**Zeitschrift:** Bulletin technique de la Suisse romande

**Band:** 86 (1960)

**Heft:** 16

**Artikel:** Contribution au calcul des vitesses critiques d'un arbre

Autor: Tâche, J.

**DOI:** https://doi.org/10.5169/seals-64502

## Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

# BULLETIN TECHNIQUE **DE LA SUISSE ROMANDE**

paraissant tous les 15 jours

#### ORGANE OFFICIEL

de la Société suisse des ingénieurs et des architectes de la Société vaudoise des ingénieurs et des architectes (S.V.I.A.) de la Section genevoise de la S.I.A. de l'Association des anciens élèves de l'EPUL (Ecole polytechnique de l'Université de Lausanne) et des Groupes romands des anciens élèves de l'E.P.F. (Ecole polytechnique fédérale de Zurich)

#### COMITÉ DE PATRONAGE

Président: J. Calame, ing. à Genève Vice-président: E. d'Okolski, arch. à Lausanne Secrétaire: S. Rieben, ing. à Genève Membres:

Fribourg: H. Gicot, ing.; M. Waeber, arch.

Pribourg: H. Gicot, ing.; M. waeper, arch.
Genève: G. Bovet, ing.; Cl. Grosqurin, arch.; E. Martin, arch
Neuchâtel: J. Béguin, arch.; R. Guye, ing.
Valud: G. de Kalbermatten, ing.; D. Burgener, arch.
A. Chevalley, ing.; A. Gardel, ing.;
M. Renaud, ing.; Ch. Thévenaz, arch.

#### CONSEIL D'ADMINISTRATION

de la Société anonyme du «Bulletin technique » Président: D. Bonnard, ing. Membres: M. Bridel; J. Favre, arch.; R. Neeser, ing.; A. Robert, ing.;

J. P. Stucky, ing. Avenue de la Gare 10, Lausanne

#### RÉDACTION

Rédaction et Editions de la S. A. du «Bulletin technique» Tirés à part, renseignements Adresse: Case Chauderon 475, Lausanne

#### ABONNEMENTS

Sociétaires Suisse Fr. 28.— » » 23.— » » 1.60 Etranger Fr. 32.— » 28.— Prix du numéro . .

Chèques postaux: «Bulletin technique de la Suisse romande»,  $N^{\rm o}$  II. 57 75, Lausanne

Adresser toutes communications concernant abonnement, changements d'adresse, expédition, etc., à: Imprimerie La Concorde, Terreaux 29. Lausanne

#### ANNONCES

Tarif des annonces: 1/1 page 1/2 » 1/4 » Fr. 290.— » 150.— » » 75.-

37.50

Adresse: Annonces Suisses S. A. Place Bel-Air 2. Tél. (021) 22 33 26. Lausanne et succursales

#### SOMMAIRE

Contribution au calcul des vitesses critiques d'un arbre (suite et fin), par J. Tâche, ingénieur EPUL.

Actualité industrielle (11) : L'automatique et l'homme.

Les congrès. — Documentation générale. — Documentation du bâtiment.

Informations diverses.

Supplément: « Bulletin S.I.A. » Nº 25.

# CONTRIBUTION AU CALCUL DES VITESSES CRITIQUES D'UN ARBRE

par J. TÂCHE, ingénieur EPUL aux Ateliers de Constructions Mécaniques de Vevey S. A. (Suite et fin) 1

#### CHAPITRE 2

#### Arbres symétriques

Sans avoir la prétention de traiter à fond les avantages de la symétrie, nous citerons seulement quelques exemples où celle-ci permet de simplifier les calculs.

Notre raisonnement est basé sur les postulats suivants, confirmés par de très nombreux exemples.

La déformation de l'arbre correspondant à la vitesse critique fondamentale (la plus petite) dépend uniquement du nombre de paliers et cela de telle façon que l'ondulation de l'arbre se composera d'un minimum de demi-ondes. Avec deux paliers l'ondulation sera d'une demi-onde, avec trois paliers elle sera de deux demi-ondes et avec p paliers de p-1 demi-ondes.

D'autre part lorsqu'on passe d'une vitesse critique quelconque à la vitesse critique immédiatement supérieure, l'orientation et l'intensité des forces centrifuges changent de telle façon qu'elles obligent l'arbre à onduler avec une demi-onde supplémentaire. Chaque vitesse harmonique ajoute une demi-onde à l'ondulation fondamentale. Un système se composant de q charges, aura 1 vitesse critique fondamentale et q — 1 vitesses critiques harmoniques.

Si la vitesse critique fondamentale comporte p-1demi-ondes, la dernière vitesse critique harmonique (la plus grande) comprendra p + q - 2 demi-ondes.

Chaque nouvelle charge ajoutée à un système quelconque augmente d'une unité le nombre des vitesses critiques.

