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§ 4. Valeurs théoriques des tensions dans les plaques
circulaires étudiées

A. Plaque circulaire ot I'épaissewr subit une variation
brusque, n’entrainant pas de discontinuité du feuillet

moyen (fig. 1 A)

Les tensions se déterminent sans difficulté, en appli-
quant la théorie de Kirchhoff. On peut également obte-
nir leurs valeurs en posant NV = 0 dans les formules (1)
ot (2) ci-dessous, relatives & la seconde plaque, et en
remplacant h; par h, dans (2).

* Voir Bulletin technique du 13 février 1960.

B. Plaque circulaire ot Uépaisseur subit une variation
brusque, entrainant une discontinuité du feuillet

moyen (fig. 1 B)

Ce cas a été traité récemment par M. Martinola, qui
a montré la nécessité d’introduire dans le calcul les
forces IV agissant dans les feuillets moyens des deux
parties de la plaque 1%. Nous donnons directement ci-
aprés, non pas les valeurs des moments et des efforts IV,
mais celles des tensions elles-mémes 17,

16 [2], p. 41 et suiv,

'7 Les formules (1) et (2) s’obtiennent en remplacant, dans les
relations (17), (18) de [2], p. 49, M, M, par leurs valeurs (13) et (15)
du mémoire cité,
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v désignant le coefficient de Poisson.

C. Plaque circulaire dépaisseur linéairement pariable

(fig. 1C)

Pour obtenir commodément les valeurs des tensions
dans une telle plaque, nous nous occuperons tout d’abord
d’un cas plus général, celui d’une coque d’épaisseur
linéairement variable, ot le feuillet moyen est une surface
conique de révolution quasi plane, ¢’est-a-dire ou I’angle ¢
formé par une génératrice et un plan perpendiculaire
a P’axe est supposé petit (fig. 12).

Nous admettons que cette coque soit simplement
appuyée le long du contour® et qu’elle supporte une

18 Dans la théorie qui va suivre, nous avons supposé que les réactions
étaient perpendiculaires au feuillet moyen. Cette condition n’a été
qu'imparfaitement réalisée dans nos expériences, ou les réactions
étaient paralléles a I'axe z. Les erreurs qu’entraine cette simplification
sont négligeables dans notre cas.
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appliquées a 'élément fini de la figure 14, doit étre
nulle, ce qui donne, aprés simplifications :

> ot
" 21rr cos o)

¢r=Nrtgo (6)

Remarquons que cette équation n’est pas indépen-
dante des trois précédentes. En introduisant en effet la
valeur (6) de Q, dans (5), on obtient la relation (4). Les
conditions d’équilibre nous donnent donc en définitive
seulement trois équations. Comme les forces intérieures
inconnues M,, M;, N,, N;, Q, sont au nombre de cing,
il est nécessaire de faire intervenir les déformations du
feuillet moyen, pour obtenir des équations en nombre
suflisant.

19 Ces équations se déduisent directement de celles indiquées
dans [8], p. 451 ou dans [9], p. 80 et 81.

ath
M \ Mpt T ar

ahp
,/V,s *" o,

5 e
/:_/_:,_/‘, Fig. 13. — Forces
e oY agissant sur un élé-
== T ment infinitésimal
| ,)//////" de la coque de la
ke v > figure 12.
DAYl A . g
g

B

¢I




S

4
|
@
]
|
| Fig. 14. — Forces agissant sur un élément fini de la coque
. de la figure 12.
& , .
| Désignons, dans ce but, par ¢ et o les composantes,
% suivant la tangente et la normale au méridien, du dépla-
' cement d’un point A de ce feuillet (fig. 15). Entre les
|
L |
v
\ :
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i | feurllet moyens. < 4y
. ///
I i

i 2 &
\ 24
‘quantités M, M, N, N; d’une part, ¢, & d'autre part,
existent des relations générales connues 2%, qui, dans le
cas particulier étudié, deviennent :

M, = —D cos? ¢ (w" 4 IX w'),
1 ’ /I\
M, = --D cos® ¢ (]— w' -+ v ) )
- - v v,
N, = Kcos o [V -4 ity + wtg q;)] )

)

1 ]
= (v + wtg @) + v’

Ny = K cos @ [
ou D = Er¥[12(1 —v?), K = Eh/(1—v?, h étant
I'épaisseur a la distance horizontale r du sommet du
feuillet moyen, £ le module d’élasticité et v, le coefli-
cient de Poisson. Enfin ¢', ¢", ..., ', »", ... désignent
les dérivées successives de ¢, v par rapport a r.

En introduisant la valeur (6) de @, dans (3), puis en
remplacant, dans la relation ainsi obtenue, M,, M, N,
par leurs valeurs (7) et (8), on est conduit & une premiére
relation ou ne figurent que ¢, & et certaines dérivées de
ces fonctions :

rDa" + (D +rD") " (vD'—l—:) o'+ Kr %c’;—g% o'+
g 9)
tg ¢ tg? @ P (
-+ Ky cos® @ p+ Ky cos® @ T 9 cost P e

On obtient une seconde relation, en introduisant les
valeurs (8) de N,, V; dans (4) :

rhe” 4+ (h + rh’) o' 4 (vh' —]—:> p +vhitge - + ‘

., (10)

+ tue (vh’ —7) w = 0. ’

Le probléme est ainsi ramené a l'intégration du

systeme de deux équations différentielles simultanées

(9), (10), ot ¢, @ sont les fonctions inconnues. Ce sys-

téme est du 5¢ ordre. Les constantes d’intégration se
détermineront a l'aide des conditions aux limites.

