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Les nomogrammes des figures 10 (pour L = 6,00 m) Q. aQ Fig. 12.
et 11 (pour L = 6,00) permettent de calculer rapide- Kreiax. Ksimpl.
ment la valeur
A =a (1,032 L 4 30 ®) (24) 0.0

Pour un essai donné, il suflit alors d’introduire cette
valeur dans l'une des deux formules des figures 10 et
11 et d’y remplacer également les valeurs mesurées
pour trouver la valeur de k.

Les formules des figures 10 et 11 ne sont pas homo-
génes car k s'indique en cm/s, alors qu'on mesure hy,
d et Ah en m, Q en I/min et At en min.

Exemple: L = 4,00 m & = 0,20 m.

O Hins ds la Beove 10 4 — §54 <.
L0 \ 2
Essai & niveau constant: k= . 20 AN

30

954 h AL

600.9,54 Iy, : \\ \
20
1,308  d2 Al
Essai d’abaissement : k= 350 £k \\0'?5 %0\

6. Comparaison entre les résultats des formules : ——

simplifiées et ceux du nomogramme

Cette comparaison est représentée dans la figure 12.
La différence est surtout marquée pour les faibles lon-
gueurs et les grands diamétres. La comparaison n’a
pas été poussée pour des L < 3,1 ®, car les formules

simplifiées présentent une contradiction. Le débit de

I'essai ponctuel est en effet supérieur au débit de la 0

U

formule de superposition tant que L << 3,1 ® ce qui est
évidemment impossible. L=[m]

10 15 70 5 30

SUR DE NOUVELLES METHODES DE CALCUL
EN TOPOGRAPHIE

par A. ANSERMET, ingénieur, professeur a I'Ecole polytechnique de I'Université de Lausanne

Au cours de ces derniéres années, une certaine évo-
lution s’est manifestée dans le domaine de la topo-
graphie, portant notamment sur

10 la substitution, dans bien des cas, de mesures
linéaires aux mesures angulaires ;

20 des changements de variables dans les calculs de
compensation ;

30 T'emploi de moyens graphiques pour calculer les
réseaux.

Le terme topographie est pris ici dans son sens le
plus large.

Considérons un réseau de points P; (1 =1,2 ... n)
non encore compensé; un premier calcul sommaire
fournira des valeurs approchées, provisoires, des divers
éléments a déterminer. Cela améne a distinguer, en

dehors des quantités mesurées, des valeurs provisoires
des longueurs, angles, coordonnées, qu’il ne faut pas
confondre avec les éléments définitifs, compensés. Fig. 1.
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En particulier les coordonnées des sommets, connues
approximativement, sont corrigées de quantités dz; et
dy; lors de la compensation. C’est la méthode classique
de la variation des coordonnées.

Le quadrilatére complet (fig. 1) est un élément essen-
tiel d’un réseau ; en représentation plane conforme, qui
est de régle, un coté quelconque P, P, forme avec sa
corde deux petits angles r et r’ dont il est fait pour
le moment abstraction.

Désignons par Ay, A, ... Ap ...
mesurés ; une fois la compensation achevée, 4 prendra
la valeur A; et on aura

A,, les angles

1) a=(A—A%+ (A —Ar) =dAc + fi
avec la condition [pe¢] = minimum = X (pev)

les p étant les poids respectifs des angles. A’z est donc
une valeur transitoire, provisoire, qui doit cependant
étre calculée avec précision. Fréquemment on mesure
non pas des angles mais des directions ; ce cas est ici
laissé de cOté pour ne pas trop allonger le présent
article. Les termes absolus f; sont assimilés a des quan-
tités directement mesurées pour l'attribution des poids,
car A’y est indépendant des observations; certains [
peuvent étre nuls.

Formation du systéme résiduel
C’est 'opération essentielle, parfois un peu complexe.
Sur les 2n coordonnées, quatre peuvent étre choisies
arbitrairement au point de vue de la compensation si
le réseau est libre. Dans le cas de mesures linéaires,
trois coordonnées seulement ont des valeurs arbitraires.
Considérons 'angle P P,P; (fig. 1), par exemple :

dA, = d arc tg %i_%;% (my et my coeff. angulaires)
J dAy = — [y + vy = Fy (day, dyy, dxy, dy,, dag, dys)
2) dAs = —=fs Figg = FHall.. ssumsmspsnsmsssnsmss )
Id‘44:—f4+v4—F4( ..................... )

Les dA, dz. dy ... ne sont pas des différentielles mais
des accroissements et on néglige les termes en da?; dy?,
dzdy ... dans les développements F,, Fy, Fy ... Le
calcul est effectué en radians ou plutdt en secondes et
les praticiens dressent en général des abaques pour
calculer rapidement les coeflicients des dz, dy.

