Zeitschrift: Bulletin technique de la Suisse romande

Band: 86 (1960)

Heft: 15

Artikel: Contribution au calcul des vitesses critiques d'un arbre

Autor: Tâche, J.

DOI: https://doi.org/10.5169/seals-64501

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

BULLETIN TECHNIQUE **DE LA SUISSE ROMANDE**

paraissant tous les 15 jours

ORGANE OFFICIEL

- de la Société suisse des ingénieurs et des architectes de la Société vaudoise des ingénieurs et des architectes (S.V.I.A.) de la Section genevoise de la S.I.A. de l'Association des anciens élèves de l'EPUL (Ecole polytechnique
- de l'Université de Lausanne) et des Groupes romands des anciens élèves de l'E.P.F. (Ecole polytechnique fédérale de Zurich)

COMITÉ DE PATRONAGE

- Président: J. Calame, ing. à Genève Vice-président: E. d'Okolski, arch. à Lausanne Secrétaire: S. Rieben, ing. à Genève
- Membres:

- Membres:
 Fribourg:
 Genève:
 G. Bovet, ing.; Cl. Grosgurin, arch.; E. Martin, arch
 Neuchâtel:
 J. Béguin, arch.; R. Guye, ing.
 Valais:
 G. de Kalbermatten, ing.; D. Burgener, arch.
 A. Chevalley, ing.; A. Gardel, ing.;
 M. Renaud, ing.; Ch. Thévenaz, arch.

CONSEIL D'ADMINISTRATION

- de la Société anonyme du « Bulletin technique »
- D. Bonnard, ing. M. Bridel; J. Favre, arch.; R. Neeser, ing.; A. Robert, ing.; J. P. Stucky, ing. Avenue de la Gare 10, Lausanne
- Adresse:

RÉDACTION

Rédaction et Editions de la S. A. du « Bulletin technique » Tirés à part, renseignements Adresse: Case Chauderon 475, Lausanne

TEDOTATIONAL				
l an	Suisse	Fr. 28.	— Etranger	Fr. 32.—
Sociétaires	>>	» 23.	— »	» 28.—
Prix du numéro	>>	» 1	60	

Chèques postaux: «Bulletin technique de la Suisse romande », N° II. 57 75, Lausanne

Adresser toutes communications concernant abonnement, changements d'adresse, expédition, etc., à: Imprimerie La Concorde, Terreaux 29,

ANNONCES

Tar	if des	aı	nn	on	ce	9 .		
	page						Fr.	290.—
1/2							>>	150.—
1/4	>>						>>	75.—

Adresse: Annonces Suisses S. A. Place Bel-Air 2. Tél. (021) 22 33 26. Lausanne et succursales

SOMMAIRE

Contribution au calcul des vitesses critiques d'un arbre, par J. Tâche, ingénieur EPUL. Association amicale des anciens élèves de l'Ecole polytechnique de l'Université de Lausanne. - Les congrès. — Divers. — Documentation générale. — Documentation du bâtiment. Bibliographie. -Informations diverses.

CONTRIBUTION AU CALCUL DES VITESSES CRITIQUES D'UN ARBRE

par J. TÂCHE, ingénieur EPUL aux Ateliers de Constructions Mécaniques de Vevey S. A.

Introduction

On connaît trois principales méthodes pour calculer les vitesses critiques d'un arbre :

- 1º la méthode analytique;
- 2º la méthode algébrique;
- 3º la méthode graphique.

La première, qui a recours aux équations différentielles, ne peut s'appliquer pratiquement qu'à un arbre de section constante soumis à sa masse propre ou à une charge uniformément répartie.

Les deux dernières méthodes permettent de résoudre tous les cas, en particulier ceux où l'arbre porte des charges concentrées en des endroits bien déterminés.

La méthode algébrique se compose de trois principales opérations :

- Détermination des coefficients de déformation.
- Etablissement de l'équation caractéristique.
- c) Résolution de cette équation.