0 (8], p. 452 et 453.

20 Intégration du systeme (9), (10)

Cette opération pourrait en principe se faire en appli-
quant la méthode de E. Meissner ®, puisqu’il s’agit
d’une coque de révolution. Mais, dans notre cas, I'épais-
seur h varie pew d’un point @ un autre (la dérivée dh/dr
est petite par rapport a 1) et Uangle @ est lui-méme pelit.
1l est alors préférable de procéder a I'aide de développe-
ments en série, en appliquant une méthode, déja utili-
sée par E. Chabloz et I'un des trois auteurs, pour étudier
le cas plus simple des plaques circulaires fléchies d’épais-
seur linéairement variable, ol h est trés petit et ol les
forces N sont négligeables, ce qui n’est pas le cas dans
la présente étude 2.

Posons
_ r
hz/Lll—?\(ZAm'l)]v (11)
a
7 ,e 5. . a .
I désignant I'épaisseur pour r = 5, et A, un coeflicient

caractérisant la variation de A (fig. 12).

Considérons maintenant la simple infinité de coques,
définie par ensemble des valeurs (petites) de A et 9,
lices par la relation :

A=Qlg o, (12)

ot Q) est une constante. Nous donnerons plus loin a
cette constante une valeur telle que la surface supé-
rieure de la coque soit plane, conformément & la
figure 1 C représentant la plaque que nous voulons
étudier. Les grandeurs ¢, & pouvant &tre alors consi-
dérées comme des fonctions non seulement de r, mais
aussi de A, développons-les en séries, selon les puissan-
ces croissantes de A, en posant :

% 2
p = E G N, = 2 N, ((=0,1,2 ...) (13)
1=0 1=0

OU Vg, 91, Vay - - -5 Woy W1, Wy, - .. sont des fonctions de r.
En introduisant ces expressions dans les équations
différentielles (9) et (10), compte tenu du fait que
9o =02, et en égalant & zéro les coeflicients des diffé-
rentes puissances de A, on obtient respectivement les
deux systémes simultanés (14) et (15) suivants :

p [(wy) = — Hy,
Al M(w)) = — [Aywg + Biwg + Ciwvol,
A M(wy) = — [Aw] + B+ Cwwy +

+ Ay + Bow! + Covg +

4+ Lywy + Fio) + Gy + Hal,
S [(wy) = — [Aywz + Byw, + Cywy + (14)

4+ A,wy + Bowi + Comwy +

+ Lywy + Ay + Bywg +

+ Cowy + Lawy + Fron +

+ Gy + Fovi + Gooil,

ou :
(l[ld i i . P
- Eh3 o (2r
D:m‘ .11:-(3(7—‘1)’

L [8], p. 455 et suiv.

2 Voir [10].

3 En effet, la premiére des équations (15) que nous établirons plus
loin est homogéne et on verrait facilement qu’elle n’admet que la
solution ¢ = 0, vu les conditions aux limites du probléeme. On peut
dire aussi que le cas A =0, ¢ = 0 correspond a celui de la plaque
d’épaisseur constante, o l'on doit nécessairement avoir ¢ = vo = 0.

o 10

© o
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3 [4r : 3 [2r
131:_—,‘(?_1), c1~ﬁh(l_-—v)—1’.
12
F — = )
AT
12v1 2r \2 321 Gr
== - A, =3(—— ’ 3y = —|—— ==l 1§
AT e d(a l) By z(a )(u l)
3 /2 by 12v 1
(l:_—(—’ WJ) = f1—~3v)f—.1]. =i,
re\.a a = h2Q2 r
. 3
R JRAPTI 1 (0
Ay'= ("‘(L l)
1 /2 2 /8y
33:_7(;_1) (:*1)'
, 1 /2r 212r
cuﬁﬁ(z-i) l;(J *3\;)—JJ,
12 12 AL
F,=—,_—(—’—) ;= _lv—(‘ZL—1>:
= /LZQ a = /le J ¢ a y
P 12v 1 (2r
1[.):*—_—| 1/3:—) i 1‘(‘—'—‘[)'
“ 'n'rUQ:Z h‘.’.QZI‘ (22 y
A: T (v) =0,
Al r("l):—[pl‘vb“‘al“'oj,
Wi T (o) = — [Auef + Bk Cos + Fuwi £ | o

- Elsvl + I'_'.Zw(', + Ezwo},

A: T (vp) = —[Aws + By + Cooy + Fyw; +
- Elwg - F‘zwi -+ Ezwl'[,

r=ia
= v - 1 — v (21
I'IZE) 1**{2—"2 IZV*E(—f'l)’
= 1: [2n

Les équations des systémes (14), (15) présentent
lavantage d’étre toutes du méme type et de pouvoir
s'intégrer successivement sans difficulté par des
méthodes élémentaires, en procédant comme suit. La
premiére des équations (14) donnera la fonction swy(r)
qui, introduite dans la seconde de ces relations, per-
mettra de calculer w,(r). En substituant wy(r) dans la
seconde des équations (15), on obtiendra ¢,(r).
valeurs de wy(r), w,(r), ¢4(r), introduites dans les troi-
siemes équations (14) et (15), donneront respective-
ment w,(r) et ¢,(r), et ainsi de suite.

