Zeitschrift: Bulletin technique de la Suisse romande

Band: 87 (1961)

Heft: 14: Ventilation et climatisation

Sonstiges

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 22.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ACTUALITÉ INDUSTRIELLE 16

Assemblée générale 1961 de l'UTS Le problème des titres

L'Union technique suisse ¹ avait bien voulu inviter notre Bulletin à assister à l'Assemblée générale de l'UTS des 2, 3 et 4 juin, à Genève, et nous l'en remercions. Il ne nous fut malheureusement pas possible de donner entièrement suite à cette aimable invitation, et nous dûmes limiter notre participation à la seule conférence de presse, tenue le vendredi 2 juin 1961 à l'Hôtel des Bergues.

Précédé d'une allocution de bienvenue de M. Gass, président central de l'UTS, l'exposé que présenta M. Gonthier, secrétaire central de l'UTS, retint particulièrement l'attention des nombreuses personnes présentes, car la délicate question des titres y était franchement abordée. Nous estimons que les membres de la SIA, qui défendent une certaine position au sein de ce débat général, doivent connaître les arguments avancés par d'autres associations ou groupements professionnels à ce sujet. C'est la raison pour laquelle nous reproduisons, ci-dessous, les grandes lignes de l'exposé de M. Gonthier.

C'est la volonté d'offrir à chacun le maximum de chances sur le plan professionnel qui a poussé les associations suisses représentatives de la technique et de l'architecture, soit la Société suisse des ingénieurs et des architectes, l'Union technique suisse, la Fédération des architectes suisses et la Société suisse des ingénieurs-conseils, à mettre sur pied, en 1951, c'est-à-dire il y a dix ans déjà, le Registre suisse des ingénieurs, des architectes et des techniciens. Ce registre veut être avant tout un organe d'information à l'usage du grand public en donnant la liste des personnes habilitées, par les associations professionnelles elles-mêmes, à porter le titre d'ingénieur, d'architecte ou de technicien. La troisième édition du registre sortira de presse à fin 1961; elle contiendra plus de 17 000 noms.

Les anciens élèves des technicums peuvent être inscrits au Registre des ingénieurs ou à celui des architectes et, par conséquent, être reconnus comme tels, lorsqu'ils offrent les garanties voulues quant à l'exercice correct de la profession considérée. Le Registre suisse représente une solution libérale de la question des titres dans les professions techniques supérieures. Il contribue à rehausser le prestige de la formation acquise au technicum, puisqu'il offre aux techniciens capables la possibilité d'être reconnus ingénieurs ou architectes par les ingénieurs ou les architectes eux-mêmes. A ce titre, il a sa place parmi les efforts faits dans notre pays afin de résoudre l'épineuse question des titres dans les professions techniques supérieures.

Cette question qui, avant la création du Registre suisse, fut cause de luttes très dures entre les associations intéressées, a malheureusement rebondi au cours de ces dernières

Le mouvement actuel est parti de Genève. L'Association des anciens élèves de l'Ecole supérieure technique de cette ville — ATG — s'est adressée officiellement aux autorités du canton pour leur demander de délivrer aux élèves de cette école un diplôme d'ingénieur technicien. Il s'est poursuivi à Winterthour. L'Association des anciens élèves du Technicum — ETW — a présenté au Conseil d'Etat zuricois une requête visant à ce que cet établissement d'études autorise à l'avenir ses élèves à se servir de la désignation

¹ Rappelons que l'UTS a été créée le 11 décembre 1905, par la fusion des associations d'anciens élèves des Technicums de Winterthur, de Bienne et de Berthoud. A l'heure actuelle, l'UTS compte 10.500 membres répartis entre 40 sections en Suisse et 3 à l'étranger. Elle possède en outre un groupement professionnel d'organisation industrielle, et la Société des fonctionnaires techniques des CFF est attachée à l'UTS comme section indépendante. L'UTS compte également quelques centaines d'universitaires et d'autodidactes. L'organe officiel de l'UTS, la Revue Technique Suisse (STZ) tire actuellement à 11.500 exemplaires.

professionnelle « ingénieur ». Afin de triompher, en mettant en œuvre tous les moyens dont elle dispose, cette association s'est efforcée d'étendre son influence dans les écoles similaires de Suisse, pour amener leurs propres groupements d'anciens élèves à présenter des revendications semblables aux siennes. Elle a été suivie jusqu'ici par les Cartels d'anciens étudiants des Technicums de Bienne et de Berthoud, hâtivement constitués dans le but de faire cause commune avec Winterthour.