Dans mon article: Calcul de la vitesse critique d'un arbre par intégrations numériques, paru dans le Bulletin technique de la Suisse romande en 1957, nº 6, j'ai indiqué

une méthode pour le calcul des coefficients de déformation K¹, laquelle s'applique principalement à des arbres dont le diamètre est variable. Après l'intégration numérique, qui se fait très rapidement, les coefficients de déformation se déterminent en résolvant un système d'équations linéaires. On obtient les équations 4*, puis par simple substitution, les équations 10*. Le système de celles-ci se compose de q équations et q+1 inconnues, soit x et les flèches Y en nombre q. Rappelons que q désigne le nombre de charges. En éliminant les Y on obtient une équation en x du degré q dénommée équation caractéristique. Pour parvenir à cette équation on peut faire usage des déterminants ou avoir recours à l'élimination des Y par la méthode classique ordinaire. On conçoit cependant que la présence de x complique un peu les opérations.

La résolution de l'équation caractéristique se fait par tâtonnements si son degré est supérieur à 2. Le chapitre 4 indique une méthode rapide pour obtenir la plus grande racine de l'équation.

On utilise pour le présent article la terminologie mentionnée à l'article précité. Les numéros des formules de l'article en question sont surmontés d'un astérisque, pour éviter toute confusion.

En résumé on aura à déterminer $\frac{q(q+1)}{2}$, coefficients K et à établir et résoudre une équation du degré q. Par conséquent, on a tout intérêt à réduire le plus possible le nombre q des charges, afin que les calculs soient simples et rapides.

Le présent article comprend cinq chapitres : le premier traite du remplacement du poids propre de l'arbre par une ou plusieurs charges concentrées, le deuxième mentionne certains avantages que peut présenter la symétrie, le troisième signale quelques particularités de l'arbre à trois paliers, le quatrième expose une méthode de résolution de l'équation caractéristique, enfin le dernier donne des formules pour le calcul des coefficients de déformation d'un arbre de diamètre constant à deux ou trois paliers.

Ces sujets, bien que très différents, ont toutefois un but commun : celui de simplifier les calculs soit en diminuant le nombre des charges, soit par d'autres artifices.

CHAPITRE PREMIER

a) Remplacement du poids propre d'un arbre de diamètre constant par q forces égales

Commençons par le cas le plus simple : celui d'un arbre de diamètre constant avec palier à chaque extrémité. Remplaçons le poids de cet arbre par q forces égales réparties selon les systèmes A et B de la figure 1.

Dans le système A, l'arbre est divisé en q tronçons de même longueur, et les forces, chacune égale au poids d'un tronçon, sont appliquées au centre de gravité de chaque tronçon. La somme de toutes les forces est égale au poids total de l'arbre.

Dans le système B, l'arbre est divisé en q+1 tronçons de même longueur et les forces, chacune égale au poids d'un tronçon, sont appliquées aux jonctions des tronçons. Le nombre des forces est donc égal à q. La somme des forces est égale à $\frac{q}{q+1}$ fois le poids total

de l'arbre. On se propose de comparer ces deux systèmes pour différentes valeurs de q.

Par la méthode analytique, on connaît les vitesses critiques exactes d'un tel arbre.

Elles sont données par la formule classique

(1)
$$\omega = k^2 \frac{\pi^2}{l^2} \sqrt{\frac{EIg}{p}}$$

l = la distance entre les deux paliers;

p= le poids propre de l'arbre par unité de longueur ; E= module d'élasticité ;

I = moment d'inertie de l'arbre;

= accélération terrestre;

 $g = \operatorname{acc\'el\'eration}$ terresure, $k = \operatorname{un}$ nombre entier quelconque.

A k = 1 correspond la vitesse critique fondamentale; à k=2, la première vitesse critique harmonique, etc. Les vitesses croissent avec le carré des nombres entiers.

Pour établir le degré d'exactitude des systèmes A et B, il suffit de comparer les vitesses obtenues par ces systèmes avec les vitesses exactes données par la

formule (1). Le tableau I indique le résultat de cette étude comparative, laquelle n'envisage que la vitesse critique fondamentale.

TABLEAU I

Nombre q	Erreurs en %					
de charges	Système A	Système B				
1	+42,4555	+0,7312				
2	+ 0,7312	+0,1075				
3	+ 0,1075	+0,0305				
4	+ 0,0305	+ 0,0119				
5	+ 0,0119	+0,0056				
6	+ 0,0056	+0,0029				
7	+ 0,0029	+0,0017				
8	+ 0.0017	+0,0011				

L'erreur est calculée en % de la vitesse approximative. Ainsi, si l'erreur est de + 13 %, cela signifie qu'il faut multiplier la vitesse approximative par 1,13 pour obtenir la vitesse exacte. Par contre si l'erreur est de -13% le facteur est 0,87.

