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LES DEFORMATIONS HEREDITAIRES '

par GUSTAVO COLONNETTI, président émérite du Conseil national italien de la Recherche

On sait depuis longtemps que des phénomènes
irréversibles, connus sous le nom d'hystérésis, de plasticité,

JA& fluage, de relaxation, >d'éerouissage, se manifestent
dans les corps naturels lorsque ceux-ci se déforment

sous l'action de sollicitations dépassant certaines limites

; mais aucune théorie mathématique n'avait jamais
été conçue qui les encadrât.

Cela est devenu possible seulement à la suite des

derniers développements d'une théorie générale des

déformations très petites qui va désormais prendre sa

place'à côté de la théorie classique de l'élasticité.
Dans cette théorie on abandonne le slogan de la

correspondance biunivoque entre efforts et déformations,
slogan sur lequel repose-la théorie classique. On y admet

que la déformation, dans uTOT instant quelconque n'est

plus seulement fonction des valeurs actuelles des efforts,
mais dépend aussi des valeurs les ayant précédés dans

le temps. Et voilà que, non seulement on arrive à une

interprétation rationnelle des phénomènes d'hystérésis

1 Conférence donnée à l'Ecole polytechnique de l'Université de

Lausanne, le 20 février 1960.

que la théorie de l'élasticité n'aurait jamais pu expliquer,
mais on parvient aussi à se rendre raison de ces variations

des oonstantes élastiques que la théorie classique
n'aurait jamais pu admettre sans se renier elle-même,
variations qui témoignent des véritables changements
d'état de la matière.

Or, admettre que la déformation dans un instant
quelconque soit fonction non seulement des valeurs
actuelles des efforts mais aussi de celles qui les ont
précédés dans le temps, c'est inscrire les phénomènes
dont il s'agit dans le cadre des phénomènes héréditaires ;

d'où la nécessité de faire recours à la théorie mathématique

de l'hérédité.
Cette théorie remonte aux premières années du siècle,

quoique à cette époque tout le monde ne fut pas d'accord
au sujet de son applicabilité aux problèmes de la
physique mathématique.

Dans un chapitre de son ouvrage De la méthode dans
les sciences, chapitre consacré à la mécanique, M. Pain-
levé affirmait qu'il n'y avait pas de vrais problèmes
de nature héréditaire. Ceux qui se présentent sous cet
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' aspect n'auraient été, à son avis, que des problèmes
destinés à disparaître dès que nos connaissances sur
la constitution des corps seraient devenues plus
complètes.

Mais, à l'état actuel de nos connaissances scientifiques,
ces problèmes se présentent effectivement et avec une
fréquence toujffiïjirs plus grande. Il est donc nécessaire
de les résoudre.

Déjà en 1907 M. Picard, dans un article « Sur la
Mécanique classique et ses approximations successives »,
affirmait la nécessité de distinguer la mécanique en deux
branches : celle de l'hérédité et celle de la non-hérédité.

Celle-ci se rapporte au cas où l'avenir d'un système
ne dépend, à un instant donné, que de son état actuel ;

ou, d'une manière plus générale (si on regarde les forces
comme pouvant dépendre aussi des vitesses), de l'état
actuel et de l'état infiniment voisin qui l'a précédé.

La mécanique de l'hérédité correspond au contrafifeX
au cas où chaque action laisse un héritage dans le
système, et l'flHit actuel dépend de toute l'histoire
précédente.

Cette distinction n'avait toutefois pu amener à une
étude systématique, faute de méthodes analytiques s'y
prêtant.

Nous devons à un grand mathématicien italien,
M. Vito Volterra, l'idée de mettre les questions physiques

qui se rapportent aux problèmes de l'hérédité en

rapport avec certaines classes d'équations intégro-
différentielles, pour lesquelles il avait obtenu depuis 1887

un développement en série tout à fait analogue à celui
de Taylor.

Dans un mémoire |j|ês remarquable, publié en 1910, 1

M. Volterra a mis en évidence que, par leur nature, les

problèmes de la physique mathématique et de la
mécanique non héréditaire peuvent toujours se faire
dépendre des équations différentielles ordinaires ou des

équations aux dérivées partielles. Les données initiales
constituent les constantes arbitraires ou les fonctions
arbitraires qui paraissent dans l'intégration.