La simplicité de I'intégration rencontrée ici — qui
n’existe pas dans 'emploi des équations « accouplées »
de Meissner — est due au fait qu’on a choisi une classe
particuliere de coques, dont la forme fondamentale
(A=0, ¢ =0) coincide avec la plaque d’épaisseur

Les
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constante. Cette intégration introduit des constantes
arbitraires. Pour les déterminer, il est nécessaire de
s’appuyer sur les conditions aux limites, que nous allons
préciser.

30 Conditions aux limiles
On doit avoir, la coque étant supposée simplement
appuyée le long du contour :

(")r:o # 00, (“")r=0 =0, Whr=a=0, (16)
(Ne)r=a =0, (Me)rta =10, (17)
Pour que les conditions (w'),—g =0 et (w),—g = 0

solent satisfaites quel que soit A, il est nécessaire,
d’aprés la seconde formule (13), que

(@m0 =0, W)rea=0. (i=0,1,2, ...) (18)

En introduisant les valeurs (13) de ¢, w dans les
premiéres des formules (7) et (8), on obtient :

o0
; R,
M, = — D cos?¢ E Al (w;" ~l——l Wi) )
t=0

oo
Ny = KA cos ¢ ‘\_: A [u;u -+ %(VE_H - %)}
1=0 -

Pour que les deux conditions (17) soient satisfuates
quel que soit A, il est donc nécessaire que :

- . "p A A S
=012 ..)

v \
(n"{ 4 = w,':)

r=a

. . , ;
mais puisque (w;),—, = 0 en vertu de la seconde équa-
tion (18), on obtient en définitive les deux groupes de
conditions :

Quant a la premiére des conditions (16), elle revient a
poser, ¢, étant nul :
a9, (20)
En définitive, les fonctions v¢;, ¢; doivent satisfaire
aux conditions (18), (19) et (20). '
Remarque. Par raison de symétrie, le sommet O’ du

cone du feuillet moyen ne peut que se déplacer vertica-
lement, d’ou (fig. 16) :

=12 ...)

(vcos @+ wsin@)r—q=0, ou (v + wtgp),—o=0. (21)

En remplacant ¢ et & par leurs expressions (13) et
en se rappelant qu’en vertu de (12), A = Q tg ¢, I’équa-
tion (21) sera vérifiée quel que soit A, si:

/i
?7. .......... _>
r [feuillet moyen
| B

Pig. 16. ~-0 _A‘*_L__ S
@l T

ly W
A=
V.Z

il
—




(V,;_%_IJF‘KL;)TZ():(). (=0,1,2 ...) (22)

Ces relations permettent de faire un contrdle des

valeurs obtenues au point r = 0 pour les fonctions

vi(r), wi(r).

40 Application au cas de la plaque étudiée (fig. 1C)
On peut poser ici (fig. 17) : tg ¢ = Ah/a, et la relation
(12) montre que

G == (23)

Nous avons effectué 'intégration des équations (14),
(15), compte tenu des conditions (18), (19), (20) et de
la valeur (23) de Q, jusqu’a ce que nous ayons obtenu
les fonetions v,, ..., v3, Wy, ..., w3. Les deux séries (13)
convergent en effet suffisamment rapidement pour que
I'on puisse, dans le cas de la plaque représentée fig. 1 C,
se contenter de ne considérer que les quatre premiers
termes de chacune d’elles. Pour ne pas alourdir notre
exposé, nous nous bornons a ne donner ci-dessous que
les expressions de ¢, ¢, 95, Wy, Wy, ot on a remplacé Q

par /; et désigné par € le rapport r/a :

vy =0,
_Pah[t—2v, o AT ATv—16,
clanlrm | s B v :
7 4+ 4y — TvZ — 43 3+ v

‘ 91 + v)2 41 +v)

Pal [1 —y — 2y

— 3 J.00 § —
e D 0 & Log €
1 e 21 4 28v—43v2—50v3
—5('1*2v)§~Log§»— 73 il_ 7 &4 (24)
125 4 83y — 224y? — 12803 __

il 108(1 + v)

239 4 405v — 13302 — 405v° — 106v*
o 216 (1 + v)? :

5+ 3lv + 8v*
T 36 (1 F v)