Cela dit, considérons le cas d'un arbre quelconque à deux paliers soumis à deux charges quelconques P<sub>1</sub>

Si l'on néglige le poids propre de l'arbre on obtiendra deux équations du type 10\*.

$$(41) x Y_1 = A_1 Y_1 + B_1 Y_2$$

$$(42) x Y_2 = A_2 Y_1 + B_2 Y_2.$$

En éliminant les Y on obtient une équation en x du second degré. A la plus grande racine de cette

<sup>&</sup>lt;sup>1</sup> Voir Bulletin technique du 16 juillet 1960.

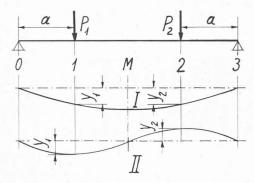


Fig. 9. — Cas de deux charges égales et symétriques.

équation correspond la vitesse critique fondamentale, à la plus petite, la première vitesse critique harmonique.

Supposons que l'on ait une symétrie complète des deux charges et des dimensions de l'arbre (le diamètre de l'arbre peut être variable) par rapport au point M qui sera donc par définition au milieu de la portée, voir figure 9. Dessinons les lignes élastiques correspondant aux deux vitesses critiques. En raison de la symétrie on aura : pour la vitesse critique fondamentale,  $Y_1 = Y_2$ ; pour la première vitesse harmonique,  $Y_1 = -Y_2$ .

En portant ces valeurs dans l'équation 41 on obtient

$$\begin{split} x_1 &= A_1 + B_1 \\ x_2 &= A_2 - B_2 \end{split}$$

Grâce à la symétrie les vitesses critiques qui correspondent à  $x_1$  et  $x_2$  sont obtenues sans qu'il ait été nécessaire d'établir et de résoudre l'équation caractéristique du second degré.

A noter que, par suite de la symétrie  $A_2=B_1$  et  $B_2=A_1$ .

Le raisonnement ci-dessus peut s'étendre à un nombre quelconque q de charges symétriques.

Voici ce qu'on constate: l'équation caractéristique du degré q se scinde en deux équations. Si q est pair, les deux équations seront toutes deux du degré 1/2 q. Si q est impair on aura une charge au milieu de la portée et la flèche à cet endroit sera nulle pour les vitesses harmoniques d'ordre impair lesquelles ont un nombre pair de demi-ondes. En conséquence, lorsque q est impair on aura une équation du degré 1/2 (q+1) et une autre du degré 1/2 (q-1). Les racines de l'équation obtenue en posant que les Y symétriques sont de même sens, correspondront à la vitesse critique fondamentale et aux vitesses critiques harmoniques d'ordre pair. Les racines de l'équation obtenue en posant que les Y symétriques sont de sens inverse, correspondront aux vitesses critiques harmoniques d'ordre impair.

Revenons au cas de deux charges symétriques et supposons que l'arbre tourne à sa vitesse critique harmonique. Il forme donc deux demi-ondes. Par raison de symétrie le point M est en alignement avec les paliers ; on ne change donc pas la forme de la ligne élastique si l'on place, au moment où la vitesse critique harmonique est atteinte, un palier en M. Or d'après les postulats énoncés au début de ce chapitre, la ligne élastique II correspond aussi à la ligne élastique que prendrait le système symétrique à trois paliers s'il tournait à sa vitesse critique fondamentale.

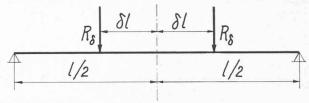


Fig. 10. — Remplacement du poids propre d'un arbre par deux forces symétriques.

Théorème I. — La vitesse critique fondamentale d'un système symétrique à trois paliers est égale à la première vitesse critique harmonique du même système symétrique mais sans palier central.

Continuons notre raisonnement. L'arbre à deux paliers tourne à sa vitesse harmonique et l'on a placé à ce moment un palier en M. En ce point la ligne élastique présente, par raison de symétrie, un point d'inflexion, le moment de flexion dans l'arbre est nul; la section de l'arbre en M n'est donc soumise qu'à un effort tranchant (on admet que le moment de torsion pour faire tourner l'arbre est négligeable). Si à ce moment on coupe l'arbre en M la ligne élastique II restera la même, le palier supportera les efforts tranchants des deux tronçons. La ligne élastique de l'un des tronçons correspondra à la vitesse critique fondamentale du demi-système. On peut donc énoncer le théorème suivant:

Théorème II. — La vitesse critique fondamentale d'un système symétrique à trois paliers est égale à la vitesse critique fondamentale du tronçon de l'une des travées, considéré isolément.

Dans le cas de deux charges, il est facile de justifier ce théorème par le calcul.

Le raisonnement que nous venons de faire s'applique à un nombre quelconque de charges symétriques.

Ce théorème permet de simplifier et d'abréger les calculs dans une très importante mesure, puisque le système symétrique à trois paliers et q charges (q est toujours pair) peut être remplacé par un système asymétrique à deux paliers avec 1/2 q charges.

