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ETUDE EXPERIMENTALE ET THEORIQUE DE LA
RÉPARTITION DES TENSIONS DANS LES PLAQUES CIRCULAIRES FLÉCHIES

D'ÉPAISSEUR VARIABLE

HENRY FAVRE
Dr ès se. techn.
Professeur à l'E.P.F.

par

WALTER SCHUMANN
Dr ès se. nat.

Privat-docent k l'E.P.F.

(Suite et fin) *

MARZIO MARTINOLA
Dr ès se. techn.
Assistant à l'E.P.F.

§ 4. Valeurs théoriques des tensions dans les plaques
circulaires étudiées

A. Plaque circulaire où l'épaisseur subit une variation
brusque, n'entraînant pas de discontinuité du feuillet
moyen (fig. 1 A)

Les tensions se déterminent sans difficulté, en
appliquant la théorie de Kirchhoff. On peut également obtenir

leurs valeurs en posant N 0 dans les formules (1)
•Jfet (2) ci-dessous, relatives à la seconde plaque, et en
remplaçant h^ par h0 dans (2).

* Voir Bulletin technique du 13 février 1960.

B. Plaque circulaire où l'épaisseur subit une variation
brusque, entraînant une discontinuité du feuillet
moyen (fig. 1 B)

Ce cas a été traité récemment par M. Martinola, qui
a montré la nécessité d'introduire dans le calcul les
forces N agissant dans les feuillets moyens des deux
parties de la plaque 18. Nous donnons directement ci-
après, non pas les valeurs des moments et des efforts N,
mais celles des tensions elles-mêmes 17.

16 [2], p. 41 et suiv.
17 Les formules (1) et (2) s'obtiennent en remplaçant, dans les

relations (17), (18) de [2], p. 49, Mn M, par leurs valeurs (13) et (15)
du mémoire cité.
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Fig. 12. — Coupe méridienne d'une coque d'épaisseur
linéairement variable, où le feuillet moyen est un cône
circulaire quasi plan.

force axiale P, appliquée au centre de la face supérieure.
Des formules obtenues,- il sera ensuite facile de déduire

celles que nous cherchons.

1° Equations générales

Les conditions d'équilibre, des forces agissant sur

l'élément de volume infinitésimal de la figure 13, sont

exprimées par les équations connues 19:

MT — M,
dMT
~dTr-Q'

M»,
cos (p

0

0

dQr 0.

(3)

(4)

(5)

Pour obtenir une relation où figure la force P, écrivons'

que la somme des projections verticales des forces,

N

et

3P
41TÄ!

(A -l)(l-v)(2-p2 + £)(p2-l) jîC
A2 [(1 - v) (p2 — 1 + A) + p2 (1 + v) A] +

4(l + v)p2Logp+(l-v)(p2-l)[2(l-/c) + fcp2]

(p2 — i)[A(l — v)É-v] + p2+l

P I'P /c
Ai'

3 (pa — 1) (A — l)2 (1 — v) [p2 (1 + v) + 1 — v]
p2 [1 + v + k (1 -v)] + (1- v) (1- k)

appliquées à l'élément fini de la figure 14, doit être

nulle, ce qui donne, après simplifications :

Çr iVrtgÇ_2^ (6)

A0 — Ai m /c(A-l)(l-v)(p2-l)
2(l + v)p2+(l-v)[l + /c(p2-l)]

A
A_„

Ai

v désignant le coefficient de Poisson.

C. Plaque circulaire d'épaisseur linéairement variable

(fig- 1 C)
Pour obtenir commodément les valeurs des tensions

dans une telle plaque, nous nous occuperons tout d'abord

d'un cas plus général, celui d'une coque d'épaisseur

linéairement variable, où le feuillet moyen est une surface

conique de révolution quasi plane, c est-à-dire où 1 angle <p

formé par une génératrice et un plan perpendiculaire
à l'axe est supposé petit (fig. 12),

Nous admettons que cette coque soit simplement

appuyée le long du contour18 et qu'elle supporte une

18 Dans la théorie qui va.suivre, nous avons supposé que les réactions
étaient perpendiculaires au feuillet moyen. Cette condition n'a été

qu'imparfaitement réalisée dans nos expériences, où les réactions
étaient parallèles à l'axe z. Les erreurs qu'entraîne cette simplification
sont négligeables dans notre cas.

Remarquons que cette équation n'est pas indépendante

des trois précédentes. En introduisant en effet la
valeur (6) de QT dans (5), on obtient la relation (4). Les

conditions d'équilibre nous donnent donc en définitive
seulement trois équations. Comme les forces intérieures
inconnues Mr, Mt, NT, Nt, Qr sont au nombre de cinq,
il est nécessaire de faire intervenir les déformations du
feuillet moyen, pour obtenir des équations en nombre
suffisant.

19 Ces équations se déduisent directement de celles indiquées
dans [8], p. 451 ou dans [9], p. 80 et 81.

Fig. 13. — Forces
agissant sur un
élément infinitésimal
de la coque de la
figure 12. I
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A\f\

Fig. 14. — Forces agissant sur un élément fini de la coque
de la figure 12.

