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ETUDE EXPERIMENTALE DE LA

RÉPARTITION DES TENSIONS DANS LES PLAQUES CIRCULAIRES FLÉCHIES

EN FONCTION DU RAPPORT DE L'ÉPAISSEUR AU DIAMÈTRE

par

HENRY FAVRE
Dr es se. techn.
Professeur à l'E.P.F.

et

WALTER SCHUMANN
Dr es se. nat.

Assistant de recherches à l'E.P.F.

Introduction

Il est aujourd'hui possible de déterminer expérimentalement

les moments principaux sollicitant des modèles
de plaques minces fléchies. Le Laboratoire de
photoélasticité de l'E.P.F. utilise dans ce but une méthode

purement optique a Mais d'autres techniques sont
également applicables, soit dans le ca.dre de la
photoélasticité 2, soit en dehors de ce domaine, les mesures
à l'aide de strain-gages par exemple.

Une fois les moments de flexion principaux Mlt M2
déte äst facile de calculer les tensions
normales CT], ct2 relatives aux éléments de surface
perpendiculaires aux trajectoires des moments, ainsi que les

tensions tangentielles Tj, t2 agissant sur ces mêmes
éléments et dirigées perpendiculairement aux faces de

la plaque. Il suffit, pour cela, d'appliquer les formules
bien connues :

12M,
h3 *>' CT.

12M2
h3

3<?2

2h

3_&
2Ä

1-
h

[1]

où h désigne l'épaisseur de la plaque, Z, la distance du
point considéré au feuillet moyen et Qly Q2 les efforts
tranchants relatifs aux deux directions considérées.
Ces efforts tranchants se déduisent des moments Mlt M%

par dérivation. On peut ensuite déduire des valeurs
obtenues pour CTj, ct2, t1; t2 les tensions relatives à des

éléments de surface de directions quelconques.

Voir [1] à [5]. Les chiffres entre crochets se rapportent a la
bibliographie placée à la fin de cette étude.

2 Voir par exemple [6] et [7].
3 11 s'agit ici de moments —¦ et plus loin d'efforts tranchants —

par unité de longueur.
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Or les méthodes de mesure dont il a été question
plus haut supposent essentiellement — comme les

formules (1) — que les tensions CTj, ct2 soient réparties
linéairement dans l'épaisseur de la plaque, conformément

à la théorie de Kirchhoff, qui admet en outre

que les tensions normales ct2, agissant sur des éléments
de surface parallèles aux faces, soient partout nulles.
On sait que ces conditions sont remplies si la plaque
est très mince et si l'on excepte les zones voisines
du contour ainsi que celles voisines des points
d'application des forces (supposées toutes normales aux
faces).

Mais quelle est l'étendue de ces zones, où la théorie
de Kirchhoff n'est donc pas applicable Comment y
varient les tensions Et surtout, quelle est l'influence
de l'épaisseur de la plaque sur la répartition générale
des tensions, lorsque le rapport de cette épaisseur aux
autres dimensions ne peut plus être considéré comme

petit Il s'agit évidemment là d'un problème d'élasticité

tridimensionnelle.
Telles sont les principales questions que nous nous

sommes posées dans la présente étude, qui concerne

uniquement le cas des plaques circulaires *. Nous avons
tâché de les résoudre en mesurant les tensions dans

différents modèles de plaques à l'aide de la méthode du

figeage des contraintes et en comparant les valeurs
obtenues par cette méthode aux valeurs données par
le calcul basé sur la théorie de Kirchhoff. Nous nous

sommes limités au cas des plaques circulaires simplement
posées le long du contour, au milieu desquelles est appliquée

une force perpendiculaire aux faces et répartie sur
une très petite surface (l'état de tension est alors
symétrique par rapport à l'axe). La principale variable des

essais -a été le rapport de l'épaisseur au diamètre de la

plaque.
Nous avons aussi cherché, dans cette étude, à

comparer la répartition des tensions dans les plaques en

question à celle des efforts dans les poutres correspondantes

— c'est-à-dire dans des poutres de section

rectangulaire ayant une portée et une hauteur respectivement

égales au diamètre et à l'épaisseur de la plaque —

et chargées par des forces analogues.
Après avoir exposé les principes de la méthode

utilisée pour la détermination des tensions (§ 1), "nous

décrivons les appareils de mesure et les modèles (§§ 2

et 3), puis nous donnons les principaux résultats à l'aide
de diagrammes (§ 4). Le § 5 est consacré à la discussion

de ces résultats et le § 6 aux conclusions.
Les recherches décrites dans ce mémoire ont pu être

entreprises grâce à une subvention du Crédit pour les

possibilités de travail 5. Notre exposé ne concerne

qu'une partie des études faites à l'aide de cette
subvention.

La Société anonyme Ciba, à Bâle, nous a livré
gracieusement YAraldite B avec laquelle ont été fabriqués
les modèles des plaques et des poutres correspondantes

et nous a donné d'utiles renseignements sur l'emploi de

cette matière en photoélasticité. Nous prions cette

société de bien vouloir trouver ici l'expression de notre
vive reconnaissance.

§ 1. Principe de la méthode utilisée pour la détermi¬
nation des tensions.

Dans l'état actuel de nos connaissances en
photoélasticité tridimensionnelle, plusieurs méthodes peuvent
être utilisées pour déterminer les tensions dans un corps
de révolution, sollicité par des forces accusant la même

symétrie, ce qui est le cas des plaques étudiées ici.
Dans une étude préliminaire, nous avons appliqué
successivement quatre de ces méthodes à la mesure des

efforts dans un modèle de plaque circulaire et nous
avons comparé les résultats, surtout au point de vue
de leur exactitude. Nous sommes arrivés à la conclusion

que, pour les plaques étudiées, une de ces méthodes est

préférable aux trois autres, parce qu'elle est applicable
sans, difficulté avec une bonne approximation au
domaine entier de la plaque, à l'exception du voisinage
immédiat des points d'application des forces, où les

tensions sont très grandes et varient trop rapidement
d un point à l'autre pour pouvoir être convenablement
mesurées.

C est cette méthode que nous avons adoptée pour la
détermination des tensions dans les modèles de plaques.
Voici en quoi elle consiste et comment nous l'avons
appliquée.

Soient h et b l'épaisseur et le rayon de la plaque,
a le rayon, légèrement inférieur à b, du -cercle d'appui,
P la force appliquée au centre d'une des faces.. Cette
force est répartie sur un petit cercle de rayon r0. Soit

encore / la largeur de la surface d'appui, supposée très

étroite I i < b—al. Introduisons le système d'axes

indiqué dans la figure 1 et désignons les tensions
correspondantes par o>, CT*, CTi et Tre Tir {t désigne la
normale au plan méridien passant par le point considéré;
Tzt et Trj sont nulles, par raison de symétrie). Les quatre
grandeurs ctp, ct2, CTt et t«- sont les inconnues .du
problème.