Fait remarquable, l'erreur du système B pour un nombre de charges q est égale à l'erreur du système A pour q+1 charges. Le système B est donc, à nombre de charges égal, d'une plus grande précision.

Sur la base de ce tableau on conviendra de considérer la vitesse critique obtenue avec q = 5 comme pratiquement exacte. Cette vitesse permettra d'estimer l'erreur commise en calculant la vitesse critique par des procédés ou des formules plus simples.

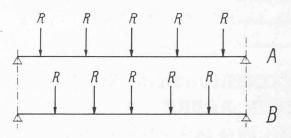


Fig. 1. — Remplacement du poids propre d'un arbre par cinq forces égales selon systèmes A et B.

b) Remplacement du poids propre d'un arbre de diamètre constant par une force centrée

On désigne par force centrée Ro la force de remplacement située au milieu de la portée.

Si q=1, la force centrée dans le système B est égale à

$$\frac{1}{1+1}$$
 pl = 0,5 .pl

A cette valeur correspond une erreur de 0,7312 %, voir tableau I.

Le calcul montre que l'on peut rendre cette erreur nulle en posant

(2)
$$R_o = 0.492767 \ pl.$$

On en conclut que le poids propre d'un arbre de diamètre constant, avec palier à chaque extrémité, peut être remplacé, pour le calcul de la vitesse critique fondamentale, par une charge centrée égale à 0,492767 du poids propre total de l'arbre.

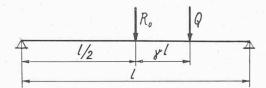


Fig. 2. — $R_{\theta} = \text{force de remplacement}$; Q = charge concentrée quelconque.

Examinons comment se comporte ce remplacement lorsque l'arbre porte une charge quelconque Q située à une distance yl du milieu de la portée, voir figure 2. Il est évident que O peut être soit à droite soit à gauche de R_0 sans que cela ait d'influence sur la valeur de la vitesse critique; par conséquent y sera toujours positif et plus petit ou égal à 0,5.

Exprimons Q en fonction du poids total de l'arbre

$$(3) Q = \alpha pl.$$

Tous calculs faits on obtient la formule suivante :

(4)
$$\omega = \frac{6,928203}{l^2} \sqrt{\frac{\widetilde{EIg}}{up}} \cdot$$

Dans cette formule u est la plus grande racine de l'équation

$$(5) u^2 + a_1 u + b_1 = 0$$

où

$$(6) \hspace{1cm} a_1 = \hspace{.1cm} - \hspace{.1cm} [0,\!492767 + (1 - 4 \hspace{.1cm} \gamma^2)^2 \hspace{.1cm} \alpha]$$

(7)
$$b_1 = 1,971068 \text{ Gcg}^2 (1-2\text{ g})^2 (1+2\text{ g}-\text{g}^2).$$

La formule (4) peut se mettre sous une forme beaucoup plus simple dans le cas d'un arbre massif en acier. On admet:

$$E=2100 \text{ tonnes/cm}^2$$

poids spécifique de l'acier = 7,85 kg/dm³

$$g = 981 \text{ cm/sec}^2$$

et on obtient

(8)
$$n = \psi_0 \frac{d}{l^2}$$

n = vitesse critique fondamentale en tours/min; d = diamètre de l'arbre en cm; l = portée (longueur de l'arbre) en m.

(9)
$$\psi_{\sigma} = \frac{847,3081}{\sqrt{u}}$$

u est, bien entendu, la plus grande racine de l'équation 5; il est adimensionnel.

Si la force Q est au milieu de la portée, $\gamma = 0$

(10)
$$\psi_o = \frac{847,3082}{\sqrt{0,492767 + \alpha}} \cdot$$

Si la force Q est nulle $\alpha = 0$

$$\psi_o = 1207,036.$$

Si le poids propre de l'arbre est négligeable par rapport à la charge Q, cette dernière se présente sous la forme indéterminée ∞ × 0. On peut y remédier en exprimant non pas le poids de la charge en fonction du poids de l'arbre mais le poids de l'arbre en fonction de la charge.