Désignons, dans ce but, par v et w les composantes,
suivant la tangente et la normale au méridien, du
déplacement d'un point A de ce feuillet (fig. laß Entre les

Fie. 15

PTA:

Ii—m
I feuillet moyen
I ÜÜ

'¦quantités Mr, Mt, NT, Nt d'une part, v, w d'autre part,
existent des relations générales connues 20, qui, dans le

cas particulier étudié, deviennent :

Mr — .Dct

M, :>-Dc(

Nr K COS

Nt K cos

> {w" + — w')

v -) [V -f- w tg <p)

— (v -\- W t£

(7)

(8)

où D EA8/12 (1 — v2), K JSA/(1 — v2), h étant
1 épaisseur à la distance horizontale r du sommet du
feuillet moyen, E le module d'élasticité et v, le coefficient

de Poisson. Enfin v', v", w', w", désignent
les dérivées successives de v, w par rapport à r.

En introduisant la valeur (6) de Qr dans (3), puis en

remplaçant, dans la relation ainsi obtenue, MT, Mt, Nr
par leurs valeurs (7) et (8), on est conduit à une première
relation où ne figurent que v, w et certaines dérivées de

ces fonctions :

D,
rDw" + (D+ rD') w" + (vD'- w'

Kv te. V+Kvït*_w

v tg9 iKr—~-v
cosaq>

cos4 2it cos4 9

(9)

On obtient une seconde relation, en introduisant les

aleurs (8) de Nr, N, dans (4) :

+ (h + rh') v' + (vh' J v -f- vh tg9 • w' +rhv"

vh' --r o.

(10)

Le problème est ainsi ramené à l'intégration du
système de deux équations différentielles simultanées
(9), (10), où v, w sont les fonctions inconnues. Ce

système est du 5e ordre. Les constantes d'intégration se

détermineront à l'aide des conditions aux limites.

0 [8], p. 452 et 453.

2° Intégration du système (9), (10)
Cette opération pourrait en principe se faire en

appliquant la méthode de E. Meissner21, puisqu'il s'agit
d'une coque de révolution. Mais, dans notre cas, l'épaisseur

h varie peu d'un point à un autre (la dérivée dh/dr
est petite par rapport à 1) et l'angle 9 est lui-même petit.
Il est alors préférable de procéder à l'aide de développements

en série, en appliquant une méthode, déjà utilisée

par E. Chabloz et l'un des trois auteurs, pour étudier
le cas plus simple des plaques circulaires fléchies d'épaisseur

linéairement variable, où h est très petit et où les

forces JV sont négligeables, ce qui n'est pas le cas dans

la présente étude 22.

Posons

h 1-A(2--1) (11)

h désignant l'épaisseur pour r ~ et A, un coefficient

caractérisant la variation de h (fig. 12).
Considérons maintenant la simple infinité de coques,

définie par l'ensemble des valeurs (petites) de A et 9,
liées par la relation :

A O tg 9, (12)

où ß est une constante. Nous donnerons plus loin à

cette constante une valeur telle que la surface
supérieure de la coque soit plane, conformément à la

figure 1 C représentant la plaque que nous voulons

étudier. Les grandeurs v, w pouvant être alors
considérées comme des fonctions non seulement de r, mais

aussi de A, développons-les en séries, selon les puissances

croissantes de A, en posant :

„ V vtX, w Y «vV, {i 0, 1, (13)

où v0, vly v2, w0, wx, «>2, • • • sont des fonctions de r.

En introduisant ces expressions dans les équations
différentielles (9) et (10), compte tenu du fait que

v0 0 ">a, et en égalant à zéro les coefficiepts des

différentes puissances de A, on obtient respectivement les

deux systèmes simultanés (14) et (15) suivants :

!>„)=-#„,
r«) — [A-xw-ô + #!«>;; + cxw'ü],

i~K) — [Arf + biW{ + c>; +
+ A2wô + Bjvl + C2«>0 +
+ L2w0 + F^ + GjV! + Hz],

roi) — [A*Z + £i«-2 + £>2 +
+ Azwl + Btfi>l + C2«4 +
+ L%wx + Asw% + Bswl +
+ C3w'0 + L3W0 + ^Vâ +
+ ^2 + F2?î + GA1>

A0

A1

A2

A3: (14)

ou :

r ' dr
(1 d
\~rTr r

n
El3

Hn
2-nrD

12(1—v2)
Ax 31 — —1

o,

¦ *l [8], p. 455 et suiv.
8S Voir [10].
23 En effet, la première des équations (15) que nous établirons plus

loin est homogène et on verrait facilement qu'elle n'admet que la
solution vo 0, vu les conditions aux limites du problème. On peut
dire aussi que le cas A — 0, cp 0 correspond à celui de la plaque
d'épaisseur constante, où l'on doit nécessairement avoir v vo 0.
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A2 : T (v2) — j£ffl + Bxv[ + C^ + Fj(v{

'+ (?!«-! + F2w„ + G2w0],

w r g i — M + By2 + Cjy, + gg +
+ &1«'2 + J^i + G2Wl]>

(15)

constante. Cette intégration introduit des constantes *W

arbitraires. Pour les déterminer, il est nécessaire de j
s'appuyer sur les conditions aux limites, que nous allons \
préciser.

