
Zeitschrift: Bulletin technique de la Suisse romande

Band: 87 (1961)

Heft: 23

Artikel: Bases physiques et mathématiques des mécaniques statistiques de la
turbulence

Autor: Baatard, François

DOI: https://doi.org/10.5169/seals-65054

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 08.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-65054
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


87e année Lausanne, 18 novembre 1961 N° 23

BULLETIN TECHNIQUE
DE LÀ SUISSE ROMANDE

paraissant tous les 15 jours

ORGANE OFFICIEL
de la Société suisse des ingénieurs et des architectes
de la Société vaudoise des ingénieurs et des architectes (S.V.I.A.)
de la Section genevoise de la S.I.A.
de l'Association des anciens élèves de l'EPUL (Ecole polytechnique
de l'Université de Lausanne)
et des Groupes romands des anciens élèves de l'E.P.F. (Ecole
polytechnique fédérale de Zurich)

COMITÉ DE PATRONAGE
Président: f J- Calame, ing. à Genève
Vice-président: E. d'Okolski, arch, à Lausanne
Secrétaire: S. Rieben, ing. à Genève
Membres:
Fribourg: H. Gicot, ing.; M. Waeber, arch.
Genève: G. Bovet, ing.; CL Grosgurin, arch.; E. Martin, arch.
Neuchâtel: J. Béguin, arch.; R. Guye, ing.
Valais : G. de Kalbermatten, ing. ; D. Burgener, arch.
Vaud: A, Chevalley, ing.; A. Gardel, ing.;

M. Renaud, ing.; J.-P. Vouga, arch.

CONSEIL D'ADMINISTRATION
de la Société anonyme du « Bulletin technique »
Président: D. Bonnard, ing.
Membres : M. Bridel ; J. Favre, arch. ; R. Neeser, ing. ; A. Robert, ing. ;

P. Stucky, ing.
Adresse: Avenue de la Gare 10, Lausanne

RÉDACTION
Vacat
Rédaction et Editions de la S. A. du « Bulletin technique »
Tirés à part, renseignements
Avenue de Cour 27, Lausanne

ABONNEMENTS
I an
Sociétaires
Prix du numéro

Fr. 28.—
» 23.—
» 1.60

Etranger Fr. 32.—

Chèques postaux: «Bulletin technique de la Suisse romande »,
N° II57 75, Lausanne

Adresser toutes communications concernant abonnement, changements
d'adresse, expédition, etc., à: Imprimerie La Concorde, Terreaux 29,
Lausanne

ANNONCES
Tarif des annonces:
1/1 page Fr. 320.—
1/2 » » 168.—
1/4 » » 88.—
1/8 » » 42.80

Adresse : Annonces Suisses S. A.
Place Bel-Air 2. TéL (021) 22 33 26. Lausanne et succursales

SOMMAIRE
Bases physiques et mathématiques des mécaniques statistiques de la turbulence, par François Baatard, ingénieur EPUL.
Divers : Journée suisse de la technique des télécommunications. — Journée de la haute fréquence de l'ASE.
Bibliographie. — Carnet des concours.
Documentation générale. — Documentation du bâtiment. — Nouveautés, informations diverses.

BASES PHYSIQUES ET MATHEMATIQUES
DES MÉCANIQUES STATISTIQUES DE LA TURBULENCE

par FRANÇOIS BAATARD, ingénieur EPUL, Lausanne

La fumée qui sort d'une cheminée, à l'image de celle
d'une pipe ou d'un cigare, les nuages d'une explosion
ou ceux de l'atmosphère, le jet-stream ou des rafales
de Vent sont des exemples parmi beaucoup de phénomènes

qui évoluent selon des lois compliquées : les

trajectoires sont brisées ou dessinent des courbes
enchevêtrées, une particule initiale se scinde en une quantité
d'autres qui prennent à leur tour autant de caractères
individuels aléatoires qui sont les signes extérieurs de
la diffusion du milieu ; les parois invoquées par la
mécanique classique des fluides s'évanouissent et cette
diffusion ne s'attaque pas seulement aux positions,
mais encore aux vitesses, aux températures, etc., à

toute grandeur physique fixant l'état de ce milieu ;

l'une de ses propriétés les plus remarquables en est son
expansion.

