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BASES PHYSIQUES ET MATHEMATIQUES
DES MECANIQUES STATISTIQUES DE LA TURBULENCE

par FRANGOIS BAATARD, ingénieur EPUL, Lausanne

La fumée qui sort d’une cheminée, & I'image de celle
d’une pipe ou d’un cigare, les nuages d’une explosion
ou ceux de I'atmosphére, le jet-stream ou des rafales
de vent sont des exemples parmi beaucoup de phéno-
ménes qui évoluent selon des lois compliquées : les
trajectoires sont brisées ou dessinent des courbes enche-
vétrées, une particule initiale se scinde en une quantité
d’autres qui prennent a leur tour autant de caractéres
individuels aléatoires qui sont les signes extérieurs de
la diffusion du milieu; les parois invoquées par la
mécanique classique des fluides s’évanouissent et cette
diffusion ne s’attaque pas seulement aux positions,
mais encore aux vitesses, aux températures, etc., a
toute grandeur physique fixant 1'état de ce milieu;
I'une de ses propriétés les plus remarquables en est son
expansion.

On congoit facilement qu'une mécanique dont les lois
sont originellement, & la suite des expériences de Galilée,
construites par Newton sur la base du solide, puis trans-
posées aux fluides sous la forme de 'hydrodynamique
classique, soit peu adéquate a la description des milieux
en instance de diffusion turbulente et que, dans la néces-

sité de coordonner les découvertes faites essentiellement
dans I'atmosphére, 1l ait été fait appel a des notions
nouvelles susceptibles de mieux rendre compte des
phénomeénes observés. Avec M. A. Viaut, président de
I’'Organisation Météorologique Mondiale, il n’est pas
exagéré de dire que « la mécanique de 'atmosphére est,
a certains égards, a l'avant-garde du progrés de la
mécanique des fluides » .

Les guides des nouvelles investigations ont été la
théorie cinétique des gaz et 'analyse harmonique.

1. Variables de Lagrange, variables d’Euler et hydro-
dynamique classique

Ce sont les deux modes de description traditionnelle
d’un mouvement.

a) Les variables ou coordonnées de Lagrange sont les
coordonnées (x, y, z; t) d'un point P dont on suit
le mougement sur sa trajectoire ', en général par

' v. La DMeétéorologie, par A. Viaur. Presses Universitaires de

France, 1958.
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CACH

. - g3 \ )
son vecteur-lieu s = s (¢) (fig. 1).

\"'B

b) Les variables d’Euler sont obtenues & partir de
celles de Lagrange par :

=
) s e
1) Lo — o (P
(1) T 50
. . ==
et permettent d’examiner le champ des vitesses v

dont elles sont les composantes ¢, ¢, ¢..

Le calcul de T'accélération met en évidence deux
dérivées bien distinctes :

(2)

P =5
—4’ v (P;t) I - (")—> dy
- — @ P = —
5 ()t v (1 t
= . B = . . - -
variation de v, variation de » variation variation
Clest-d-dire = dans le temps, -+ de-r) = mm_lf
accélération c'est-d-dire dans lespace de v
variation locale
Fopé = 1 "= n J "7 ("*
u y représente l'opérateur — 1 —_ — k(2
ey P Jx Jy Jz ’

e AR —_ .
J, Kk désignant les vecteurs unitaires du systéme

d’axes 0, @, y, z).
Les deux dérivées sont :

) o y 5
1) i = taux de variation en un point de espace
ou dérivée locale.
2) 77 = taux de variation le long de la trajectoire
‘

de la particule ou dérivée moléculaire.

Le mouvement est donc décrit par la variation dans
le temps et dans l'espace du champ des vitesses.

=
La fonction s peut étre développée en série

-t = — —[:
s:so—{-a(t—to)—!-?(t—to)z—}—
s (P
- > 25 (Pos ¢
avec  s; =8Py ;t), a:((—o)tzt,,, ... ete.

dt
Le fluide de masse p décrit par les systémes de

Lagrange ou d’Euler est conservatif, propriété exprimée
par I'équation de continuité
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div (pu) =o

P
(3) 5

L’hydrodynamique classique introduit le vecteur-

tourbillon 7" = - rot ¢ obéissant a I'équation de Helm-

holtz, qui en donne I'évolution

@ w5 =(5)ve

En réalité, il y a destruction quasi immédiate d’un
tel tourbillon et cette équation n’est valable que de
courts instants.