# Remplacement du poids propre d'un arbre par deux forces symétriques

Pour pouvoir tirer parti des avantages de la symétrie il faut pouvoir remplacer le poids propre d'un arbre de diamètre constant, à deux paliers, par deux forces symétriques  $R_{\delta}$ , placées à une distance  $\delta l$  du milieu de la portée, l étant la longueur de la portée, voir figure 10.

Tous calculs faits, on trouve que chacune des deux forces  $R_{\delta}$  doit avoir la valeur suivante :

(43) 
$$R_{\delta} = \frac{0,492767}{2 (1 - 2 \delta)^2 (1 + 4 \delta)} pl$$

où pl est égal au poids total de l'arbre.

Si 
$$\delta = 0$$
  $R_{\delta = 0} = \frac{0.492767}{2}$   $pl = \frac{R_o}{2}$  (Voir formule (2) du premier chapitre.)

On se propose de calculer le degré de précision réalisé par ce remplacement, dans le cas où l'arbre porte deux charges symétriques Q placées à une distance  $\delta l$  du milieu de la portée. A chaque charge Q on ajoute la charge  $R_{\delta}$  donnée par la formule 43.

Ce problème ressemble à ceux du chapitre précédent et sera traité de la même manière.

Pour cette raison, nous n'en donnons qu'un résumé. On pose

$$(44) Q = \alpha pl$$

et on obtient les formules

$$(45) n = \psi_2 \frac{d}{l^2}$$

où

$$(46) \qquad \psi_2 = \frac{847,3081}{\sqrt{0,492767 + 2\alpha(1 - 2\delta)^2(1 + 4\delta)}}$$

On pose ensuite

$$(47) pl = \beta Q$$

et on obtient

$$(48) n = \varphi_2 \frac{d^2}{l \sqrt{lQ}}$$

où

$$\qquad \qquad \phi_{2} = \frac{21{,}03881}{\sqrt{\ 0{,}492767\ \beta\ +\ 2\ (1-2\ \delta)^{2}\ (1+4\ \delta)}}$$

Ces formules sont à comparer avec les formules (24) et (28); pour les appliquer on aura soin d'utiliser les unités spécifiées sous formules (8) et (17).

Pour connaître le degré de précision obtenu avec les formules (45) et (48), nous avons calculé les facteurs ψ et φ en remplaçant le poids propre de l'arbre par cinq forces égales selon le système B (voir chapitre précédent). Ces facteurs sont affectés de l'indice 5 pour montrer qu'ils ont été calculés avec cinq forces et les distinguer des facteurs avec l'indice 2, lesquels ont été calculés par les formules approximatives (46) et (49).

Le tableau IV donne la valeur des coefficients  $\psi_5$ ,  $\psi_2$ ,  $\phi_5$  et  $\phi_2$  pour  $\delta = 1/6$  et  $\delta = 1/3$ . Il indique également les erreurs commises en utilisant les formules (46) et (49), les coefficients  $\psi_5$  et  $\phi_5$  étant considérés comme exacts

On constate que ces erreurs sont pratiquement négligeables.

### CHAPITRE 3

### Arbres à trois paliers

L'arbre à trois paliers présente certaines particularités que nous nous proposons de mettre en lumière.

Prenons l'exemple numérique de l'article paru dans ce bulletin en mars 1957, nº 6, page 84.

Cherchons quelles seraient les vitesses critiques fondamentales des tronçons 0-5 et 5-10 si l'arbre était articulé en 5.

Les intégrations numériques de la page 85 se prêtent très facilement à ce calcul, car si l'arbre est articulé

TABLEAU IV

| δ   | α        | 0        | 0,2      | 0,4      | 0,6      | 0,8      | 1        |
|-----|----------|----------|----------|----------|----------|----------|----------|
| 1 6 | Ψδ       | 1206,969 | 954,056  | 813,491  | 720,998  | 654,238  | 603,138  |
|     | Ψ2       | 1207,037 | 953,861  | 813,307  | 720,844  | 654,111  | 603,032  |
|     | erreur % | -        | + 0,020  | + 0,023  | + 0,021  | + 0,019  | + 0,018  |
| 1 3 | Ψδ       | 1206,969 | 1100,996 | 1017,869 | 950,644  | 894,934  | 847,842  |
|     | Ψ2       | 1207,037 | 1097,102 | 1012,601 | 945,032  | 889,403  | 842,567  |
|     | erreur % |          | + 0,355  | + 0,520  | + 0,594  | + 0,622  | + 0,626  |
| δ   | β        | 1 0      | 0,8      | 0,6      | 0,4      | 0,2      | 0        |
| 1 6 | Φ5       | 14,97603 | 15,36414 | 15,78401 | 16,24022 | 16,73833 | 17,28518 |
|     | Φ2       | 14,97339 | 15,36172 | 15,78193 | 16,23861 | 16,73739 | 17,2851  |
|     | erreur % | + 0,018  | + 0,016  | + 0,013  | + 0,010  | + 0,006  | 0        |
| 1/3 | Φ5       | 21,05208 | 22,15695 | 23,45122 | 24,99382 | 26,87160 | 29,2172  |
|     | Φ2       | 20,92109 | 22,02164 | 23,31639 | 24,87015 | 26,78264 | 29,2172  |
|     | erreur % | + 0,626  | + 0,614  | + 0,578  | + 0,497  | + 0,332  | 0        |

au droit du palier intermédiaire, les réactions de palier sont statiquement déterminées.