On conçoit facilement qu'une mécanique dont les lois
sont originellement, à la suite des expériences de Galilée,
construites par Newton sur la base du solide, puis
transposées aux fluides sous la forme de l'hydrodynamique
classique, soit peu adéquate à la description des milieux
en instance de diffusion turbulente et que, dans la néces¬

sité de coordonner les découvertes faites essentiellement
dans l'atmosphère, il ait été fait appel à des notions
nouvelles susceptibles de mieux rendre compte des
phénomènes observés. Avec M. A. Viaut, président de
l'Organisation Météorologique Mondiale, il n'est pas
exagéré de dire que « la mécanique de l'atmosphère est,
à certains égards, à l'avant-garde du progrès de la
mécanique des fluides » h

Les guides des nouvelles investigations ont été la
théorie cinétique des gaz et l'analyse harmonique.

1. Variables de Lagrange, variables d'Euler et
hydrodynamique classique

Ce sont les deux modes de description traditionnelle
d'un mouvement.

a) Les variables ou coordonnées de Lagrange sont les
coordonnées (x, y, zy t) d'un point P dont on suit
le mouvement sur sa trajectoire f, en général par

1 v. La Météorologie, par A. Viaut. Presses Universitaires de
France, 1958.
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son vecteur-lieu s s (t) (fig. 1).

b) Les variables d'Euler sont obtenues à partir de
celles de Lagrange par :

(i)

et permettent d'examiner le champ des vitesses v
dont elles sont les composantes vx, vy, vz.

Le calcul de l'accélération met en évidence deux
dérivées bien distinctes :

(2)

A

variation de v,
c'est-à-dire

acceleration

Bv{Pjt)
dt

variation de v

dans le temps,
c'est-à-dire

variation locale

d

v (v) v

variation
de v

dans l'espace

d

dv
Tt

variation
totale

où y représente l'opérateur — i -|—— /
d

k (i,
dx dV ' ' dz

W k désignant les vecteurs unitaires du système
d'axes 0, x, y, z).

Les deux dérivées sont :

1) — taux de variation en un point de l'espace

ou dérivée locale.

2) -r- taux de variation le long de la trajectoire' dt
de la particule ou dérivée moléculaire.

Le mouvement est donc décrit par la variation dans
le temps et dans l'espace du champ des vitesses.

La fonction s peut être développée en série

-? -? -» b

s=s0 + a {t — U) + j] (< — '») +

S "wn .\ È 3s{P„;t0)
aavec s0 s \P0 ; to), a — t £,,

u Iq
etc.

Le fluide de masse p décrit par les systèmes de

Lagrange ou d'Euler est conservatif, propriété exprimée

par l'équation de continuité

(3)
dt

div (pu) o

L'hydrodynamique classique introduit le vecteur-
1

tourbillon T rot v obéissant à l'équation de Helm-

holtz, qui en donne l'évolution

(4) Tt (j) (V) V

En réalité, il y a destruction quasi immédiate d'un
tel tourbillon et cette équation n'est valable que de
courts instants.

Dans un mouvement permanent et irrotationnel, le
bilan des énergies est fourni par le théorème de Bernoulli

(5)
Fa

®m + p cte

exprimant que le long d'un filet liquide, la somme des
V2

energies cinétiques potentielle U et de pression P

est constante.

L'hydraulique introduit les dissipations d'énergie par
un terme supplémentaire des pertes de charge, passant
ainsi de l'hydro-dynamique rationnelle du fluide parfait
à celle, empirique, du fluide réel.

Uéquation de Navier opère ce même passage en
introduisant une relation linéaire entre les tensions et les
vitesses de déformation mettant en jeu la viscosité v
du fluide, de manière que la force df s'opposant à
l'élément de surface da à une distance dn d'un autre
élément du fluide et de vrîëÉse dv soit

(6) ÉL
da dn

Dans le cas d'un fluide incompressible, les équations
de Navier Ipcrivent en admettant l'hypothèse (6)

(7)
dVj

dt
V dVi

vk— F
dXj*

1 dpi

p don
v v2 fi

y2 désignant le laplacien \ » •

^J dxf

2. Mouvements d'ensemble, fluctuant et moyen
On doit à Boussinesq la décomposition du mouvement

d'ensemble en un mouvement moyen et un mouvement
d'agitation obéissant au schéma suivant de composition
des vitesses :

(8)
vitesse

d'ensemble
vitesse

moyenne
vitesse

d'agitation

C'est le vecteur v' d'agitation qui est rendu responsable
des effets de la turbulence et on lui assigne des propriétés
voisin®« de celles des vitesses des molécules d'un gaz,
préoccupation majeure des théories de la turbulence.

v' décrit des trajectoires complexes et diffuses et dont
les lois relèvent de la statistique et du calcul "des

probabilités, tandis que v moyen indique la tendance
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générale du mouvement, en fonction des conditions
initiales. A chaque instant, on peut effectuer la
composition (8), couramment utilisée sous d'autres formes
dans les applications de la théorie des erreurs, en
électrotechnique, etc.