Les raisons du rebondissement de la question des titres dans notre pays sont nombreuses, mais elles se cristallisent lentement autour de quelques arguments, dont le principal est celui-ci : placer les anciens élèves des technicums suisses dans des conditions de départ analogues à celles qui sont faites à leurs collègues de certaines écoles étrangères. Les autres arguments qui furent avancés au début de la campagne actuelle : désir de différencier le titre porté par les anciens élèves des technicums cantonaux de celui délivré par les technicums du soir, possibilité éventuelle d'obtenir des salaires plus élevés pour le corps enseignant, etc., ne jouent plus aujourd'hui un très grand rôle. On s'en tient au fait essentiel et incontesté que le titre d'ingénieur est délivré à l'étranger par de nombreuses écoles dont le niveau n'est pas supérieur à celui des technicums suisses en général. Nous sommes ici en présence d'un phénomène aux conséquences duquel la Suisse ne pourra probablement pas échapper à la longue. Les 78 écoles d'ingénieurs d'Allemagne qui donnent cette dénomination professionnelle à leurs élèves exercent sur le marché du travail européen une pression considérable qui tend à dévaluer le titre d'ingénieur. D'autres pays, tels que les Etats scandinaves, reconnaissent aux anciens élèves de leurs écoles supérieures techniques le droit de porter légalement le titre d'ingénieur après une formation qui n'est pas meilleure que celle donnée dans l'ensemble des technicums suisses. De même, en Grande-Bretagne, où l'accès au titre d'ingénieur professionnel se fait par le canal des associations, nous devons constater que celles-ci recrutent leurs adhérents dans une très large mesure parmi les anciens élèves des collèges techniques, c'est-à-dire d'écoles qui ne sont pas universitaires. Il existe ainsi, dans les pays industriels, une généralisation du titre d'ingénieur à un niveau non universitaire. On ne doit donc pas s'étonner si, en présence de cette situation, les anciens élèves des technicums suisses demandent à pouvoir bénéficier de conditions semblables à celles que l'on rencontre dans d'autres

Pour comprendre le sens profond des revendications présentées actuellement et la virulence avec laquelle elles se manifestent, il faut considérer encore, au-delà de la comparaison avec les conditions régnant à l'étranger, quelques faits connus de tous mais trop longtemps ignorés. Nous ne rappellerons que les principaux:

- 1. En Suisse, les anciens élèves des technicums ne jouissent pas, d'une façon générale, de la considération et du prestige auxquels ils croient avoir droit. Le titre qu'ils portent a souvent quelque chose de péjoratif. On dit du « technicien » qu'il est avant tout un « spécialiste » formé dans un domaine restreint et destiné à rendre à l'industrie des services immédiats. Si ceux-ci sont généralement très appréciés, on ne manque pas d'ajouter qu'ils ne sauraient conduire à des résultats comparables à ceux que l'ingénieur diplômé est en droit d'attendre de sa formation plus généralisée.
- 2. Cette notion de «spécialiste», placée par certains universitaires au premier plan de l'argumentation qu'ils opposent à l'octroi du titre d'ingénieur aux élèves des technicums, ignore d'emblée le nombre réel des années d'apprentissage et d'études théoriques exigées pour obtenir le diplôme d'un de ces établissements. Ce nombre varie d'une école à l'autre. Tandis qu'il n'est, exceptionnellement, que de quatre ans à Genève, à Winterthour, comme à Bienne, à Fribourg et à Lucerne, la durée totale de la préparation est, en règle générale, de sept ans après l'école secondaire, soit quatre ans d'apprentissage et trois ans d'études théoriques avec exercices de laboratoire (à Berthoud, un semestre en moins).

M. le D^r W. Karrer, directeur du Technicum de Lucerne, a publié dans le *Technische Rundschau* nº 53, du 23 décembre 1960, le tableau comparatif suivant entre la durée totale de la préparation exigée d'un technicien et celle exigée d'un

ingénieur diplômé.