3° Conditions aux limites

On doit avoir, la coque étant supposée simplement
appuyée le long du contour :

i»,_0?feoo, K)r-p=0, Hr=a 0, (16)

(Nr)r~a 0, (Mr)r=a 0. (17)

Pour que les conditions («>')P=0 0 et [w)T=a 0
soient satisfaites quel que soit A, il est nécessaire,
d'après la seconde formule (13), que

K)r=0 0, («*)>-. 0. (»=0, 1, 2, (18)

En introduisant les valeurs (13) de v, w dans les
premières des formules (7) et (8), on obtient :

Mr Dcos29 V Ai(<vt'+-

Nr Kh cos 9 > A* n+i+7(^^-3
Pour que les deux conditions (17) soient satisfaites

quel que soit A, il est donc nécessaire que :

Wi + -Wi) 0,
r Jr=a

W-+1 + ~ I Vi+1 n/
0:

(» 0,1,2,.

mais puisque ((Vj)r=0 0 en vertu de la seconde équation

(18), on obtient en définitive les deux groupes de
conditions :

A1 m ^i -
i

L/4r
• \a -1

^i ^5
M-(1—v)-a

1 t

Qr
<?!¦ ßr2 Fi —Fr[ 1

G, Dr2 (l-v)-l

Les équations des systèmes (14), (15) présentent
l'avantage d'être toutes du même type et de pouvoir
s'intégrer successivement sans difficulté par des
méthodes élémentaires, en procédant «001016 suit. La
première des équations (14) donnera la fonction (v0(r)

qui, introduite dans la seconde de ces relations,
permettra de calculer wl(r). En substituant w0(r) dans la
seconde des équations (15), on obtiendra v^r). Les
valeurs de *v0(r), «>1(r), ^(r), introduites dans les
troisièmes équations (14) et (15), donneront respectivement

w2(r) et c2(r), et ainsi de suite.
La simplicité de l'intégration rencontrée ici — qui

n'existe pas dans l'emploi des équations « accouplées »

de Meissner — est due au fait qu'on a choisi une classe

particulière de coques, dont la forme fondamentale
(A 0, 9 0) coïncide avec la plaque d'épaisseur

0, (i 0, 1, 2,

(W + -e.) =0. (i
\ * 1 r=o

1, 2,

(19)

Quant à la première des conditions (16), elle revient à

poser, v0 étant nul:
(«,,.)r_0#H (» 1, 2, (20)

En définitive, les fonctions Vi, W{ doivent satisfaire
aux conditions (18), (19) et (20).

Remarque. Par raison de symétrie, le sommet O' du
cône du feuillet moyen ne peut que se déplacer verticalement,

d'où (fig. 16) :

(v cos 9 -f- w sin 9) r=0 0, ou (v -f- (vtg9)r=0 0. (21)

En remplaçant p et w par leurs expressions (13) et
en se rappelant qu'en vertu de (12), A ß tg 9, l'équation

(21) sera vérifiée quel que soit A, si :

?7" —r
r

Feuillet moyen

Fig. 16. 0 i _3 J-
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o*+i+ïïJr=o =0. (» 0, 1, 2, (22)

Ces relations permettent de faire un contrôle des

valeurs obtenues au point r 0 pour les fonctions
Vi(r), H

4° Application au cas de la plaque étudiée (fig. 1 C)
On peut poser ici (fig. 17): tg 9 AA/a, et la relation

(12) montjjgjque

n (23)

Nous avons effectué l'intégration des équations (14),
(15), compte tenu des conditions (18), (19), (20) et de

la valeur (23) de Q, jusqu'à ce que nous ayons obtenu
les fonctions v0, V3, w0, ¦ ¦ ¦, W3. Les deux séries (13)

convergent en effet suffisamment rapidement pour que
l'on puisse, dans le cas de la plaque représentée fig. 1 C,

se contenter de ne consîljsrer que les quatre premiers
termes de chacune S'elles. Pour ne pas alourdir notre
exposé, nous nous bornons à ne donner ci-dessous que
les expressiSas de v0, vlt v2, w0, wx, où l'on a remplacé £2

par afh et désigné par £ le rapport rfa :

"o=0,

_
Pah

"1_~ 4^5 fLogÇ-
17 —17v —16va

36 (1 + v)

^K /v5

9(1 4 (1 + v).