3. Les tensions turbulentes de Reynolds et les étages
d'énergie

Nous avons dit que l'un des guides des théoriciens
de la turbulence était le gaz, dont l'agitation a été

légalisée dans la théorie cinétique. C'est bien ce qui
a conduit Reynolds à transposer les propriétés de la

molécule à la particule en définissant la vitesse v

moyenne d'un groupe de particules turbulentes contenues

dans un volume Q par :

(9) Vi=~"ä f J J "'(*»*)» dçl

Appliquant les équations de Navier à ces groupes de

particules, Reynolds en a déduit la très importante
équation aux dérivées partielles suivante :

(10)

dVi s^ -
,IXk P dX{

vA2 Y '(ik&l*
k k

qui relie les propriétés du mouvement d'ensemble aux
tensions — p V{' v/c' purement turbulentes.

C'est mathématiquement une première solution du

problème des relations entre les échelles des mouvements

qui a été soulevé par les météorologistes Dedebant et
Wehrlé alors qu'ils établissaient les lois de la circulation
générale de l'atmosphère. La question est de savoir
dans quelle mesure un mouvement d'échelle inférieure,
tel celui d'agitation, influence ou modifie les mouvements

d'échelles qui lui sont supérieures, c'est-à-dire
les mouvements moyen ou d'ensemble. Avec les deux

auteuß|'ci-dessus, von Weizsäcker et W. Heisenberg ont
répondu à la question.

En attendant, les équations (10) font apparaître :

1° un étage supérieur, qui est celui de l'énergie ciné¬

tique du mouvement moyen ;

2° un étage moyen, qui est celui de l'énergie cinétique

d'agitation des particules ;

3° un étage inférieur, qui est celui de la dissipation
en chaleur de l'énergie cinétique des particules, en

raison des tensions de Reynolds — p v'i v'j-.

Une objection a été faite au sujet de la délimitation
du volume Cl ; comment y parvenir C'est la notion
de corrélation, base des mécaniques statistiques de la

turbulence, qui permet de répondre.

4. La transposition par Taylor et Prandtl de la théorie
cinétique des gaz de Maxwell-Boltzmann en mécanique

des fluides turbulents

Le plus simplement possible, nous allons montrer
comment ce passage a été fait.

Taylor suit les mouvements des particules avec les

variables de Lagrange et forme les moyennes temporelles

x,(t)

x,(t)

XAt)
FiK. 2.

à deux instants t et t -\- At. Un paquet de particules
étant en 0 (fig. 2) à l'instant originel t 0, et puisque
d
-j- x v, on peut écrire :

(11) j -L W[ÄF) x (At) v (At)

Bien évidemment aussi :

m

x(At)= j v(x)dx,
o

X étant un paramètre d'intégration.

(11) devient :

1 d
tt

2 dt
r2 (At) f v (x) v (At) dx

Taylor admet une telle relation valable pour le

mouvement d'agitation d'indice SSet écrit :

(12) LA
2 dt

&t

(Al) mÊÊ (X) I (At) dX

Or, x'2 (At) est l'écart quadratique moyen des
positions observées pendant l'intervalle de temps At,
cependant que le produit moyen

(13) • (x) / (Af)

caractérise le «couplage statistique», c'est-à-dire la
corrélation des vitesses pendant le même laps de temps.

On peut donc énoncer le résultat essentiel (12) sous
la forme :

La dérivée de l'écart quadratique moyen de la

position est l'intégrale du coefficient de corrélation
des vitesses.

Un mouvement permanent correspond à un produit
moyen (13) ne dépendant que de At et l'on peut poser
i/2 C2 constante vitesse quadratique moyenne
d'agitation.