	Technicum	Ecole polytechnique
Ecole primaire	6 années	6 années
Ecole secondaire ou moyenne.	3 années	6 ½ années
Apprentissage ou stage pratique Technicum ou Ecole polytech-	4 années	$\frac{1}{2}$ année
nique	3 années	4 années
Total	16 années	17 années

En présence de tels chiffres, on est en droit de poser la question suivante : faut-il réellement sept années après l'école secondaire pour former un spécialiste destiné à rendre à l'industrie des services immédiats? Le technicum ainsi conçu n'exige-t-il pas de ses élèves un effort beaucoup trop long en regard de la situation morale qu'il leur offre Poser cette question, c'est découvrir le malaise réel qui règne parmi les anciens élèves des technicums. Dans aucun autre État industriel, la formation des techniciens ne répond à des conditions aussi sévères qu'en Suisse. Ne nous étonnons donc pas si certaines réactions se produisent.

3. Depuis plusieurs années déjà, nous assistons, dans notre pays, à une dévaluation générale du titre « technicien ». Nous connaissons, par exemple, le « technicien géomètre » et le « technicien en radio » qui, tous deux, portent ce titre après une formation de dessinateur ou d'ouvrier complétée par quelques cours et sanctionnée par des épreuves dans des domaines restreints. D'autre part, les PTT ont marqué le peu de prix qu'ils attachent au titre de technicien en le délivrant à certains de leurs monteurs après examen organisé dans leurs propres services. La facilité avec laquelle on joue dans l'Administration fédérale avec le titre de technicien, alors qu'on y défend jalousement celui d'ingénieur, donne toute la mesure du discrédit dont il est

L'offensive des technicums a provoqué une réaction violente des milieux universitaires. La Société suisse des ingénieurs et des architectes (SIA), l'Association des anciens élèves de l'Ecole polytechnique fédérale (GEP) et celle des anciens élèves de l'École polytechnique de l'Université de Lausanne (A3E2PL) sont entrées dans la lutte. Elles ont porté le débat devant l'opinion publique et fait des efforts considérables pour influencer les gouvernements cantonaux intéressés ainsi que les autorités fédérales. Leur opposition jouit de l'appui efficace des écoles polytechniques de Zurich et de Lausanne.

Quant à l'Union technique suisse, elle a naturellement suivi avec la plus grande attention le développement de ce conflit, dans lequel elle s'est vu entraînée malgré elle. Son comité central s'est efforcé de recueillir toute la documentation nécessaire. Il a chargé une commission spéciale de

suivre l'évolution de cette question.

Plusieurs prises de contact avec des associations et des autorités politiques nous ont conduit à la conclusion que, fort probablement, la question de l'introduction du titre d'ingénieur dans les technicums ne sera pas tranchée dans les mois qui viennent, à moins que les associations d'anciens élèves ne se décident à employer les moyens extrêmes : interpellation dans les parlements cantonaux ou initiative populaire, ce qui pourrait brusquer les choses.

Certains milieux officiels sont d'avis qu'il serait indiqué d'attendre que la position de la Suisse par rapport au Registre européen des professions techniques supérieures soit nettement définie. Ceci nécessiterait encore de longs pourparlers au sein de la Fédération européenne d'associations nationales d'ingénieurs (FEANI) et aurait pour effet de prolonger le débat pendant quelques années encore.

L'Union technique suisse est convaincue que l'introduction du titre d'ingénieur dans les technicums ne doit pas sonner le glas du Registre suisse. Au contraire, celui-ci a une fonction éminemment utile et nécessaire à remplir pour la formation d'une élite dans les professions techniques supérieures. Les universitaires qui, avant cette affaire, ont fait preuve d'un libéralisme remarquable, ne sauraient renier les principes qui les ont amenés à chercher la collaboration des anciens élèves des technicums. Vu l'importance actuelle de la technique et son développement, cette collaboration est devenue une nécessité sur le plan national. Elle est dans l'intérêt des professions techniques, comme dans celui de notre économie. Nous voulons espérer qu'elle pourra être conservée et développée même si, sur le plan cantonal, des changements devaient intervenir.

