 0 — 0,557 -+ 0,575 =+ 0,60 sont égaux a 1.
6-9 9 0 0 0 — 0,557 — 0,575 -+ 0,60
1,84 0 0 —0,60 0 0 0,610 0 0 + 0,20 0 0
0 1,32 0 0 0 0 0 0,758 0 0 0 0
0 0 1,44 0 0 0 0 0 0,694 0 0 0
— 0,60 0 0 1,84 0 0 + 0,20 0 0 0,610 0 0
0 0 0 0 1,32 0 0 0 0 0 0,758 0
0 0 0 0 0 1,44 0 0 0 0 0 0,694
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Ces formules connues expriment les tensions 7T et
déformations & pour la barre ©. A chaque état du sys-
téme spatial correspond un systéme de valeurs Xj. Il
s’agit de réaliser la condition du minimum ; c’est I'état
final cherché. Quant a I’état initial, il n’est pas toujours
exempt d’arbitraire ; il faut choisir les coupures judi-
cieusement, ce qui n’est pas toujours facile. Ce n’est
pas le but de ces lignes de traiter cette face du pro-
bleme mais d’étudier la suite, la recherche du mini-
mum. (C’est le méme probléme qui se présente en radio-
télémétrie une fois que la solution dite provisoire est
connue.

Coupole Schwedler

Considérons une coupole d’un type trés simple mais
avec des barres surabondantes (fig. 3). L’état initial
sera celui dit principal, mais pas nécessairement. Les
coordonnées des quatre nceuds 5, 6, 7, 8 seules varient,
et le systéme est défini par les valeurs :

Nceuds 7 y z Neeuds | @ Y Z
1 +6|+6] 0 b} + 3|+ 3|+ 5,66
2 +6|—6] 0 6 +3(—3]| 4 5,66
3 —6|—6| 0 7 —3[—3| + 5,66
4 —6|+6] 0 8 —3|+ 3|+ 5,66

— fi + vi = aidzs + bdyy + cidzg + ... + kidyg + Lidzg

Voici le tableau des coefficients :
Tableau B

On forme ensuite, comme précédemment, la matrice
des équations normales ; 16 des 65 coeflicients rectan-
gles sont seuls différents de zéro. La matrice réciproque
fournit les valeurs Qyq, Qy,, Q,s, - .. relatives aux incon-
nues ; considérons en particulier le neeud 5, avec les
coellicients quadratiques Qy;, Qys, Q35 pour da;, dys, dzs.
Les équations (14) et (15) sont applicables (voir aussi
[4], [6]). On a successivement :

A2 =m?K,; B¥*=m?K,; C*=miK,

ou m? = [pev]:r

3
Fig. 3. — Coupole Schwedler.

avec r éléments surabondants. A, B, C sont les demi-
axes principaux.

De plus, d’aprés I'équation (12), on a les valeurs :

+m\/ Q5 +m\/Qyy 5 + m\/Qgy
définissant trois paires de plans paralléles ; chaque paire
est perpendiculaire 4 un des axes de coordonnées. En
faisant varier I'orientation de ces axes, les trois paires
de plans enveloppent Iellipsoide. C’est la une définition
plus générale que la précédente. Les Qyy, 0y, Qg3 varient
mais pas leur somme :

A2 4 B2+ C% = m? (Qu + Qu + Qs3) = M2

ce qui exprime la propriété connue de la sphére orthop-
tique, laquelle est le lieu des sommets des triédres tri-
rectangles enveloppant Dellipsoide.

Ce M? est un élément important en géodésie. Le
calcul des probabilités, la théorie dite de I’équivalence
(voir [6]) sont aussi a la base de la théorie de Iellip-
soide d’erreur.

Dans le systeme des 16 équations ci-dessus, on pour-
rait éliminer les douze inconnues dazj;, dys;, ... dzg,
d’ou les quatre équations :

[Ao] +w;,=0; [By]+wy=0;
[Co]l +wg=0; [De]+wy=0

TABLEAU B
Barres dx dys dz; dag dys da, dy, dz, dxg dyg dzg
= 0,00 |+ 1,00 0,00 |—1,00
- -+ 1,00 0,00 —1,00 0,00
- 0,00 |—1,00 0,00 | + 1,00
- -+ 1,00 0,00 —1,00 0,00

— 0,424 | — 0,424 | + 0,80

—0,271 | 4+ 0,814 | 4 0,512

1

+ 0,814 | — 0,271 | 4- 0,512

w@"\]m:ﬁ\]w%ﬁ("ﬂ\]@iﬂm\lcﬁU‘
P SWWNER S, S W= OT a0

— 0,424 | + 0,424 | 4 0,80
—0,271 | — 0,814 | 4+ 0,512

2 + 0,814 | 4+ 0,271 | 4 0,51

+ 0,424 | + 0,424 | + 0,80
+ 0,424 | — 0,424 | + 0,80
— 0,814 | 4 0,271 | 4 0,512

+ 0,271 | + 0,814 | 4+ 0,512
+ 0,271 | — 0,814 | + 0,512 v

—0,814 | —0,271 | + 0,512
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Fig. 4. — Coupole d’aprés Zimmermann.