Le coefficient de corrélation r répond alors à la
formule :

v' (At) 9' (x) v' (At) v' (x)

et (12) prend l'allure :

v (t), v (t + At), v (t)2, v(t + At)a
(14) ïi*-^)

C8

Al
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Les deux cas limites suivants s'interprètent facilement

:

1 rl
1. Si Af est petit, r-+l et^-7-ï72 C2 ¦ At deve-

£ dt

nant par intégration y x'2 C-t, signifie que la
dispersion des partieulcs est proportionnelle au
temps.

2. Si At est grand, r(At) devient petit, l'influence du
mouvement initial étant de plus en plus faible
sur les mouvements de plus en plus lointains.

C'est à ce moment qu'intervient l'hypothèse
fondamentale de Prandtl : r devient négligeable dès l'instant
où la particule a été renouvelée par la diffusion et

00

6 I r (x) <^X représente ce temps de renouvellement.
0

Il lui correspond une longueur de corrélation ou de

mélange l :

l CQ C r (x) dX

et la relation (12) devient :

LÉ
2 dt(15) - x'2 (At) C2

x"2 (At) 2(^6 At 2ClAt

d'où le résultat fondamental :

La longueur de mélange l joue en turbulence le rôle
du libre parcours moyen d'une molécule dans la
théorie cinétique des gaz de Maxwell.

Mathématiquement, les résultats sont identiques à

la suite de l'hypothèse de Prandtl.

Les moyennes temporelles v(A) v(B) des produits des

vitesses mesurées en deux points différents A et B
fournissent les corrélations dans le système des variables
d'Euler.

Dès lors, l'identité de deux écoulements est définie par
l'identité de leurs fonctions de corrélation.

S. La théorie statistique de la turbulence homogène
et isotrope selon von Karman

C'est une turbulence invariante par rapport aux
translations et aux rotations dont les lois sont
construites par von Karman et Howarth à partir du tenseur
de corrélation des vitesses v' mesurées à l'instant t en
deux points A et B. L'homogénéité et l'isotropie sont
conditionnées par :

(16)

3^

2

^2 K

v, v, v9.

K représente l'énergie d'agitation turbulente.

f désignant la composante du tenseur des vitesses

telle que AB soit parallèle à la vitesse d'ensemble du
fluide, cependant que g concerne les composantes

orthogonales à AB, le tenseur de von Karman v/(A) v/(B)
a pour tableau des composantes :

tie. 3.

(17)
g 0 0

0 g 0

0 0 f

avec les corrélations (fig. 3)

Si A -* B, le tenseur de von Karman rejoint celui
de Reynolds, qui en est alors un cas particulier.

Si par exemple le fluide est incompressible, l'équa-

ydv'i-,— 0, multipliée par v et
' aX{

i
les moyennes étant prises sur le résultat, prend la
forme :

(18) 1 ^ 2 dr

6. L'analyse spectrale de la turbulence homogène

Taylor a émis l'hypothèse que la turbulence se manifeste

par des oscillations périodiques des particules,
oscillations traduisant leur agitation ; il admet ensuite que,
à l'image de l'optique, de l'acoustique ou de
l'électrotechnique, on peut les soumettre à l'analyse harmonique.

La vitesse d'agitation v'(t) est :

(19) v' (t) 'S (ak sin Cû* t + bk cos »* t)

(20) '* (()=X |V (a*2 + V)

qui fournit l'énergie ou l'intensité de la raie k. Si le

spectre des oscillations est continu, la série de Fourier
ci-dessus est remplacée par une intégrale de Fourier,
le spectre comportant des raies ou des bandes selon

qu'il s'agit de composantes isolées de fréquences
précises ou de fréquences continues.

Si cette fréquence n est prise comme variable, co

1
œ

étant la pulsation, n 7;—

(21) I F (n) dn
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où F(n)dn désigne l'énergie contenue entre les

fréquences n et n -\- dn. '

En général, F (n) K-F(n) et F (n) est la fonction
spectrale.

La fonction de corrélation :

(22) r(At)
v' (t) v' (t + At)

K

dans laquelle v'(t) est remplacée par sa série de Fourier,
se transforme en

v' (t) v' (t + At) K-r(At)
I A

2" S (<**2+fc*2)cosco*At.

Taylor, dans la suite de son calcul, passe des séries

aux intégrales et obtient l'important résultat :

(23) v' (t) v' (t + At) K I F(n)cos2-rrnAtdra
o

qui, selon la définition de la fonction de corrélation,
s'écrit :

(24 (At) i F (n) cos 2-tt nAt dn

et s'énonce : La fonction de corrélation r(At) est une
intégrale de Fourier inverse de Fourier de la fonction
spectrale, soit réciproquement :

F (n) 4 i r (At) cos 2tt nAt dn.