Cependant, dans les circonstances actuelles, nous croyons que, quelle que soit la solution à laquelle on aboutira : titre d'ingénieur au technicum ou, au contraire, protection légale des titres d'ingénieur, d'architecte et de technicien sur la base d'une loi fédérale entérinant l'état de choses actuel, la discussion ne sera pas épuisée. Le malaise dont nous parlons plus haut subsistera. Pour le dissiper, on devra s'attaquer au problème de la formation, c'est-à-dire étudier une refonte profonde des programmes d'apprentissage et d'études au technicum, en les considérant non pas comme les deux parties séparées d'un même tout, mais comme un cycle unique qu'il faudra équilibrer afin d'arriver à de meilleurs résultats en évitant tout gaspillage de temps.

L'exposé de M. Gonthier fut suivi d'une discussion nourrie, à laquelle prirent une part active M. Grosgurin, architecte SIA, ainsi que M. Samuel Rieben, ingénieur SIA. De nombreuses précisions, relatives aux titres décernés au personnel technique dans différents pays, furent apportées de manière autorisée par M. Grosgurin, cependant que M. Rieben démontra que l'argument portant sur les années de formation (voir exposé de M. Gonthier: seize ans pour les techniciens et dix-sept ans pour les ingénieurs) n'était nullement fondé, les années d'apprentissage pratique n'ayant pas le même poids que les années passées au Gymnase, par exemple.

(Précisons que l'exposé de M. Gonthier est publié ici à titre purement documentaire, pour l'information des membres de la SIA. — Réd.)

Informations techniques des Charmilles

Les Ateliers des Charmilles viennent de diffuser le Cahier nº 8 de leurs « Informations techniques », et nous attirons l'attention des ingénieurs sur l'intérêt que présente cette remarquable publication de 114 pages, richement illustrée et d'excellente présentation. Dans l'impossibilité de résumer ce cahier, nous nous bornons à en donner la table des matières, en félicitant les Ateliers des Charmilles de ce bel effort, en regrettant peut-être que l'Usine de Châtelaine, spécialisée dans la fabrication des brûleurs à mazout et des circulateurs sans presse-étoupe, n'ait pas apporté de contribution à ce cahier:

P. Waldvogel: « Hommage à M. le professeur René Neeser, docteur honoris causa ».

W. RYTER: « Note d'histoire ».

- H. Schwaar: «Turbines Francis doubles de construction
- P. Piguet : « Les turbines Francis de la deuxième centrale de Tumut, dans les Snowy Mountains ».
- M. Nebel : « Les turbines Pelton de Nendaz et de Cubatao ». Vercellini: « Contribution à l'analyse des résultats d'essais de turbines Pelton ».
- B. Chaix : « Mesures en laboratoire de la vitesse à la sortie d'une roue Pelton ».

M. FAUCONNET: « Procédé d'étude de l'érosion par cavitation marginale sur un modèle Kaplan ».

G. Frieden: «Les vannes montées sur les conduites de refoulement des pompes centrifuges et leurs conditions de fonctionnement particulières ».

B. Chaix: « Essais relatifs à l'influence de la turbulence sur les vitesses indiquées par différents moulinets hydro-

H. Rey: « Des pivots à colonnettes aux pivots articulés ». Ти. Bovey : « Détermination des contraintes dans les collerettes destinées à renforcer des tubulures branchées sur des éléments cylindriques ou coniques ».

E. A. PERRET: «Le turbo-rotary, précurseur du turboforage ».

D. Rigassi: « Exploration pétrolière et turbo-rotary ».
J. Pfau: « Introduction à l'usinage électrolytique ». Y. Kroundycheff: «L'électro-érosion et les alliages durs

frittés dans les fabrications modernes ».

A. Rochat: « Les rectifieuses universelles de haute précision Mipsa-Charmilles, Type Rus, à servo-commandes hydrauliques ».

P. RIBAUX: « Notre contribution à l'utilisation industrielle de l'énergie nucléaire ».

Le progrès technique, force de l'Occident

Les milieux d'ingénieurs suisses sont parfois représentés par d'éminents collègues qui ont su, par leur valeur d'homme, s'attirer la considération générale et contribuer ainsi à donner à la profession d'ingénieur un panache que ne lui auraient pas conféré les seules compétences techniques de ses représentants.