Pour les déterminer dans chacun des modèles d'Aral-
dite étudiés, nous avons d'abord figé les contraintes, en
chauffant le modèle à 150°, en lui appliquant ensuite la
force P, et en le laissant enfin lentement refroidir
jusqu'à la température normale (20°) 6. Cette opération
terminée, nous avons découpé dans la plaque, en
prenant de grandes précautions pour ne pas perturber la
biréfringence, les lames à faces parallèles suivantes

(fig. 2) :

1° Une lame méridienne principale, d'environ 3 mm
d'épaisseur et s'étendant sur le diamètre entier 2 b de

la plaque. Cette lame, placée dans un large faisceau
de lumière blanche parallèle, entre un polariseur et un
analyseur croisés, donne les isoclines des directions

principales 1, 2 relatives à l'état de tension bidimen-
sionnél défini par av, cr2 et ttz. Rappelons qu'une telle
courbe est le lieu des points où l'angle a formé par une
des directions principales, 2 par exemple, avec une
direction fixe est cortstant. Comme direction fixé, nous

avons choisi celle des r décroissants. Les isoclines
relatives aux valeurs de a égales à 0°, 15°, 30°, Ace

15°) ont été successivement photographiées.

* 11 serait intéressant d'essayer de résoudre los mêmes questions

dans le cas beaucoup moins simple do la plaque rectangulaire.
5 Subvention n° 557.

6 La méthode du figeage des contraintes est décrite en détail dans

de nombreuses publications et dans la plupart des traités récents de

photoéiasticité. Voir par exemple f8|, L. IT, p. 364 et [9], p. 924 et suiv.
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m
Fig. 1. ¦— Coupe axiale d'une plaque circulaire, simplement
appuyée le long du contour et supportant une force P appliquée

au centre de la face supérieure.

'drr,~ ^'"t}.

m A<»
W

Fig. 2. — Vue perspective d'un modèle de plaque, montrant
une lame méridienne principale et trois lames méridiennes
secondaires, ainsi que les parallélépipèdes découpés dans
l'une de ces dernières.

La partie gauche de la figure 3 est une photographie
de la courbe a 30°, la partie droite, une
photographie de la courbe a 120° (la figure 3, ainsi que
les figures 5 et 6a, i, c décrites plus loin, sont en réalité
des reproductions à l'échelle 1:2 de photographies
prises lors des essais).

En reportant les isoclines sur une même feuille de

papier, il a été ensuite Sbile de consfiäiire graphiquement

les trajectoires des tensions principales CTj, ct2
relatives au plan méridien (fig. 4).

La même lame méridienne principalçaiplacée dans un
large faisceau de lumHwje moncfëmromatique parallèle,
entre un polariseur et un analyseur circulaires, donne
les isochromes de l'état de tension bidimensionnel considéré.

Une telle courbe est le lieu des points où la variation
relative de marche 8, des deux rayons polarisés émergeant

de la lame, a la même valeur /cX, À désignant la
longueur d'onde de la lumière et k un nombre entier
quelconque, positif, négatif ou nul. Ces courbes, que
nous avons obtenues à l'aide de la lumière émise par
la vapeur de sodium (A 0,5893 p) ont été photo-

120
30

Fig. 3. — Modèle de plaque hj2a 1/6. Photographie des
isoclines a 30° (partie gauche) et et 120° (partie droite)
d'une lame méridienne principale e — 3,21 mm, en lumière
blanche.

graphiées (fig. 5) ou dessinées au crayon sur un papier
transparent. Grâce à elles et en procédant par
interpolation, on a pu déterminer 8 en un point quelconque
de la lame. Cette grandeur étant liée à la différence
des tensions principales par la loi de Wertheim :

S ce (gx — g2), (2)

où e désigne l'épaisseur de la lame et c une constante 7,

on en a déduit la valeur de CTj — ct2.

i-frajectotre

\or*2Acc

Fig- 4.
Construction des
trajectoires des tensions
à partir des isoclines.

aa

y+Aa

P=1ô,4Ôkg

£>JÄX ^
e= S.2.i mm

Fig. 5. —¦ Modèle de plaque hj2a 1/6. Photographie des
isochromes d'une lame méridienne principale e 3,21 mm,
en lumière monochromatique A 0,5893 V-

P'IdAôkg

S 1
g r
'n
S

mil fi

lui

Ci

Ills

8

m
/ / 1 1 1 l \ \ \ \ \ \ \ \\/ 1 1 i #.< \ \ V N \ \1 m m¦¦¦
lltltt

1
III

HIKE mir um
saiMB

III III¦¦ ¦¦¦
Fig. 6a, bt c. — Modèle de plaque hj2a 1/6.

a) Photographie des isochromes d'une lame méridienne secondaire
e 6,00 mm, en lumière monochromatique À 0,5893 {I.

b) Isochromes d'une lame secondaire identique à la précédente,
mais découpée en parallélépipèdes de 4 mm d'épaisseur. Cette
photographie montre que le découpage a très peu perturbé la biréfringence
figée dans la lame.

c) Isochromes des mêmes parallélépipèdes, mais tournés de 90°
autour de la verticale, de façon à ce que les rayons lumineux les
traversent dans la direction radiale de la plaque.
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Connaissant l'azimut a et la différence des tensions
principales CTj — cr2, on a pu alors déterminer t» et la
différence oy — oy, soit à l'aide de la construction
graphique de Mohr, soit en utilisant des formules
élémentaires connues.

Ainsi, cette lame méridienne principale nous a donné
l'une des inconnues Tre et la différence de deux des
autres oy — oy.

2° Nous avons ensuite découpé dans la plaque
diverses lames méridiennes secondaires de 6 mm d'épaisseur

et s'étendant seulement sur la longueur b du
rayon 8 (fig. 2 et 6 a). Ces lames ont été ensuite découpées

perpendiculairement aux plans de leurs faces et
parallèlement à l'axe z, en petits parallélépipèdes de
4 mm d'épaisseur, comme le montrent les figures 2 et
6 b. Ces parallélépipèdes, placés dans un large faisceau
de lumière monochromatique parallèle (À 0,5893 p),
entre un polariseur et un analyseur cirgulaires, donnent
des isochromes (voir fig. 6 c, où les rayons lumineux
traversent chaque parallélépipède suivant la direction
définie par le rayon r passant par le centre de l'élément).
De ces courbes, on a déduit la variation relative de
marche 8' des deux rayons polarisés émergeant du
parallélépipède considéré, en un point quelconque de
sa hauteur h. Finalement, ct« — ct* a été donné par
l'équation :

S' ce (CTi (3)

e' désignant l'épaisseur (~ 4 mm) traversée par les
rayons et c la constante déjà intervenue dans l'équation

(2).
En résumé, les deux sortes de lames nous ont donné

la tension Tre et les différences oy— oy et oy — oy. Pour
avoir les tensions oy, oy et oy elles-mêmes, pour « séparer »

ces tensions, nous avons procédé par intégration
graphique, en utilisant la remarquable méthode de MM.
Frocht et Guernsey9. Cette méthode a consisté ici à
utiliser l'équation obtenue en écrivant que la somme
des projections sur l'axe z des forces agissant sur un
élément de volume dr, dz, râ\p doit être nulle :

<?oy

Hz~
dire
dr

lu
r

0.

En intégrant le long d'une parallèle à l'axe
remarquant que (oy).z=o 0, on obtient :

¦P

(4)

et en

ou bien, en procédant par différences finies :

WÊE(t + t)^ (5)

Ayant déterminé t« comme nous l'avons dit plus
haut, on a pu sans peine obtenir AT«/Ar le long de la
ligne d'intégration. L'application de l'équation (5) a
permis ensuite de calculer oy en un point quelconque de
cette ligne10. Connaissant d'autre part les différences
oy — oy et oy — oy, on a finalement déduit o, de la
première de ces différences, puis oy de la seconde.