I'emploi de calculatrices électroniques étant alors indi-
qué. Le nombre des équations normales serait réduit
a quatre. En géodésie, on peut aussi établir directement
ces équations ; le calcul des ellipses et ellipsoides d’er-
reur est moins aisé.

Coupole du Reichstag, a Berlin, d’aprés Zimmermann

Ce probléme n’est pas nouveau mais fut traité comme
systéme statiquement déterminé ; des barres sont ajou-
tées ici, ce qui confére au calcul bien plus d’intérét.
On a encore p; = S;: I;.

Enumeérons sommairement les particularités de cette
coupole ; comme dans Pexemple précédent, les forces
extérieures ne sont pas indiquées sur la figure. On
comptait 24 barres et 12 nceuds, soit 36 coordonnées,
mais 12 de celles-ci ne sont pas susceptibles de varier.
En fait, on a 12 liaisons simples, en ce sens que les
variations dz sont nulles pour les nceuds de 5 a 12
de plus, comme la figure 4 le montre, on a encore
dxg = dw;y=0 et dyg=dy;, = 0. Il y a en tout 24
variables et non 36, tandis que le nombre des barres
est porté de 24 a (24 + r); sur la figure sont tracées,
mais non en traits pleins, les diagonales (4-5), (1-7),
(2-9), (3-11). On a m® = [pyv]:r; en géodésie, on fail
des comparaisons entre les valeurs m? de divers réseaux,
et en statique ce serait intéressant. Voici les coordon-
nées, toutes positives, en meétres :

Neeuds | @ Y 2 Neeuds [ @ y z
1 13,5 | 22,88 | 14,9 7 26,7 | 32,0 0
2 26,7 | 22,88 | 14,9 8 38,2 (22,88 | 0
< 26,7 | 11,12 (14,9 9 38,2 111,12 0
4 13,5 | 11,12 | 14,9 10 26,7 | 2,0 0
5 2,0 22,88 0 11 13,5 | 2,0 0
6 13,5 | 32,0 0 12 2,0 11,42 0

Le calcul est analogue au précédent ; 1l n’y a des
ellipsoides qu’aux neeuds 1, 2, 3, 4. Aux neceuds 5, 7, 9,
11 ce sont des ellipses, et en 6, 8, 10, 12 de petits seg-
ments linéaires. On peut calculer les déformations des
divers éléments du systéme ; en géodésie, ¢’est courant.

Conclusions et résumé

La solution basée sur le principe du travail de défor-
mation minimum présente de 'intérét en hyperstatique
spatiale des systémes articulés quand le nombre des
éléments surabondants est élevé. Le mode de calcul
préconisé ici ne doit donc pas étre opposé a d’autres
méthodes ; il faut examiner chaque cas. La statique
peut s’inspirer d’expériences faites en géodésie quant
a Dapplication de la méthode des moindres carrés. Il
y a ceci de commun entre les réseaux constitués par
des sommets et cotés mesurés d’une part, les systémes
de barres et nceuds d’autre part, qu'une solution pro-
visoire intervient ; en statique c’est un ¢état dit prin-
cipal, de référence (Grundsystem). Les éléments sur-
abondants sont ¢liminés momentanément dans les
réseaux et font 'objet de coupures dans les systémes.
Mathématiquement ce n’est pas I’étape la plus inté-
ressante du calcul ; puis vient la seconde phase du
probleme avec la condition [pe¢] = minimum. Les
poids sont bien déterminés en hyperstatique : p = ES: [;
on ne peut pas toujours en dire autant en radiotélé-
métrie. La solution par les variations de coordonnées
des neeuds a fait ses preuves en géodésie bien avant
Iexistence de calculatrices électroniques. La notion
d’ellipsoide de déformation est nouvelle ; en statique
les praticiens seront vite familiarisés avec le caleul de
ces surfaces; d’autant plus, les exemples traités le
montrent, que ces surfaces peuvent étre calculées a
I'échelle prés deés que la structure du systeme et les
poids sont connus. C’est ce que l'on fait couramment
en géodésie, ou l'ordre de grandeur de Déchelle est
estimé, par voie de comparaison, & titre provisoire.
Des progrés sont donc réalisables en hyperstatique des
systémes articulés.
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ACTUALITE INDUSTRIELLE 17

Paillard S.A. agrandit son département des études

Le 11 octobre 1961, la Direction de Paillard S.A.
avait convié des représentants des autorités, du monde
industriel, de 'enseignement et de la presse a l'inau-

414

guration du nouveau batiment du département des
études. Les participants entendirent une allocution de
M. Pagan, directeur général, assistérent a la projection
d’un film intitulé « Images vivantes», visitérent les
différents locaux du nouveau batiment du département
des études, et eurent ensuite I’occasion, au cours d'un
cocktail, d’échanger leurs impressions.
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