M. Eric Choisy, lorsqu'il est appelé à prendre part à tel ou tel grand débat et à prononcer, à cette occasion, une conférence, se présente en sa qualité d'ingénieur et contribue ainsi, chaque fois, à rehausser le prestige de l'ingénieur. Ce fut une fois encore le cas, en mars dernier, à Lausanne, lorsque M. Choisy prononça une remarquable conférence sur « Le progrès technique, force de l'Occident », sous les auspices du Club d'efficience de la Suisse romande.

Nous renonçons à donner ici un compte rendu détaillé de cette conférence, et nous nous proposons d'en reprendre quelques-uns des thèmes développés.

Certains aspects spectaculaires du progrès technique peuvent permettre, parfois, de douter de son rôle bénéfique, lorsqu'on songe par exemple aux armes nucléaires. C'est pourquoi il est particulièrement indiqué de mettre en évidence d'autres aspects, bienfaisants ceux-là, et de montrer du même coup le rôle décisif qu'est appelé à jouer le progrès technique dans les pays en voie de développement. Ainsi, 13 % de la population du globe sont proches de la faim, 60 % souffrent d'une faim chronique et 17 % seulement sont en mesure de dépasser la teneur nécessaire en protéines. Pour nourrir tous ces gens, il s'avère nécessaire de faire jouer toutes les ressources que le progrès technique met à la disposition de l'agriculture, pour augmenter les terres cultivables (irrigation de certains déserts), pour mettre mieux à profit les réserves alimentaires de la mer, pour lutter efficacement contre les fléaux naturels (par exemple les sauterelles ou les rats), et pour améliorer le rendement des terres cultivées par le perfectionnement des méthodes anciennes. L'augmentation obtenue jusqu'à ce jour du rendement en blé pourrait déjà constituer une sorte de mesure du progrès technique : rendement de 8 quintaux à l'hectare au temps des Romains, de 10 en 1850, de 15 en 1900 et de 40 en 1960.

Mais le progrès technique est devenu, en Union soviétique, une véritable mystique et le danger que court l'Occident, c'est que les pays en voie de développement établissent une relation directe entre la doctrine communiste et les effets du progrès technique, si spectaculaires.

Le problème de l'enseignement s'avère fondamental, tant il est vrai que la valeur et l'efficacité du progrès technique seront à la mesure des hommes, et que cette mesure sera celle de leur formation. Les Etats totalitaires, qui ont compris très rapidement l'importance sans cesse croissante qu'allait prendre la technique, ont basé leur système de développement sur l'enseignement. Actuellement on compte, en Union soviétique, 1 200 000 étudiants, dont 400 000 dans la technique, les femmes s'y trouvant dans une proportion de 50 % en général et de 30 % dans la technique. Pour mener à bien son programme d'enseignement, la Russie a adopté une série de mesures, dont il convient de citer quelquesunes:

 le système des bourses est largement répandu, les étudiants recevant jusqu'à 750 roubles;

— les étudiants sont systématiquement dispensés du service militaire (à ce propos, on peut rappeler que, pendant la dernière guerre, la Russie n'a affecté aucun ingénieur ni professeur aux unités combattantes);

— les conditions morales et matérielles des enseignants ont été élevées à un niveau jamais atteint dans les pays de l'Occident (le traitement d'un professeur d'université vaut sept à dix fois le traitement d'un ouvrier qualifié);

 toute une catégorie d'étudiants ont l'obligation, une fois leurs études terminées, de fonctionner un à deux ans comme enseignants;

— la culture scientifique et technique jouit d'un très grand prestige (39 des 67 membres du Praesidium suprême ont achevé des études techniques).

En une génération environ, la Russie a pu passer des conditions du moyen âge à celles des temps modernes, ce qui constitue précisément un exploit auquel sont sensibles des pays en voie de développement. Ce résultat a été obtenu en grande partie grâce à l'enseignement planisié. Il faut cependant ajouter que l'enseignement, quel qu'il soit, est lié à la politique, et les étudiants sont initiés et formés à l'esprit marxiste (si bien que les spécialistes que la Russie envoie dans certains pays en voie de développement sont aussi des « missionnaires » du marxisme!) Des traités lient l'URSS à la Chine communiste pour la formation, par les Russes, de techniciens chinois, et ont un goût de marché d'esclaves techniciens. Grâce à toutes ces mesures, l'URSS est non seulement parvenue à satisfaire à ses propres besoins en spécialistes, mais encore elle peut se permettre d'en « exporter », alors que l'Occident ne se suffit qu'à peine à lui-même.