On pose donc

$$(12) pl = \beta Q$$

et on obtient la formule

(13)
$$\omega = \frac{6,928203}{l} \sqrt{\frac{EIg}{\nu Ql}}$$

où v est la plus grande racine de l'équation

(15)
$$a_2 = -[0.492767 \beta + (1 - 4 \gamma^2)^2]$$

(16)
$$b_2 = 1,971068 \ \beta \gamma^2 \ (1-2 \ \gamma)^2 \ (1+2 \ \gamma-\gamma^2)$$

En transformant la formule 13 de la même manière que la formule (4) on a

$$(17) \qquad n = \varphi_0 \frac{d^2}{l \sqrt{Ql}}$$

n= vitesse critique fondamentale en tours/min; d= diamètre de l'arbre en cm; l= portée (longueur de l'arbre) en m; Q= poids de la masse concentrée en tonnes.

(18)
$$\varphi_o = \frac{21,03881}{\sqrt{\wp}}$$

v, qui est la plus grande racine de l'équation (14), est adimensionnel.

Si $\beta = 0$ et $\gamma \neq 0$, poids de l'arbre négligeable par rapport à la charge Q

(19)
$$\varphi_o = \frac{21,03881}{1 - 4\gamma^2} \cdot$$

Si $\beta = 0$ et $\gamma = 0$, poids de l'arbre négligeable et charge au milieu de la portée

(20)
$$\varphi_o = 21,03881$$

Si $\beta \neq 0$ $\gamma = 0$, poids de l'arbre non négligeable et charge au milieu de la portée

(21)
$$\varphi_o = \frac{21,03881}{\sqrt{1+0.492767 \ \beta}}$$

Pour contrôler l'exactitude des formules 8 et 17 on a remplacé le poids propre de l'arbre, non pas par une force unique Ro, mais par 5 forces égales réparties selon le système B et on a calculé les coefficients ψ₅ et φ₅; l'indice 5 indique que ces coefficients ont été calculés avec un système de cinq forces tandis que l'indice 0 se rapporte à des coefficients établis en remplaçant le poids propre par la force centrée R_o .

Le tableau II donne la valeur des coefficients ψ et φ en fonction de a, B et y et indique les erreurs commises en appliquant les formules (8) et (17). On constate que ces erreurs sont pratiquement négligeables.

On en conclut que le remplacement du poids propre d'un arbre de diamètre constant par une force centrée, selon la formule (2) est admissible et conduit à un résultat suffisamment exact.

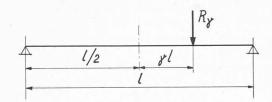


Fig. 3. — Remplacement du poids propre d'un arbre par une force excentrée.

c) Remplacement du poids propre de l'arbre par une force excentrée

Le remplacement du poids propre de l'arbre par une force centrée donne de très bons résultats. Son seul inconvénient est d'introduire une charge supplémentaire dans le cas où aucune autre charge n'agit au milieu de la portée.

Cet inconvénient pourrait être évité, s'il était admissible de remplacer le poids propre de l'arbre par une force excentrée, sans compromettre outre mesure la précision des calculs.

Ce remplacement serait très avantageux car, dans un système à plusieurs charges, il suffirait d'ajouter à l'une d'elles (on choisirait celle qui est le plus près du milieu de l'arbre) la force remplaçant le poids propre de l'arbre.

Il est toujours possible de remplacer le poids propre de l'arbre par une force R_{γ} excentrée, selon figure 3, cela sans erreur, à la condition que l'arbre ne porte aucune charge.

Cette force de remplacement doit avoir la valeur suivante:

(22)
$$R_{\gamma} = \frac{0.492767}{(1 - 4\gamma^2)^2} \, pl.$$

Si $\gamma = 0$ on obtient la formule (2).

Pour connaître dans quelles conditions ce remplacement peut être appliqué sans erreur importante, cherchons d'abord le degré de précision lorsque l'arbre porte une charge Q quelconque selon figure 4.

A la charge Q on ajoute la charge R_{γ} représentant le poids propre de l'arbre.

En faisant les mêmes substitutions que précédemment on obtient les formules suivantes :

(23)
$$\omega = \frac{6,928203}{\sqrt{0,492767 + (1 - 4\gamma^2)^2 \alpha}} \frac{1}{l^2} \sqrt{\frac{EIg}{p}}$$

et si l'arbre est massif et en acier, on a

$$(24) n = \psi_{\mathsf{Y}} \frac{d}{l^2}$$

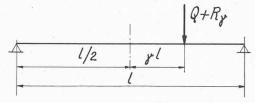


Fig. 4. — $R_{\gamma} =$ force excentrée remplaçant le poids de l'arbre; Q = charge concentrée quelconque.