Dans un mouvement permanent et irrotationnel, le
bilan des énergies est fourni par le théoréme de Bernoulli

2
(5) T+('+P=cte

exprimant que le long d'un filet liguide, la somme des
2
énergies cinétiques —— potentielle U et de pression P

est constante.

L’hydraulique introduit les dissipations d’énergie par
un terme supplémentaire des pertes de charge, passant
ainsi de I'hydro-dynamique rationnelle du fluide parfait
a celle, empirique, du fluide réel.

L’équation de Navier opére ce méme passage en intro-
duisant une relation linéaire entre les tensions et les
vitesses de déformation mettant en jeu la viscosité v
du fluide, de maniére que la force ;l7 s‘opposant a I'élé-
ment de surface do a une distance dn d’un autre élé-
ment du fluide et de vitesse de soit

— —
df dy
(6) o= " Vin

Dans le cas d’un fluide incompressible, les équations
de Navier s’écrivent en admettant 'hypothése (6)

Vi P, v i F 1 Ipi

it § R M - I 2,
o et ey o oz T VY

7

- 1 02
y? désignant le laplacien E Ja?
K

2. Mouvements d’ensemble, fluctuant et moyen

On doit a Boussinesq la décomposition du mouvement
d’ensemble en un mouvement moyen el un mouvement
d’agitation obéissant au schéma suivant de composition
des vitesses :

— = —
8 4 — © + o
( ) vitesse 9 vitesse + vitesse
d’ensemble T moyenne d’agitation

C’est le vecteur 7’ d’agitation qui est rendu responsable
des effets de la turbulence et on lul assigne des propriétés
voisines de celles des vitesses des molécules d’un gaz,
prE'Pccupati011 majeure des théories de la turbulence.

¢’ décrit des trajectoires complexes et diffuses et dont
les lois relevent de la statistique et du calcul des pro-

—

babilités, tandis que ¢ moyen indique la tendance




générale du mouvement, en fonction des conditions
initiales. A chaque instant, on peut effectuer la com-
position (8), couramment utilisée sous d’autres formes
dans les applications de la théorie des erreurs, en élec-
trotechnique, ete.

3. Les tensions turbulentes de Reynolds et les étages

d’énergie

Nous avons dit que I'un des guides des théoriciens
de la turbulence était le gaz, dont l'agitation a été
légalisée dans la théorie cinétique. C'est bien ce qui
a conduit Reynolds a transposer les propriétés de la
molécule a la particule en définissant la vitesse ¢
moyenne d'un groupe de particules turbulentes conte-

nues dans un volume Q par:

9) w=g [[[ wwo, e

Appliquant les équations de Navier a ces groupes de
particules, Reynolds en a déduit la trés importante
équation aux dérivées partielles suivante :

(10)
i — v 1 Jp; =
‘ﬁ \' (3 e = [ —— ﬂ— vA? = Vp i Vli V’k
Jt T d T g p Jx; ~" Jap
k k

qui relie les propriétés du mouvement d’ensemble aux
tensions — p o oK pure'ment turbulentes.

(’est mathématiquement une premiére solution du
probléeme des relations entre les échelles des mouvements
qui a été soulevé par les météorologistes Dedebant et
Wehrlé alors qu’ils établissaient les lois de la circulation
générale de l'atmosphére. La question est de savoir
dans quelle mesure un mouvement d’échelle inférieure,
tel celui d’agitation, influence ou modifie les mouve-
ments d’échelles qui lui sont supéricures, c’est-a-dire
les mouvements moyen ou d’ensemble. Avec les deux
auteurs ci-dessus, von Weizsiicker et W. Heisenberg ont
répondu a la question.