Pour le tronçon 5-0, que nous désignerons par A, on aura les équations suivantes :

$$(1) \quad Y_3 = -42 \ \Omega_5 + 25{,}461337 \ P_3 + 103{,}679137 \ P_o$$

(2) 
$$Y_o = 0 = -142 \Omega_5 + 103,679137 P_3 + 670,376948 P_o$$

$$(3) 142 P_o + 42 P_3 = 0.$$

En éliminant  $\Omega_5$  et  $P_o$  on obtient :

$$Y_3 = 22,7763 P_3$$
.

Pour  $P_3 = 4$  tonnes,  $x = 4 \times 22,7763 = 91,1052$ 

$$\sqrt{x} = 9,5449$$

$$n_A = \frac{30}{\pi} \cdot \frac{\sqrt{Eg}}{\sqrt{x}} = \frac{13706,154}{9,5449} = 1436 \text{ t/min.}$$

En faisant les mêmes opérations pour le tronçon 5-10 que nous désignerons par B on obtient :

$$n_B = 1467 \text{ t/min.}$$

La vitesse critique fondamentale du groupe composé des deux tronçons A et B reliés rigidement entre eux est (voir page 86, Bulletin 1957).

$$n_1 = n_g = 1450 \text{ t/min.}$$

On constate que

$$n_A < n_g < n_B$$
.

On en déduit le théorème suivant :

Théorème I

La vitesse critique fondamentale d'un arbre à trois paliers est toujours comprise entre les vitesses critiques fondamentales des deux tronçons supposés indépendants et libres au droit du palier médian.

Ce théorème, qui se vérifie par l'exemple numérique précédent, peut se démontrer par le raisonnement suivant : au moment où l'arbre du groupe tourne à sa vitesse critique fondamentale, il se produit au droit du palier médian un moment fléchissant qui, encastrant partiellement le tronçon A et s'opposant à sa déformation, élève la vitesse critique propre du tronçon A à la vitesse critique du groupe. Ce même moment tend à produire dans le tronçon B une demi-onde de sens inverse à celle du tronçon A. Il favorise la flexion du tronçon B et abaisse la vitesse critique propre de ce tronçon à la vitesse critique fondamentale du groupe.

En résumé, la continuité de l'arbre qui oblige ce dernier à n'avoir qu'une seule vitesse critique fondamentale commune aux deux tronçons doit élever la vitesse critique du tronçon A de  $n_A$  à  $n_g$  et doit ipso facto abaisser la vitesse critique du tronçon B de  $n_B$  à  $n_g$ . Donc la vitesse critique fondamentale du groupe est plus grande que  $n_A$  et plus petite que  $n_B$ .

Poursuivons le raisonnement et examinons ce qui se passe lorsque l'arbre tourne à la première vitesse critique harmonique. L'arbre forme 3 demi-ondes et la tangente à la ligne élastique au droit du palier médian est à peu près nulle, de sorte que l'encastrement de l'un des tronçons est un peu moins que parfait, tandis que l'encastrement de l'autre est un peu plus que parfait (à l'encastrement parfait correspond une tangente nulle). Le tronçon dont l'encastrement est imparfait aurait, si l'encastrement était parfait, une vitesse critique supérieure à la vitesse critique du groupe, car l'encastrement diminue les flèches et augmente la vitesse critique. Le tronçon dont l'encastrement est plus que parfait, aurait une vitesse critique, si l'encastrement était parfait, inférieure à la vitesse critique du groupe. On en déduit le théorème suivant :

# Théorème II

La première vitesse critique harmonique d'un arbre à trois paliers est toujours comprise entre les vitesses critiques fondamentales des deux tronçons supposés indépendants et encastrés parfaitement au droit du palier médian.

Revenons à l'exemple numérique déjà cité. Le cas d'un tronçon encastré au droit du palier médian se traite très facilement si les intégrations numériques se sont faites à partir de ce palier. Pour le tronçon A il suffit de poser  $\Omega_5=0$  dans les équations 1 et 2 et d'ajouter à l'équation 3 le terme  $M_5$  qui représente le moment d'encastrement. Remarquons cependant qu'il n'est pas nécessaire de calculer  $M_5$  pour déterminer la flèche  $Y_3$  en fonction de  $P_3$ .

De l'équation 2 on tire

$$P_o = -0.154658 P_3$$

en portant cette valeur dans l'équation 1 on obtient

$$Y_3 = 9,426529 P_3$$
.