_
PahY\

~4^r5L
PahYl-v—2v2

—g Log Ç -

125 + 83v — 224v2 — 128v3
_108(1 + v)

S ~

239 + 405v — 133v2 — 405vs — 106v4

216KL + v)2
^ +

5 + 31v + 8v2
+ 36 (Ä- v)

Pa2

4tt5

Pa2

4-n-Z)

|±^-(l-Ç2)+|2LogÇ

+ ô(l —5v)Ç
1—21v—16v2 5+31v+8v2

12 (1 + v) 36.(1 +v) \

Ayant déterminé les huit fonctions <v3, il a été
ensuite facile de calculer MT. Mt, Nr, Nt, en introduisant

les deux séries (13), limitées à leurs quatre premiers
termes, dans les formules (7) et (8) :

Mr —D cos29 V A< (+ivî'

29^AM-w< + vwi)
«=o

r / /
NT KX cos 9 y 7&-1 \v\ + - Vi + -- Wi—i

(26)

iV< K A cos <p V. A'- 7(,,+-°(v(_1) + v,i

(27)

Ces formules permettent de vérifier que (MT)r=o —
(M()r=o 00, tandis que (iVr)r=0 {Nt)r=o

3

Ä (1 + v) COS9 y A* (v'jr^o ¦

»'=1

felSemarquons aussi que l'effort tranchant QT peut
être ensuite directement déduit de la valeur (27) de

NT, à l'aide de la formule (6).
Les grandeurs Mr, Mt, Nr, Nt, Qr se rapportent à des

éléments de surface perpendiculaires au feuillet moyen
(fig. 13), conformément à la théorie habituelle des

coques. Il est maintenant nécessaire, si l'on veut obtenir

les tensions cherchées o>, a«, t«, de calculer les

moments Mr, Mt et les forces NT, Nt, Qr relatifs à des

éléments de surface verticaux. Dans ce but, considérons
l'élément de volume ABB'A' précisé dans la figure 17.

La face de gauche de cet élément est verticale, celle de

droitejglst perpendiculaire au feuillet moyen. Remarquons

que, 9 étant un petit angle, le milieu 5 du

segment AB est sensiblement situé dans le feuillet moyen,
à un terme de l'ordre A94 près.

Pour des raisons évidentes, on a :

Mt Mt cos Nt Nt. (28)

Les conditions d'équilibre donnent d'autre part les

trois relations suivantes, où d\y désigne l'angle des deux
plans méridiens limitant latéralement l'élément de

volume considéré :

— dr
Mr (r-\-dr) d<y — Mr rd\p — QT (r + dr) ai|>

— Mt cos 9 dr d\p 0,

Nr (r + dr) dkj; cos 9 — Nt dr dy — Nr rdy + ¦ (29)

+ Qr sin 9 (r + dr) d\p 0,

— Qr rdy + Qr {r + dr) d\p cos 9 —
— Nr (r + dr) d\u sin 9 0.

Dans ces équations, il n'est pas possible de considérer
d'emblée dr comme un infiniment petit. Cette quantité
ne peut en effet tendre vers zéro, ce qui entraînerait
une intersection des segments AB et A'B' Mais nous

pouvons imaginer que h et dr tendent simultanément
vers zéro, la face supérieure et A restant fixes, et négliger
alors les infiniment petits d'ordre supérieur. On obtient
ainsi pour Mr, Nr, Qr les valeurs approchées suivantes,
d'autant plus exactes, dans notre cas, que 9 et h0 sont
plus petits :

Mr Mr, Nr — Qr sin 9 + NT cos 9,
Qr Qr cos 9 — iVr sin 9. •

(30)
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Fig. 17. — Coupe
méridienne d'une plaque circulaire

d'épaisseur linéairement

variable, considérée
comme cas particulier de la
coque représentée fig. 12.

dMr.-dr
m dNr.
M dr r

Mn+r dr
k=- >i

->—-^-

fit. _| NrK flr^A/7K
Ta? h -r-c

M dQ

¦h Hr -k- drk >k-(7,5a

¦>lk- A'S=SB

Finalement, les tensions normales cherchées oy, at
sont données par les formules :

o>:
TV, 12 — iV, 12

- <»=t+5m*[—*)- w
Quant aux tensions tangentielles t„, elles se calculent

par la formule générale, établie récemment par deux
des trois auteurs 2* :

*(*-*£-'T-fr*
<?-o

Nr (dh 12 dz0

¥ [dT ~~ T z° If
12 -^ Idz,
ttM, dr dZ° dr)

iV, /<jz0
Z "•" A \dr '

Zqdh
~hdr~

3Mr (dh
h2 \dr.~

«o dzo\
A dr/

1 *b nMr-dhx( A2\

(32)

où Zq désigne la cote d'un point du feuillet moyen. En
tenant compte des diverses relations écrites, cette
formule se réduit ici à la suivante :

6 l^r
-YAQr *l* ^

+ h*
fin jl *** w j. 24AÄ Xf6Çr+ —iVr+^rM,

(33)

tree P appliquée au centre, la tension o>
a la valeur **:

<St au point M

(o>)r=o=Mr=o=[(l+v)(0,485Log£- +0,52)+0,48lT-.- (34)
[ "o J «g

Considérons en effet la portion de plaque circulaire définie
par un rayon d, choisi légèrement supérieur à /'0 (fig. 17).
Les formules établies plus haut permettent de calculer
(Mr)r=d et {Nr)r=d. La portion en question peut être
assimilée à une plaque d'épaisseur constante h0, et la tension
cj> 0"< au point M s'obtient en ajoutant, à la valeur donnée
par la formule (34) — où il faut remplacer a par d — celle
qui existerait en ce point si (Mr)r=d et (Nr)r=d agissaient
seuls le long du contour r d. Or la valeur de cette
dernière tension est

TJ <6U1 + *)• <35)
6

IM) .i I
Wr=d

en posant

ui
(Mr. h0(NT

(36)

On obtient donc pour la tension résultante, au point
dangereux M de la plaque considérée :

(°>)jf W)u 1 0,485 Log -r- + 0,52) +
"o /

+ 6H! + P2 + 0.48J ^ •

(37)

Ajoutons qu'en toute rigueur, les tensions au sommet M
du cône formé par la face inférieure de la plaque considérée
devant être nulles — puisqu'aucune force extérieure n'est
appliquée en M — c'est en un point situé très légèrement
au-dessus, dans nos essais probablement à 1 ou 2 mm
seulement, que la tension dangereuse doit se produire.

3° La formule (37^ permet également de calculer la tension

dangereuse o> c< au centre M des deux premières
plaques (fig. 1 A et 1 B).

4° Nous verrons à la fin du paragraphe suivant que les
expériences faites sur les trois modèles de plaques ont
confirmé la validité de cette formule.

Remarques
1° Une étude théorique analogue à celle que nous venons

de présenter, mais concernant un autre type de plaque
d'épaisseur linéairement variable, a été publiée il y a quelques

années par B. Gilg, dans un ouvrage déjà cité as.

2° Dans les calculs ci-dessus, nous avons supposé que la
force P agissait au centre de la face supérieure de la plaque.
Si cette force est répartie sur un très petit cercle de rayon r0,
ce que suppose la figure 1 C, où r0 0,1A0 0,025a, les
formules seront encore applicables.

D'autre part, au voisinage du milieu de la plaque, la
théorie utilisée jusqu'ici n'est évidemment plus valable.
Mais nous pouvons, pour calculer les tensions, au centre M
de la face inférieure (fig. 17), où l'expérience montre qu'il y
a en général le plus grand danger de rupture, nous baser
sur une formule établie par S. Woinowshy-Krieger. Ce
dernier a en effet montré que, dans le cas d'une plaque circulaire

d'épaisseur constante h0 et de rayon a, simplement
appuyée le long du contour, sollicitée par une force concen-

84 Voir [4]/Dans le mémoire en question, Mr, Mt, Nr, Nt, Qr dési

gnent les grandeurs appelées ici Mr, Mt, Nr, Nt, Qr-" [9]> P- 79 et suiv.

§ 5. Comparaison des valeurs théoriques aux
résultats des expériences. Discussion

Dans les figures 5 à 10, nous avons représenté, à côté
des valeurs' mesurées des tensions, les valeurs c'alculées,
soit par les formules du § 4 (plaques), soit à l'aide des

procédés de la Résistance des matériaux (poutres) 2'.

Considérons tout d'abord les plaques et poutres
d'épaisseur brusquement variable (fig. 5 à 8). Nous
pouvons y distinguer quatre domaines, dont trois sont
analogues aux zones que nous* avons rencontrées dans notre
mémoire précédent28. Dans le premier domaine, que
nous désignerons également par I, les formules rappelées

§ 4, A et B sont applicables. En termes plus précis,
nous définirons cette zone -—¦ qui comprend ici deux
parties distinctes — comme le domaine où les différences

M Voir par exemple [8], p. 76 et suiv. Les essais faisant l'objet du
mémoire [1] ont confirmé l'exactitude de cette formule, comme
l'indique la figure 21 de l'article cité.

87 C'est-à-dire, pour les poutres, d'après la théorie ¦ de Navier.
» [1], § 5.
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entre les tensions mesurées et celles calculées sont
inférieures à 0,048 P/A2. Cette tolérance correspond à 10 %
de la valeur qu'aurait (o)max pour rja 0,5, si la

plaque ou la poutre avait une épaisseur (ou une hauteur)
constante A0.