L'Occident se demande si le progrès technique sera pour lui une force ou une faiblesse. De nombreuses raisons permettent de croire en la survie du monde occidental; la condition première est que l'Occident utilise au mieux les atouts que sont par exemple ses possibilités sur le plan scientifique et technique.

Les mesures d'ordre secondaire qu'on peut envisager immédiatement consisteraient dans :

- l'augmentation du nombre des scientifiques ;
- l'adaptation des règles fixant la mise à la retraite des cadres;
- une meilleure utilisation des scientifiques;
- un recours accru aux talents scientifiques incontestables de la femme.

Il faut également souligner le rôle fondamental que joue l'enseignement secondaire, là où s'opère précisément le choix des carrières scientifiques. Il s'avère donc particulièrement important de donner plus de vigueur et de dynamisme à cet enseignement, de l'amplifier et de l'améliorer. Parmi les mesures auxquelles il faudrait recourir, on peut citer:

- la mise en service d'un nombre toujours plus grand de professeurs jouissant d'une formation « dynamique », adaptée constamment aux besoins réels et tenue à jour ;
- l'amélioration radicale du statut matériel et moral des enseignants;
- le recours à un enseignement moderne de la physique et des mathématiques;
- l'organisation de cours de perfectionnement à l'intention des maîtres.

L'Occident devrait donc entrer dans une ère technique plus accusée, afin de pouvoir jouer auprès des pays en voie de développement le rôle fondamental qu'il est appelé à jouer, et devrait ainsi disposer d'un nombre suffisamment grand de spécialistes. Mais, pour éviter la domination de l'homme par la technique, l'Occident doit pouvoir aussi compter, et surtout, sur des hommes cultivés, ce qui implique une formation humaniste de

l'ingénieur. On est ainsi ramené, une fois de plus, au problème des éducateurs, qui doivent veiller à ne pas axer la formation des scientifiques uniquement sur les sciences et la technique, mais aussi sur l'homme, en donnant davantage de poids à la formation qu'à l'information et en attachant davantage d'importance aux principes qu'aux faits.

Il faut aussi promouvoir une meilleure entente entre les intellectuels, en supprimant le fossé qui tend à séparer les «littéraires» des «scientifiques», en nuançant davantage les formations et en évitant de ranimer la fameuse querelle des anciens et des modernes. Dans cette perspectives, il apparaît nécessaire d'amener les littéraires à une meilleure compréhension de la science, et c'est là un rôle qui appartient avant tout aux hautes écoles. Une action d'ensemble, où interviennent des éléments spirituels, est de même indispensable.

Le progrès technique, qui demeure l'un des éléments essentiels de notre civilisation occidentale, pourrait devenir une sorte de dénominateur commun.

La liberté d'enseignement dont jouissent les universités de l'Occident constitue déjà une force remarquable. Par cet enseignement, l'Occident sera en mesure de former véritablement des hommes et, si la richesse d'hier se mesurait en or, celle d'aujourd'hui en pétrole, n'oublions pas que la richesse de demain se mesurera en hommes.

BIBLIOGRAPHIE

Introduction to petroleum chemicals, édité par H. Steiner, Oxford, Pergamon Press, 1961. — Un volume 15×24 cm, x+200 pages, figures. Prix: relié, 50 shillings.

Ouvrage contenant une série de leçons sur la chimie industrielle du pétrole, données durant l'automne et l'hiver 1959 au «Manchester College of Science and Technology ». En voici les titres :

- Cracking processes for olefins (J. W. Woolcock).
 Separation processes for olefins (M. Ruhemann)
- Products from ethylene and propylene (F. E. Salt).

- Polymers from ethylene and propylene (R. N. Haward).
- The production and use of butadiene (E. B. Evans).
- Aromatics from petroleum (J. L. Edgar). Styrene and polystyrene (S. H. Dawson).
- Acetylene from hydrocarbons (J. W. Haworth and W. J. Grant).
- Carbon black (B. Thorley).