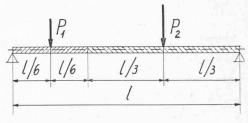


Fig. 5.

où

si
$$pl = \beta Q$$

(26)
$$\omega = \frac{6,928203}{\sqrt{0,492767 \beta + (1 - 4\gamma^2)^2}} \frac{1}{l} \sqrt{\frac{EIg}{Ql}}$$

et si l'arbre est massif et en acier

$$(27) n = \varphi_{\rm Y} \frac{d^2}{l \sqrt{Ql}}$$

où

L'indice γ des coefficients ψ et φ signifie que ceux-ci sont déterminés en remplaçant le poids propre de l'arbre par une force excentrée R_{γ} , formule (22), agissant au même endroit que la charge Q.

Si pour le calcul de ψ_o et ϕ_o , formules (9) et (18), on néglige les termes b_1 respectivement b_2 , on obtient les coefficients ψ_{γ} et ϕ_{γ} . On peut donc dire a priori que ces derniers seront d'une moins grande précision que les premiers. Cette remarque est confirmée par le tableau II sur lequel figurent également les coefficients ψ_{γ} et ϕ_{γ} .

En résumé le poids propre de l'arbre peut être remplacé soit par une charge centrée R_o formule (2), soit par une charge excentrée R_γ formule (22). Dans chaque cas particulier on choisira le mode de remplacement qui convient le mieux tout en se souvenant que la précision est meilleure avec une charge centrée qu'avec une charge excentrée.

d) Remplacements à déconseiller

Considérons l'arbre de la figure 5 portant deux charges P_1 et P_2 dont les valeurs sont

$$P_1 = \frac{pl}{6}$$

$$P_2 = \frac{pl}{3}$$
.

Pour tenir compte du poids propre de l'arbre on pourrait être tenté d'adopter le remplacement que nous désignerons par « C » et consistant à ajouter à la charge

TABLEAU II

	α	0	0,2	0,4	0,6	0,8	1,0	α	1,0	1,25	1,66	2,5	5	∞
Υ	β	. ∞	5	2,5	1,66	1,25	1,0	β	1,0	0,8	0,6	0,4	0,2	0
	Ψ5	1206,969	1019,463	898,318	811,966	746,459	694,584	Φ5	17,2466	17,8435	18,5062	19,2476	20,0845	21,0380
-0	$\begin{array}{c} \psi_0 = \psi_{\gamma} \\ \mathrm{erreur} \ \% \end{array}$	1207,036	1018,000 + 0,14	896,752 + 0,17	810,545 + 0,18	745,215 + 0,17	$^{693,499}_{+\ 0,16}$	$\phi_0 = \phi_{\gamma}$ erreur %	$^{17,2197}_{+\ 0,16}$	17,8179 + 0,14	18,4831 + 0,12	19,2289 + 0,10	20,0729 + 0,06	21,0388
	Ψδ	1206,969	1056,532	949,361	868,619	805,174	753,703	Φ5	18,7145	19,4681	20,3164	21,2800	22,3855	23,6687
1 6	Ψ₀ erreur %	1207,036	1058,410 — 0,18	951,619 — 0,24	870,831 — 0,25	807,217 — 0,26	755,553 — 0,25	φ ₀ erreur %	18,7605 — 0,25	19,5133 — 0,23	20,3587 — 0,21	21,3158 — 0,17	22,4088 — 0,10	23,6687
	Ψγ erreur %	1207,036	$^{1050,317}_{+\ 0,59}$	942,142 + 0,77	861,715 + 0,80	798,898 + 0,79	748,078 + 0,75	Ψγ erreur %	$18,5749 \\ + 0,75$	19,3323 + 0,70	20,1906 + 0,62	21,1744 + 0,50	22,3177 + 0,30	23,6687
	Ψ5	1206,969	1149,517	1097,649	1050,914	1008,773	970,689	Фъ	24,1024	25,7631	27,7932	30,3344	33,5965	37,8698
$\frac{1}{3}$	Ψ ₀ erreur %	1207,036	1152,519 — 0,26	1102,552 — 0,44	1056,983 — 0,57	1015,499 — 0,66	977,733 — 0,72	φ ₀ erreur %	$24,2773 \\ -0,72$	25,9611 — 0,76	28,0135 — 0,79	30,5652 — 0,76	33,7903 — 0,57	37,8698 0
	Ψγ erreur %	1207,036	$1137,870 \\ + 1,02$	$1079,375 \\ + 1,69$	$1029,062 \\ + 2,12$	985,188 + 2,40	$946,486 \\ + 2,56$	φ _γ erreur %	$23,5014 \\ + 2,56$	$25,0951 \\ + 2,66$	27,0641 + 2,69	29,5838 + 2,54	32,9700 + 1,90	37,8698 0

