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SUR LE CALCUL APPROCHE D'UNE DÉRIVÉE

par CH. BLANC, professeur à l'Ecole polytechnique de l'Université de Lausanne

Le plus souvent, lorsqu'on se propose de résoudre un
problème d'une manière approchée, on le fait en substituant

à ce problème un autre problème, qui est plus
simple et que l'on résout exactement. En fait, une
méthode approchée de calcul est donc, en général, une
méthode consistant à résoudre exactement un problème
voisin du problème posé. Cherchons à préciser ce qu'il
faut entendre par problèmes voisins. La première idée
qui vient à l'esprit est la suivante : deux problèmes sont
voisins lorsque les données sont assez peu différentes ;
on sous-entend alors que les solutions elles-mêmes sont
par conséquent également voisines.

Malheureusement, un problème aussi simple que celui
de la dérivation nous apporte un démenti immédiat :
deux fonctions qui sont et restent voisines peuvent
parfaitement avoir des dérivées fort différentes (il suffit,
pour s'en persuader, de tracer une courbe assez régulière

et, sur cette courbe, une autre courbe comportant
de rapides oscillations de faible amplitude : les pentes
sont très différentes

Pour calculer d'une manière approchée la dérivée
d'une fonction donnée, il ne suffit donc pas de calculer
la dérivée d'une fonction voisine ; plus généralement,

pour résoudre d'une manière approchée un problème
donné, il convient de le remplacer par un problème dont
non seulement les données, mais aussi la solution, sont
voisines de celles du problème primitif.

Dérivation approchée. Lorsqu'une fonction est donnée

par une expression analytique explicite, comme
combinaison d'opérations élémentaires (polynôme, fonction

trigonométrique, par exemple), il est possible de

donner explicitement une expression de la dérivée ; en
principe, dans ce cas, le problème d'une dérivation
approchée ne se pose pas. Si par contre, la fonction
résulte de données expérimentales, ou bien se présente
sous forme d'une table de valeurs, la dérivation ne peut
se faire que d'une manière approchée.

Avant d'en venir à la considération précise de diverses
méthodes de dérivation approchée, envisageons le cas
le plus simple, où on désire la dérivée première à l'abscisse

x pour une fonction donnée par une courbe tracée
sur du papier millimétré. On pourra pour cela lire les

valeurs de cette fonction f(x) pour x et x -f- h, et former
le quotient

f(x + h)-f(x)
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qui constituera une approximation de f'(x) ; il est clair

que si h est choisi relativement grand, l'approximation
sera grossière ; si h est par contre très petit, les imprécisions

sur f(x + h) et f(x) risquent de fausser complètement

le résultat (du fait de la division par h) ; l'expression

ci-dessus est donc d'une précision limitée, cette
précision étant maximum pour une valeur de h qui
dépend notamment des imprécisions sur la donnée de

f(x). La recherche de cette valeur optimum de h est une
question importante dans l'étude d'une formule de
dérivation approchée.

En fait, le problème de la dérivation approchée peut
se poser comme un problème de théorie de l'information
(cela est vrai du reste de la plupart des problèmes d'analyse

numérique) : utiliser le mieux possible l'information
fournie sur la fonction pour en déduire une estimation
de sa dérivée (ou de ses dérivées) ; dans l'exemple
ci-dessus, on peut reconnaître que cette information est
assez mal utilisée, puisqu'on ne prend que deux valeurs
de la fonction ; nous allons essayer des méthodes qui
utilisent un nombre supérieur de valeurs.

Dérivation approchée par interpolation. Une idée toute
naturelle pour obtenir une valeur approchée d'une
dérivée consiste en ceci : étant données les valeurs
fk f(xk) d'une fonction f(x) pour des valeurs x^
formant une progression arithmétique (#* k h, h

const.), on construit un polynôme P(x) de degré n
prenant, pour (n -\- 1) valeurs consécutives de xjc, les

(n -\- 1) valeurs f^, puis on prend pour valeur d'une
dérivée de f(x) la valeur de la même dérivée de P(x) ; par
exemple, si on veut la dérivée seconde de f(x) pour
x xn — 0, on cherche le polynôme de second degré

/o. P(h) h;
P(x) avec

P(—A) /_!, P(0)

on trouve facilement ainsi

1
P(x)

d'où

2h2 [x(x ~ h)f-x + 2 (h2- x2)f0 + x(x + h) fx]