DOCUMENTATION GÉNÉRALE

Voir page 19 des annonces)

SERVICE TECHNIQUE SUISSE DE PLACEMENT

(Voir page 21 des annonces)

NOUVEAUTÉS — INFORMATIONS DIVERSES

Deux nouveaux hygrostats SAUTER types HBC et HBCC

Ces appareils servent au réglage du degré d'humidité dans des installations frigorifiques et de conditionnement d'air, dans des locaux professionnels et industriels ainsi que dans des armoires de séchage et chauffantes.

La tête de l'appareil comme la sonde peuvent pour les deux types supporter des températures allant de -20 à +70°C. La puissance de coupure des contacts secs est de 10 A sous 250 V \sim , $\cos \varphi = 1$.

Comme toutes les pièces mobiles sont suspendues, la sensibilité de l'appareil est ainsi augmentée. Une sécurité contre la dilatation empêche l'appareil de se dérégler.

La partie sensible est constituée par un faisceau de fils de coton tendu, qui se rétrécit en présence d'eau. Le rétrécissement est fonction de l'humidité relative.

Ces deux appareils n'exigent aucun entretien (le faisceau de fils de coton ne demande pas de régénération et il résiste beaucoup mieux que le faisceau de cheveux) et peuvent être utilisés jusqu'à une vitesse de l'air de 10 m/sec.

Les deux types HBC et HBCC présentent les caractéristiques suivantes:

Le type HBC est utilisé comme régulateur à action à deux positions (enclenché-déclenché) et possède une zone de réglage (cadran étalonné) de 0 à 95 % h.r. La différence de couplage est de 1 % h.r. Il est équipé d'un contact commutateur à rupture brusque.

Le type HBCC est par contre utilisé comme régulateur à trois positions ou comme régulateur à action à deux rapidités. D'autre part, il peut aussi être monté avec un régulateur à action pas à pas. La zone de réglage est également comprise entre o et 95 % h.r. et réglable au moyen d'un bouton étalonné. Contrairement au type précédent, il possède deux contacts commutateurs. La grandeur de couplage entre ces deux commutateurs peut être réglée entre 1,5 et

La partie électrique des deux appareils (tête de l'appareil) est recouverte d'un boîtier en matière synthétique résistant aux chocs; les bornes de connexion sont facilement accessibles après l'enlèvement du boîtier. Les fils électriques peuvent être introduits soit par le devant soit par le dessous de l'appareil, suivant les conditions d'emplacement exigées. A cet effet, il suffit simplement de changer la position du manchon de serrage.

En complément à ces deux types, un hygrostat transmetteur a été conçu pour le réglage progressif de l'humidité de l'air, en liaison avec un appareil de réglage électromécanique SAUTER. Il s'agit du type HBG. Sa zone de réglage normale s'étend entre 20 et 95 % h.r. et la zone rhéostatique est réglable de 5 à 20 % h.r.

La ventilation du tunnel routier du Grand-Saint-Bernard

Le tunnel routier du Grand-Saint-Bernard, actuellement en construction, assure une communication permanente entre Martigny (Valais) et Aoste dans le val d'Aoste (Italie).

Il s'agit d'un tunnel à faîte, d'une longueur de 5830 m, se trouvant à une altitude d'environ 1900 m.

Ce tunnel routier possède une double voie, d'une largeur de 7,5 m, avec de chaque côté un trottoir de 90 cm, de sorte que la largeur totale du tunnel est de 9,30 m.

Actuellement des routes d'accès, en partie couvertes, sont en construction. Elles permettent de maintenir la circulation ouverte pendant toute l'année.

Bien qu'une circulation aussi intense qu'au Gothard ou au San-Bernardino ne soit pas présumée sur ce tronçon alpin, on a voué un soin tout particulier à la ventilation du tunnel.

L'installation de ventilation a été prévue pour une fréquence de pointe d'environ 500 véhicules par heure, se produisant particulièrement en fin de semaine ou en période de vacances. La fréquence moyenne pendant toute l'année sera naturellement inférieure.

La frontière entre la Suisse et l'Italie coupe le tunnel en deux moitiés. Les postes de douane des deux pays se trouvent à chaque portail, de sorte que la circulation se trouve en un certain sens ralentie, mais peut d'autre part être réglée.