$$n = \Psi \frac{d}{l^2}$$
 (formule 8)

 ψ_5 ou ϕ_5

valeur exacte

 $n = \varphi \; \frac{d^2}{l \; \sqrt{\; Ql}} \; \; (\text{formule 17})$

$$\alpha = \frac{Q}{nl}$$
 (formule 3)

ψγ ου φγ ν

valeur calculée avec force de remplacement centrée valeur calculée avec force de remplacement excentrée, coïncident avec O

$$\beta = \frac{pl}{Q}$$
 (formule 12).

 P_1 un poids égal à $\frac{pl}{3}$ et à la charge P_2 un poids de $\frac{2\ pl}{3}$. Ce mode de remplacement est cependant à déconseiller car il conduit à une erreur qu'il est facile d'éviter.

En remplaçant le poids propre de l'arbre par 5 forces égales, système B, on obtient la vitesse critique que l'on peut considérer comme exacte et dont la valeur est

$$\omega = k_5 \, \frac{1}{l^2} \, \sqrt{\frac{EIg}{p}}$$

où $k_5 = 7,83514$.

En remplaçant le poids propre de l'arbre par une force R_o centrée on obtient

$$k_0 = 7,84988$$
 (erreur — 0,176 %).

En remplaçant le poids propre de l'arbre par une force unique excentrée R_{γ} en P_2 on obtient

$$k_{Y} = 7,80539 \text{ (erreur} + 0,381 \%).$$

Enfin, le remplacement « C » donne

$$k_c = 7,34508$$
 (erreur 6,672 %).

Cette étude comparative montre que le remplacement « C » est à déconseiller et que le remplacement par une force unique excentrée est d'une plus grande précision sans compliquer en aucune façon les calculs. Au lieu d'ajouter à P_1 la charge $\frac{pl}{3}$ et à P_2 la charge $\frac{2\ pl}{3}$, il est préférable de ne rien ajouter à P_1 et d'ajouter seulement à P_2 la charge R_Y donnée par la formule (22).

Dernière remarque: si l'on avait négligé le poids propre de l'arbre on aurait commis une erreur de — 38,893 %.

e) Arbre à trois paliers

On se propose d'étudier comment se comporte le remplacement du poids propre de l'arbre par force centrée, lorsqu'on l'applique à un arbre à trois paliers, selon figure 6.

On pose:

$$(29) R_o = 0.492767 \ pl$$

$$(30) R_{ok} = kR_o$$

et on détermine la vitesse critique de l'arbre. Tous calculs faits on obtient

(31)
$$\omega = \psi_o \frac{1}{l^2} \sqrt{\frac{EIg}{p}}$$

où

(32)
$$\psi_o = 55,830928 \sqrt{\frac{1+k}{z}}$$

z étant la plus grande racine de l'équation

$$(33) z^2 + az + b = 0$$

où

$$(34) \hspace{1cm} a = - \left[14 + 32 \ k + (32 + 14 \ k) \ k^4\right]$$

$$(35) b = 448 (1 + k^2) k^4.$$

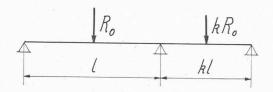


Fig. 6. — Remplacement du poids propre de l'arbre à trois paliers par forces centrées.