En attendant, les équations (10) font apparaitre :

10 un étage supérieur, qui est celui de U'énergie ciné-
lique du mouvement moyen ;

20 un étage moyen, qui est celui de 1'énergie cinétique
d’agitation des particules ;

30 un élage inférieur, qui est celul de la dissipation
en chaleur de Uénergie cinétique des particules, en
raison des tensions de Reynolds — p ¢ ¢

Une objection a été faite au sujet de la délimitation
du volume Q; comment y parvenir ? C’est la notion
de corrélation, base des mécaniques statistiques de la
turbulence, qui permet de répondre.

4. La transposition par Taylor et Prandtl de la théorie
cinétique des gaz de Maxwell-Boltzmann en méca-
nique des fluides turbulents

Le plus simplement possible, nous allons montrer
comment ce passage a été fait.

Taylor suit les mouvements des particules avec les
variables de Lagrange et forme les moyennes tempo-
relles

p(t), v+ Ay, e()? ¢+ A1)?

X, (t)
X, (t)

X, (t)

Fig. 2.

a deux instants ¢ et ¢t + At. Un paquet de particules
étant en 0 (fig. 2) a 'instant originel ¢ = 0, et puisque
d

— x = ¢, on peul écrire:

dt

‘ 1 d -
(11) 7 2? (At) = x (At) v (At)
Bien évidemment aussi :
At
s)= [ v0ix,
o

X étant un parameétre d’intégration.
(11) devient:

1 d
7 (;_t a2 (At) = f v (x) ¢ (At) dx

[

At

Taylor admet une telle relation valable pour le
mouvement d’agitation d’indice ” et écrit :

At
77 A S ) R S |
Tl = [ Vv B

(2]

N

(12)

Or, 2”2 (At) est I'écart quadratique moyen des posi-
tions observées pendant lintervalle de temps At
cependant que le produit moyen

(13) o (x) ¢ (A1)

caractérise le «couplage statistique», c’est-a-dire la
corrélation des vilesses pendant le méme laps de temps.

On peut done énoncer le résultat essentiel (12) sous
la forme :

La dérivée de Uécart quadratique moyen de la
position est U'intégrale du coeffictent de corrélation
des vitesses.

Un moupement permanent correspond a un produit
moyen (13) ne dépendant que de At et 'on peut poser
0’2 = (% = constante = vilesse quadratique moyenne d’agi-
tation.

Le coefficient de corrélation r répond alors a la
formule :

vl o' (At) ¢ (X) = o' (At) ¢ (X)
e 2 - c?

et (12) prend lallure :

d At
7 %2 (Al) = C3 f rdy

o

(14)

DO =
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Les deux cas limites sulvants s’interprétent facile-
ment :

: . 1
1. St At est petit, r— 1 et C%. At deve-

55T
2 dt
nant par intégration |/9;’2 = Ct, signifie que la
dispersion des partieules est proportionnelle au
temps.

(8]

Si At est grand, r(At) devient petit, U'influence du
mouvement initial étant de plus en plus faible
sur les mouvements de plus en plus lointains.

(Cest & ce moment qu'intervient Uhypothése fonda-
mentale de Prandil : r devient négligeable dés Uinstant
ot la particule a été renouvelée par la diffusion et

@0
0 = f r(x) dx représente ce temps de renouvellement.
o
Il Tui correspond une longueur de corrélation ow de

mélange [ :

w0

c f r (x) dx

0

l=C-8=

et la relation (12) devient :

i [/ p——
(15) 3 aq 2% (At) = C*: 8
ou % (At) = 2C20 . At =2CIl At

N

d’ou le résultat fondamental :

La longueur de mélange | joue en turbulence le réle
du libre parcours moyen d'une molécule dans la
théorie cinétique des gaz de Maxwell.

Mathématiquement, les résultats sont identiques a
la suite de 'hypothése de Prandtl.

Les moyennes temporelles ¢(A) ¢(B) des produits des
vitesses mesurées en deux points différents A et B
fournissent les corrélations dans le systéme des variables
d’Euler.

Dés lors, l'identité de deux écoulements est définie par
Uidentité de leurs fonctions de corrélation.