Pour les problèmesESle la physique mathématique de

l'hérédité, au contraire, l'analyse des équations différentielles

n'est plus suffisante. En effet, l'état actuel du
système dépend de son histoire, et celle-ci estsÉndivi-
dualisée par toutes les valeurs prises par des paramètres
pendant une certaine période de temps ; d'où la nécessj|||§
d'envisager des quantités qui dépfendent de toutes les
valeurs de ces paramètres regardés comme des fonctions
du temps.

On est ainsi amené à l'analyse des quantités qui
dépendent de toutes les valeurs d'une ou de plusieurs
fonctions — fonctions des lignes ou des hyperespaces —
et M. Volterra a démontré, dans son mémoire, que grâce
au développement en série analogue à celui de Taylor,
la question se présente comme une extension tout à fait
naturelle de la résolution des systèmes des équations
algébriques de premier degré lorsque le nombre des

équations et des inconnues croît indéfiniment.
C'est ainsi crue M. Volterra a pu déduire, de l'étude

de l'équation intégro-différentielle du genre elliptique,
les lignes générales d'une théorie analytique des phénomènes

héréditaires sans particulariser les fonctions qui
les caractérisent.

1 Vito Volterra : Sur les équations intégro-différentiettes et leurs
applications. Àcta mathematica, tome 35.

En effet, comme dans les questions ordinaires de la
physique mathématique, il est utile de laisser indéterminées

les constantes autant qu'il est possible, et de

ne les fixer numériquement que lorsqu'on applique les
formules à des questions concrètes ; de même il est
utile de laisser indéterminées les fonctions qui
caractérisent les phénomènes héréditaires lorsqu'on traite
des questions d'hérédité en général, en résolvant les

problèmes qui se présentent avec la plus grande
généralité possible.

On pourra toujours déterminer ces fonctions,
lorsqu'elles sont inconnues, en comparant les solutions
générales que l'on obtient avec les résultats de l'observation

directe.
Pour représenter les -grandeurs qui dépendent de

'SÉlftes les valeurs qu'une fonction ce du temps peut
prendre dans un intervalle de temps (0, T), Volterra
avait choisi une fonction qu'il écrivait génériquement
sous la forme

F J (t)
o

Nous l'adopterons pour représenter une quelconque
des caractéristiques de la déformation à un instant T
donné, admettant avec lui que (certaines conditions
étant satisfaites) la dite fonction peut être développée
en une série analogue à celle de Taylor, et que dans
cette série les termes d'ordre supérieur au premier sont
négligeables.

C'est ce que Volterra appelait l'hérédité linéaire.
Si l'on choisit comme origine des temps l'instant où

se situe la première application des forces extérieures,
et si l'on suppose que, à cet instant, chaque élément
du corps est dans son état naturel non déformé, une
quelconque des caractéristiques de la déformation à

l'instant T pourra s'exprimer comme la somme de deux
termes :

la déformation élastique, que nous dénoterons ici
génériquement avec la lettre 6, et qui est toujours, par
définition, une fonction linéaire de l'état de tension ;

et la déformation plastique, qu'on dénotera toujours
avec la même lettre grecque surlignée, dans l'expression
de laquelle

mm fa(t)f(T,t) dt

la fonction / représente ce que Volterra a appelé
d'une manière générale le coefficient d'hérédité.

Il est facile d'en donner l'interprétation physique.
Ce coefficient est en effet, à chaque instant, égal au

rapport entre la vitesse d'augmentation de la déformation

plastique et la valeur de la fonction cx.

C'est ce qui nous suggère de donner à la fonction a
le nom de fonction déterminante des déformations
plastiques.

Il s'agit à présent de formuler quelques hypothèses
raisonnables sur la forme des deux fonctions a et /.

Nous supposerons a linéaire dans le temps, c'est-à-
dire

a c t

c étant une constante arbitraire. C'est une hypothèse
qui pourrait à première vue paraître très limitative ;
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la suite de notre discours démontrera qu'elle ne nous
empêche pas d'envisager et de résoudre un grand
nombre de problèmes parmi les plus intéressants dans

le vaste domaine des applications techniques.
Quant au coefficient d'hérédité, nous le supposerons

lié à la fonction déterminante — et, par celle-ci, lié au

temps — par une relation du type

/ <h + a2 oc + 03 a2 +

où les coefficients a sont des constantes dont la valeur

peut varier avec les caractéristiques du matériau et avec
la vitesse de déformation qu'on lui impose.