7.- Là théorie « tourbillonnaire » de von Weizsäcker

Guidé par le modèle des turbulences de
l'astrophysique et par les travaux de Taylor, Onsager, Batche-
lord, von Karman, Prandtl et Wieghard, von
Weizsäcker fait dépendre l'état d'un fluide turbulent de
deux éléments : d'une longueur qui est la mesure du
diamètre du « plus grand élément turbulent » et de sa
vitesse quadratique moyenne d'ensemble ; une troisième
grandeur : la mesure du diamètre du « plus petit élément
turbulent » peut aussi être considérée comme caractéristique

de l'état du fluide. La répartition statistique
de la densité d'énergie est recherchée pour un état
stationnaire, à nombre de Reynolds très grand, sous
forme d'une loi spectrale F mettant en évidence les

étages de perturbations.
Le plus grand élément turbulent de diamètre L0 est

subdivisé en as volumes partiels de rayon a ; a divise
donc L„ en a parties égales. A leur tour, ces volumes
de diamètre Lv sont à nouveau divisés en a3 nouveaux
volumes partiels déterminant un nouveau diamètre L2.
Entre deux diamètres Ln+i et Ln de masses tourbil-
lonnaires, il y a la relation

Ln+i -- -
—f— 5 a—1
Ln

La vitesse v en chaque point est telle que : v v0

+ Cj + avec v0 (v)0 relatif à l'élément de
diamètre L0.

Ainsi,

enfin vn

(v — Vo) ; puis f„+i (v — v0... —v„)n+i ;

l / (Oj fournit durant le temps t la

d'ensemblevitesse quadratique moyenne
ment n.

L'énergie dissipée va dépendre d'un coefficient de
viscosité r| indicateur du frottement moléculaire interne,
constant, mais caractéristique des pertes d'énergie des

petits éléments turbulents seulement ; si LB est grand
vis-à-vis de ces derniers, T) n'aura que peu d'influence
sur les pertes ; il faut donc introduire une zone de

masses tourbillonnaires où T| commence à être important

et une autre zone où une viscosité turbulente sera
prépondérante. Von Weizsäcker attribue un indice à T|

et selon Prandtl le relie à la densité p, la longueur
de mélange l„ et la vitesse vn par :

T)« p • ln ¦ V„

Entre ln et Ln, une relation de proportionnalité
ln pLn est admise.

L'énergie dissipée dépend de la proportion :

M1/*
L,

cependant que la zone de séparation des grands et des

petits tourbillons est fournie par un nombre de Reynolds
critique et relatif au frottement moléculaire :

i?ü ?Ln L. Vo /M4/3
,L0.

M4/*»e
Les nombres d'ondes k„ sont proportionnels à 1/Ln

et l'énergie dissipée En l'est à vnz, c'est-à-dire à Z/«'/» ;

ainsi, von Weizsäcker établit la loi spectrale

Fkdk~Ln'l,~}r-'h

soit :

(25) k-'l.

Il s'agit là d'une loi de dissipation d'énergie valable
pour les grands tourbillons à grands nombres de

Reynolds ; elle est en langage de « série de Fourier »,

puisque les nombres d'ondes k sont fonction des
oscillations des vitesses, oscillations qui dépendent elles-
mêmes de la dimension des masses tourbillonnaires (et
que les fluctuations des diagrammes d'enregistrement
révèlent)'.

Par rapport à des intervalles de fréquence dn,

l'énergie dépend de -yy dimensionnellement propor-dk
tionnel à :

!»-*/¦
L1/» ~ k-'l' ~ n—V«

c'est-à-dire que : Fn r~~i n~2

Par exemple, Defant a identifié les fluctuations du
temps à des phénomènes turbulents pour des masses
atmosphériques où, par exemple, L 1000 km, et pour
des longueurs d'échange d'environ 50 m, ce qui fournit
un t| de l'ordre de 5.105 gr.sec-1.cm—1. Il s'agit là
déjà des particules synoptiques de Dedebant et Wehrlé.
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Von Weizsäcker a appliqué ces lois aux turbulences
de la matière interstellaire envisagée comme milieu
turbulent et trouve par exemple, pour la nébuleuse

d'Orion : Ln 3.1019 cm avec v„ 3.106 cm/sec
30 km/sec, cette nébuleuse étant admise comme

petit élément turbulent de la voie lactée d'un L0

3.1083 cm (distance du Soleil au centre de la Voie

lactée) avec v0 3. IO7 cm/sec (vitesse de rotation de

la Voie lactée) par rapport au Soleil.