Le tableau III indique les différentes valeurs de ψ_o calculées d'après la formule (32). A la ligne suivante

TABLEAU III

k	1	0,8	0,6	0,4	0,2	0
Ψο	9,869606	11,333008	12,098339	12,730289	13,539335	14,921445
Ψ_e	9,869604	11,414154	12,277932	13,010759	13,911184	15,418965
erreur %	0	+ 0,716	+ 1,484	+ 2,203	+ 2,746	+ 3,334

 $\begin{array}{ll} \psi_{o} \ (\text{formule } 32) & \text{valeur obtenue par deux forces centrées.} \\ \psi_{e} & \text{valeur exacte.} \end{array}$

figurent les valeurs exactes ψ_e , calculées selon la formule 143 page 129 de l'ouvrage « Vitesses critiques des arbres en rotation » de Lucien Borel, édition 1954.

La dernière ligne indique l'erreur commise en utilisant le mode de remplacement selon figure 6, formules (29) et (30).

On constate que cette erreur reste encore dans des limites admissibles surtout si k n'est pas très petit.

f) Remplacement du poids d'un arbre en porte-à-faux

Il s'agit de déterminer la valeur de la charge P qu'il faut appliquer à l'extrémité du porte-à-faux, voir figure 7, pour remplacer le poids de la partie en porte-à-faux.

Le poids du tronçon compris entre les 2 paliers est remplacé par la charge centrée

$$R_o = 0.492767 \ pl.$$

On pose

$$(36) P = \xi k pl.$$

On se propose de déterminer ξ . Tous calculs faits on obtient :

(37)
$$\omega = \frac{6,928203}{\sqrt{z}} \frac{1}{l^2} \sqrt{\frac{EIg}{p}}.$$

Dans cette formule z représente la plus grande racine de l'équation

$$(38) z^2 + az + b = 0$$

où

(39)
$$a = -[0.492767 + 16 k^3 (1 + k)\xi]$$

$$(40) b = 0,492767 k^3 (7 + 16 k) \xi$$

La formule 108 page 102 de l'ouvrage déjà cité de Lucien Borel permet de calculer très exactement la valeur de ω en fonction de k. En portant cette valeur dans l'équation 37 on obtient z et par conséquent ξ qui sera une fonction de k.

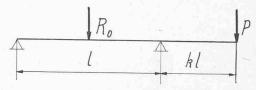


Fig. 7. — Remplacement du poids en porte-à-faux par une force P.

Le diagramme de la figure 8 donne la valeur de ξ pour différentes valeurs de k, c'est-à-dire du rapport entre la longueur du porte-à-faux et la distance entre les deux paliers. On constate que si k varie entre 0,1 et 1, ξ varie entre 0,360 et 0,287.

g) Remplacement du poids propre d'un arbre de section variable

Ce remplacement peut se faire soit par une force centrée R_o soit par une force excentrée R_γ . R_o sera le poids du tronçon central d'une longueur de 0,492767 l, tandis que R_γ sera le poids du tronçon excentré d'une 0,492767

longueur
$$\frac{6,162767}{(1-4\gamma^2)^2} l$$
.

Immanquablement on commettra une erreur, mais elle sera, le plus souvent de peu d'importance, car les charges supportées par un arbre de section variable sont en général très grandes par rapport au poids propre de l'arbre.

Pour fixer les idées, supposons que le poids de l'arbre soit le 10 % des charges. Si l'on commet une erreur de 20 % du poids de l'arbre en estimant la force de remplacement, les charges seront affectées d'une erreur d'environ 2 % et la vitesse critique, d'une erreur d'environ 1 %, car la vitesse critique est approximativement une fonction de la racine carrée des charges. En effet, considérons la formule (17), prenons la dérivée logarithmique des deux membres en ne considérant que n et Q comme variables et en remplaçant les infiniment petits par des grandeurs finies et petites.

On a

$$\frac{\Delta n}{n} = -\,\frac{1}{2}\,\frac{\Delta Q}{Q}\,\cdot$$

Cette formule montre que le pourcentage de la vitesse est la moitié du pourcentage de la charge et qu'en outre il est de signe contraire. Si donc l'erreur sur la charge est + 2 %, l'erreur sur la vitesse sera - 1 %, car quand la charge augmente, la vitesse critique diminue.

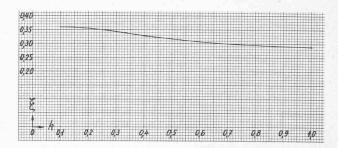


Fig. 8. — Valeur de ξ pour la formule (36), figure 7.

(A suivre.)