Pour 
$$P_3=4$$
 tonnes

$$x = 4 \times 9,426529 = 37,706116$$

$$\sqrt{x} = 6,14053$$

$$n_{Ae} = \frac{13706,154}{6,14053} = 2232 \text{ t/min.}$$

L'indice supplémentaire e indique que le tronçon A est encastré.

Par des opérations analogues on obtient pour l'autre tronçon

$$n_{Be} = 1934 \text{ t/min.}$$

Or l'article de référence mentionne que  $n_2$  (2e vitesse critique =  $1^{\rm re}$  vitesse critique harmonique) est égale à 2036 t/min.

Ces résultats confirment le second théorème.

Ces deux théorèmes sont valables pour un arbre quelconque à trois paliers, avec ou sans porte-à-faux, le nombre de charges étant quelconque.

Le premier théorème permet d'évaluer rapidement la vitesse critique fondamentale du groupe en calculant les vitesses critiques fondamentales  $n_A$  et  $n_B$  des deux tronçons A et B supposés indépendants l'un de l'autre. Si ces deux vitesses sont admissibles il ne sera pas nécessaire de calculer la vitesse du groupe.

La connaissance de  $n_A$  et  $n_B$  est utile dans le cas où la vitesse du groupe doit être augmentée. Logiquement on renforcera le tronçon dont la vitesse critique propre est la plus basse.

Supposons que, pour des raisons de construction, on désire renforcer seulement le tronçon A sans rien changer au tronçon B. Quelle est dans ce cas la vitesse critique fondamentale maximum du groupe? Elle est égale à la vitesse critique fondamentale du tronçon B, considéré comme indépendant et encastré parfaitement au droit du palier médian. En effet, en renforçant toujours plus le tronçon A, celui-ci pourra être considéré finalement comme infiniment rigide et assurera l'encastrement parfait du tronçon B, de sorte que seul ce tronçon déterminera la vitesse critique du groupe. Si nous reprenons l'exemple déjà cité et que nous renforcions seulement le tronçon A, la vitesse critique fondamentale du groupe restera toujours inférieure à  $n_{Be} = 1934 \ t/\mathrm{min}$ .

Si les deux tronçons sont symétriques,  $n_A = n_B = n_g$ . On a ainsi la confirmation du théorème II du chapitre précédent.

Remarquons qu'il n'est pas nécessaire que l'arbre soit symétrique pour avoir l'égalité  $n_A=n_B=n_g$ . Il suffit que les dimensions de l'arbre et les charges soient telles que le point d'inflexion de la ligne élastique correspondant à la vitesse critique fondamentale soit situé au droit du palier médian, car alors à cet endroit le moment fléchissant dans l'arbre sera nul et par conséquent les deux tronçons, ne réagissant plus l'un sur l'autre, auront chacun la même vitesse critique que celle du groupe.

## CHAPITRE 4

#### Résolution de l'équation caractéristique

L'équation caractéristique du degré quelconque q présente la particularité d'avoir toutes ses racines réelles et positives. A chacune d'elles correspond une vitesse critique bien déterminée. Il s'ensuit que les termes de l'équation sont alternativement positifs et négatifs.

Grâce à cette particularité, la résolution de cette équation peut se faire par une méthode spéciale, simple et rapide.

Soit l'équation caractéristique:

$$x^{q} + ax^{q-1} + bx^{q-2} + cx^{q-3} \dots + ux^{2} + vx + w = 0.$$

On se propose de déterminer d'abord la plus grande racine, c'est-à-dire celle qui correspondra à la plus petite vitesse critique (vitesse critique fondamentale).

La valeur absolue de a est égale à la somme de toutes les racines, par conséquent la plus grande racine est plus petite que a.

Soit  $r_o$  la valeur estimée de cette racine. La méthode consiste à diviser le polynôme du premier membre de l'équation, non pas par  $x-r_o$ , selon une méthode classique, mais par  $r_o-x$ .

On admet en toute première approximation

$$r_0 = -\frac{|b|}{|a|} + |a|$$

et on effectue la division en faisant les opérations suivantes :

$$|\beta_{ow}| = \frac{|w|}{r_o}$$
 $|\beta_{ov}| = \frac{-|\beta_{ow}| + |v|}{r_o}$ 
 $|\beta_{ou}| = \frac{-|\beta_{ov}| + |u|}{r_o}$ 

etc. jusqu'à

$$|\beta_{ob}| = \frac{-|\beta_{oc}| + |b|}{r_o}$$
.