/'(0)#P»(0)=Äi-(/1-2/o + /_i);

cette expression est, dans certains cas, une bonne
approximation de la dérivée seconde de f(x) pour x 0 ;

il importe cependant de savoir si cette approximation
est suffisante ; si elle ne l'est pas, il convient de rechercher

un moyen de l'améliorer.
On pourrait s'attendre à ce qu'une bonne méthode

pour améliorer un tel résultat consiste toujours à prendre
simplement plus de points et par conséquent un
polynôme de degré plus élevé ; avec les cinq points x—2,

x—i, x2, et les valeurs correspondantes de f(x), on

peut former un polynôme du quatrième degré ; nous
laissons les calculs de côté ; on trouve ainsi, pour la
dérivée seconde de ce polynôme à l'origine :

/"(O) # j^â (- /> + 16/i- 30/0 + 16/_! - /_,)

Or, ce résultat est souvent moins bon que celui qui
n'utilise que trois valeurs de f(x) ; c'est le cas notamment

si la fonction f(x) est assez régulière et si les ft ne
sont connus qu'avec une précision limitée.

Pour le montrer, commençons par modifier un peu
l'écriture. On sait qu'il est possible de former, à partir
des valeurs d'une fonction tabulée, les différences tabulaires

des divers ordres ; adoptons les notations
suivantes :

fk+l fk A i+-

A'*+i — A'k-\ A"k

A"k+i — A"* A'"k+\

ce qui donne un tableau tel que celui-ci

f-2
/-l

A'l,5

etc.

A —0,5 a»
10 A'n *

A °
1 tA 0,5 A"h a'_ A i

A"
A'" A"

h

Avec ces notations, la valeur approchée (1) est donnée

par

(3) f(0)#^-A"0;

la relation (2) est par contre remplacée par

/"(O) #
h2 A'„ Ï2A/7»

en recourant à sept points et un polynôme de degré six,
on aurait de même

1 1

f(0)#^lA"o-~A"o 90 A °

On voit ainsi que la formule (4) ne se distingue de (3)

que par l'addition d'un terme provenant de la différence

quatrième A«7 7 ; de même (5) se distingue de (4) par
l'addition d'un terme en A0yl.

Pour une fonction assez régulière, tabulée exactement,

les différences peuvent être très petites ; ainsi,
considérons une table de f(x) ex autour de x 1,

avec h 0,05. On obtient, pour les différences
tabulaires, le tableau suivant (tableau 1) :

Tableau 1

A' A"
0,80

85
90
95

1,00
05
10
15
20

2,2255
3396
4596
5857
7183

2,8577
3,0042

1582
3201

1141
1200
1261
1326
1394
1465
1540
1619

59
61
65
68
71
75
79

A" Aly

Ici, pour un calcul de la dérivée seconde de e1 pour
x 1, il suffit d'utiliser la différence A" ; la différence

quatrième AIy est en effet négligeable ; on trouve ainsi

ni) * ôW ¦ °'0068 2-72-

Dérivation après approximation par les moindres carrés

Les formules données ci-dessus permettent de tenir
compte des différences d'ordre supérieur, si elles ne
sont pas négligeables ; toutefois, si la fonction tabulée
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est entachée d'erreurs (si sa donnée résulte par exemple
de mesures), ces erreurs ont sur les différences tabulaires

une influence qui va en croissant avec l'ordre des

différences. Supposons en effet que l'on commette sur un
terme une erreur s ; cette erreur a alors des différences
qui se présentent de la manière suivante (tableau 2) :

Tableau 2

0
0

E

-6
0
0

0
€

2e
6

0

£

¦3e
3e

¦ e

•4e
6e
4e

10e
-10e 20e

On risque donc, en utilisant les différences d'ordre
supérieur, d'accroître l'influence des erreurs des
données. Pour y porter remède, on peut alors utiliser le

procédé suivant : au lieu de partir d'un polynôme
constituant une interpolation exacte de la fonction donnée,
on cherche un polynôme approchant cette fonction
aussi bien que possible pour un ensemble de valeurs
plus grand que celui qui servirait à une interpolation ;

c'est ensuite la dérivée de ce polynôme qui sert à la
dérivation approchée de la fonction : on cherche ainsi une
approximation par moindres carrés * ; si on prend par
exemple cinq valeurs de f(x) et un polynôme du second

degré tel que la somme des carrés des écarts soit
minimum, on obtient pour la dérivée seconde l'expression
approchée