A partir du systéme (2), on peut concevoir diverses
solutions, selon la nature du probléme.

I. Les inconnues du probléme sont les dx, dy. Les dA
ne jouent pas de role. Le systéme d’équations
normales est :

a[pse] 0 2[pye]

2[pvs]
( ) (7 dxl b (’) dyl 07

J d{1?2

solution qui fut déja traitée sous tous ses aspects
([3] p. 117-142).
II. Les inconnues sont les résidus vy, v, ... ¢4

Il y a autant de conditions qui lient ces inconnues
que de mesures surabondantes. Les équations y rela-
tives sont déduites directement de la figure ou aussi,

étant 1mplicitement contenues dans le systéme (2),
obtenues en opérant des éliminations dans ce systéme.
Le degré de surdétermination du réseau fournit le
nombre de conditions. Entre les quatre angles inté-
rieurs du quadrilatére P,P,P4P, par exemple, on aura :

d‘41+ d.42+d/13+ d444= 0= Vl+ V2+ ;)3+ V4'—
_(f1+f2+f3+f4)

ou le terme absolu w = — (f; + f, + f5 + [4) exprime
une discordance.

Dans les équations en dA;, d4,, dA; ... il n’y a pas
de termes absolus, car entre les réseaux provisoire et
définitif (compensé), la figure a subi une déformation
laissant subsister les relations angulaires ou autres
fournissant les conditions ; du reste le systéme (2) le
montre clairement.

On peut aussi établir des relations entre les sinus
des angles, notamment en appliquant le théoréme de
Céva généralisé. Dans le quadrilatére, il n’y a pas
moins de quinze maniéres de combiner ces sinus pour
former des équations ([4] p. 188); une seule est &
retenir ; des critéres connus permettent au praticien de
faire un choix. On aboutit a des développements tels
que :

(4) adA; 4+ aydAy + agdAg 4+ ... =
=aw; + awy + agvs + ... + ' =0

ol W' = — (ayfy + asfs + asfs + .. .)

Ce terme absolu étant déduit du systeme (2) ou, le
plus souvent, exprimé en fonction des angles ou de
lignes trigonométriques de ceux-ci; le calcul de ce
terme est parfois assez fastidieux. D’autre part, sans
connaitre ces w, @’ ... 1l est possible d’effectuer la
compensation en ce qui concerne les poids des incon-
nues et de fonctions de celles-ci.

Désignons encore par pi les poids primitifs, par p'z
ceux des bindomes (— fr + o) c’est-a-dire les poids
nouveaux, amplifiés grace a la compensation; on sait

([3] p- 159) que

(5) [p:p']¥ = nombre des mesures non
surabondantes.

Ainsi pour k=1 on a:

L i
P1 P1

oules a, b, ¢, d ... sont les coeflicients des ¢y, ¢y, 95 ...
dans les équations de condition ; certains coeflicients
sont nuls.

Application :

Le petit réseau de Schwerd (Speyer-Mannheim) est
typique, étant caractérisé par une disparité de poids
extréme

7 < pr < 101

le calcul donne: 0,06 < (p: ps) < 0,69.

C’est le poids primitif le plus fort qui est le moins
amplifi¢ (0,69), tandis que I'angle le plus petit bénéficie
du quotient p : p’ le plus favorable (0,06).
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ITI. Les inconnues sont les variations angulaires dAp.

Cette solution est assez nouvelle (voir [5]). C’est un
cas ot les inconnues sont liées par des conditions dont
les équations ont la forme :

(7) [axdAx] = 0 = [bidAy] = [crdAz] = . ..

Bien entendu, tous les dA; ne figurent pas dans une
méme équation. Parmi les solutions & envisager, on
peut en retenir deux :

19 On commence par éliminer, en faisant un choix
judicieux, des ¢éléments mesurés qui sont en sur-
nombre. Le probléeme se présente alors sous une
forme familiere dont la solution est aisée.