Dans ces hypothèses, la déformation plastique a

l'instant T peut s'écrire de la manière suivante :

¦:(T)=j ct (ax + a2ct + a3c2t2+ dt

rp2

+ 9. 3 — <l
a c -Q- - \- as (r

rjpZ

TT
fi

:£a*(T)+fca?(T)+ ga*(T) +

Il va sans dire que les hypothèses que nous avons
adoptées, et desquelles nous avons déduit ces expressions

de la déformation plastique, sont tout à fait
arbitraires.

Leur choix sera justifié a posteriori si la théorie

physique qui en découle nous offre la possibilité de

coordonner entre eux des phénomènes qui jusqu'ici se

présetiKient isolés et dépourvus de rapports avec les

autres phénomènes connus 1.

Il faut dise tout de suite que deux cas se présentent
en pratique, qui exigent différents choix de la fonction
déterminante.

En effet, si l'intervention des déformations plastiques
se vérifie sous l'action de forces extérieures appliquées

au corps, et des tensions intérieures que celles-ci font
naître dans les différents points du corps, on choisira

comme fonction déterminante une des caractéristiques
de la déformation élastique.

Au contraire, lorsqu'il s'agira d'étudier un état de

coaction déterminé par des déformations imposées, on
choisira comme fonction déterminante une des

caractéristiques de la déformation totale.
Quant au coefficient d'hérédité, une distinction

s'impose selon que les termes variables avec le temps
sont, ou ne sont pas, négligeables par rapport au terme
constant.

Dans le premier cas — c'est-à-dire lorsque le coefficient

d'hérédité est, ou peut être considéré, constant —
les déformations envisagées seront de simples changements

de forme et de dimensions.
Le cas du coefficient variable va, au contraire, nous

permettre d'envisager des phénomènes où la variation
de forme et de dimensions est accompagnée par des

changements de l'état physique du corps.
Cette distinction est d'importance fondamentale.

1 Gustavo Colonnetti : Elastoplasticilà. Saggio di inierpreta-
zione délie deformazione plasticité corne fenomeni ereditarii. Ponlificiae
Academiae scientiarum scripta varia n. 19 (1960).

C'est en effet — à ma connaissance — la première
fois qu'on a la possibilité de caractériser analytiquement
par une différente forme d'une fonction (le coefficient
d'hérédité) les deux classes de phénomènes : ceux qui
¦— comme l'hystérésis à cycles fermés ¦— admettent
un retour de la matière à l'état initial ; et ceux qui —
comme la relaxation ou l'écrouissage — sont décidément
irréversibles.

Il va de soi que l'étude des phénomènes de la première
classe est nécessairement subordonnée au choix d'un
état initial bien défini et facile à reproduire. Tel est
d'ailleurs tout état neutre tel qu'on peut l'obtenir par
la méthode bien connue des sollicitations alternées
décroissantes.

En partant d un tel état, la loi de variation des

déformations plastiques, pour des sollicitations et donc
des déformations élastiques croissantes linéairement
avec le temps, sera représentée, avec une très bonne

approximation, par une parabole tangente, à l'origine
des axes, à la droite qui traduit graphiquement la loi
de Hooke.

L'équation de cette parabole se déduit de la dernière
des équations générales dont nous venons de parler,
en choisissant comme fonction déterminante la
déformation élastique et en négligeant, dans le développement

en série, les termes d'ordre supérieur.
On peut donc l'écrire sous la forme

E ÄE2 mm
AC

Ânaloguement, après inversion du sens de variation
de la sollicitation —S» plus généralement toutes les fois

que la sollicitation varie périodiquement à vitesse

constante entre des limites bien déterminées — la loi
de variation des déformations plastiques sera représentée

par d'autres paraboles du type

k'e'

où la condition du cycle fermé exige qu'on ait

mm
L'expression plus générale du coefficient d'hérédité

devra au contraire être utilisée dans l'étude des

problèmes de la deuxième classe, c'est-à-dire des phénomènes

Réversibles.
La loi de variation des déformations plastiques sera

alors exprimée par une équation du type

ï=k1E*+kli<?+kaZi+...