Toutes les inconnues ont été ainsi déterminées.

Remarque I. Dans le cas des plaques étudiées, on doit
avoir :

(a,).. 0,

(*)
frn><j,df P, 2-rrr \tndz P. (6)

La première de ces relations exprime que la tension
normale oy doit être nulle en tout point de la face
inférieure de la plaque, la -seconde, que la somme des
petites forces normales oy df agissant dans une section
horizontale F perpendiculaire à l'axe de la plaque doit
être égale à la force appliquée P, et la troisième, que
la somme des petites forces tangentielles ~t„ df, agissant
sur la surface d'un cylindre d'axe z et de rayon r, doit

/être égale à cette, même force, si r0 < r < a — „ •

Les deux premières équations (6). nous ont permis de
faire un contrôle des valeurs obtenues pour oy, la
troisième, un contrôle des valeurs obtenues pour Tre. Cette
dernière équation nous a permis en outre de déterminer
la constante c, comme nous le verrons plus loin.

Remarque II. Pour déterminer les tensions dans les
poutres simples correspondant aux plaques étudiées,

7 Cette constante dépend de la' matière du modèle et de la longueur
d'onde de la lumière utilisée. On la détermine en général en repérant
les isochromes d'une éprouvette où les tensions sont connues, une
pièce prismatique de section rectangulaire sollicitée à la flexion pure,
par exemple. Dans notre cas, il a été possible d'utiliser le modèle lui-
même pour déterminer c, comme nous le verrons plus loin.

8 Une de ces lames suffirait théoriquement. Nous en avons pris en
général plusieurs, afin de pouvoir obtenir des résultats basés sur des
moyennes (d'autres lames secondaires, de 12 mm d'épaisseur, ont été
également utilisées, mais dans le même but que celui des lames
principales, pour mesurer avec plus d'exactitude la quantité 5 dans les
parties de la plaque éloignées de l'axe).

9 Voir [10].
10 La condition d'équilibre (4) et le chemin d'intégration utilisés ici

sont très favorables pour obtenir la tension oy dans notre cas, les
quantités ATn/Ar et Tr2/r pouvant être déterminées avec exactitude
et les longueurs d'intégration étant faibles (< h).

S

appareil permettant d'observer /'éprouvette

plan de l'image
V^Sàmbre noire

analyseur

lames quart d'onde
lentille /= Si'cm

icran

pitresWS cm WS cm->K

Fig. 7. — Schéma (vue en plan) des appareils, alignés sur le même banc optique, utilisés pour les essais (la
propage de droite à gauche).

polariseur

éprouvette
'(modèle) î lampes è

vapeur sodium

S lampes de

lumière blanche

verre dépoli

umiere se
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IF*

'^Ê

Fig. 8. — Vue d'une partie des appareils utilisés pour les
essais (partie droite de la figure 7).
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Fig. 9. — Coupe axiale des quatre modèles de plaques étudiés
(respectivement vue des modèles des poutres corresp||g-a
dantes), précisant également les points où les tensions ont
été déterminées.

nous avons également utilisé des modèles d'Araldite et
procédé selon la même technique que pour les plaques.
Il n'aurait pas été nécessaire ici de figer les contraintes,
puisqu'il s'agit d'un problème d'élasticité bidimension-
nelle. Nous avons cependant préféré le faire, pour nous
placer exactement dans les mêmes conditions d'essais

que pour les plaques.
Désignons par x, z les axes correspondant k r, z

(comparer les figures 10 et 11, où la première représente

la coupe axiale d'une plaque et la seconde la vue de la
poutre correspondante).

Les tensions à déterminer dans les modèles de poutre
se réduisent à trois : (jx, ae et 7xz, car ct« iy« t*« 0.

Il a suffi de mesurer a et 8 pour l'épaisseur totale des

modèles, à l'aide des isoclines et des isochromes, pour en
déduire tX2 et <sx — CT*, puis d'intégrer le long de parallèles

à l'axe z l'équation ——|—-— 0, analogue à (4),
dz 0X

pour obtenir oy et séparer les tensions normales. Des

équations analogues à (6) ont permis de faire le contrôle
des valeurs obtenues et de déterminer la constance c.

r\P- 18.48kg

wm 7.5 cm

y?

tzM^jo0

Fig. 10. — Appuis des modèles de plaques circulaires.

r\P'= 0.45kg

Elevalion
s (coupe suivant

l'axe de la plaque)

Plan

./¦ÏM--•«-•->

m

vavIWW. 7.5cm

e 0.97cm

\\\\<Xv\\^

+7

Fig. 11. I— Appuis des modèles de poutres simples.

S ^ Description des appareils de mesure.

Ces appareils sont alignés sur le même banc optique.
La figure 7 en donne le schéma, la figure 8, une vue
partielle. De droite à gauche, nous observons :

1° Une Boîte contenant deux lampes de 80 watts,
à vapeur de sodium, émettant une lumière sensiblement
monochromatique, de longueur d'onde À 0,5893 p u.

Cette boîte contient également trois lampes de 40 watts
émettant de la lumière blanche. Un interrupteur permet
d'allumer l'un ou l'autre de ces deux groupes de lampes.
Cinq des six faces de cette boîte sont opaques. La
sixième, celle qui regarde vers la gauche dans les figures
7 et 8, est par contre formée par un verre dépoli. Ce

verre est traversé par une partie des rayons envoyés
par les lampes et émet de la lumière diffuse.

2° Nous observons ensuite deux groupes de deux lames

transparentes, entre lesquels est placée l'éprouvette ou
la lame à étudier. Dans chaque groupe, une des lames
est un filtre ne laissant passer que de la lumière polarisée
rectilignement, l'autre lame est un quart d'onde. Chacune
de ces lames n'a que 1 mm d'épaisseur environ.

11 On sait que le spectre de la lumière émise par la vapeur de
sodium comprend les deux raies À. 0,5896 [i. et À2 0,5890 u. Ces
raies sont suffisamment voisines pour pouvoir être souvent confondues
en une seule de longueur d'onde A 0,5893 \X. Cette lumière permet
d'observer convenablement des différences relatives de marche
inférieures à 100 A environ, condition remplie dans nos essais.
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Elle est placée entre deux glaces protectrices de 3 mm,
de façon à former un agrégat ayant la forme d'un disque
circulaire de 7 mm d'épaisseur et de 35 cm de diamètre.
Les quatre disques sont placés dans des montures
métalliques. Le diamètre du champ lumineux est de 34 cm.