Les trois autres domaines, où les formules rappelées
§ 4, A et B ne sont pas applicables, seront désignés

respectivement par II (voisinage du petit cercle sur
lequel est appliquée la force P) 29, III (zone sous
l'influence directe des réactions des appuis) et IV (domaine
de perturbation créé par la discontinuité). Nous ne
reviendrons pas sur les propriétés des zones II et III,
qui ont déjà été décrites dans notre mémoire fréquemment

cité. C'est par contre surtout à l'étude de la

zone IV, essentiellement nouvelle ici, que nous allons

nous arrêter un instant.
Dans le cas où la discontinuité de l'épaisseur de la

plaque (ou de la hauteur de la poutre correspondante)

n'engendre pas de discontinuité du feuillet moyen (fig. 5

et 6), la zone IV a la même extension dans les deux
modèles. Elle s'étend sur une longueur de 0,82 A0, ce

qui correspond environ au cinquième du rayon ou de

la demi-portée a. Deux points singuliers, l'un attractif
Sa et l'autre répulsif Sr, existent dans ce domaine et
sont situés approximativement sur la droite horizontale

z -k (voir les trajectoires des figures b a et 6 a). La

distance de ces deux points est manifestement plus
grande pour la poutre que pour la plaque. Remarquons
aussi que, dans le domaine IV, les trajectoires des deux

figures considérées sont toutes sensiblement symétriques

par rapport à la droite z || > et que les vecteurs,

représentait les tensions relatives à deux éléments de

surface symétriques, sont par contre antimétriques deux
à deux par rapport à cette droite (fig. 5 b, c, d et 6 b, c).

Nous reviendrons longuement sur ce point dans le

§63«.
Les diagrammes des dernières figures citées montrent

que les tensions varient beaucoup dans la zone IV
considérée. On remarquera en particulier les changements

de signe des tensions tangentielles t« (ou tm),
pour des points situés sur la même verticale. La figure
11 A représente les valeurs, mesurées et calculées, des

tensions normales méridiennes le long du contour d'une
section axiale, pour la plaque fig. 1 A et pour la poutre
correspondante. Les valeurs mesurées confirment une
fois de plus l'énorme concentration des efforts engendrée,

par un congé de raccord. Cette concentration

dépendant surtout du rayon du congé, nous ne la
commenterons pas, un seul modèle ne nous permettant
évidemment pas d'étudier l'influence de ce rayon. Nous

remarquerons st dement qu'au voisinage du congé, les

efforts y prennen dans notre cas, des valeurs tout à fait

29 Dans la zone II, la ^partition des tensions dépend relativement
peu du rapport A0/2a, comme nous l'avons reconnu dans notre
première étude, surtout pour Via—^o/2a— 1/j, c'est-à-dire pour Ve^'o/0—1/«
(voir par exemple, à ce sujet, la figure 21 de [1)]. Cela est dû à la singularité

introduite par la force locale P. Nous saisissons l'occasion offerte par
cette note en bas de page pour prier le lecteur de bien vouloir atténuer
les termes trop exclusifs utilisés à propos de la zone II, dans notre
premier mémoire, où nous avions laissé entendre par erreur que les
tensions dans ce domaine sont quasi indépendantes de liQj'2a, alors
qu'elles varient en réalité en fonction de ce rapport, mais relativement
lentement.

80 En particulier, nous y préciserons ce que nous entendons exactement

par Vantiméirie de deux vecteurs par rapport à un axe.

comparables à celle de la tension au milieu M de la

face inférieure. Le danger de rupture peut donc être aussi

grand, dans la zone IV, qu'il ne Vest dans la zone II.
Passons maintenant au cas où la discontinuité de

l'épaisseur de la plaque (ou de la hauteur de la poutre)
entraîne une discontinuité du feuillet moyen {fig. 7, 8 et
11 B). La limite r 2,5 A0 0,625 a de la zone IV de

la plaque (fig. 7), est parfaitement définie, car il existe,
à droite de cette limite dans le dessin, un domaine I
satisfaisant à la définition donnée. Par contre, l'autre
limite n'existe pas, aucune zone répondant à la
définition du domaine I n'ayant pu être décelée entre le
centre de la plaque et la section où l'épaisseur varie
brusquement. Ainsi, les zones II et IV constituent ici
un seul domaine, où la partie gauche est sous l'influence
directe de la force P, et la partie droite, sous celle de la
discontinuité.

Pour la poutre correspondante, par contre (fig. 8), les

deux parties de la zone I existent et la zone IV, comprise

entre elles, est parfaitement définie. Sa longueur
est égale à 1,05 A0, ou 0,265 a environ.

Il est évident que les trajectoires et les tensions de

la zone IV (fig. 7 et ,8) ne jouissent plus des propriétés
de symétrie et d'antimétrie que nous avons rencontrées

plus haut (fig. 5 et 6). Mais à part les points spéciaux

que nous venons de signaler, les remarques générales
faites à propos de la zone IV de la première plaque (ou

poutre), sont encore applicables à la même zone de la
seconde. En particulier, les figures 7 et 8 révèlent l'existence

de deux points singuliers Sa, Sr, qui sont respectivement

situés à des distances du centre légèrement plus
faibles que précédemment.

Remarquons en passant que le fait qu'il existe des

zones I dans les figures 5 et 7 confirme implicitement
l'exactitude de la théorie de Kirchhoff dans le cas de

la première plaque (fig. 1 A) et celle des formules
établies par M. Martinola dans celui de la seconde (fig. 1 B).