(6) /•(0)#7p(.

avec un polynôme de degré quatre et sept valeurs, on a

(7) r #f(av 12 °
JL3
132

Av

A titre d'exemple, reprenons la dérivation de la fonction

exponentielle, mais à partir d'une table comportant
des imprécisions ; nous ajoutons pour cela, aux valeurs
exactes du tableau 1, des quantités tirées au hasard,
dispersées autour de zéro 2

; on obtient ainsi le tableau 3 :

0,80
85
90
95

1,00
05
10
15
20

2,2247
3403
4597
5868
7184

2,8585
3,0055

1592
3196

Tableau 3

A' A" A'"
1156
1194
1271
1316
1401
1470
1537
1604

48
77
45
85
69
67
67

29
32
40
16

2
0

ai y

61
62
56
14

2

Les petites imprécisions introduites dans f(x) (qui
seraient imperceptibles sur un graphique) suffisent pour
modifier entièrement les différences quatrièmes ; utiliser
la relation (4) avec ces valeurs serait absolument illu-

1 Ceci consiste en fait à rendre minimum l'écart quadratique
moyen des erreurs sur la dérivée, compte tenu des erreurs sur les
données.

2 En fait, nous les avons tirées de la table : H. Wold, Random
normal deviates, Tracts for computers XXV, Cambridge 1948 ; ce
sont celles qui se trouvent à la première ligne de cette table (p. 2),
multipliées par 0,001.

soire, et à plus forte raison la relation (5). Si on veut ici
améliorer la relation (3) en tenant compte de différences
supérieures, il faut le faire par une approximation avec
moindres carrés, donc par exemple avec la relation (6)
(c'est le mieux qu'on puisse faire ici) ; on trouve ainsi :

f(l)
10-*
0,052

85 56 2,76,

ce qui est une bonne approximation, compte tenu du
fait que les données sont approchées (avec une erreur
moyenne quadratique égale à 0,001).

Il est néanmoins instructif de voir ce qui se passerait
si l'on utilisait, pour calculer la dérivée seconde, la
formule (4) qui tient compte de la différence quatrième
dans l'hypothèse où la fonction est donnée exactement.

On trouverait ainsi (tableau 4) :

x f"[x)
valeur exacte valeur approchée erreur

0,90 2,46 3,28 0,82
95 2,59 1,59 —1,00

1,00 2,72 3,59 0,87
05 2,86 2,71 —0,15
10 3,01 2,67 -0,34

Les erreurs sont considérables ; elles ont une certaine
tendance à osciller autour de zéro, ce qui est presque
toujours le symptôme du fait que l'on a utilisé une
formule qui serait valable avec des données exactes,
mais qui conduit à des résultats très inexacts avec des

données approchées. On peut dire que si l'on opère sur
une table comportant des imprécisions, les résultats
seront d'autant plus mauvais que l'on emploie des
formules qui seraient meilleures pour une table exacte.

Dérivation effectuée comme opération inverse d'une
intégration. Il existe un grand nombre de formulesplfinté-
gration numérique ; elles ne présentent pas les fâcheuses

propriétés de celles de dérivation approchée, ce qui
provient simplement du fait que deux fonctions voisines
donnent toujours des intégrales voisines ; les imprécisions

sur les données tendent plutôt à se compenser. On

peut alors être tenté, plus ou moins consciemment,
d'utiliser une formule d'intégration approchée pour
obtenir une dérivation approchée, par inversion des

opérations. Or, ceci a les mêmes conséquences que les

méthodes de dérivation par interpolation, conséquences
ici aggravées du fait que les calculs sont plus compliqués

et que cette complexité cache la cause d'écarts
inadmissibles dans les résultats. On va le montrer sur un
exemple très simple, qui peut ainsi clairement mettre
en évidence les défauts de la méthode.