Deux cas peuvent alors se présenter, selon que
l'ensemble des termes d'ordre supérieur est positif ou

négatif.
Dans le premier cas, la courbe représentative du

phénomène, après avoir suivi de près pendant un
certainptemps la parabole dont nous avons parlé, s'en

éloignera pour se diriger plus ou moins rapidement
^USSl l'axe des déformations (Fig. 1).

Cette allure traduit bien celle que les techniciens

appellent la relaxation du matériau, c'est-à-dire la
ménomation progressive de la résistance — ou si vous
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c+cc+e

c+e
Fig. 3.FigFig. 1.

le préférez : la plus grande déformabilité ¦— que certains
matériaux présentent lorsqu'ils sont déformés plastique-
ment.

Si au contraire l'ensemble des termes d'ordre supérieur

est négatif, la courbe représentative du phénomène
s'éloignera de la parabole du côté opposé, et se dirigera
vers l'axe des forces (ou des temps) (Fig. 2).

C'est le cas de l'écrouissage ou augmentation de la
résistance — dans le sens d'une moindre déformabilité —
qui se produit dans certains corps lorsque les déformations

plastiques croissent au-delà d'une certaine limite.
Voici un exemple où la correspondance entre les

déductions théoriques et les résultats de l'expérience
est particulièrement significative.

Un fil d'acier de 1,9 mm de diamètre a été soumis à
l'action d'un effort de traction croissant dans le temps
en raison de deux kilogrammes par seconde. Les
déformations ont été mesurées, sur 60 mm de longueur, par
un extensomètre Amsler qui permet d'évaluer le
centième de millimètre.

Les résultats de ces mesures sont représentés dans la
figure 3 par de petits cercles, et interprétés par la courbe
qui correspond à l'équation

k2é> + kt^+ke

dont les coefficients ont été déterminés de manière à
rendre minimes les écarts entre la fonction et les résultats

de l'expérience.
Il faut dire que l'opération est assez délicate ; elle a

été conduite à bon terme par la machine FINAG de
l'Institut national pour les applications du calcul à

Rome, avec laquelle on a pu pousser la précision des
calculs jusqu'au dix-huitième chiffre décimal. Mais le
résultat est tellement satisfaisant qu'aucun doute ne
peut raisonnablement subsister sur la validité de notre
interprétation du phénomène.

Je veux vous présenter un autre exemple, qui se

rapporte à un tout autre chapitre de la résistance des
matériaux.

Il s'agit (<C§tte fois d'un prisme en béton, auquel on
impose une déformation croissant lentement avec le
temps.

C'est donc la déformation totale (et non plus la
déformation élastique) qu'on choisira comme fonction
déterminante. La courbe représentative, si le coefficient
d'hérédité était constant, serait encore une parabole,
mais placée comme celle pointillée dans la figure 4.

Fig.

Avec un coefficient d'hérédité variable, elle prend des
allures du genre de celle tracée dans la même figure
par une ligne pleine, et s'éloigne de la parabole plus
ou moins en raison de la plus ou moins grande importance

des termes d'ordre supérieur.
On peut ainsi réaliser des courbes qui s'approchent

autant qu'on veut de celles qu'on obtient expérimentalement

sur les différents bétons, en faisant varier la
vitesse de déformation entre les plus larges limites.

VoySÉ^ par exemple la figure 5 qui se trouve dans
un rapport de M. Rusch et dont j'aurai l'occasion de
reparler d'ici peu.

Les quatre courbes que vous y voyez ont été obtenues
avec des vitesses de déformation très différentes :

un pour mille par minute ;

un pour mille par heure ;

un pour mille par jour ;

un pour mille en cent jours.
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A chacune de ces courbes coriaäpond une loi bien
déterminée de variation du coefficient d'hérédité, dont
la connaissance suffit à caractériser l'allure du phénomène.

Mais je ne Vhlx pas abuser de votre attention en
vous exposant les détails de ces calculs qui ne présentent
plus aucune difficulté substantielle.

Je préfère vous entretenir sur les conclusions
auxquelles la théorie nous conduit au sujet de la distribution

des tensions sur la section droite d'une poutre
fléchie.