R L P W T
Pa® [ 34+ v C
9 == __£2 —_ o ’
Wy fmr[!l(lLv)“ £) + 2 Log
Pa? |2 5 3
G o §(l + v) €2 Log § —5 & Log € 4
_ ) _ (25)
: ._7_(1 . 1—21v—16v? , 5+31lv+3&2
rgl —sviE A F+v) ° 360+ ]
Wy = B e e iR 8RR 5 e e Ve e £ SR 8 E e e H
BB T e B G D s e e 5 B s e

Ayant déterminé les huit fonctions v, ..
ensuite facile de calculer M,, M,;, N,, N, en introdui-
sant les deux séries (13), limitées & leurs quatre premiers
termes, dans les formules (7) et (8):

., iy, 1l a été

a

N . a V)
M, = — D cos*p E A (—i—wi ;w;) )
L"T‘(J (26)
S ., (1 ;
M, = — D cos®p E Al (;wi + v w,-) )
§=0
- . ’ ; v/ h
N, = KA cos @ -\:‘ A1 [v} + - (V{ + [—lowi_1>] )
(27)
N, — K i \‘1 i1 ik o, |
Nt = K A cos q>:jll A = + Z“'ifly + vvi, K

Ces formules permettent de vérifier que (M;),—0 =
= (M=o = oo, tandis que (Np)r=0 = (Ni}r=0 =

3
= K (1 +'v) cosg E 7 (v;.),zo-
i—=1

Remarquons aussi que Deffort tranchant (, peut
étre ensuite directement déduit de la valeur (27) de
N,, a l'aide de la formule (6).

Les grandeurs M,, M,, N,, N;, Q. se rapportent a des
éléments de surface perpendiculaires au feuillet moyen
(fig. 13), conformément & la théorie habituelle des
coques. Il est maintenant nécessaire, si 'on veut obte-
nir les tensions cherchées o, o, T, de calculer les
moments M,, M, et les forces !\_7,, I_\_T,, 6, relatifs a des
¢léments de surface verticaux. Dans ce but, considérons
I'élément de volume ABB'A’" précisé dans la figure 17.
La face de gauche de cet élément est verticale, celle de
droite est perpendiculaire au feuillet moyen. Remar-
quons que, ¢ étant un petit angle, le milieu S du seg-
ment AB est sensiblement situé dans le feuillet moyen,
a un terme de l'ordre hp* prés.

Pour des raisons évidentes, on a :

M, = M, cos o, N, = N, (28)

Les conditions d’équilibre donnent d’autre part les
trois relations suivantes, ot dy désigne I'angle des deux
plans méridiens limitant latéralement I'élément de
volume considéré :

‘ _ ) _ dr
M; (r+-dr) dy — My rdy — Qr (r + dr) dy oo —
— M cospdrdy =0,
N, (r + dr) dy cos ¢ — N;dr dy — N, rdy + ¢ (29)
—1'— ()r sin P (I' + (il‘:) d\{J = ():
— Qr rdy + Q, (r + dr) dy cos ¢ —

— N, (r + dr) dy sin 0 = 0.

Dans ces équations, il n’est pas possible de considérer
d’emblée dr comme un infiniment petit. Cette quantité
ne peut en effet tendre vers zéro, ce qui entrainerait
une intersection des segments AB et A’B’ ! Mais nous
pouvons imaginer que k et dr tendent simultanément
vers zéro, la face supérieure et A restant fixes, et négliger
alors les infiniment petits d’ordre supérieur. On obtient
ainsi pour M,, N,, O, les valeurs approchées suivantes,
d’autant plus exactes, dans notre cas, que @ et hy sont
plus petits :

M, = M,, N, = Q,sing + N, cos g, |

s ; (30)
0 = Qrcos ¢ — N, sin 9. ]
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Fig. 17. — Coupe méri-
dienne d’une plaque circu-
laire d’épaisseur linéaire-
ment variable, considérée
comme cas particulier de la
coque représentée fig. 12.

Finalement, les tensions normales cherchées o, oy
sont données par les formules :

12 n N, h ,
"':h 17"’(“ 5) “’:T+ 11,( _)). (30)

QQuant aux tensions tangentielles T,., elles se calculent
par la formule générale, établie récemment par deux

des trois auteurs 2*:

v dz, M, dh
= ]3<0' M‘r—r‘——3 h rl;) +
19, = dh 12 dz,
[h Qrzo + h2 <(lr o ;l—r) +

dzg- o db\] | N.(dzm zdh 2
+/z_3‘w ((l! 3‘,0(7)] ~+T(;]7 _l_’(F>+ o

3M, (dh 39 dzg
h2 (dr h dr)

6 (— — dz, M, dhy [, h?
_F?(O"_"\’E*B h (]l)( 471)’

ol z, désigne la cote d'un point du feuillet moyen. En

tenant compte des diverses relations écrites, cette for-
mule se réduit ici a la suivante :

6 [ h 6N —
T,‘:=4,,—L((),+ SN+ o M)+
' (33)

= XNl —
+h [6() o Ah GAh N, 4 2k 47\1 Vr]:

Remarques

10 Une étude théorique analogue a celle que nous venons
de présenter, mais concernant un autre type de plaque
d’épaisseur linéairement variable, a été publiée il y a quel-
ques années par B. Gilg, dans un ouvrage déja cité 2.