20 La compensation sera fractionnée et comprendra
deux phases. Dans le systéeme résiduel (2), le
nombre d’inconnues dA; doit étre inférieur a
celui des équations, ce qui implique des élimina-
tions et, dans chaque cas, le calculateur est juge.
Le cas se présente aussi ou, aprés avolr terminé
une compensation, le praticien procéde a des
mesures complémentaires.

La solution par fractionnement en deux phases a
ceci de particulier qu’elle donne lieu a trois valeurs
pour I'erreur moyenne quadratique pour une observa-
tion de poids un. La méthode est aussi dite miate.

Mesures linéaires

Le probléeme des mesures linéaires est devenu actuel
mais n’a pas encore été traité dans toute son ampleur,
surtout en ce qui concerne le calcul des réseaux déter-
minés par ce moyen. En particulier la question des
poids a attribuer aux mesures se révéle assez complexe
([4] p. 22).

Considérons encore le quadrilatére PiP,P P, ; sur les
six cOtés un est surabondant, d’ou le systéme résiduel

([4] p. 171) :

dly = — fi+v, = a'y(dzy —dz,)+
+ b'y(dy, — dyy)
dly= — [ytv; = a'y(dzg— day)+
(8) + b'y(dys— dy,) ai+bi=1
dlg= — [¢+ve= a'¢(dxy— dzs)+
+ '(dy,— dys)

les dl jouant ici le role des dA. On peut poser do; =
= dy, = dz, = 0 au point de vue de la compensation.
51 I'on ajoute un point P;, le nombre des cotés mesurés
peut étre porté a dix, sur lesquels trois sont surabon-
dants.

L’établissement des équations de condition est plus
laborieux que dans le cas d’observations angulaires,
surtout en ce qui concerne le terme absolu w (discor-
dance). Le réseau est fractionné en quadrilatéres com-
plets si c’est possible.

En principe il y a deux modes de calcul :

10 Les équations de condition étant implicitement
contenues dans le systéme résiduel, on proceéde
a des éliminations judicieusement congues. L’em-
ploi des machines a calculer modernes facilite ces
éliminations.

20 L’examen de la figure permet de poser de suite
les conditions, en exprimant par exemple qu’un

certain angle est susceptible d’étre déterminé de
deux facons différentes ([1] p. 31) en fonction
d’éléments linéaires.

Si les points P,P,P,P, sont situés & peu prés sur
un méme cercle, on a:

(9) PPy X PyP, == P,P, X PgP, + P,P; X P,P,
(formule de Ptolémée)

ce qui suffit en général pour ecalculer les coefficients
des ¢4, vy, v3 ... mais pas le terme absolu, d’ou une
complication. La détermination des poids aprés com-
pensation est du reste indépendante des .

Il n’y a qu’a appliquer la formule (6) en remarquant
que :

(10)

AR
Zpr%Zzpi };)’b——~=2pi fc’ =..=1
N

les a;, b;, ¢; étant les coeflicients des v; ([3] p. 159).

Application :

Considérons cinq points PP, ... Py constituant un
pentagone a peu prés régulier et les dix longueurs
mesurées entre ces points pris deux a deux.

10 Admettons des poids p; =p, = ... = pjp=1
(=15 25 .. 10).
Il résulte de la formule (6) :
(p:p’) =075 pour les cinq cdtés
(p:p’) = 0,65 pour les cinq diagonales
10
2 (p:p’) = 7= nombre de mesures non surabondantes.
1

20 Admettons p; : pg i pPg - .- ¢
(poids inverses des longueurs mesurées)

on trouve (p: p’) = 0,80 pour chacun des cinq cotés
et (p:p')=0,60 pour chacune des cinq dia-
gonales
10

Y p:p)=1

1

Dans les deux cas, ce sont les poids des diagonales
qui sont amplifiés dans la plus forte proportion.