5. La théorie statistique de la turbulence homogéne
et isotrope selon von Karman

(C’est une turbulence invariante par rapport aux
translations et aux rotations dont les lois sont cons-
truites par von Karman et Howarth a partir du tenseur
de corrélation des vilesses ¢ mesurées a l'instant ¢ en
deux points A et B. L'homogénéité et I'isotropie sont
conditionnées par :

B 2" -
(10'2 = ;}1'2 = ‘;2'- — ‘13'2 — K
(16)
7 . Tt . ’ ’
Py Wai == Yo Vg = ¥3 #4
3 . , s T
— K représente U'énergie d’agitation turbulente.
2 I o o

/ deswnant la composante du tenseur des vitesses

telle que AB soit parallele & la vitesse d’ensemble du
fluide, cependant que g concerne les composantes ortho-

—
gonales & AB, le tenseur de von Karman ¢; (A) ¢ (B)
a pour tableau des composantes :
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Fig. 3.
g 0 0
(17) 0 g 0
|0 0 f
avec les corrélations (fig. 3)
v’,' ()'7'
Ty = —
vE VR

Si A — B, le tenseur de von Karman rejoint celui
de Reynolds, qui en est alors un cas particulier.

Si par exemple le ﬂuide est incompressible, 1'équa-
tion de continuité V -t— = 0, multipliée par ¢ et

‘ 1
A

les moyennes étant prises sur le résultat, prend la
forme :

(18) g=1f+g57

6. L’analyse spectirale de la turbulence homogéx{e

Taylor a émis I'hypothése que la turbulence se mani-
feste par des osctllations périodiques des particules, oscil-
lations traduisant leur agitation ; il admet ensuite que,
a I'image de 'optique, de Iacousthue ou de I’électro-
technique, on peut les soumettre & lanalyse harmo-
nique.

La vitesse d’agitation ¢’(t) est:

[ee]
(19) p’ (1) = E (({,k sin wy t + by cos wy t)
E=1
avec
20 SR = K = 1 W (@2 + b2
(20) 02 (t) = K=15 ) (%*+ b
1

qui fournit I'énergie ou lintensité de la raie k. Si le
spectre des oscillations est continu, la série de Fourier
ci-dessus est remplacée par une intégrale de Fourier,
le spectre comportant des raies ou des bandes selon
qu’il s’agit de composantes isolées de fréquences pré-
cises ou de fréquences continues.

Si cette fréquence n est prise comme variable,

étant la pulsation, n =

ﬂ
]
(21) f n)dn




*
ou F(n)dn désigne l'énergie contenue entre les fré-
quences n et n + dn.

*
En général, FF(n) = K-F(n) et I'(n) est la fonction
spectrale.
La fonction de corrélation :

o' (t) v” (t + At)

(22) r(At) = =

dans laquelle ¢/(t) est remplacée par sa série de Fourter,
se transforme en

-~

o () e (t+ At) = K-r(At) =
)

=
— =3 (ai® + bp?) cos wy Al
L
Taylor, dans la suite de son calcul, passe des séries
aux intégrales et obtient I'important résultat :

(23) () (t + At) = K f F (n) cos 2w nlAtdn

qui, selon la définition de la fonction de corrélation,
s’écrit :
oo

(24) r (At) = f I' (n) cos 2 nAt dn

o

et s’énonce : La fonction de corrélation r(At) est une
intégrale de Fourter inverse de [‘ourier de la fonction
spectrale, soit réciproquement :

[o°]

Fn)=4 f r (At) cos 21 nAt dn.

o

71; Ld théorie « tourbillonnaire » de von Weizsdcker

Guidé par le modele des turbulences de lastro-
physique et par les travaux de Taylor, Onsager, Batche-
lord, von Karman, Prandtl et Wieghard, von Weiz-
sicker fait dépendre I'état d’un fluide turbulent de
deux é¢léments : d’une longueur qui est la mesure du
diameétre du « plus grand élément turbulent» et de sa
vilesse quadratique moyenne d’ensemble ; une troisieme
grandeur : la mesure du diamétre d « plus petit élément
turbulent » peut aussi étre considérée comme caracté-
ristique de I'état du fluide. La répartition statistique
de la densité d’énergie est recherchée pour un état
stationnaire, & nombre de Reynolds trés grand, sous
forme d'une loi spectrale /' mettant en évidence les
étages de perturbations.