Les axes optiques des deux lames ou disques de

chaque groupe peuvent former un angle quelconque
entre eux. Ces deux lames peuvent être fixées dans une
monture commune et tourner ensemble autour de Taxe
du système. Si l'on place les lames quart d'onde en face
l'une de l'autre, de part et d'autre de l'éprouvette, et si
l'axe de chacune d'elles forme avec l'axe du filtre le plus
voisin un angle de 45°, on obtient, à droite, un polariseur
circulame et, à gauche, un analyseur circulaire. L'éprouvette

est donc, dans ce cas, analysée à l'aide d'un
faisceau de lumière polarisée circulairement. C'est ce
schéma que l'on utilise pour déterminer les isochromes,
en lumière monochromatique12. Grâce à la polarisation

circulaire, les isoclines sont élnninées (fig. 5).
Par contre, si l'on place les filtres en face l'un de l'autre

de part et d'autre de l'éprouvette, et si leurs axes
optiques sont croisés à 90°, les lames quart d'onde n'ont
aucune influence sur la polarisation de la lumière et l'on
obtient, à droite, un polariseur rectiligne et à gauche,
un analyseur rectiligne. L'éprouvette est alors analysée
à l'aide d'un faisceau de lumière polarisée rectiligne-
ment. Pour faciliter les observations, on peut, dans ce

cas, grâce à une transmission par chaînes et roues den-
tées, accoupler le polariseur et l'analyseur de façon à
les faire tourner ensemble dans leurs plans respectifs,
les deux axes optiques restant constamment croisés.
C'est ce schéma que l'on utilise pour déterminer les

m^çjglines, en lumière blanche 13. La lecture de l'orientation

des axes se fait à l'aide de deux échelles graduées,
gravées sur les cercles des montures des deux lames
les plus éloignées l'une de l'autre.

Les quatre lames étant interchangeables, il est
possible de faire d'autres montages, ce qui permet, en
particulier, de mesumf aussi les ^Efcriations relatives de
marche 8 et 8' par la méthode des azimuts 14.

3° En regardant encore la figure 7, nous voyons
finalement, à gauche, l'appareil permettant d'observer
l'éprouvette. Il comprend une lentille achromatique de
6 cm de diamètre et de 93 cm de distance focale, une
chambre noire de 186 cm de longueur et un écran
rectangulaire, large de 24 cm et haut de 18 cmiïbù l'on peut
placer soit un verre dépoli, soit une plaque sensible.
Cet instrument est en somme un appareil photographique,

où l'objectif est constitué par une simple
lentille 15. En plaçant l'appareil à 186 cm de l'éprouvette,
mesurés à partir de la lentille, on peut observer ou

12 Les isochromes que l'on obtient en lumière blanche sont très
belles, parce que colorées, mais impropres à la détermination exacte
des variations relatives de marche.

13 En lumière blanche, les isochromes viennent peu perturber les
isoclines. En procédant par photographie, on peut d'ailleurs toujours
s'arranger de façon à faire presque complètement disparaître les
isochromes (fig. 3).

Voir par exemple [11], p. 59 et suiv.
Le fait d'utiliser une lentille plutôt qu'un objectif tel qu'on le

conçoit actuellement en photographie entraine certaines erreurs dans
la formation de l'image. Ces erreurs sont cependant négligeables dans
l'étude présentée ici, comme on peut le démontrer. 11 en est de même
de l'erreur de parallaxe, due au petit angle-formé par les rayons avec
la normale aux faces de l'éprouvette (voir [12]).

i]pfi|tographier l'objet à Véchelle 1:1, ce qui est commode

pour le repérage des' isoclines et des isochromes.
L'installation que nous venons de décrire a donné

satisfaction. Les parties 1° et 2° ont été livrées par
M. Schiltknecht, ingénieur à Zurich, à l'exception des
lames quart d'onde de 7 mm, qui ont été fabriquées
par ySÊSTiedemann, ingénieur à Munich.

§ 3. Description et préparation des modèles. Valeurs
de la constante —1/c.

Quatre modèles de plaques circulaires et les modèles
de poutres simples correspondantes ont été étudiés.
Chaque plaque et la poutre correspondante étaient
caractérisées, non par leurs dimensions absolues, mais

par le rapport h : 2a de l'épaisseur au diamètre du cercle
d'appui (respectivement de la hauteur de la section
à la portée). Les rapports h : 2a avaient les valeurs
suivantes : 1 : 2, 1 : 4, 1 : 6 et 1 : 8. Les sections axiales
des plaques (respectivement les vues des poutres) sont
représentées figure 9. Cette figure précise également la
position et la grandeur des petites surfaces d'application

des forces. Elle montre encore le réseau de lignes
horizontales et verticales à l'intersection desquelles
étaient les points où l'on a évalué les tensions. On remarquera

qu'au voisinage des appuis et de l'axe de symétrie
z les lignes verticales ont été choisies en fonction de h
(tandis qu'elles l'ont été en fonction de a dans les zones
intermédiaires), ceci afin de permettre une bonne
comparaison des tensions au voisinage des forces appliquées.

Les dimensions absolues des huit modèles et les

grandeurs des forces effectives appliquées P, P' sont
données dans le tableau I ci-dessous :

Tableau I
Dimensions absolues des modèles de plaques circulaires et
des poutres simples correspondantes, et grandeurs effectives

des forces appliquées P, P'

Plaques circulaires Poutres simples correspondantes

Rapport

h :1a

1:2
1 :4 |

1:6
1:8

Epaisseur

h
Diamètre

2a

Force
effect.

P

Hauteur

h

1 1

Por- Epais- Force
tée seur effect.
2« « P'

cm
5
2,5
2,5
2,5

cm
10
10
15
20

kg
40,000
10,000
18,480
10,000

cm
2,5
2,5
2,5
2,5

cm cm kg
5 1,00 0,900

10 1,00 0,450
15 0,97 0,450
20 1,00 0,450

Tous ces modèles ont été fabriqués avec de YAraldite

B18. Cette matière a été préparée suivant les
indications de la S.A. Ciba, puis coulée à la température
de 130° dans des moules d'aluminium, dont toutes les
dimensions étaient d'environ 5 mm supérieures à celles
des modèles que l'on désirait obtenir. Les surfaces
intérieures des moules étaient préalablement enduites
d'huile de silicone. Après une période de durcissement
(20 heures à 100° ou 14 heures à 120°), on a laissé
chaque bloc se refroidir jusqu'à la température normale

16 Pour la poutre simple 1:8, on a également utilisé un modèle
de verre optique, en choisissant h 1,81 cm, 2 a 14,48 cm, e

0,941 cm, P 28 kg et en mesurant les tensions à l'aide de la méthode
purement optique.
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(20°), puis on l'a travaillé à froid, en utilisant la scie

à ruban et la fraise, avec de grandes précautions pour
éviter des échauffements locaux, jusqu'à ce que ses

dimensions correspondent à celles de l'objet désiré.
Les appuis des modèles de plaques sont précisés dans

la figure 10, ceux des modèles de poutres dans la
figure 11. Une plaque reposait sur douze segments
métalliques circulaires s, indépendants les uns des

autreslBjphacun de ces segments était solidaire d'une
plaque rectangulaire d'aluminium de longueur l,
reposant, par l'intermédiaire de deux cylindres, sur une
autre plaque d'acier, de dimensions identiques à celles
de la première. Cette plaque inférieure reposait elle-
même sur le couteau d'un cercle d'appui fixe. Par suite
de la déformation de l'Araldite due à la mise en charge
du modèle, les plaques d'acier inférieures s'inclinaient
très légèrement vers l'axe des z et ne reposaient plus
qu'en deux points A, B sur le couteau du cercle d'appui.
On a remédié à cet inconvénient en choisissant la
longueur l telle que le milieu S du segment AB coïncide

avec le centre de gravité de l'arc défini par le segment s :

les réactions ont pu ainsi se répartir uniformément le

long de cet arc. Les contrôles effectués sur les valeurs
obtenues pour les tensions ont confirmé ce fait.

Les appuis des modèles de poutres ne donnent lieu
à aucune remarque particulière.