8. La mécanique statistique de la turbulence de

W. Heisenberg

a) Considérations physiques
Heisenberg, par une recherche des bilans d'énergie

dans une turbulence en équilibre statistique, a élargi
le domaine spectral que von Weizsäcker a étudié. La

répartition de l'énergie est donnée, selon von
Weizsäcker, par :

vf
P~2~~P~2"

et F (h

2tt

p | F(k)dk

* k—Vs

nombre d'ondes, et v0avec k s?
longueur a onde

y v2 comme écart-type de la vitesse moyenne.

Heisenberg admet que la vitesse v est développable
selon les nombres d'ondes en série de Fourier :

On peut fixer un nombre k0 tel que pour k > k0

l'énergie dissipée par les grands tourbillons, c'^est-à-dire

de nombre d'ondes inférieur à k, soit une constante.
La répartition de l'agitation turbulente entre les petits
tourbillons, c'est-à-dire de nombre d'ondes supérieurs
à k, et la transformation en chaleur ou agitation
moléculaire, dépendent de k. Il s'agit là d'une hypothèse
d?équilibre statistique, d'autant plus exacte que le nombre

de Reynolds de la turbulencegSst plus grand.

b) Lois mathématiques. Evolution de la turbulence en

fonction du temps.
La loi F(k, t) obéit à une équation aux dérivées

partielles :

^- + 2v/f2F o
dt

et le bilan de la transformation stationnaire est régi

par une autre équation :

k k

+ 2v \k*F(k)dk § ly (k)dk
K

j;jF(k)dk
qui représente :

la variation de
l'énergie d'agitation
du domaine (o, k)

qui représente :

l'énergie dissipée en
chaleur par viscosité

moléculaire

qui représente :

la portion d'énergie
transformée dans le

domaine (fc, oo)

(26) V vke
ikx

Les tourbillons se fractionnent donc, les grands cédant,

lors de leur fractionnement, leur énergie aux petits
tourbillons, cette énergie se dissipant finalement en chaleur

dans le domaine (k, oo).
L'équation fondamentale de la mécanique statistique

de la turbulence selon Heisenberg s'écrit parallèlement
à (28) :

t 2lr
avec Kx -j— n%

Lx

L'artifice utilisé par Heisenberg consiste à introduire

un coefficient de viscosité apparent vk essentiellement

variable et fonction de la dimension des tourbillons ; v*

est donc dépendant de l'échelle de la turbulence et

surtout des éléments turbulents de dimensions

supérieures à i-> c'est-à-dire de relativement grande échelle.
k &

Ainsi, l'énergie dissipée par unité de masse dans

l'ensemble du domaine spectral étant :

(27) 2- k? F (k) dk

il correspond au domaine spectral < k une énergie e*.

Si k -*¦ oo, e»

Si k -»- 0, e*

¦ e ou bien lim vj* 0

k -*¦ oo
0, d'où :

Ei 2(v + v*) k?F(k)dk(28)

Or, cette expression de ek comprend deux termes :

le premier désigne la part d'énergie d agitation du

domaine spectral (0, k) se transformant directement en

chaleur.
le second est la part de cette énergie qui, avant de se

transformer en chaleur, sert à entretenir l'énergie d'agitation

du domaine spectral (k, oo) des petits tourbillons.

(30) | JF (k)dk + 2(V +J^L dk)j k*F(k)dk o

que vérifient la fonction spectrale F ~ k—'l* (fig. 4) si

k > k0, c'est-à-dire si la turbulence est prépondérante
vis-à-vis des dissipations moléculaires, et l'autre fonction

spectrale F r** k~'1 jjögfr < k0, soit dans le cas où

la viscosité moléeidsire est prépondérante.

c) Jonction avec les théories précédentes

Heisenberg reprend alors les corrélations de Taylor
et von Karman en deux points différents Pt et P2,

mais au même instant, et les exprime en fonction de

(31) r.-'-^P^ .nF(k) cos kdk

F(k)dk

m

Fie. 4
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Les fluctuations de la pression sont également admises

développables en série de Fourier :

(34) Y Pk e
ika

(vy)v-
I ^ _2

et reliées à la vitesse par l'équation hydrodynamique

1 y_

P " '

P

qui est celle de Navier.
La théorie de Heisenberg saisit les étages de

perturbations définis par les nombres d'ondes k et s'appuie
sur le caractère aléatoire de la turbulence. Il est surtout
remarquable de voir s'introduire une viscosité turbulente

essentiellement variable et fonction de l'échelle
de cette turbulence.