En fin de division on pose  $r_1 = -|\beta_{ob}| + |a|$ . Il s'ensuit que le reste a la valeur suivante :

$$\rho_{o_1} = \left(1 - \frac{r_1}{r_o}\right) x_q.$$

Si  $r_o$  était la valeur exacte de la racine le reste  $\rho_{o1}$  serait nul et par conséquent  $r_1$  serait égal à  $r_o$ . Il est évident que  $r_1$  est plus petit que  $r_o$  et d'une meilleure approximation. En conséquence on fait une deuxième division avec  $r_1 - x$  et on obtient en fin de division

$$r_2 = - |\beta_{1b}| + |a|$$

et

$$\rho_{12} = \left(1 - \frac{r_2}{r_1}\right) x^q.$$

On fait encore une troisième division avec  $r_2 - x$ , laquelle nous donne

$$r_3 = -|\beta_{2b}| + |a|$$

$$\rho_{23} = \left(1 - \frac{r_3}{r_2}\right) x^q.$$

Grâce au fait que les facteurs a, b, c... sont alternativement négatifs et positifs, on peut effectuer la division

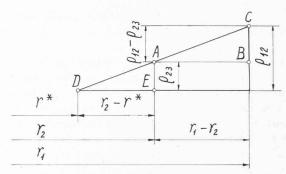


Fig. 11.

en opérant sur les valeurs absolues de ces facteurs, ce qui simplifie considérablement le calcul. En outre si l'on opère avec une machine à calculer, la division par r-x peut se faire sans inscription intermédiaire, il suffira d'inscrire les valeurs  $r_1$ ,  $r_2$  et  $r_3$ , par contre il n'est pas nécessaire de calculer les restes, ceux-ci ne sont mentionnés que pour les besoins du raisonnement.

En se basant sur  $r_1$ ,  $r_2$  et  $r_3$ , c'est-à-dire sur les trois premières racines approximatives obtenues par la division du polynôme, on peut faire une extrapolation en raisonnant comme suit : (voir figure 11).

A la division par  $r_1 - x$ , autrement dit à la racine  $r_1$  correspond le reste  $\rho_{12}$ , à la racine  $r_2$  correspond le reste  $\rho_{23}$ . Cherchons par extrapolation la valeur de la racine  $r^*$  correspondant à un reste nul. Les triangles semblables ABC et ADE permettent d'écrire

$$\frac{\rho_{12} - \rho_{23}}{r_1 - r_2} = \frac{\rho_{23}}{r_2 - r^*} \cdot$$

En remplaçant les  $\rho$  par leurs valeurs, on remarque que le facteur inconnu  $x^q$  (x est égal à la valeur exacte de la racine cherchée) s'élimine et on a

$$(1) \hspace{1cm} r^{\star} = r_{2} - r_{1} \, \frac{ (r_{1} - r_{2}) \, (r_{2} - r_{3}) }{ r_{1} \, r_{3} - r_{2}^{2} } \, \cdot \,$$

Dans la plupart des cas  $r^*$  est d'une approximation suffisante et l'on peut admettre cette valeur pour déterminer la vitesse critique fondamentale.

Si l'on désire une plus grande approximation on recommence les divisions, en posant  $r^* = r_1^*$ .

Une première division donne  $r_2^*$ . Une seconde division donne  $r_3^*$ .

Sur la base de ces trois nouvelles racines on applique la formule 1 et on obtient une nouvelle valeur  $r^{\star\star}$ . Pour connaître l'exactitude de cette nouvelle racine il suffira de faire une nouvelle division par  $r^{\star\star} - x$  et de calculer le reste.

Détermination des vitesses critiques harmoniques.

Si l'on divise le polynôme de l'équation caractéristique de degré q par  $r_e - x$  où  $r_e$  désigne la valeur exacte de la plus grande racine de l'équation, on obtient un polynôme et par conséquent une équation du degré q-1, dont la plus grande racine correspondra à la première vitesse critique harmonique. L'équation du degré q-1 sera traitée de la même façon que celle du

degré précédent. Connaissant la plus grande racine de l'équation q — 1 on peut abaisser une seconde fois son degré et ainsi de suite.

Cette méthode permet de déterminer toutes les racines dans l'ordre décroissant et par conséquent toutes les vitesses critiques dans l'ordre croissant.

Elle s'avère avantageuse déjà pour une équation du troisième degré, car les opérations qu'elle nécessite sont d'une très grande simplicité.

Exemple numérique

Soit l'équation

$$x^4 - 41 x^3 + 468 x^2 - 1780 x + 2000 = 0$$
  
 $r_0 = -\frac{468}{41} + 41 = 29,5854$ 

La division par  $r_o - x$  comprend les opérations suivantes qui, comme nous l'avons dit, peuvent se faire à la machine à calculer sans inscription :

$$\frac{2000}{29,5854} = 67,6009$$

$$\frac{-67,6009 + 1780}{29,5854} = 57,8799$$

$$\frac{-57,8799 + 468}{29,5854} = 13,8622$$

$$r_1 = -13,8632 + 41 = 27,1378.$$

La division par  $r_1$  — x donne  $r_2$  = 26,0716. La division par  $r_2$  — x donne  $r_3$  = 25,5553.