Pour appliquer les forces P, P', on a utilisé un levier
et des poids métalliques. Levier et poids étaient placés

en dehors du thermostat à température réglable où l'on
enfermait le modèle pour les opérations du figeage des

contraintes, de sorte que le modèle pouvait être chargé
ou déchargé à volonté de l'extérieur (fig. 12).

tensions latentes (tolérance : 1/10 de frange par
centimètre d'épaisseur traversé par les rayons lumineux).
Le modèle a été ensuite posé sur ses appuis et préparé
à être chargé, puis chauffé à nouveau jusqu'à 150°.

Après avoir attendu un certain temps pour être sûr

que toutes ses parties soient à une température
uniforme, on lui a appliqué la force P (ou P'), puis on a
abaissé lentement la température t à raison de 5° par
heure dans les domaines 150° > t > 120° et 80° > t > 20°,
et plus lentement encore, à raison de 2,5° par heure,
dans le domaine instable 120° > t > 80° 17.

Pendant la nui t, la température était laissée constante
et l'abaissement était continué le lendemain.

Les lames méridiennes principales et secondaires ont
été d'abord découpées à la scie à ruban, puis travaillées
à la fraise et finalement polies et huilées à la main.
Toutes ces opérations ont été faites à la main pour la
prépalgyion des petits parallélépipèdes, à partir des

lames secondaires.
Nous avons déterminé la constante c de l'Araldite à

l'aide des modèles mêmes. Voici comment. Prenons
d'abord le cas des plaques. Considérons les équations :

h

5= ce (oy. — o2), (2) 2ir r I i„dz P,

et t« —
CTi m °2 „:_ 9

o

sin2oc

(la seconde est l'une des formules (6) et la troisième
est une équatRm connue d'élasticité plane)> On en
déduit par substitution :

8 sin 2a dz P, d'où —cej

Pour obtenir la constante

Pe

-f8 sin 2a dz

I?)

que pour de

simples raisons pratiques nous avons préféré utiliser

plutôt que la constante c elle-même — il a donc suffi
de prendre les valeurs de a et 8 mesurées comme nous
l'avons exposé dans le § 1, de calculer par différences
finies l'intégrale figurant dans la formule (7) et d'appliquer

celle formule.
Nous avons obtenu de la même façon les valeurs de

1
R?§f~ pour les modèles de poutres, en utilisant la formule

suivante, analogue à (7) :

_i- P'
c ~ Ä

I S sin 2a dz

(T)

Fig. 12. !— Vue d'un modèle de plaque et de l'appareil
permettant de lui appliquer une force P au centre de la face
supérieure. Le tout est placé dans le thermostat.

Donnons encore quelques précisions sur la technique
du figeage des contraintes. Après avoir été préparé
comme nous l'avons dit plus haut, chaque modèle a été

chauffé jusqu'à 150°, dans le thermostat, puis refroidi
lentement. Cette opération a permis d'éliminer les

Le tableau II ci-dessous donne, pour chaque modèle,
1

la moyenne des valeurs obtenues pour le long de

trois ou quatre parallèles à z :

La température ne variait pas, dans chaque domaine, selon une
fonction linéaire du temps, le thermostat ne permettant de régler t

que de 5° en 5°. Toutefois, comme il s'écoulait deux heures après
chaque réglage avant que la température se stabilise, on peut admettre

que cette fonction était quasi linéaire.
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Tableau II
1

Valeurs de la constante pour les modèles d Araldite

Rapport Plaques Poutres simples
A: 2 a circulaires correspondantes

kgÀ—1 cm—1 kgA—1 cm—1

1 :2 0,2615 0,2708
1 : 4 0,2665 0,2820
1 :6 0,2545 0,2443
1 : 8 0,2485 18

Remarque : Dans tous les essais, les valeurs obtenues

pour les tensions étaient affectées d'une erreur due au
poids propre du modèle. On a chaque fois éliminé cette
erreur en retranchant des valeurs mesurées les tensions
correspondantes dues au poids propre, calculées d'après
la théorie de Kirchhoff.

§ 4. Résultats des mesures et exactitude des valeurs
obtenues.

Tous les résultats ont été résumés dans deux groupes
de figures : le premier comprend les trajectoires des
tensions principales CTj, ct2, le second les diagrammes des

tensions <yT, oy, at, tn (plaques) et ax, <jz, -r^ (poutres),
le long des parallèles à t'axe z définies dans la figure 9.

Les figures 13 a à 13 d et 14 a à 14 d, qui sont placées
au verso d'une même page, les premières à gauche, les
secondes à droite, concernent respectivement les plaques
1 : 2 et 1: 4. Les figures 15 a à 15 c et 16 a à 16 c, qui
sont mises dans la page d'en face, se rapportent aux
deux poutres correspondantes. Une disposition analogue
a été adoptée dans les deux pages suivantes, où sont
représentés, dans la première, les résultats relatifs à la
plaque 1 : 8 (fig. 17 a à 17 d) et dans la seconde, en face,
ceux relatifs à la poutre correspondante (fig. 18 a à

18 c). En haut de chaque page figurent les trajectoires
des tensions principales, en dessous, les diagrammes des

tensions. Ces diagrammes ont été dessinés à l'aide de

lignes continues, interrompues par de petits cercles ou
de petites croix représentant les valeurs mesurées.

On peut ainsi comparer aisément les résultats relatifs
à chaque plaque et à la poutre correspondante, dans
les cas où h/2a 1 : 2, 1 : 4 et 1 : 8. Nous n'avons
pas jugé utile de reproduire les résultats concernant
les cas où h/2a =1:6, ces résultats s'étant révélés
moins caractéristiques que les autres. Il va de soi que
nous en avons cependant tenu compte dans les
conclusions.

Les valeurs des tensions o>, oy, ct< et -rTZ figurant dans
les diagrammes concernant les plaques ont été reportées
en choisissant Pjh2 comme unité. Le choix de cette
unité présente l'avantage de donner, pour chacune des

tensions oy, CTj calculées à l'aide de la théorie de Kirchhoff,

des valeurs indépendantes de la plaque considérée.
Ces valeurs ne dépendent en effet que des rapports rfa
et zfh, si nous supposons la surface de répartition de la

1 La valeur de relative à la poutre 1/8 manque, les tensions
c

ayant été mesurées pour cette poutre à l'aide d'un modèle de verre
(voir note 16), en utilisant la méthode purement optique. Les constantes
de ce modèle, déterminées à l'aide d'une éprouvette sollicitée à la
compression pure, avaient les valeurs a 0,0360, b 0,0850, c

— 0,049M/kg mm—1.

force P très petite, c'est-à-dire r0=^. 0, comme le
montrent les deux premières formules (8) données plus
loin.

Pour dessiner les diagrammes des tensions ox, oy et

txi relatives aux poutres, on a supposé qu'une force
Pe

P' - - agissait au milieu de la portée. P désignant
ira B Ëi

toujours la force appliquée au centre d'une des faces
de la plaque correspondante. Ceci présente l'avantage
suivant : dans les deux objets, les réactions des appuis
par unité de longueur ont la même valeur, de sorte que,
si l'on prend également Pfh? comme unité pour
représenter les tensions de la poutre, les valeurs des tensions
tangentiales Tri (plaque) et Tu (poutre correspondante)
seront les mêmes en deux points homologues au voisinage

des appuis, si on calcule ces tensions en les

supposant réparties paraboliquement le long d'une parallèle
à l'axe z19.