20 Dans les calculs ci-dessus, nous avons supposé que la
force P agissait au centre de la face supérieure de la plaque.
Si cette force est répartie sur un tres petit cercle de rayon r,
ce que suppose la figure 1 C, ou ry = 0,1, = 0, 035a, les
formules seront encore applicables.

D’autre part, au voisinage du milieu de la plaque, la
théorie utilisée jusqu’ici n’est évidemment plus valable.
Mais nous pouvons, pour calculer les tensions au centre M
de la face inférieure (fig. 17), ot I'expérience montre qu’il y
a en général le plus grand danger de rupture, nous baser
sur une formule établie par S. Woinowsky-Krieger. Ce der-
nier a en effet montré que, dans le cas d'une plaque circu-
laire d’épaisseur constante hy, et de rayon a, simplement
appuyée le long du contour, sollicitée par une force concen-

24 Voir [4]."Dans le mémoire en qut‘slu)n, My, My, Nr, Ny, Qp dési
gnent les grandeurs appule(\a ici \[r, 111, Nr, \t, ()r

25 [9], p. 79 et suily.

102

trée P appliquée au centre, la tension o, = oy au point M
a la valeur 26:

(o7)r=0=(0t)r=0=

(1—%—\))(0,4851,0(31 +0,52)+0,48 ED (34)
I h}

Considérons en eflet la portion de plaque circulaire définie
par un rayon d, choisi légérement supérieur a h, (fig. 17).
Les formules établies plus haut permettent de calculer
(My)r=a et (Ny)r=d. La portion en question peut étre assi-
milée & une plaque d’épaisseur constante h,, et la tension
o, = oy au point M s’obtient en ajoutant, a la valeur donnée
par la formule (34) — ou il faut remplacer a par d — celle
qui existerait en ce point si (M;)r=a et (N;)r=a agissaient
seuls le long du contour r = d. Or la valeur de cette der-
nicre tension est

(‘ (i p
 (Mirma + = o ), (85)
0
en posant :
M;y)r= ho(Nr)r=
N ( Zr 11’ n 10( ;)r (I. (36)

On obtient done pour la tension résultante, au point dan-
gereux M de la plaque considérée :

. I : d A
(orlar = (o = [ +v) (0,485 Log 2 +052)+ |
p e (37
b+ i 048] 1o
0

Ajoutons qu’en toute rigueur, les tensions au sommet M
du céne formé par la face inférieure de la plaque considérée
devant étre nulles — puisqu’aucune force extérieure n’est
appliquée en M — c’est en un point situé tres légerement
au-dessus, dans mnos essais probablement a 1 ou 2 mm
seulement, que la tension dangereuse doit se produire.

3° La formule (37) permet également de calculer la ten-
sion dangereuse o, = 0y au centre M des deux premiéres
plaques (fig. 1 A et 1 B).

10 Nous verrons a la fin du paragraphe suivant que les
expériences faites ,;sur les trois modeles de plaques ont
confirmé la validité de cette formule.

§ 5. Comparaison des valeurs théoriques aux
résultats des expériences. Discussion

Dans les figures 5 a 10, nous avons représenté, a coté
des valeurs mesurées des tensions, les valeurs calculées,
soit par les formules du §4 (plaques), soit a I'aide des
procédés de la Résistance des matériaux (poutres) 7.

Considérons tout d’abord les plaques el poulres
d’épaisseur brusquement variable (fig. 5 a 8) Nous pou-
vons y distinguer quatre domaines, dont trois sont ana-
logues aux zones que nous avons rencontrées dans notre
mémoire précédent *, Dans le premier domaine, que
nous désignerons également par I, les formules rappe-
lées § 4, A et B sont applicables. En termes plus précis,
nous définirons cette zone — qui comprend ici deux
parties distinctes — comme le domaine ow les différences

26 Voir par exemple [8], p. 76 et suiv. Les essais faisant ’objet du
mémoire [1] ont confirmé 'exactitude de cette formule, comme 1'in-
dique la figure 21 de l'article cité.

27 (C’est-a-dire, pour les poutres, d’aprés la théorie de Navier.

1], § 5.




entre les tensions mesurées el celles calculées sont infé-
rieures a 0,048 P/h2. Cette tolérance correspond a 10 9,
de la valeur qu’aurait (o;)max pour rfa = 05, si la
plaque ou la poutre avait une épaisseur (ow une hauteur)
constante hy.

Les trois aulres domaines, ou les formules rappelées
§4, A et B ne sont pas applicables, seront désignés
respectivement par Il (voisinage du petit cercle sur
lequel est appliquée la force P) 2%, III (zone sous l'in-
fluence directe des réactions des appuis) et IV (domaine
de perturbation créé¢ par la discontinuité). Nous ne
reviendrons pas sur les propriétés des zones I et III,
qui ont déja été décrites dans notre mémoire fréquem-
ment cité. C’est par contre surtout a I'étude de la
zone 1V, essentiellement nouvelle ici, que nous allons
nous arréter un instant.