On applique la formule d'extrapolation (1)

$$r^{\star} = 26,0716 - 27,1378 \; \frac{1,0662 \, \times \, 0,5163}{13,7863} = 24,9880.$$

On recommence une nouvelle série de divisions et on obtient

$$r_1^* = r^* = 24,9880$$
  
 $r_2^* = 24,9936$   
 $r_3^* = 24,9966$ 

On applique la formule (1) et on obtient

$$r^{\star\star} = 24,9936 - 24,9880 \xrightarrow{(--) 0,0056 \, (--) 0,0030} = 25,00006.$$

Une dernière division par 25-x montre que la racine

Remarquons que les trois premières racines approximatives tendent vers la valeur exacte en décroissant, tandis que les trois dernières racines tendent vers cette même valeur en croissant.

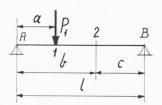
Si l'on s'était arrêté après la première extrapolation, soit à la racine  $r^{\star}=24,9880$ , la vitesse critique, qui est inversement proportionnelle à la racine carrée de  $r^*$ , aurait été calculée 0,024 % trop élevée. L'erreur est insignifiante, ce qui prouve que la méthode conduit très rapidement à une valeur admissible, car la racine obtenue par une seule extrapolation est en pratique suffisamment exacte.

#### CHAPITRE 5

#### Coefficients de déformation

Les formules ci-après permettent de calculer les coefficients de déformation pour un arbre de diamètre constant à deux ou trois paliers, avec ou sans porte-àfaux, pour un nombre quelconque de charges. Elles comprennent donc tous les cas possibles et imaginables.

Certaines de ces formules sont très connues, d'autres



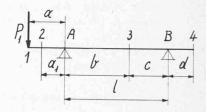


Fig. 12.

Fig. 13.

beaucoup moins. C'est la raison pour laquelle nous avons jugé utile de les grouper toutes, en leur donnant une structure uniforme.

Terminologie

Y=Ey= vecteur représentant la flèche y

 $Y_{11} = K_{11} P_1$   $K_{11} = \text{coefficient de déformation direct, exprime}$ la flèche à l'endroit où agit la charge

 $Y_{1n} = K_{1n} P_1$ 

 $K_{1n} = K_{n1} = \text{coefficient}$  de déformation réciproque exprime la flèche produite en n par la charge agissant en 1, ou réciproquement la flèche produite en 1 par la charge agissant en n.

# Arbre à deux paliers, sans porte-à-faux (fig. 12)

$$K_{11} = + \frac{a^2 (l - a)^2}{3 l I}$$

$$(2) \hspace{1cm} K_{12} = + \hspace{1cm} \frac{ac \hspace{1cm} [2 \hspace{1cm} b \hspace{1cm} (l-a) - (b-a)^2]}{6 \hspace{1cm} l \hspace{1cm} I}$$

valable pour  $a \leq b \leq l$ .

#### Arbre à deux paliers avec porte-à-faux (fig. 13)

(3) 
$$K_{11} = + \frac{a^2 (l+a)}{3 I}$$

$$K_{12} = + \; \frac{2a_1\,a\,(l\,+\,a_1)\,+\,(a\,-\,a_1)a_1^2}{6\,I}$$

valable pour  $0 \le a_1 \le a$ 

$$K_{{\bf 13}} = -\; \frac{a\,b\,c\,(l\,+\,c)}{6\,l\,I}$$

(6) 
$$K_{14} = + \frac{a d l}{6 I}$$

#### Arbre à trois paliers sans porte-à-faux (fig. 14)

$$(7) \quad K_{11} = + \; \frac{a^2 \, (l_1 - a)^2 \, [4 \, l_1 \, (l_1 + l_2) - (l_1 + a)^2]}{12 \, l_1^2 \, (l_1 + l_2) \, I}$$

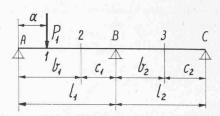


Fig. 14.

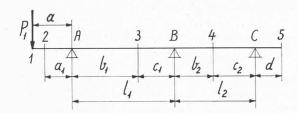


Fig. 15.

$$K_{12} = + \; \frac{ac_1 \, N}{12 \, l_1^2 \, (l_1 + \, l_2) \; I}$$

où 
$$N = \left\{ egin{array}{ll} + \left( 3\,c_1 + 2\,l_2 
ight) l_1 \left[ 2\,b_1 \left( l_1 - a 
ight) - \left( b_1 - a 
ight)^2 
ight] \\ - c_1^2 \left( 3\,b_1\,l_1 - a^2 
ight) \end{array} \right.$$

$$(9) \qquad K_{13} = - \,\, \frac{a \, (l_1 - a) \,\, b_2 \, c_2 \, (l_1 + a) \, (l_2 + c_2)}{12 \, l_1 \, l_2 \, (l_1 + l_2) \, I} \, \cdot \,$$

#### Arbre à trois paliers avec porte-à-faux (fig. 15)

$$(10) \hspace{1cm} K_{11} = + \hspace{1cm} \frac{a^2 \left[ 4 \left( l_1 + a \right) \left( l_1 + l_2 \right) - l_1^2 \right]}{12 \left( l_1 + l_2 \right) I}$$