Encore une fois, I’élément complexe du probléeme est
la formation des poids py, py, ... pjp. Parmi les sug-
gestions faites & ce sujet, il y a lieu de citer la suivante :
les points Py, Py, P, ... seralent choisis sur une méme
droite et constitueraient donc une ponctuelle rectiligne,
les longueurs mesurées étant toujours P; P,, P; Py ...
P.P;, P,P;, P,P, ... PyP;, ce qui implique une com-
pensation. A partir d’'un point S, situé en dehors de
la ponctuelle, on mesurerait angulairement, avec une
haute précision, les directions SP;, SP, ... SP; ou les
angles compris entre ces rayons pris deux a deux. Une
correspondance projective est ainsi établie

PP, ... Py~ S(P,P, ... Py).
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On forme des groupes de quatre éléments en calculant
les rapports anharmoniques (P;PyP3Py) ... (PyP3P,Py)
et en confrontant ces valeurs avec celles obtenues par
voie angulaire (faisceaux de rayons). Les poids des
valeurs angulaires seraient considérés comme connus,
tandis que diverses hypothéses seraient faites pour les
poids des mesures linéaires. Il ne serait pas diflicile
d’établir laquelle de ces hypothéses donne lieu a la
meilleure concordance entre les rapports anharmoniques
déterminés en fonction d’éléments angulaires et linéai-
res. Cette question des poids étant élucidée, et si les
dly, dly, dl, ... sont choisis comme inconnues, il faut
éventuellement fractionner la compensation. Tout
dépend de la nature du probléeme.

Compensations [ractionnées
Le lecteur trouvera un cas concret de ce mode de
calecul dans [5]. Sous une forme générale le systeme

initial est

(11)
pi=ax+by+ez—10lL (pp=1,1=1,2,3 ... n)

(12) d’ot [av] = [by] = [ev] = 0.
=[], y=[Bl, z=[yl]

([3] p. 77-87)
[aw] = 0 = [Be] = [y¥].

Les o, Pi, y: ¢tant des multiplicateurs connus.

2¢ phase : 1l y a encore des équations de condition
dont on a fait jusqu’ici abstraction (fonctions Iy = 0,
Fy, =10 ... liant les inconnues).

Il en résulte des accroissements ¢’; pour les ¢; et
€, M,  pour les inconnues qui deviennent « -+ §, y + n,
7z L,

(14) Vi=vi+ ¢'s; [VV] =[] 4 [¢'¢']
car [p¢'] =0 ([4] p. 118).
Vi=vi+ a€ + b + i
et en tenant compte de (13)

(15) §=[a'], n=1[p], T=1[y"]

expressions qui, introduites dans

Fie+§y+mnz+0=0
Fz(I‘i‘E’y‘*'TLZ‘*‘Q:O

nous raménent & une forme connue de compensation
mais avec des développements un peu plus longs. On
peut calculer le poids de fonctions

[@illi + 0]

ou les facteurs @; sont connus.
De plus, il faut confronter les trois valeurs :
[ov] : (n—u), [¢o]:r et
[VV]:(n—u+r) tciu=3;r=2

suivant que l'on considére chaque phase séparément
ou I’ensemble de la compensation. Théoriquement, ces
trois résultats devraient concorder.

D’autres problémes peuvent étre posés, tels que le
tracé des ellipses d’erreur relatives aux sommets du
réseau ; dans la littérature ces ellipses sont en général

considérées isolément, individuellement, tandis que
dans la pratique elles sont parfois groupées et mutuelle-
ment lides. Il faut tenir compte de cette corrélation
et la géométrie synthétique est applicable avec avan-
tage dans certains cas (voir [5]).

La déformation des réseaux en représentation plane

conforme
Il a été fait abstraction jusqu'ici de la courbure des
cotés PPy, PPy ~.. La figure 1 montre, pour un de

ces cOtés, en quoi consistent les corrections ou réduc-
tions r, " ; celles-ci sont négligeables en général pour
les réseaux trés secondaires. Des abaques fournissent
de suite ces réductions ou, de préférence, les somme
(r -+ 1"), différence (r—7r'), quotient (r:r’) en faisant
abstraction des signes. Le cas ou la courbure change
de signe entre deux sommets consécutifs est ici laissé
de coté.