Imaginons que l'on désire calculer, à partir de la

déformation, les efforts qui s'exercent sur une poutre
chargée, de section constante et encastrée aux
extrémités. En laissant de côté un coefficient numérique qui
ne joue ici aucun rôle, on est ainsi amené à calculer une
fonction F(x) à partir d'une fonction y(x) avec

F(x)
d*y
dx*
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il faut donc calculer la dérivée quatrième de la fonction

mesurée y(x). Cherchons d'abord comment nous
résoudrions numériquement le problème inverse :

connaissant F(x), calculer y(x) ; on aurait à faire l'intégration

d'une équation du quatrième ordre, avec les
conditions aux limites

¦l) y(l) 0,

¦l) y'(l) 0;

on peut montrer que la solution serait donnée par

y(x) f K(x£) F® <%

2WK(x,%)

(l—Ç)2(l + x)2(l2—2lx-
pour

2ll;-xf;)
-l-g,x<L%^l

(l+Ç)2(l-x)2(l2+ 2lx—2li, + xÇ}

pour — 1^%^ x ^l
Or, cette intégrale peut se calculer d'une manière approchée

; on peut, par exemple, concentrer la charge sur
un nombre fini de points Pi, ce qui permet de remplacer
l'intégrale par une somme ; prenons ainsi (n — 1)

points P{, divisant le segment (— l, ï) en n parties égales ;

soit de plus

Kij J\. \Xi, Xjj J

on aura, d'une manière suffisamment approchée si n
est grand, pour la déformation yt en Pi :

(8) y% 2j k? Fi

où Fj est la charge concentrée au point Pj ; or, ceci
constitue en fait un système de (n — 1) équations du
premier degré pour les Fj ; en résolvant ce système, on
obtient les Fj en fonction des t/,-, donc en principe la
solution du problème primitivement posé.

Il suffit d'essayer avec n assez grand (n 10 pax
exemple) pour constater que le résultat est mauvais ; il
l'est même d'autant plus que n est plus grand.

Le tableau 5 donne les valeurs des kij pour l 1 et
n — 10 ; il est dès lors facile de résoudre le système (8),
dont la solution est de la forme

(9) '<-S Yji 2/»

les yji sont donnés au tableau 6; on remarque que les

Yji présentent des alternances très considérables alors

que les kj, sont au contraire très réguliers (ils sont
notamment tous de même signe dans cet exemple) ; on
voit dès lors qu'une petite différence sur un terme yi
donnera heu à de gros écarts sur les Fj.

Pour mettre ce fait en évidence, donnons pour
commencer aux yi les valeurs obtenues en posant Fj 1

dans (8) ; on a ainsi :

2/i 2/» 0,02700,
2/2 Va 0,08533

y3 y7 0,14700
2/4 2/6= 0,19200

y, 0,20833 ;

les relations (9) donnent alors pour les Fj :

FX F9= 1,012,
1,009,
1,024,

^3 ^8
F3=F1
Fi=F3= 1,021

F, 1,007 ;

valeurs qui sont effectivement peu différentes de la
valeur Fj 1 que l'on devrait obtenir (les écarts sont
dus aux erreurs inévitables d'arrondi dans les calculs).

Prenons ensuite pour yt des valeurs voisines des

précédentes, obtenues par l'addition d'écarts pris au
hasard *, de moyenne 0,001 et cela sans détruire la
symétrie ; ces écarts sont donc en moyenne de 0,5 % de

la déformation maximum ; les nouvelles valeurs des y<

sont ainsi :

Tableau 5

Valeurs des kij, multipliées par 108

(Le tableau étant symétrique par rapport à ses deux diagonales, on n'a fait figurer ici que les termes situés en dessus de
ces diagonales.)

/ i 1 2 3 4 5 6 7 891 1 944 3 925 4 835 4 896 4 333 3 371 2 232 1 141 323
2 10 923 15 157 16128 14 667 11 605
3 24 696 28 512 27 000 21 888
4 36 864 37 333 31 403
5 '41 667

2 232 1 141
7 776 4 011

14 904

Tableau 6

Valeurs des yji
(Le tableau étant symétrique par rapport à ses deux diagonales, on n'a fait figurer ici que les termes situés en dessus de

ces diagonales.)
j 1 2 3 4 5 6 7 891 2 354 —1488 600 — 161 43 — 11 3 —1 0

2 1 834 — 1 349 562 — 151 40 —11 3
3 1797 —1339 560 —150 40
4 1 794 — 1 338 560
5 1 794
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yi y9=: 0,02620,
2/2 2/8 0,08543

y3 y7= 0,14759,
2/4 2/6 0,19111,

y, 0,20764 ;

or, en introduisant ces valeurs dans (9), on trouve :

Fx F9 — 0,541,
F2= Fa 1,150,
F3=F,= 2,429,
F4 /?, —0,831,

Fs =2,713;
ces résultats montrent une complète irrégularité ; il a

donc suffi dans ce cas pourtant très simple, comportant
un axe de symétrie, de modifier arbitrairement et d'une
manière très faible la déformation pour que les efforts,
calculés par inversion de l'intégration, aient des valeurs
complètement différentes.