Dans le cas ot la discontinuité de Uépaisseur de la
plaque (ou de la hauteur de la poutre correspondante)
n’engendre pas de discontinuité du feuillet moyen (fig. 5
et 6), la zone IV a la méme extension dans les deux
modéles. Elle s’étend sur une longueur de 0,82 hy, ce
qui correspond environ au cinquiéme du rayon ou de
la demi-portée a. Deux points singuliers, I'un attractif
S, et T'autre répulsif S,, existent dans ce domaine et
sont situés approximativement sur la droite horizontale

h ; : . -
z= —_)9 (voir les trajectoires des figures 5a et 6a). La

2
distance de ces deux points est manifestement plus
grande pour la poutre que pour la plaque. Remarquons
aussi que, dans le domaine IV, les trajectoires des deux
figures considérées sont toutes sensiblement symeétriques

-~

par rapport a la droite z = _f_)o » et que les vecteurs,
représentant les tensions relatives a deux éléments de
surface symétriques, sont par contre antimétriques deux
a deux par rapport & cette droite (fig. 5 b, ¢, d et 6 b, c).
Nous reviendrons longuement sur ce point dans le
§ 630,

Les diagrammes des derniéres figures citées mon-
trent que les tensions varient beaucoup dans la zone IV
considérée. On remarquera en particulier les change-
ments de signe des tensions tangentielles T,. (ou ),
pour des points situés sur la méme verticale. La figure
11 A représente les valeurs, mesurées et calculées, des
tensions normales méridiennes le long du contour d’une
section axiale, pour la plaque fig. 1 A et pour la poutre
correspondante. Les valeurs mesurées confirment une
fois de plus 'énorme concentration des efforts engen-
drée, par un congé de raccord. Cette concentration
dépendant surtout du rayon du congé, nous ne la com-
menterons pas, un seul modéle ne nous permettant évi-
demment pas d’étudier I'influence de ce rayon. Nous
remarquerons s lement qu’au voisinage du congé, les
efforts y prennen dans notre cas, des valeurs tout a fait

20 Dans la zone 11, la  ipartition des tensions dépend relativement
peu du rapport /i,/2a, comme nous l'avons reconnu dans notre pre-
miére étude, surtout pour *[,,<ho[2a</,, ¢'est-a-dire pour *[s=hyla<'[,
(voir par exemple, & ce sujet, la figure 21 de [1)]. Cela est dii i la singula-
rité introduite par la force locale P. Nous saisissons I'occasion offerte par
cette note en bas de page pour prier le lecteur de bien vouloir atténuer
les termes trop exclusifs utilisés & propos de la zone I, dans notre
premier mémoire, ot nous avions laissé entendre par erreur que les
tensions dans ce domaine sont quasi indépendantes de h,/2a, alors
qu’elles varient en réalité en fonction de ce rapport, mais relativement
lentement. *

30 En particulier, nous y préciserons ce que nous entendons exacte-
ment par Uantimélrie de deux vecteurs par rapport @ un axe.

comparables & celle de la tension au milieu M de la
face inférieure. Le danger de rupture peut donc étre ausst
grand, dans la zone IV, qu'il ne Uest dans la zone L,
Passons maintenant au eas o la discontinuité de
Uépaisseur de la plague (ow de la hauteur de la poutre)
entraine une discontinuité du fewillet moyen (fig. 7, 8 et
11 B). La limite r = 2,5 hy = 0,625 a de la zone 1V de

la plaque (fig. 7), est parfaitement définie, car il existe,
a droite de cette limite dans le dessin, un domaine |
satisfaisant & la définition donnée. Par contre, I'autre
limite n’existe pas, aucune zone répondant a la défi-
nition du domaine I n’ayant pu étre décelée entre le
centre de la plaque et la section ou I'épaisseur varie
brusquement. Ainsi, les zones I et IV constituent ici
un seul domaine, ou la partie gauche est sous I'influence
directe de la force P, et la partie droite, sous celle de la
discontinuité.

Pour la poutre correspondante, par contre (fig. 8), les
deux parties de la zone I existent et la zone IV, com-
prise entre elles, est parfaitement définie. Sa longueur
est égale a 1,05 hy, ou 0,265 a environ.

Il est évident que les trajectoires et les tensions de
la zone 1V (fig. 7 et 8) ne jouissent plus des propriétés
de symétrie et d’antimétrie que nous avons rencontrées
plus haut (fig. 5 et 6). Mais & part les points spéciaux
que nous venons de signaler, les remarques générales
faites & propos de la zone IV de la premiére plaque (ou
poutre), sont encore applicables 4 la méme zone de la
seconde. En particulier, les figures 7 et 8 révelent I'exis-
tence de deux points singuliers S,, S;, qui sont respecti-
vement situés a des distances du centre légérement plus
faibles que précédemment.

Remarquons en passant que le fait qu’il existe des
zones I dans les figures 5 et 7 confirme implicitement
I'exactitude de la théorie de Kirchhoff dans le cas de
la premiére plaque (fig. 1 A) et celle des formules éta-
blies par M. Martinola dans celui de la seconde (fig. 1 B).