Considérons enfin la plaque d'épaisseur linéairement
variable et la poutre correspondante (fig. 9 et 10). Il n'y
existe évidemment aucune zone IV. Les domaines I, II
et III, par contre, sont très bien définis. Lm bonne

coïncidence dans la zone I, pour la plaque, des valeurs des

tensions mesurées et calculées (fig. 9 b, c, d) justifie
pleinement là méthode de calcul exposée § 4, C.

La figure 9 o, révèle pour la plaque l'existence de deux

points singuliers attractifs Sa, l'un dans le domaine II
et l'autre dans III,'et d'un point répulsif Sr, également
situé dans cette dernière zone. Par contre, pour la

poutre (fig. 10 a), le dessin des trajectoires montre
qu'il y a deux points attractifs dans II, ainsi qu'un
point attractif et un répulsif dans III.

Soulignons encore combien les tensions tangentielles
sont différemment réparties dans la plaque (fig. 9 c) et
dans la poutre correspondante (fig. 10 c).

Enfin, grâce au tableau II ci-dessus, le lecteur pourra
comparer les valeurs mesurées de la tension dangereuse,

au centre M de la face inférieure des trois plaques, aux
valeurs calculées à l'aide de la formule (37), en choisissant

d 1,20 A0 (fig. 17). La bonne coïncidence des

résultats confirme l'exactitude de cette formule.
Insistons à nouveau sur le fait que, pour les plaques

des figures 1 A et 1 B, la tension en M n'est pas nécessai-

sairement la plus dangereuse, car il existe un autre
domaine que la zone centrale II où une cassure peut
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Tableau II
Valeurs mesurées et valeurs calculées

de la tension dangereuse f||f)jf {<Jt)if,
pour les trois plaques étudiées

Modèle Valeur de (or)M= [°t)M
de

plaque mesurée calculée -

Fig.

1 A 2,44 Plh% 2,40 Pjh%

1 B 2,28 » 2,39 »

1 C 2,68 » 2,75 »

se produire, c'est celui de la zone IV, placée directement

sous l'influence de la discontinuité de l'épaisseur
et où le rayon du congé de raccord joue un rôle important.

Seule une étude systématique de l'influence de ce

rayon sur les tensions montrerait dans quels cas c'est au
point M — ou au congé de raccord — qu'une cassure
est à craindre.

§ 6. Sur on théorème d'élasticité concernant les états
de tension antimétriques par rapport à on axe

Dans le paragraphe précédent, nous avons relevé que,
lorsque l'épaisseur subit une variation brusque
n'entraînant pas de discontinuité du feuillet moyen, les

trajectoires sont, dans la zone IV, symétriques par

rapport à la droite z il (fig. 5 a er 6 a). D'autre part, les

vecteurs représentant les tensions relatives à deux
éléments de surface symétriques, sont antimétriques deux
à deux par rapport à cette droite (fig. 5 b, ûêM et 6 b, c).
Ces propriétés, qui sont valables aussi bien pour la
plaque que pour la poutre considérées, paraîtront natu-,
relies à tout ingénieur ayant un certain sens de la
statique. En fait, elles ne vont pas de soi, et nous croyons
utile d'en donner une démonstration rigoureuse. Dans
ce but, après avoir rappelé ou donné deux définitions,
nous établirons un théorème assez général d'élasticité,
d'où découlent directement les propriétés énoncées.

Première définition : Dans l'espace, deux vecteurs glis-
sants AB, B'A sont dits antimétriques par rapport à un
axe, s'il est possible de les placer sur leurs supports
respectifs de façon que 1° les segments AB, A'B' soient
symétriques par rapport à cet axe i 2° l origine B' du second

vecteur soit le symétrique de l'extrémité B du premier
(fig. 18) IDeuxième définition : Un état de tension (à deux ou à
trois dimensions) est dit antimétrique par rapport à un

81 Les supports de deux tels vecteurs seront donc nécessairement
symétriques par rapport à l'axe.

Fig. 18.

axe, si les vecteurs représentant les tensions relatives à
deux éléments de surface symétriques, sont antimétriques
par rapport à cet axe.

Cela posé, nous allons démontrer la proposition
suivante :

Théorème : Soit un corps solide élastiquement défor-
mable, limité par une surface symétrique par rapport à
un axe A et en équilibre sous l'action d'un système de

forces extérieures (de surface ou massiques). Si ces

forces sont appliquées deux à deux en des points
symétriques et sont antimétriques relativement à A, l'état de
tension sera lui-même antimétrique par rapport à cet axe.

Pour ne pas alourdir notre exposé, nous démontrerons
d'abord ce théorème dans le cas particulier d'une lame
plane mince, d'épaisseur constante, sollicitée par des
forces extérieures, situées toutes dans le plan du feuillet
moyen (élasticité plane). La généralisation sera ensuite
immédiate, comme nous le verrons.

Soit donc une telle lame, limitée par une courbe c,
symétrique par rapport à un axe A (fig. 19). Sur cette

-—? ——* >

lame agissent des forces extérieures AB, B A Gn,
H' G', appliquées sur le contour, et des forces massiques

pdV, p'dV (dV dV), toutes antimétriques deux à
deux par rapport à A, et satisfaisant aux conditions
générales d'équilibre. Sur deux éléments de surface
symétriques A/ A/' 1, perpendiculaires aux faces
de la lame, agiront respectivement les tensions cr, t et
a', t ayant par exemple les sens indiqués.