Il serait d'autre part facile de montrer que, dans les
conditions admises, les tensions normales oy (plaque)
et ax (poutre) ont des valeurs égales en deux points

homologues de la verticale -6 a
0,53, si l'on calcule ces

tensions en les supposant réparties linéairement le long
d'une parallèle à l'axe z 19 et si l'on pose v 0,48 (Araldite)

20.

Ce sont là les deux points de comparaison quantitatifs
des diagrammes relatifs aux plaques et aux poutres
correspondantes. Les autres points de comparaison ne
peuvent être, par la nature même du problème, que
qualitatifs.

Il est difficile d'estimer le degré d'exactitude des

trajectoires dessinées et celui des valeurs indiquées pour
les tensions dans les diagrammes. En nous basant cependant

sur les contrôles qu'ont permis de faire les formules
(6) (plaques) et les formules analogues relatives aux
poutres, ainsi que sur les fluctuations des valeurs
mesurées, nous pensons que les trajectoires donnent en
général les valeurs de l'azimut a à 1° près, et les

diagrammes les valeurs des tensions à 3 % près, en
définissant cette erreur relative comme le quotient de

l'erreur absolue par la valeur de (oy)max (respectivement
(ov)max) pour rfa 0,5. Au voisinage des points d'application

des forces, les erreurs peuvent même dépasser
ces valeurs. C'est la raison pour laquelle certains
diagrammes estimés trop peu précis, n'ont pas été dessinés.

§ 5. Discussion des résultats. Leur comparaison aux
-valeurs calculées.

Considérons tout d'abord le cas de la plaque très

épaisse 1 : 2. La figure 13 a montre que les trajectoires
des tensions principales sont en général des lignes
régulières ; il y a cependant un point singulier répulsif Sr et
deux points attractifs Sa. Mais ces lignes ne présentent
aucune symétrie, à part celle relative à l'axe des z.

D'autre part, les diagrammes des tensions oy, o*, T«, oy

varient considérablement d'une verticale à l'autre, et

19 Ce qui revient à appliquer la théorie de Kirchhoff à la plaque et
celle de Navier à la poutre.

20 Le mode de représentation adopté pour les poutres présente en
outre l'avantage que les valeurs de Qx, calculées par la théorie de Navier
dans une section déterminée x\a const., sont indépendantes de la
poutre considérée, ce qui est également le cas pour les plaques, comme
nous l'avons vu.
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ne semblent pas suivre des lois simples (fig. 13 b, c, d).
Si nous considérons maintenant la plaque moins

épaisse 1 : 4, nous constatons qu'il y existe un domaine
0,55a < r < 0,7a jouissant approximativement des

quatre propriétéfgsuivantes :

1° les trajectoires des tensions sont symétriques deux

à deux par rapport à la droite horizontale z -^i

équidistante des faces (fig. 14 a) a ;

2° les tensions normales or et oy varient linéairement
en fonction de z le long d'une verticale et sont nulles

dans le plan z x- (fig. 14 b et d) ;

3° le diagramme des tensions tangentiales Tre le long
d'une verticale est une parabole (fig. 14 c) ;

4° les tensions normales oy sont identiquement nulles

(fig. 14 c).
Nous désignerons dorénavant par I tout domaine ou

zone jouissant de ces quatre propriétés. Nous dirons

plus loin sur quel critère nous nous sommes basés pour
définir pratiquement ses limites. Pour l'instant, constatons

que, dans le cas de la plaque 1 : 4, cette zone est

très étroite (0,15 a 0,3 h).
Les deux domaines restants de la plaque, qui ne

possèdent pas ces quatre propriétés, seront désignés
respectivement par II (voisinage de la surface de répartition
de la force P) et III (voisinagSsaes réactions des appuis).
Ce sont les domaines où les tensions sont sous l'influence
directe des forces appliquées. Ils existent également
dans le cas de la plaque 1 : 2, où la zone I est absente.

La limite des zones II et III n'est alors pas définie.
Considérons enfin la plaque beaucoup moins épaisse

1:8 (fig. 17 a à d). On y retrouve les trois domaines

ou zones que nous venons de définir. Mais si les zones 77

et 77/ sont légèrement moins étendues que dans le cas

précédent, le domaine / (0,25 a < r < 0,89 a) a par
contre considérablement augmenté (0,64 a au heu de

0,15 a).
Il est intéressant de constater qu'il y a une ressemblance

frappante entre les trajectoires des tensions dans
les zones // des tr^S- plaques 1:2, 1:4 et 1:8. La
même remarque est applicable aux trajectoires des

zones III voisines des appuis. On constate également

que la répartition des valeurs des tensions ne change pas
énormément d'une plaque à l'autre, dans la zone II
voisine du centre. Cela montre que, dans cette dernière

zone, les tensions dépendent avant tout de la singularité
créée par la force quasi concentrée P. Elles dépendent
donc surtout de la grandeur de cette force, du diamètre
2r0 de sa petite surfaceEprculaire de répartition et de

l'épaisseur h de la plaque. Par contre, elles dépendent

peu du diamètre 2a. Cette constance de la répartition
des tensions au voisinage du centre explique l'invariance
des trajectoires dans la même zone. Quant à l'invariance
des trajectoires au voisinage des appuis, elle provient
du fait que les rapports des tensions oy, oy, Tre entre
elles sont, en tout point de cette zone, sensiblement

indépendants du rapport h : 2a, comme le montrent
les diagrammes.

Revenons à la zone I. Les quatre conditions la
définissant sont précisément celles qui sont requises pour

21 Cet axe de symétrie, lorsqu'il existe, n'a pas été indiqué dans
les figures, pour ne pas gêner la vue des trajectoires. Mais le lecteur
le situera facilement.

l'application de la théorie de Kirchhoff. Dès lors, en
calculant or, o» et t« d'après cette théorie, c'est-à-dire
d'après les formules M :

CFr-

Ot

3P
TTÄ3

(1 + v) log I +

HP
ITA

+ (1-mm 1

"r8

J) (1 + v) log I +6 a

(1-v)
3P

4tt hr
1 pi

2

(8)

il faut s'attendre à ce que, dans la zone en question,
les valeurs obtenues coïncident avec celles données par
l'expérience. Les diagrammes à traits interrompus des

figures 14 b, c, d, et 17 b, c, d, qui représentent les

résultats des calculs pour v 0,48 (Araldite), montrent

que c'est bien le cas, de sorte qu'on peut aussi

définir cette zone comme étant celle où la théorie de

Kirchhoff est applicable.
Pour permettre de déterminer sans ambiguïté dans

chaque cas les limites du domaine I ¦—-et conséquem-
ment celles des domaines 77 et III — nous avons en
définitive adopté la définition pratique suivante : la
zone I est celle où les différences entre les tensions mesurées

et celles calculées par la théorie de Kirchhoff sont
inférieures à 0,048 Pfh2, ce qui correspond à 10 % de la
valeur de (<jT)m&z pour rfa 0,5.