(11) 
$$K_{12} = + \frac{N_1}{12 (l_1 + l_2) I}$$

$$\begin{array}{l} \mbox{où } N_1 = \left\{ \begin{array}{l} + \, a a_1 \, [ (4 \, a_1 \, + \, 3 \, l_1) \, (l_1 \, + \, l_2) \, + \, l_1 \, l_2] \\ + \, 2 \, a_1^2 \, (a \, - \, a_1) \, (l_1 \, + \, l_2) \end{array} \right. \end{array} \label{eq:noise}$$

valable pour  $0 \le a_1 \le a$ .

$$(12) \qquad K_{13} = -\frac{a b_1 \, c_1 \, [3 c_1 \, l_1 \, + \, 2 \, l_2 \, (l_1 + \, c_1)]}{12 l_1 \, (l_1 + \, l_2) \, I}$$

$$K_{14} = + \frac{al_1 b_2 c_2 (l_2 + c_2)}{12 l_2 (l_1 + l_2) I}$$

$$(14) \hspace{1cm} K_{15} = - \; \frac{a \; l_1 \; l_2 \; d}{12 \; (l_1 + l_2) \; I} \cdot \\$$

#### Arbres encastrés

- 1º Si dans les formules (3) et (4), on pose l=0 on obtient les coefficients de déformation d'un arbre en porte-à-faux encastré en A de la figure 13.
- 2º Si dans les formules (7) et (8), on pose  $l_2=0$  on obtient les coefficients de déformation d'un arbre à deux paliers, sans porte-à-faux, encastré en B de la figure 14.
- 3º Si dans les formules 10, 11 et 12, on pose l<sub>2</sub> = 0 on obtient les coefficients de déformation d'un arbre à deux paliers, avec porte-à-faux, encastré en B de la figure 15.

#### Application numérique

Cet exemple montre que, pour pouvoir traiter tous les cas, il faut, si nécessaire, inverser les figures.

On se propose de calculer les coefficients de déformation de l'arbre de la figure 16. Bien entendu, ces formules peuvent s'appliquer à une poutre quelconque dont le moment d'inertie est constant. On admet I=1.

Calcul de  $K_{11}$ , selon figure 15, formule (10):

$$a=2 \quad l_1=7 \quad l_2=11$$
 
$$K_{11}=\frac{2^2\left[4\times 9\times 18-7^2\right]}{12\times 18}=+\ 11,093.$$

Calcul de  $K_{12}$  selon figure 15, formule (13):

$$a=2$$
  $l_1=7$   $b_2=8$   $c_2=3$   $l_2=11$  
$$K_{12}=K_{21}=+\frac{2\times 7\times 8\times 3\times 14}{12\times 11\times 18}=+1{,}980.$$

Calcul de  $K_{13}$  selon figure 15, formule (14):

$$a=2 \quad l_1=7 \quad l_2=11 \quad d=1$$
 
$$K_{13}=K_{31}=-\frac{2\times 7\times 11\times 1}{12\times 18}=-0.713.$$

Calcul de  $K_{22}$  selon figure 14 inversée, formule (7) :

$$\begin{aligned} a &= 3 \quad l_1 = 11 \quad l_2 = 7 \\ K_{22} &= + \frac{3^2 \times 8^2 \left[ 4 \times 11 \times 18 - 14^2 \right]}{12 \times 11^2 \times 18} = + 13{,}135. \end{aligned}$$

Calcul de  $K_{23}$  selon figure 15 inversée, formule (12):

$$\begin{split} a &= 1 \quad b_1 = 3 \quad c_1 = 8 \quad l_1 = 11 \quad l_2 = 7 \\ K_{23} &= K_{32} = - \frac{1 \times 3 \times 8[3 \times 8 \times 11 + 2 \times 7 \times 19]}{12 \times 11 \times 18} = - 5{,}354. \end{split}$$

Calcul de K33 selon figure 15 inversée, formule (10):

$$a = 1 \quad l_1 = 11 \quad l_2 = 7$$
 
$$K_{33} = + \frac{1^2 \left[4 \times 12 \times 18 - 11^2\right]}{12 \times 18} = + 3,440.$$

On porte les valeurs ci-dessus dans le tableau des coefficients de déformation.

| 00    | $P_1$    | $P_2$    | $P_3$  |
|-------|----------|----------|--------|
| $Y_1$ | + 11,093 | + 1,980  | 0,713  |
| $Y_2$ | + 1,980  | + 13,135 | -5,354 |
| $Y_3$ | - 0,713  | 5,354    | +3,440 |

Ce tableau se lit comme suit:

$$Y_1 = +11,093 P_1 + 1,980 P_2 - 0,713 P_3.$$

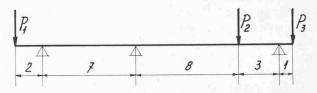


Fig. 16.