Les fonctions spectrales F(k) conviennent
particulièrement bien au calcul des bilans d'énergie dans les

jets.

9. Les calculs de diffusion turbulente

Les développements qui précèdent présentent un
grand intérêt pratique lorsqu'ils sont incorporés à une
théorie de la diffusion telle que celle de Sir G. Sutton ;

cette incorporation est l'œuvre très récente de J. Saïssac

en France et de Gifford aux U.S.A. ; ainsi, la théorie

permet de calculer les effets d'émissions instantanées
ou continues d'une source ponctuelle (par exemple
d'explosions nucléaires ou de cheminées émettant gaz
ou fumées). Une fois les calculs théoriques achevés, le

problème reste de les adapter aux circonstances aérologiques

ou météorologiques locales ou régionales. Une
étude paraîtra prochainement à ce propos.

10. Conclusion: Edification d'une mécanique statis¬

tique générale de la diffusion turbulente

Le nombre des paramètres qui interviennent dans les

éléments de définition d'une diffusion turbulente vient
d'être établi par des spécialistes allemands, qui en
décèlent 150 environ. D'autre part, les théories que
nous avons exposées sont toutes des aspects particuliers
d'une conception beaucoup plus générale ; c'est à la
suite d'une remarque que nous a faite M. W. Heisenberg

à propos d'un travail antérieur que nous avons
entrepris une nouvelle étude de la diffusion turbulente
sur la base du concept mathématique de variable
aléatoire. Il en résulte une généralisation des théories expo¬

sées ici, c'est-à-dire une simplification. On ne saurait
reprocher l'utilisation de variables aléatoires dont les

fonctions de distribution sont par ailleurs certaines,

pas plus que l'emploi des imaginaires (dont les nombres
aléatoires sont voisins par certaines de leurs propriétés)
en théorie des fonctions ou en électrotechnique. Il y a

des problèmes où le calcul des probabilités s'impose.
Surtout s'il permet de formuler très simplement des

lois à partir d'un principe variatMmnel, et que ces lois
soient celles des fluides turbulents. Les équations aux
dérivées 'partielles qui apparaissent alors comme conditions

d'un minimum d'action symboliquement exprimée

par :

/ i? 0

où B est la fonction de distribution des probabilités
conjuguées des positions et des vitesses, sont alors
celles d'une mécanique de la diffusion turbulente qui
comporte notamment deux cas limites : la mécanique
classique (sans diffusion) et une mécanique aléatoire,
qui est celle de la diffusion libre. Les cas intermédiaires
concernent essentiellement les rotations d'un fluide
turbulent (différenciées ou non), les cas relativistes
étant réservés.

Lausanne, le 1er novembre 1961.
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DIVERS

Journée suisse de la technique
des télécommunications

Le 14 septembre a eu lieu à Lucerne la 20e Journée
suisse de la technique des télécommunications, organisée

par l'Association suisse des électriciens et l'Association
« Pro Téléphone ».

Dans son allocution de bienvenue, M. H. Puppikofer,
directeur, président de l'Association suisse des

électriciens, a souhaité la bienvenue aux nombreuses
personnalités de 1 industrie et universitaires présentes.

M. H. Weber, professeur, directeur de l'Institut des

télécommunications de l'EPF, président de cette journée,
a souligné l'importance de l'alimentation des centrales
de télécommunications, sujet que les différents
conférenciers ont développé par la suite.

Pour M. F. Locher, ingénieur, chef de la division
des téléphones et des télégraphes de' la Direction
générale des PTT, Berne, l'alimentation d'une centrale
de télécommunications constitue un élément très
important. En effet, vu les exigences actuelles, une
telle alimentation doit fonctionner sans interruption,
malgré les dérangements et les pannes éventuelles du
réseau. C'est pour cela qu'on a fait de grands efforts
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