Imaginons maintenant qu'on change le sens de toutes,
les forces extérieures, y compris celui des forces massiques

(fig. 20). La lame sera encore en équilibre et les

composantes des ten'siöns changeront simplement de

sens, en gardant les mêmes supports et grandeurs que
précédemment. Elles seront donc égales à — cr, — t et
—cf', —t', pour les deux éléments considérés. Faisons
ensuite tourner de 180° la lame autour de A, y compris
les forces extérieures nouvellement appliquées. Ces
dernières seront alors identiques à celles de la figure 19.

Fig. 19.

pdV4w 4V

P avàf * M

Mais comme A/' occupera la position primitive de A/ et
réciproquement, on voit que les sens des vecteurs a', t'
ont été convenablement choisis par rapport à ceux de

cv, t, et que l'on doit nécessairement avoir |a'| — |cr|

et |t'| |t|, l'état de tension étant redevenu le
premier considéré, celui de la figure 19, ce qui justifie la
proposition énoncée dans le cas particulier de l'élasticité

plane.
On voit immédiatement que le raisonnement utilisé

ici est encore applicable au cas d'un corps tridimensionnel
limité par une surface symétrique par rapport à un

axe, corps sur lequel agissent des forces antimétriques
deux à deux par rapport à cet axe et satisfaisant aux
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conditions générales d'équilibre. D'où le théorème
énoncé plus haut.

Ce théorème peut d'ailleurs être encore généralisé, car
on reconnaît sans difficulté qu'il reste valable si la
matière du corps n'est ni homogène ni même isotrope —
ce que nous avions implicitement supposé — pourvu
que les propriétés mécaniques de cette matière soient

symétriques par rapport à l'axe, c'est-à-dire qu'il
s'agisse d'une symétrie matérielle. Il est également
valable si les déformations ne sont pas des fonctions
linéaires des forces, pourvu que ces fonctions soient

impaires. Il ne l'est par contre plus si les déformations ne

sont pas très petites, le raisonnement utilisé n'étant alors

pas applicable. Quant aux forces masÄjues, elles
peuvent être quelconques, pourvu qu'elles satisfassent à la
condition d'antimétrie.

Fig. 20.
4 dV \A dY

mâf K dV

Le théorème établi permet sans difficulté de démontrer
les propriétés de symétrie des trajectoires et d'antimétrie

des tensions relatives à la zone IV, reconnues
dans le paragraphe précédent, en discutant les résultats
précisés dans les figures 5 et 6. Considérons par exemple
la poutre de la figure 6. Détachons en pensées la partie
ABB'A', définie par deux coupes verticales AA', BB',
choisies de part et d'autre de la discontinuité de l'épaisseur,

dans chacun des deux domaines de la zone I, où
la théorie de Kirchhoff est valable (fig. 21). Cette partie

I Wm IF
O.S2ha —*T*'"~

1

A
m—asth,- <Ylmhô'\

.!_ M 1
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V. i *
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it i n s'
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Fig. 21. — Poutre de la figure 1 A. Forces antimétriques par
rapport à l'axe A, appliquées sur le contour de la partie
ABB'A' comprenant la zone IV.

ABB'A' constitue une lame symétrique par rapport à

l'axe A, et les forces extérieures o*, Ta* appliquées sont
antimétriques par rapport à cet axe. En vertu du
théorème démontré, l'état de tension de la lame doit nécessairement

être lui-même antimétrique par rapport à A, ce qui
entraîne également la symétrie des trajectoires.

Dans le cas de la figure 5, un raisonnement analogue,
fait en considérant le corps de révolution détaché dans

la plaque par deux cylindres d'axe z et de rayons
convenablement choisis, permet de même d'expliquer les

propriétés de symétrie des trajectoires et d'antimétrie
des tensions, que les résultats décrits § 5 avaient permis
de prévoir.

Zurich, le 14 septembre 1959.
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ACTUALITE INDUSTRIELLE (9)

L'alimentation de l'électro-aimant du synchrotron
à protons du CERN, à Genèvel

Dans les synchrotrons, les particules lancées sur une
trajectoire circulaire subissent à chaque révolution une
nouvelle accélération. L'augmentation de leur vitesse

1 Article paru dans la Revue Brown Boveri, t. 46 (1959), n° 6,

p. 327 à 349.

entraîne naturellement un accroissement de la force
centrifuge qui s'exerce sur elles. Il faut donc que la force

qui les maintient sur leur trajectoire et qui est
proportionnelle au champ de l'électro-aimant de guidage, dont
les éléments sont disposés tout le long du parcours,
augmente également. Il s'ensuit que le courant d'excitation

de l'électro-aimant doit croître pendant toute la
période d'accélération. L'électro-aimant doit ensuite
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