C'est un des problèmes fondamentaux de la résistance
des constructions, qui intéresse mathématiciensgphysi-
ciens, ingénieurs. Et à propos de ce problème, pourtant
si connu et étudié depuis longtemps, j'ai quelque chose
de nouveau à vous dire.

Prenons donc en considération le cas d'une poutre
fléchie, supposons sa déformation croissant linéairement
dans le temps, et proposons-nous d'en définir'l'état
d'équilibre à l'instant T. C'est dire que nous voulons
savoir quelle sera, à cet instasS} la distribution soit des

déformations, soit des tensions, sur chaque section
droite de la poutre.

Nous nous rapporteronsiail'équation générale

1{T)
J>2 T» J14

où, pour une quelconque valeur donnée de T, la vitesse
c est une fonction de la position du point qu'on considère.
Plus précisément c croît proportionnellement à la
distance du point à l'axe neutre de la section droite où
le point est placé.

Nous poserons donc

c coy

co étant une constante arbitraire. On obtient ainsi pour
la déformation plastique une expression du type

KiV ^ y* Ksy*

En ayant choisi comme fonction déterminante la
déformation totale

e -f- e et

on en déduit immédiatement l'expression de la déformation

élastique à l'instant T

e co Ty — Kt y — K% y3 — Kz y9 —

Après quoi différentes possibilités se présentent en
raison des différentes caractéristiques du matériau et
des différentes vitesses de déformation.

Prémettons que, si l'on supposait constant le coefficient

d'hérédité — et donc K^ seul, parmi les coefficients
K, différent de zéro — autant la déformation plastique

que la déformation élastique

s (^T-K1)y
seraient proportionnelles à y ; la distribution des
déformations (et des tensions) sur la section droite serait
linéaire, comme si la poutre se conservait parfaitement
élastique.
jjSRnéralement une telle hypothèse est à écarter. Il
suffit d'ailleurs d'admettre qu'un autre des coefficients
K soif|pfférent de zéro pour que la théorie nous offre

l'explication de certains faits que l'expérience nous a

désormais révélés.
Supposons par exemple que le coefficient d'hérédité

puisse s'écrire sous la forme

On a alors

et

/ ax + On (e + e)"-i.

ë Kx y + Kn y

(uT — Kj)y — Kntr

L'intervention des déformations plastiques va donc
déterrjffijier des changements non seulement quantitatifs,
mais qualitatifs, dans la loi de distribution de la défor-
mation élastique — et donc des tensions — sur la
section droite de la poutre. Telle.loi ne sera plus linéaire.

Dans les figures qui suivent (fig. 6, 7 et 8), cette loi
de distribution des déformations élastiques, et des

dont les coefficients dépendent des caractéristiques du
matériau et de la vitesse avec laquelle la poutre fléchit. Fie. 6.

y--77- y-
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Fig. 8.

tensions, a été représentée graphiquement dans certains
cas particuliers correspondant respectivement à trois
valeurs différentes, 2, 3 et 4 de n, et pour deux
différentes valeurs du rapport entre le coefficient Kn et
le coefficient coT — Kv

Certaines conclusions s'ensuivent immédiatement.
Contrairement à ce qu'on admet habituellement — et

contrairement à ce que j'ai admis moi-même dans mes
premiers exposés — les déformations plastiques peuvent
se manifester même dans les régions de la poutre les
plus proches de l'axe neutre, et donc moins sollicitées.

Telle intervention ne peut en aucun cas se traduire
dans un simple accroissement de la déformation totale,
c'est-à-dire de la courbure de la poutre, qui peut
toujours être interprété comme la conséquence d'un
accroissement fictif de la sollicitation extérieure dû à
l'ensemble des déformations plastiques.

Déformations et tensions dans un point quelconque
de la section droite dépendent non seulement de la
sollicitation extérieure (et de son accroissement fictif
dû à l'ensemble des déformations plastiques) mais aussi
des valeurs des déformations plastiques qui se sont
vérifiées dans ce point.

Le nouveau diagramme des tensions, rapporté à celui
qu'on aurait eu en régime élastique (représenté dans la
figure 9 par la ligne pointillée) dénonce immédiatement
une diminution de valeurs là où le matériau en régime

Fig. 9.