Considérons enfin la plague d’épaisseur linéairement
pariable et la poutre correspondante (fig. 9 et 10). 1l n’y
existe évidemment aucune zone IV. Les domaines I, IT
et III, par contre, sont trés bien définis. La bonne
coincidence dans la zone I, pour la plaque, des valeurs des
tensions mesurées et calculées (fig. 9 b, ¢, d) justifie plei-
nement la méthode de calcul exposée § 4, C.

La figure 9 a réveéle pour la plaque existence de deux
points singuliers attractifs S,, 'un dans le domaine II
et autre dans III, et d’un point répulsif S, également
situé dans cette derniére zone. Par contre, pour la
poutre (fig. 10 a), le dessin des trajectoires montre
quil y a deux points attractifs dans II, ainsi qu’'un
point attractif et un répulsif dans ITI.

Soulignons encore combien les tensions tangentielles
sont différemment réparties dans la plaque (fig. 9¢) et
dans la poutre correspondante (fig. 10 c).

Enfin, grace au tableau II ci-dessus, le lecteur pourra
comparer les valeurs mesurées de la tension dangereuse,
aw centre M de la face inférieure des trois plaques, aux
valeurs calculées a I'aide de la formule (37), en choisis-
sant d = 1,20 hy (fig. 17). La bonne coincidence des
résultats confirme I'exactitude de cette formule.

Insistons a nouveau sur le fait que, pour les plaques
des figures 1 A et 1 B, la tension en M n’est pas nécessai-
sairement la plus dangereuse, car il existe un autre
domaine que la zone centrale Il ot une cassure peut
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TasrLeau 11
Valeurs mesurées et valeurs calculées
de la tension dangereuse (o,)y = (o0) ars
pour les trots plaques étudiées

Modale Valeur de (0,) )y = (o)) i

de
plaque mesurée calculée
Iig.

| A

1A [ 2,44 P|h} 2,40 P/ht
1B ’ 2,28 » 2,39 »
4G 2,68 » 2,75 »

se produire, c’est celui de la zone IV, placée directe-
ment sous l'influence de la discontinuité de I'épaisseur
et ot le rayon du congé de raccord joue un role impor-
tant. Seule une étude systématique de Uinfluence de ce
rayon sur les tensions montrerait dans quels cas ¢’est au
point M — ou au congé de raccord — qu’une cassure
est a craindre.

§ 6. Sur un théoréme d’élasticité concernant les états
de tension antimétriques par rapport a un axe

Dans le paragraphe précédent, nous avons relevé que,
lorsque I'épaisseur subit une variation brusque n’en-
trainant pas de discontinuité du feuillet moyen, les
trajectoires sont, dans la zone 1V, symétriques par rap-

hy

port a la droite z = 9 (fig. 5 a et 6 @). D’autre part, les

vecteurs représentant les tensions relatives & deux élé-
ments de surface symétriques, sont antimétriques deux
a deux par rapport a cette droite (fig. 5 b, ¢, d et 6 b, ¢).
Ces propriétés, qui sont valables aussi bien pour la
plaque que pour la poutre considérées, paraitront natu-
relles & tout ingénieur ayant un certain sens de la sta-
tique. En fait, elles ne vont pas de soi, et nous croyons
utile d’en donner une démonstration rigoureuse. Dans
ce but, aprés avoir rappelé ou donné deux définitions,
nous établirons un théoréme assez général d’élasticité,
d’ou découlent directement les propriétés énoncées.
Premlere dEﬁnltIOIl Dans Uespace, deux vecteurs glis-
sants AB BA , sont dils antimétriques par rapport a un
axe, s’il est posszb[e de les placer sur leurs urs supports res-
pectifs de fagon que 1° les segments AB, A'B’ soient symé-
triques par rapport & cet axe; 2° Uorigine B’ du second
vecteur soit le symétrique de Uextrémité B du premier

(fig. 18) 3.

Deuxiéme définition : Un état de tension (a deux ou a
trois dimensions) est dit antimétrique par rapport a un

3 Les supports de deux tels vecteurs scront done nécessairement
symétriques par rapport a l'axe.
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axve, st les vecteurs représentant les tensions relatives a
deux éléments de surface symétriques, sont antimétriques
par rapport a cel axe.

Cela posé, nous allons démontrer la proposition sui-
vante :

Théoréme : Soit un corps solide élastiquement défor-
mable, limité par une surface symétrique par rapport
un azve A et en équilibre sous Uaction d’un systéme de
forces extérieures (de surface ou massiques). Si ces
forces sont appliquées deux a deux en des points symé-
trigues et sont antimétriques relativement a N, état de
tension sera lui-méme antimétrique par rapport @ cel aze.

Pour ne pas alourdir notre exposé, nous démontrerons
d’abord ce théoréme dans le cas particulier d’une lame
plane mince, d’épaisseur constante, sollicitée par des
forces extérieures, situées toutes dans le plan du feuillet
moyen (élasticité plane). La généralisation sera ensuite
immédiate, comme nous le verrons.