Le plus grand élément turbulent de diameétre 1, est
subdivisé en @ volumes partiels de rayon a; a divise
donc L, en a parties égales. A leur tour, ces volumes

de diamétre L, sont & nouveau divisés en a®

nouveaux
volumes partiels déterminant un nouveau diameétre L,.
Entre deux diameétres L,.; et L, de masses tourbil-

lonnaires, il y a la relation

Ln +1
L,

=9 = g1

La vitesse ¢ en chaque point est telle que: ¢ = ¢,

+ ¢ +

métre L,.

avec ¢, = (¢), relatif a I'élément de dia-

Ainsi, ¢; = (¢ — ¥,) ; Puls Pur1 = (¥ — Yo oo —¥n)nt1}
/ -—
5 .
enfin ¢, = \/ (V;), fournit durant le temps ¢ la
N /

vitesse quadratique moyenne d’ensemble d’un  élé-
ment n.

L’énergie dissipée va dépendre d'un coellicient de
viscosité n indicateur du frottement moléculaire interne,
constant, mais caractéristique des pertes d’énergie des
petits éléments turbulents seulement ; si L, est grand
vis-a-vis de ces derniers, n n'aura que peu d’influence
sur les pertes; il faut donc introduire une zone de
masses tourbillonnaires oli 1 commence & étre impor-
tant et une autre zone o une viscosité turbulente sera
prépondérante. Von Weizsiicker attribue un indice a
et selon Prandtl le relie a la densité p, la longueur
de mélange [, et la vitesse ¢, par:

T]n:p'lu “ ¥n

Entre [, et L,, une relation de proportionnalité
L, = BL, est admise.
L’énergie dissipée dépend de la proportion :

u _ (_Ll)1/3

Yo L,

cependant que la zone de séparation des grands et des
petits tourbillons est fournie par un nombre de Reynolds
critique et relatif au frottement moléculaire :

_P'Ln"’n_p'Lo'Vo ﬁ)”s_ u _&)4/3
R;(; Y o 3 (Lu _Ro (Lo

Les nombres d’ondes k, sont proportionnels a 1/L,
et Iénergie dissipée E, est a 9,2, c’est-a-dire & L,/ ;
ainsi, von Weizsiicker établit la loi spectrale

(e o]
f Fy dle s L s Tl

(25) Fi ~ k=%

‘11 s’agit 1a d’une loi de dissipation d’énergie valable
pour les grands tourbillons a grands nombres de
Reynolds ; elle est en langage de «série de Fourier »,
puisque les nombres d’ondes k sont fonction des oscil-
lations des vitesses, oscillations qui dépendent elles-
mémes de la dimension des masses tourbillonnaires (et
que les fluctuations des diagrammes d’enregistrement

révelent).
Par rapport a des intervalles de fréquence dn,
o . ) dn . ]
I'énergie dépend de Tk dimensionnellement propor-
anr

tionnel & :

L=

T = L's ~ k—"ls ~ n—"12
—n

¢’est-a-dire que : Fp~n—2

Par exemple, Defant a identifié les fluctuations du
temps a des phénomeénes turbulents pour des masses
atmosphériques ou, par exemple, L = 1000 km, et pour
des longueurs d’échange d’environ 50 m, ce qui fournit
un 7 de Pordre de 5.10% gr.sec—!.cm—1. Il s’agit la
déja des particules synoptiques de Dedebant et Wehrlé.
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Von Weizsicker a appliqué ces lois aux turbulences
de la matiére interstellaire envisagée comme milieu
turbulent et trouve par exemple, pour la nébuleuse
d’Orion : L, = 3.1019 cm avec v, = 3.106 cm/sec =
= 30 km/sec, cette nébuleuse étant admise comme
petit élément turbulent de la voie lactée d'un L, =
— 3.10% cm (distance du Soleil au centre de la Voie
lactée) avec ¢, = 3.107 cm/sec (vitesse de rotation de
la Voie lactée) par rapport au Soleil.