Il serait bien plus simple dans un tel cas de recourir à

une formule exprimant la dérivée quatrième par une
combinaison de différences tabulaires. Pour une dérivée
quatrième, l'expression la plus simple est :

F(x{)
0,2*

0,00800 5,

(10) /"-(0)#^4 à1/':

si on veut compenser (par moindres carrés) des erreurs
sur les données, on utilise en plus la différence sixième,

par la relation

(ii) /"(O)* ^(AT + ntf
Dans l'exemple donné plus haut, les yt exacts donneraient

:

1 En fait, tirés de la table de H. Wold, page 4, première ligne.

ce qui est bien la densité de charge correspondant à des

charges unités placées à des distances 0,2. Dans le cas
des yi avec imprécision, on trouve par (11) :

F(0) =4,22,
F(0,2) 4,98,
F(0,4) 5,60
F(0,6) 4,33 ;

ces valeurs sont évidemment moins bonnes que celles

que donnent les xji exacts ; elles sont néanmoins encore
très utilisables, alors que celles qui résultent de l'inversion

de la formule d'intégration sont complètement
fausses.

Conclusions. La dérivation approchée se présente
d'une manière moins favorable que l'intégration approchée

quant à l'influence des imprécisions sur les données ;

il faut en tenir compte dès que ces imprécisions deviennent

appréciables. Il faut alors renoncer complètement
à des méthodes qui reviennent à faire une interpolation
avec un polynôme de degré élevé, sur un grand nombre
de points (ou l'inversion d'une formule de quadrature,
ce qui est encore pire) ; par contre, une dérivation avec
compensation par les moindres carrés donne alors en
général des résultats acceptables.

Dans le cas du calcul de dérivées secondes ou
quatrièmes, on pourra faire usage des formules (6), (7) ou
(11) ; il est même possible d'obtenir des formules tenant
compte de l'inégalité de l'imprécision sur les diverses
données tabulaires. Dans chaque cas, le résultat sera
obtenu en cherchant le rnininaum de variance du résultat,

en fonction des variances des données, considérées

comme grandeurs aléatoires.

Ä PROPOS DU

MANQUE AIGU D'INGÉNIEURS ET DE TECHNICIENS

par P. SOUTTER, Ingénieur E.P.F., Zurich

Le rapport intitulé « Enseignement technique »,

remis en février 1956 par le Ministre anglais de
l'instruction publique au Parlement anglais, a fait grande
impression, à ce moment-là déjà, dans les milieux des

pays industriels intéressés à la question de la relève du
personnel technique. Churchill et Eden ont à cette
époque personnellement insisté, dans des déclarations
publiques marquantes, sur l'urgence du problème de
la relève dans les professions techniques. •—• Dans

un discours à Bradford, le 18 janvier 1956, Eden parla
de la révolution scientifique mondiale et déclara :

Les premiers prix ne reviendront pas aux pays ayant la
plus forte population. Les vainqueurs seront ceux qui ont
le meilleur système d'instruction. La science et les capacités

techniques donnent à une douzaine d'hommes le
pouvoir d'en faire autant que des milliers il y a cinquante
ans. Mais si nous voulons utiliser pleinement ce que nous
apprenons, nous avons besoin de beaucoup plus de savants,
d'ingénieurs et de techniciens. Je suis décidé à combler
cette lacune.

Avant d'aborder les propositions et décisions
anglaises, il est nécessaire de définir quelques notions
fondamentales.

Le manque actuel aigu d'ingénieurs et de techniciens

n'est-il qu'un phénomène de conjoncture ou bien
est-il dû à un changement de structure de notre vie
sociale Toutes les réflexions et constatations faites
à ce sujet conduisent à la conclusion que la technique
empiète toujours plus et sans qu'on puisse l'arrêter
sur tous les domaines de l'économie. Ce développement
s'accentuera sans doute encore ces prochaines décennies
dans l'industrie. Il est donc évident que nous assistons
à une évolution de la structure de notre économie.

La première manifestation de cette tendance à une
mainmise de la technicité sur tous les aspects de la
vie réside dans l'importance toujours plus grande

que prennent les professions techniques. Les
problèmes de la relève du personnel technique passent


	Sur le calcul approché d'une dérivée