Soit donc une telle lame, limitée par une courbe ¢,
symétrique par rapport & un axe A (fig. 19). Sur cette
., GH,

——, 0 : :
H'G’, appliquées sur le contour, et des forces massiques

. e i e ey
lame agissent des forces extérieures AB, B’A", ..

;dV, ;'clV' (dV" = dV), toutes antimétriques deux &
deux par rapport 4 A, et satisfaisant aux conditions
générales d’équilibre. Sur deux éléments de surface
symétriques Af = Af" = 1, perpendiculaires aux faces
de la lame, agiront respectivement les tensions 5') T et
g, ?, ayant par exemple les sens indiqués.

Imaginons maintenant qu’on change le sens de toutes
les forces extérieures, y compris celui des forces massi-
ques (fig.
composantes des tensions changeront simplement de

20). La lame sera encore en équilibre et les

sens, en gardant les mémes supports et grandeurs _que

=

precgdemmcnt Elles seront donc égales & — o, —Tet
>,

—g , — T, pour les deux éléments considérés. Faisons

ensuite tourner de 180° la lame autour de A, y compris
les forces extérieures nouvellement appliquées. Ces der-
niéres seront alors identiques & celles de la figure 19.

Fig. 19.

Mais comme Af" occupera la position primitive de Af et
réciproquement, on voit que les sens des vecteurs c?' B
ont été convenablement choisis par rapport a ceux de
c? : et que l'on doit nécessairement avoir |cr |'= |c|

et |'r = [T] I'état de tension étant redevenu le pre-
mier considéré, celui de la figure 19, ce qui justifie la
proposition énoncée dans le cas particulier de I'élasti-
cité plane.

On voit immédiatement que le raisonnement utilisé
ici est encore applicable au cas d'un corps tridimension-
nel limité par une surface symétrique par rapport a un
axe, corps sur lequel agissent des forces antimétriques
deux a deux par rapport a cet axe et satisfaisant aux




conditions générales d’équilibre. D’ou le théoréme
énoncé plus haut.

Ce théoréme peut d’ailleurs étre encore généralisé, car
on reconnait sans difficulté qu’il reste valable si la
matiére du corps n’est ni homogeéne ni méme isotrope —
ce que nous avions implicitement supposé — pourvu
que les propriétés mécaniques de cette matiere soient
symétriques par rapport a laxe, c’est-a-dire qu’il
sagisse d'une symétrie matérielle. 11 est également
valable si les déformations ne sont pas des fonctions
linéaires des forces, pourvu que ces fonctions soient
impaires. Il ne Uest par contre plus st les déformations ne
sont pas trés petites, le raisonnement utilisé n’étant alors
pas applicable. Quant aux forces massiques, elles peu-
vent étre quelconques, pourvu qu’elles satisfassent a la
condition d’antimétrie,

Iig. 20.

Le théoréme établi permet sans difliculté de démontrer
les propriétés de symétrie des trajectoires et d’anti-
métrie des tensions relatives a la zone IV, reconnues
dans le paragraphe précédent, en discutant les résultats
précisés dans les figures b et 6. Considérons par exemple
la poutre de la figure 6. Détachons en pensées la partie
ABB'A’, délinie par deux coupes verticales AA’, BB,
choisies de part et d’autre de la discontinuité de 1'épais-
seur, dans chacun des deux domaines de la zone I, ou
la théorie de Kirchhoff est valable (fig. 21). Cette partie
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Fig. 21. — Poutre de la figure 1 A. Forces antimétriques par

rapport a 'axe A, appliquées sur le contour de la partie
ABB’A’” comprenant la zone IV.

ABB'A’ constitue une lame symétrique par rapport a
I'axe A, et les forces extérieures oy, T,. appliquées sont
antimétriques par rapport a cet axe. En vertu du théo-
réme démontré, Uétat de tension de la lame doit nécessaire-
ment étre lui-méme antimétrique par rapport a A, ce qui
entraine également la symétrie des trajectoires.

Dans le cas de la figure 5, un raisonnement analogue,
fait en considérant le corps de révolution détaché dans
la plaque par deux cylindres d’axe z et de rayons con-
venablement choisis, permet de méme d’expliquer les
propriétés de symétrie des trajectoires et d’antimétrie
des tensions, que les résultats décrits § b avaient permis
de prévoir.

Zurich, le 14 septembre 1959.
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ACTUALITE INDUSTRIELLE (9)

L’alimentation de ’électro-aimant du synchrotron
a protons du CERN, a Genéve'!

Dans les synchrotrons, les particules lancées sur une
trajectoire circulaire subissent a4 chaque révelution une
nouvelle accélération. L’augmentation de leur vitesse

U Article paru dans la Revwe Brown Boveri, 1. 46 (1959), n® 6,
p- 327 a 349.

entraine naturellement un accroissement de la force
centrifuge qui s’exerce sur elles. Il faut done que la force
qui les maintient sur leur trajectoire et qui est propor-
tionnelle au champ de I’électro-aimant de guidage, dont
les éléments sont disposés tout le long du parcours,
augmente également. Il s’ensuit que le courant d’exci-
tation de I’électro-aimant doit croitre pendant toute la
période d’accélération. 1.électro-aimant doit ensuite
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