élastique aurait été soumis aux tensions les plus élevées,
et une augmentation de valeurs là où en régime élastique
la résistance du matériau aurait été moins utilisée.

On ne peut même plus dire que les tensions les plus
grandes se vérifient tout près des bords de la section,
et en tout cas dans les points de la section les plus
éloignés de l'axe neutre. Cela arrive évidemment pour
des valeurs de Kn inférieures à une certaine limite ;

mais pour des valeurs de Kn plus grandes — telles
qu'on peut les rencontrer lors d'un accroissement de la
vitesse de déformation ou du temps — les déformations
élastiques et les tensions se maintiennent croissantes
seulement jusqu'à une certaine valeur de y, puis elles
se mettent à décroître plus ou moins rapidement.

Les plus grandes tensions peuvent donc se présenter
dans des points situés à l'intérieur de °u| section.

A titre de conclusion, nous sommes conduits à reconnaître

qu'un état de coaction peut toujours se produire,
même sous l'action de sollicitations très petites ; et

que, en conséquence, un retour pur et simple de la
poutre à sa configuration initiale non déformée ne sera
plus généralement possible.

Cet état de coaction peut être caractérisé en rapportant
le diagramme des déformations élastiques à la

ligne pointillée. Ce diagramme (reproduit à part dans
notre figure) peut être utilisé pour représenter l'état
de coaction après déchargement de la poutre.

Certaines de ces conclusions correspondent à des faits
connus depuis longtemps.

Le fait par exemple que, à l'occasion de la première
application de charges, même très faibles, les constructions

en béton armé présentent des déformations
permanentes, est bien connu des constructeurs. Mais
c'est, je crois, la première fois qu'il trouve une
interprétation rationnelle et la possibilité d'être prévu et
évalué quantitativement.

En effet personne ne prend garde aux états de coaction

qui s'ensuivent, et on néglige ce phénomène à
cause de sa petitesse qui exclut tout danger immédiat.

Ces états sont pourtant appelés à exercer une influence
qui n'est pas nécessairement négligeable, sur les états
successifs de la structure, même sur ceux qui en
pourraient compromettre la résistance.

Une expérimentation systématique, conduite avec
des procédés et des instruments qui permettent de
déceler la présence de courbures (et plus généralement

de déformations) permanentes, même très petites,
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pourrait offrir aux ingénieurs l'occasion d'approfondir
le problème.

En attendant, il faut dire que la nécessité d'une
révision des idées courantes, dans le sens que nous
venons d'indiquer, est en train de s'imposer même à

ceux qui étudient le problème en vue des applications
pratiques.

Je me rapporterai à ce propos aux plus récents
travaux de la « Commission pour la pression excentrique »

du Comité européen du Béton, tels qu'ils ont été
documentés par le président même de la commission,
M. Rusch, dans le rapport qu'il a présenté à Vienne en

avril dernier.
Dans ce rapport on reconnaît la nécessité de

remplacer, dans les calculs pour le dimensionnement
d'éléments en béton armé, le diagramme contipintes-
déformations qui suppose un comporteme% purement
élastique du béton par un autre diagramme tenant
compte de son comportement élasto-plastique.

Plusieurs fois déjà — nous dit M. Rusch — on avait
essayé de déduire un tel diagramme des résultats
connus. A ce sujet, un intérêt particulier revient à un
travail de M. Scholz, qui s'est proposé de contrôler si

tous les résultats expérimentaux peuvent s'expliquer

par une seule et unique loi contrainlflB-déformations.
Le résultat a été négatif. Les différences avec une loi
unique n'étaient négligeables que pour des bétons de

haute résistance dont le comportement est presque
élastique. Par contre, un béton de faible résistance, pour
lequel l'influence des déformations plastiques est

importante, faisait apparaître des différences sensibles.

M. Rasch a tenté d'expliquer ces échecs rencont^&s
jusqu'ici dans la recherche d'une loi fondamentale
unique. Il estime que, jusqu'à présent, on n'avait pas
suffisamment tenu compte de la vitesse de mise en

charge. Quand une poutre est sollicitée en flexion, les

diverses fibres de la zone comprimée se trouvent déformées

à des vitesses différentes, qui sont proportionnelles
à leur distance à l'axe neutre. Il faut en tenir compte
lorsqu'on détermine la répartition des contraintes.