Ce sont les limites obtenues sur la base de cette définition

qui ont été indiquées dans toutes les figures a.
Ces diverses limites sont reproduites dans la figure 19,

o ù l'on a également indiqué celles relatives à la plaque 1:6.
La comparaison des quatre cas étudiés montre que les

dimensions de chacune des zones II et III sont
respectivement les mêmes pour les deux plaques les moins

épaisses 1 : 6 et 1 : 8, ce qui permet d'affirmer que les

étendîtes des domaines II et III des plaques deviennent

indépendantes de la valeur du rapport h : 2a dès que ce

rapport est égal ou inférieur à 1: 6. Elles prennent
respectivement les valeurs constantes 1,0 h et 0,45 h.

Les diagrammes montrent que c'est dans la zone II,
voisine du centre de la plaque, que se produisent les

plus grandes tensions, dont dépend la rupture
éventuelle de la matière. Immédiatement en dessous de la

petite surface de répartition de la force P existe une

zone fortement comprimée, où il n'a malheureusement

pas été possible de mesurer les tensions, celles-ci y
variant beaucoup trop rapidement d'un point à l'autre.

22 Pour les deux premières formules (8), voir [13], p. 72. La
troisième relation se déduit de la condition d'équilibre d'un cylindre
d'axe s et de rayon r, en supposant les tensions tangentielles Trz

réparties paraboliquement dans l'épaisseur de la plaque. Les trois

formules (8) supposent r0 < r<C a

23 Nous admettons implicitement que ces limites sont des segments
de droite parallèles à l'axe des z. Il s'agit là d'une approximation,
suffisante pour les applications. Une étude plus précise montrerait
probablement que ces limites sont des lignes courbes. D'autre part,
les limites indiquées dans les figures ont été obtenues en supposant
v 0,48 (Araldite à une température élevée). On peut cependant
admettre que les limites en question sont pratiquement indépendantes
de la valeur de ce coefficient, donc de la matière choisie pour la plaque.
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Fig. 13 a, 6, c, d. — Modèle de plaque hj2a 1 /2.
a) Trajectoires des tensions principales
b), e), d) Diagrammes des tensions oy, oy, T« et oy.

Fig. 14 a, 6, c, d. — Modèle de plaque hj2a 1 /4.
a) Trajectoires des tensions principales
b), c), d) Diagrammes des tensions oy, oy, T« et oy.

Cette petite zone est cependant en général moins
dangereuse pour les risques de rupture que le point
d'intersection de l'axe z avec la face inférieure de là
plaque, où se produit la plus grande traction CTmax M.

La théorie de Kirchhoff donne pour cette traction
une valeur beaucoup trop grande, comme il est
possible de le vérifier en appliquant une formule analogue

à la première des formules (8), mais valable dans le
domaine 0 < r < r0. Par contre, comme nous allons
le voir, unâgthéorie plus poussée, celle de Woinowsky-
Krieger, permet de calculer CTmax assez exactement,
à l'aide de la formule 21

:

Voir par exemple [13], p. 76 et suiv.
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Fig. 15 a, bt c. — Modèle de poutre simple hj2a 1/2.
a) Trajectoires des tensions principales
b), c) Diagrammes des tensions O^, CT^ et ~Txz.

Fig. 16 a, egg. — Modèle de poutre simple hj2a 1/4.
a) Trajectoires des tensions principales
b), c) Diagrammes des tensions o>, o> et T.«.

w< (CT(Jr 0

1 + v) 0,485 logr + 0,52 + 0,48
P
Ä2'

(9)

La figure 21 est une représentation graphique des

valeurs données par cette formule, pour v 0,48
(Araldite) en fonction du rapport h : 2a.

Les cinq points isolés représentent, dans la même figure,
les valeurs mesurées sur les quatre modèles de plaques
1 i i 1

• • fi MmyiTi 2-et q-> ainsi que sur un modele complémentaire

h 1
13 ts ' ou 1 on s est contenté de mesurer amia. Onla 12

voit qu'aux fluctuations près, dues probablement à
l'inexactitude des mesures, nos expériences confirment

1 h 1
bien la formule (9) dans le domaine ts ^ s~~ — .-,

•

-. ' 12 la À

Cette formule peut donc être utilisée pour le choix des

dimensions des plaques circulaires simplement posées le

long du contour et supportant une force appliquée au
1 /il,centre, lorsque ts — s- — s~ • u est d ailleurs pos-^ 12 Aa 1

sible que cette formule soit encore applicable à des

plaques où le rapport ~— est inférieur à 1/12 ou

supérieur à 1/2.
ConS|érons maintenant les résultats obtenus pour

les poutres simples correspondantes. L'étude comparative
des figures 15 a, b, c, 16 a, b, c et 18 a, b, c permet de

formuler diverses conclusions analogues à celles
relatives aux plaques. On peut en particulier définir une
zone / ¦— et conséquemment des zones II et III —
en se basant sur les quatres propriétés -énoncées plus
haut, en y remplaçant simplement oy par ax, t« par

2 D'autres théories, également plus poussées que celle -de Kirchhoff,
permettent aujourd'hui de calculer la traction maximum Omax au
centre de la face inférieure de la' plaque. En comparant les valeurs
qu'elles donnent aux résultats de nos expériences, nous n'avons pas
cependant obtenu une aussi bonne coïncidence qu'avec les valeurs
données par la formule (9).
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t« et en posant; oy 0. Ces propriétés étant précisément
celles requises pour l'application de la théorie de la flexion
de Navier, on peut définir aussi la zone I pour les poutres
comme étant le domaine où les différences entre les valeurs
des tensions calculées d'après cette théorie et les tensions
obtenues expérimentalement sont inférieures à 0,048 P/h2,
c est-à-dire à 10 % de la tension (<yx)m&* pour xfa 0,5.

Les limites de ces zones sont indiquées dans les

figures 16 a, b, c et 18 a, b, c. La zone J n'existe pas
dans le cas de la poutre 1: 2 (fig. 15 a, b, c).

Examinons le domaine II voisin du milieu des poutres.
On remarque que les trajectoires des tensions n'y sont
plus invariantes comme dans le cas des plaques, mais

dépendent considérablement du rapport h : 2a.
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Fig. 18 a, &, c. — Modèle de poutre simple hj2a
a) Trajectoires des tensions principales
h), c) Diagrammes des tensions (7x, 0> et txz-

1/8.

En particulier, les positions des points singuliers
attractif Sa et répulsif Sr, tous deux situés sur l'axe des z,

dépendent de h : 2a26. Cela est dû au fait qu'en
chaque point, les rapports des tensions ux, oy, tb entre
elles dépendent eux-mêmes de h : 2 a, comme on peut
le reconnaître à l'aide des diagrammes. Par contre, les

trajectoires des tensions de la zone III voisine des

appuis sont invariantes, les rapports des tensions y
étant indépendants de h : 2a.

Les limites des zones /, i7, III sont reproduites dans

la figure 20, où l'on a également indiqué les limites
relatives à la poutre 1 : 6. On constate que les étendues

respectives des zones II et III sont sensiblement les

mêmes pour les poutres 1 : 4, 1: 6 et 1 : 8.

26 Un point Sr n'a pas pu être décelé au voisinage de la petite
surface d'application de la force P dans le cas de la figure 18 a. Cela

est probablement dû à l'inexactitude des mesures dans cette zone.
Le lecteur trouvera d'intéressants renseignements sur les points
singuliers qui existent au voisinage des points d'application des forces,

dans [8], T. I, p. 196.