8. La mécanique statistique de la turbulence de
W. Heisenberg

a) Considérations physiques

Heisenberg, par une recherche des bilans d’énergie
dans une turbulence en équilibre statistique, a élargi
le domaine spectral que von Weizsicker a étudié. La
répartition de I'énergie est donnée, selon von Weiz-
siicker, par :

02

9,2 .
Py =P g =P f F (k) dk
et F (k) ~k="h

2T

— = — nombre d’ondes, ¢t ¢, =
longueur d’onde

avec k =

I/V2 comme écart-type de la vitesse moyenne.

Heisenberg admet que la vitesse ¢ est développable
selon les nombres d’ondes en série de Fourier:

(26) Py = E ore the
2
21
avec hky = . ng

L’artifice utilisé par Heisenberg consiste a introduire
un coefficient de viscosité apparent vy essentiellement
pariable et fonction de la dimension des tourbillons ; vy
est donc dépendant de 'échelle de la turbulence et
surtout des éléments turbulents de dimensions supé-

rieures a X ¢’est-a-dire de relativement grande échelle.

Ainsi. énergie dissipée par unité de masse dans
s g I P
I'ensemble du domaine spectral étant :

(27) e=2v f K2 F (k) dk
o

il correspond au domaine spectral <k une énergie €.

Si k> 0o, g~ ¢ ou bien lim vz = 0
k— oo
Si k-0, g—0, dou:

k
(28) e =2 (v + v) f K2 F (k) di

Or, cette expression de g comprend deux termes :

le premier désigne la part d’énergie d’agitation du
domaine spectral (0, k) se. transformant directement en
chaleur.

le second est la part de cette énergie qui, avant de se
transformer en chaleur, sert a entretenir U'énergie d agita-
tion du domaine spectral (k, oo) des petits tourbillons.
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On peut fixer un nombre k, tel que pour k> k
I’énergie dissipée par les grands tourbillons, c’est-a-dire
de nombre d’ondes inférieur & k, soit une constante.
La répartition de I'agitation turbulente entre les petits
tourbillons, ¢’est-a-dire de nombre d’ondes supérieurs
a k, et la transformation en chaleur ou agitation molé-
culaire, dépendent de k. Il s’agit la d’une hypothése
d’équilibre statistique, d’autant plus exacte que le nom-
bre de Reynolds de la turbulence est plus grand.

b) Lois mathématiques. Evolution de la turbulence en
fonction du temps.
La loi F(k, t) obéit a une équation aux dérivées par-
tielles :

o
— 4 2yl F =0

et le bilan de la transformation stationnaire est régi
par une autre équation :

k k k
%fF(k)dk + 2vflf2F(lf)dlf - f\p (k) dk

qui représente : qui représente : qui représente :

la variation de + I"énergie dissipée en = la portion d'énergie
I'énergie d'agitation chaleur par viscosité transformée dans le
du domaine (o, k) moléculaire domaine (k, o0)

Les tourbillons se fractionnent donc, les grands cédant,
lors de leur fractionnement, leur énergie aux petits tour-
billons, celte énergie se dissipant finalement en chaleur
dans le domaine (k, co). '

L’équation fondamentale de la mécanique statistique
de la turbulence selon Heisenberg s’écrit parallélement

a (28):

k (o s k
J VF
(30) - fF(A-) dk +2 (v +f E dlf)szF(k) dk=o
V i

que vérifient la fonction spectrale I7 ~ k=l (fig. 4) si
k > k,, ¢’est-a-dire si la turbulence est prépondérante
vis-a-vis des dissipations moléculaires, et I'autre fonc-
tion spectrale F'~ k=7 si k < k,, soit dans le cas ou
la viscosité moléculaire est prépondérante.

¢) Jonction avec les théories précédentes

Heisenberg reprend alors les corrélations de Taylor
et von Karman en deux points différents P; et Py,
mais au méme instant, et les exprime en fonction de

F(k) :

(e8]
of F (k) cos kdk
o f “F (k) dk

0] W
Fig. 4.




Les fluctuations de la pression sont également admises
développables en série de Fourier :

(34) Pr = E pe e ikzx
k

et reliées a la vitesse par 'équation hydrodynamique :

. . 1 H,
= —1( Q== ) = ¥
evlv—oVP+ oV

qui est celle de Navier.