Dans ce but, M. Rasch a |||joposé d'étudier sur des

prismes en compression simple l'influence de la vitesse
de déformation sur la forme de la courbe contraintes-
déformations.

Des prismes identiques ont été mis en charge à des

vitesses différentes, ces vitesses étant maintenues
constantes lors de chaque essai.

On peut, d'après Rasch, déduire de ces courbes
contraintes-déformations la loi de répartition des

contraintes dans les différents, points de la zone
comprimée d'une poutre fléchie.

Or les diagrammes que M. Rasch obtient de cette
manière ont décidément la même allure que ceux que
je viens de vous présenter ; on pourrait donc dès

maintenant considérer la théorie comme pleinement
confirmée par l'expérience. Toutefois il ne faut pas
oublier qu'il s'agit de résultats obtenus par voie
indirecte. Quelque doute pourrait donc encore subsister.

Des déterminations directes — c'est-à-dire effectuées
directement sur les fibres de la poutre — sont évidemment

très délicates, mais non impossibles.
j On travaille à la résolution de ce problème dans les

laboratoires de l'Institut dynamométrique de Turin2.
Les différentes fibres d'une poutre fléchie, assemblées

1 Comité européen du Béton (Luxembourg). Bulletin d'information

n° 15, mars 1959.
2 Comptes rendus de l'Académie des sciences, Paris 1960.

de manière à les rendre solidaires quand elles doivent
résister aux sollicitations extérieures, peuvent être
rendues indépendantes après déchargement de la poutre.

Des extensomètres électriques de haute précision sont
placés sur ces différentes fibres, et enregistrent leurs
déformations, soit avant, soit après la destruction des

liens existant entre elles.
Une mesure directe des déformations plastiques dans

les différents endroits de la poutre est ainsi rendue
possible.

C'est grâce à des essais de ce genre que nous serons
bientôt définitivement fixés au sujet de la possibilité
d'interpréter les plus différents phénomènes élasto-

plastiques par la théorie de l'hérédité telle que je viens
de vous l'exposer.

NOTE
Dans la discussion qui a suivi cette conférence,

certains parmi mes auditeurs ont manifesté leur hésitation

à accepter l'idée du caractère héréditaire que
j'attribue aux déformations plastiques.

C'est à leur intention que j'expose ici de quelle
manière mon point de vue peut se justifier par une
analyse directe et tout à fait élémentaire du problème,
indépendamment de tout recours à la théorie des

fonctions intégro-différentielles.
Etant donné que dans toute déformation d'un corps

naturel il y a toujours une partie non élastique qui
persistera même après que les causes qui l'ont
déterminée auront cessé d'agir, il faut bien admettre que,
à un instant quelconque T, on se trouvera en présence
de toutes les déformations non élastiques qui auront pris
naissance depuis l'origine des temps.

A chaque élément dt de l'intervalle de temps (O, T)
on devra donc attribuer la présence, à l'instant T,
d'une déformation plastique élémentaire

mm
dont la grandeur dépendra de l'état du corps à l'instant t
et plus précisément de la valeur, à l'instant t, d'une
fonction a (t) ayant le caractère de « déterminante » des

déformations plastiques.
Ce sera, peut-être, une composante de la déformation

élastique, ou bien une composante de la déformation
totale, selon les cas.

Mais, quoi qu'il en soit, la déformation plastique
élémentaire pourra toujours s'écrire sous la forme

d~e{T) a{t)f{T, t) dt

f(T, t) étant un coefficient mesurant la vitesse avec

laquelle la déformation plastique £ (T) se produirait
sous l'action d'une fonction déterminante a (t) égale à

l'unité.
Par intégration, on obtient pour la déformation

plastique totale à l'instant T l'expression

(T) f <x(t)f(T,t)dt.

Et c'est précisément l'expression que M. Volterra avait
obtenue comme terme de premier ordre du développement

en série d'une fonction qui dépend de toutes les

valeurs qu'une fonction du temps prend dans l'intervalle

(O, T) ; terme qu'il avait choisi pour exprimer
les lois de l'hérédité.

Même l'analyse directe et tout à fait élémentaire
du problème conduit donc à replacer les phénomènes
plastiques dans le cadre des phénomènes héréditaires.

Turin, 24 février 1960.
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