L'installation de ventilation est prévue de façon qu'une masse d'air de 1 080 000 m³ circule à travers le tunnel lorsque tous les ventilateurs sont en marche. Douze grands ventilateurs à haut rendement aspirent l'air vicié du tunnel,

soit I 080 000 m³, tandis que huit autres ventilateurs du même genre introduisent une quantité égale d'air frais dans le tunnel.

Cinq stations de ventilation, ayant chacune quatre soufflantes, sont prévues, soit :

Station I Au portail sud

4 soufflantes pour l'introduction au total de 540 000 m³h d'air frais.

Stations 2 et 3 Au milieu du tunnel

4 soufflantes pour l'évacuation au total de 540 000 m³/h d'air vicié, et

4 soufflantes pour l'évacuation au total de 270 000 m³/h d'air vicié.

L'air vicié de ces deux stations sera évacué au-dehors au moyen d'une cheminée commune d'une hauteur d'environ 360 m.

Station 4 Entre la cheminée principale et le portail nord

4 soufflantes aspirent au total 540 000 m³/h d'air frais à l'extérieur au moyen d'une cheminée d'environ 200 m de hauteur et l'insufflent dans le tunnel.

Station 5 Au portail nord

4 soufflantes évacuent au total 270 000 m³/h d'air vicié.

La capacité totale de toutes les soufflantes installées pour l'introduction d'air frais et l'évacuation d'air vicié atteint 2 160 000 m³/h, avec des moteurs d'entraînement d'une puissance totale de 1650 CV.

La force nécessaire sera fournie par une centrale électrique propre placée dans le tunnel même.

Le projet complet a été étudié par la maison VENTILA-TION S.A., STÄFA, en collaboration avec M. H. Felber, ingénieur à Monthey (VS), qui assume la direction générale des travaux. Les travaux de montage inhérents à la ventilation débuteront ces mois prochains.

La maçonnerie DURISOL

(Voir photographie page couverture)

Ses principaux avantages et particularités

La maçonnerie DURISOL remplit d'une façon idéale les principales fonctions d'une paroi extérieure : force portante, protection contre les intempéries et le bruit, isolations thermique et phonique. Elle se différencie des autres genres de maçonnerie avant tout par la très nette séparation des fonctions statiques et isolantes. Par conséquent, on peut dimensionner la force portante indépendamment de l'isolation, ou vice versa.

Les plots-creux DURISOL ne sont pas portants; ils ne servent que d'éléments de coffrage au cours de la construction. Les alvéoles sont remplies de béton et, grâce aux liaisons diagonales, on obtient une sorte de grillage en béton. Ce dernier est donc l'élément porteur et, par le dosage en ciment, il peut être adapté facilement aux surcharges existantes. La force portante peut aussi être réglée par l'utilisation de plots de différentes épaisseurs dont les alvéoles sont toujours proportionnelles à l'épaisseur totale de la maçonnerie.

Sur une construction finie, la matière DURISOL joue le rôle d'isolant thermique. Pour des maisons d'habitation situées dans des régions à climat modéré, on utilisera le plot de 20 cm d'épaisseur, dont le pouvoir isolant correspond à celui d'une maçonnerie en briques d'environ 36 cm d'épaisseur. Dans des régions plus froides ou en altitude, on utilisera de préférence le plot de 25 cm, correspondant environ à une brique de 45 cm d'épaisseur.

Du point de vue statique, la maçonnerie de 20 cm est suffisante pour des maisons d'habitation jusqu'à trois étages; à partir de quatre étages, on utilisera les plots de 25 et 30 cm, tout selon la hauteur totale et les surcharges.

Du point de vue thermique, notre système a non seulement l'avantage d'avoir un plus grand pouvoir d'isolation par rapport à d'autres systèmes de construction, mais aussi par le fait que la transmission thermique reste toujours constante lors des intempéries.

Il y a également lieu de faire remarquer que les frais de chauffage sont considérablement réduits avec des constructions en DURISOL.

En un laps de temps relativement court, ce sont environ 5000 constructions en DURISOL qui ont été réalisées en Suisse, en particulier en altitude, dans les froides régions du Jura et dans les Alpes, où les changements brusques de température sont fréquents. Toutes ces constructions, érigées à diverses fins, mais spécialement pour des maisons d'habitation, se sont avérées à tout point de vue irréprochables.