La théorie de Heisenberg saisit les étages de pertur-
bations définis par les nombres d’ondes k et s’appuie
sur le caractére aléatoire de la turbulence. Il est surtout
remarquable de voir s'introduire une viscosité turbu-
lente essentiellement variable et fonction de I'échelle
de cette turbulence.

Les fonctions spectrales F(k) conviennent particu-
licrement bien au calcul des bilans d’énergie dans les
jets.

9. Les calculs de diffusion turbulente

Les développements qui précédent présentent un
grand intérét pratique lorsqu’ils sont incorporés a une
théorie de la diffusion telle que celle de Sir G. Sutton ;
cette incorporation est I’ceuvre trés récente de J. Saissac
en France et de Gifford aux U.S.A.; ainsi, la théorie
permet de calculer les effets d’émissions instantanées
ou continues d’une source ponctuelle (par exemple
d’explosions nucléaires ou de cheminées émettant gaz
ou fumées). Une fois les calculs théoriques achevés, le
probléme reste de les adapter aux circonstances aérolo-
giques ou météorologiques locales ou régionales. Une
étude paraitra prochainement & ce propos.

10. Conclusion: Edification d’une mécanique statis-
tique générale de la diffusion turbulente

Le nombre des paramétres qui interviennent dans les
éléments de définition d’une diffusion turbulente vient
d’étre établi par des spécialistes allemands, qui en
décelent 150 environ. D’autre part, les théories que
nous avons exposées sont toutes des aspects particuliers
d’une conception beaucoup plus générale; c’est a la
suite d'une remarque que nous a faite M. W. Heisen-
berg & propos d'un travail antérieur que nous avons
entrepris une nouvelle étude de la diffusion turbulente
sur la base du concept mathématique de variable aléa-
totre. 1l en résulte une généralisation des théories expo-

sées 1ci, c'est-a-dire une simplification. On ne saurait
reprocher 'utilisation de variables aléatoires dont les
fonctions de distribution sont par ailleurs certaines,
pas plus que emploi des imaginaires (dont les nombres
aléatoires sont voisins par certaines de leurs propriétés)
en théorie des fonctions ou en électrotechnique. Il y a
des problemes ou le calcul des probabilités s'impose.
Surtout s’il permet de formuler trés simplement des
lois & partir d’un principe variationnel, et que ces lois
soient celles des fluides turbulents. Les équations aux
dérivées partielles qui apparaissent alors comme condi-
tions d’un minimum d’action symboliquement exprimée

par:
SfB:0

ou R est la fonction de distribution des probabilités
conjuguées des positions et des vitesses, sont alors
celles d’une mécanique de la diffusion turbulente qui
comporte notamment deux cas limites : la mécanique
classique (sans diffusion) et une mécanique aléatoire,
qui est celle de la diffusion libre. Les cas intermédiaires
concernent essentiellement les rotations d’un fluide
turbulent (différenciées ou mnon), les cas relativistes
étant réservés.

Lausanne, le 16T novembre 1961.
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DIVERS

Journée suisse de la technique
des télécommunications

Le 14 septembre a eu licu & Lucerne la 20¢ Journée
suisse de la technique des télécommunications, organisée
par I’Association suisse des électriciens et I'Association
«Pro Téléphone ».

Dans son allocution de bienvenue, M. H. Puppikofer,
directeur, président de 1’Association suisse des élec-
triciens, a souhaité la bienvenue aux nombreuses
personnalités de l'industrie et universitaires présentes.

M. H. Weber, professeur, directeur de I’Institut des
télécommunications de 'EPF, président de cette journée,
a souligné I'importance de I'alimentation des centrales
de télécommunications, sujet que les différents confé-
renciers ont développé par la suite.

Pour M. F. Locher, ingénieur, chef de la division
des téléphones et des télégraphes de la Direction
générale des PTT, Berne, 'alimentation d’une centrale
de télécommunications constitue un élément trés
important. En effet, vu les exigences actuelles, une
telle alimentation doit fonctionner sans interruption,
malgré les dérangements et les pannes éventuelles du
réseau. C'est pour cela qu'on a fait de grands efforts
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