Les étendues des domaines II et III des poutres deviennent

donc indépendantes de la valeur du rapport h : 2a,
dès que ce rapport est égal ou inférieur à 1 : 4. Les

longueurs de ces domaines prennent respectivement les

valeurs constantes 0,4 h et 0,45 h.

Comme dans le cas des plaques, c'est également dans

la zone II, voisine du milieu de la poutre, qu'existent
les plus fortes tensions. Parmi celles-ci, la plus grande
traction omax — qui est en général la plus dangereuse —
se produit au milieu de la face inférieure. La comparaison
des diagrammes des valeurs de ux mesurées et calculées

montre que la théorie de Navier donne pour CTmax des

valeurs approchées de cette traction, valeurs qui sont
systématiquement un peu trop grandes 27.

Si nous comparons maintenant les trajectoires et les

diagrammes relatifs à chaque plaque, à ceux de la

27 Ce fait a déjà été signalé en 1891 par C. Wilson, à la suite d'expériences

sur un modèle de verre. G. G. Stokes en a donné plus tard
une explication théorique (voir par exemple [14], p. 96).
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poutre correspondante, nous pouvons faire les remarques

suivantes :

1° Dans la zone I, les trajectoires des tensions
relatives aux plaques ont une courbure qu&varie très
régulièrement, beaucoup plus régulièrement que la courbure
des trajectoires des poutres correspondantes. Dans ces

dernières, chaque trajectoire, après être restée
longtemps voisine d'une horizontale, passe assez brusque-

h
ment, en traversant 1 axe horizontal z ~- de la

poutre, dans un second domaine où elle est voisine
d'une verticale (comparer par exemple les figures 17 a
et 18 a). Cela provient du fait que dans la plaque, le

rapport de l'effort tranchant Q au moment de flexion
MT est beaucoup plus grand que le rapport Q/Mx dans
le profil homologue de la poutre correspondante, comme
le montre facilement la comparaison des valeurs données

par les théories de Kirchhoff et de NaviEm Ainsi, les

efforts tranchants jouent, dans la zone I, un râle plus
considérable dans le cas des plaques que dans celui des

poutres.
2° Dans la zone II, les trajectoires et les valeurs des

tensions relatives aux plaques sont très différentes de
celles relatives aux poutres correspondantes. Dans les

premières, elles sont pratiquement invariantes, c'est-à-
dire quasi indépendantes de la valeur du rapport h : 2a;
dans les secondes, au contraire, elles dépendent
considérablement de ce rapport, comme nous l'avons vu
plus haut.

3° Dans la zone III, les trafffctoires des tensions sont
sensiblement les mêmes pour les quatre plaques et les

quatre poutres étudiées (comparer les figures 13 a, 14 a,
18a). Cela provient du fait que les rapports des

tensions entre elles sont les mêmes en des points homologues

de ces huit modèles, dans la zone en question.
Dans cette zone, les tensions ont d'ailleurs des valeurs

respectives sensiblement égales, en deux points homologues

de chaque plaque et de la poutre correspondante.
4° Si l'on compare les étendues des diverses zones I,

II, 777 dans les plaques et dans les poutres correspondantes,

on constate que le domaine II voisin du centre
a une étendue beaucoup plus grande dans le cas des

plaques (fig. 19) que dans celui des poutres (fig. 20) w.
Cela prouve que la singularité engendrée par la force
concentrée P a une influence beaucoup plus marquante
sur la répartition des tensions dans le premier cas que
dans le second.

D'autre part, l'étendue du domaine III des plaques
est légèrement supérieure ou égale à celle du même domaine
des poutres correspondantes.

La conséquence de ces deux faits est que la zone I
des plaques, où la théorie de Kirchhoff est applicable, est
notablement moins étendue que le domaine I des poutres
correspondantes, où la théorie de Navier est valable.
Une plaque relativement épaisse se comporte ainsi
beaucoup moins.« linéairement » que la poutre simple
correspondante.

§ 6. Conclusions.

L'application de la méthode du figeage des contraintes,

complétée par une intégration graphique, nous a

permis d'étudier la répartition complète 29 des tensions
dans quatre modèles de plaques simplement posées le
long du contour et supportant au centre une force P,
répartie sur une très petite surface circulaire. Les quatre
modèles étaient caractérisés par les rapports 1 : 2, 1 : 4,
1 : 6 et 1 : 8 de l'épaisseur h de la plaque au diamètre 2a

Dans le premier cas, ce domaine augmente Ic^èrrmenl lorsque Itj'Za

¦ 1
croît ; dans le second, il reste constant, si hj'la < — .-

29 A l'exception d'une petite zone située immédiatement en dessous
de la surface de répartition de la force appliquée P. '.
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Fig. 21. — Valeurs de la traction dangereuse dans une plaque
circulaire amax (o>)r o (oy)r o d'après la formule

z h z h

de Woinowsky-Krieger (9) (ligne continue) et d'après les
essais (petits cercles), en fonction du rapport hj2a.

du cercle d'appui (le diamètre 2b de la plaque elle-
même était très légèrement supérieur à 2a).

Cette étude a permis de déterminer les domaines (I)
où la théorie de Kirchhoff est applicable au calcul de

toutes les tensions et ceux (WS&III) où elle ne l'est pas.
Elle a également permis de mettre en évidence l'influence
du rapport h : 2a sur les étendues de ces domaines et

sur la répartition générale des tensions. Enfin, elle a

montré que la formule de Woinowsky-Krieger :

CTmax (oy)r o (oy)r 0
Z=A Z=Ä

(1 + v) (o,485 log J + 0,52) + 0,48
P
h2

(9)

donne une valeur approchée de la traction dangereuse
1 h J

CTmax lorsque -TK ^= ?j- SI s" (cette traction se produit

au centre de la face inférieure de la plaque).
Tous les résultats obtenus ont été comparés à ceux

des poutres correspondantes, qui ont été étudiées par
la même méthode expérimentale que celle utilisée pour
les plaques.

Notre principale «Kmclusion est que la théorie de

Kirchhoff pour le calcul des plaques a un domaine

d'application moins étendu que celui de la théorie
de Navier pour le calcul des poutres. Cette dernière
théorie présente en outre l'avantage de donner des

valeurs approchées de CTmax PJEÏr les poutres, alors qu'il
faut faire appel à une théorie beaucoup plus poussée

que celle de Kirchhoff, la théorie de Woinowsky-Wélrieger,

pour déterminer la valeur de CTmax relative à une plaque.
En d'autres termes, une plaque circulaire chargée
symétriquement est beaucoup plus rebelle aux méthodes

élémentaires de la résistance des matériaux que ne l'est une

poutre mince, de section rectangulaire, fléelue parallèlement

au plan de ses deux plus grandes dimensions.
Insistons sur le fait que la nouveauté de cette étude

ne réside aucunement dans les résultats obtenus pour
les poutres, qui sont en principe connus depuis long¬

temps. La nouveauté réside essentiellement dans les

résultats des mesures systématiques de tensions faites

sur des modèles de plaques circulaires, ainsi que dans
la comparaison de ces résultats 1° aux valeurs données

par le calcul ; 2° aux valeurs mesurées dans les poutres
correspondantes.

Il serait intéressant de faire, pour les plaques
rectangulaires, une étude analogue à celle que nous venons de

décrire, en se proposant d'atteindre les mêmes buts.
C'est ce que nous espérons pouvoir entreprendre dans
la suite.

Zurich, le 5 décembre 1957.
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