Formules initiales
L’équation d’une surface rapportée a son plan tan-

gent et 4 des tangentes principales est
22 y?

ou R, et R, sont les rayons principaux de courbure

ade | ydy\?
ds? = da® + dy? (-“—Jr )
¢ = dat 4 dy? + (- + ) +

A Télément ds correspond dans le plan I'élément

dS = mds

dS* = dX2% + dY?* (X, Y coordonnées planes)
X=z+4u;+ ... Y=y+ v+ ...

ug et ¢, désignant les groupes de termes de 3¢ ordre
dont le réole est prépondérant

dS? = da® + dy* +
Ju

Ju .
3 7.2 3 3
= dz?® + w dzdy + ™ dady +

%% dy2> + .=

+2( Y

= m2ds® = (1 + 2m,) (da® + dy* + 1172 (adz + ydy)?) + ...

ou R? = R,R,, tandis que m, désigne le groupe homo-
géne de 28 ordre dans m. En identifiant mutuellement
les coeflicients respectifs de da?, dady, dy* dans ces
développements puis intégrant on obtient :

2 2
(16)  mg— T 4 Alat —y¥) + 2Bay

relation dans laquelle on peut substituer les (X, Y)
aux (z,y) (voir [5]) et

Bl A B
Ug = -T*[;;i;y + 3 (23—3xy?)+ 3 (32%y —v?)

(17)

w422y A B
Py — ‘/’ZRz ./_3 (.7/3_3.'/‘1;2)—}_ 3 (3}/21—13)

(18) X +iY =X, + ¥, +
1
+ 3 (A —Bi) (Xo+iYoP+ -

i=y\/—1
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Cas ot les variables sont dissociées
Cest le plus fréquent en pratique; un seul para-
meétre n définit la projection (n| = 1).

1 ' VYV
19) m—1z o ((1 — ) X2+ (1 + n)Y 2)-

Pour m donné et n variable, c’est 'équation d’un
faisceau circonserit & un carré. La courbure C des cotés
du réseau se déduit de (19) par la formule de C. M. Schols
([2] p. 150 et [5]). On trouve

Jd Logm 1 /om . am i
C= - IN —m (;):; sin V — oy ¢os I/) o~
(20)
1
= o5ps ((1 —n) XsinV—(1+n)Y cos V)

dSsin V=dY, dScosV=dX ([5],[2]p. 149).

ou N désigne la direction normale a l'arc de trans-
formée.

On vérifie sans peine que pour un contour fermé tel
que PP,P,P,P,, la variation totule de courbure

f CcdS

est indépendante du paramétre n définissant le systéme
de projection conforme.

Il y a corrélation entre les formules de Schols et de
Gauss-Bonnet. En un point, 1l y a trois directions,
pour lesquelles C = 0, C = maximum et X sin V -+
+ Y cos V=0 (C indépendant de n); ces deux der-
niéres directions peuvent coincider en certains points.

De plus, pour un coté quelconque P,P,, I'expression

By
(21) r+r)= | cds
/

est indépendante du paramétre n st PyP, est la corde

d’une hyperbole ayant les axes de coordonnées comme

asymptotes .

tandis que le quotient r : v’ se déduit de r : 1" = C": C”

(C', C" courbures aux premier et second tiers du coté).
(22)

Enfin pour le maximum de C on a (voir [5]):

(23)  Cumax= ﬁz— \/ (1 —n)2X2 4+ (1 1+ n)2y2

En appliquant la formule (19), on trouve pour le

territoire suisse : m = 1,000112 pour n = —0,45. Si
I'on cherche a réduire le plus possible le maximum de
courbure Chyy, 1l faut adopter le parametre n = — 0,24

et alors m = 1,000159.

Une suggestion formulée par G. Darboux tend a
rendre minima la valeur moyenne du carré du gradient
de Log. m pour le territoire considéré. Cette valeur M
s’exprime par :

(24)
JdLog m\* /[)Logm 2[ - —
M— ff{( ‘)f-) +<—JY—>I(LX¢I) .ffd.\d}.

Le numérateur de cette fraction pouvant étre converti

en une intégrale curviligne, le contour fermé étant une
des courbes définies par la formule (19).

180 5~ =
By
N o~ 14 < 30
R — 40
-0
4 ~._ T2
L Sso brteTC
- [‘_2-\‘ . -
N = -
o3~ 35y
30 _
o5 50
10 n
0 n
5o _»— =05 \\\
N
ul ~
- 0’ =
034
=5 20
_feo Lo |
%84
Lo /54
- N -
s0"
2.7+
= | 100
Fig. 2

EtTon constate que les termes en n s’éliminent dans M
pour toules les courbes appartenant & un méme faisceau
m = const. Les considérations qui précédent contri-
buent a fixer le choix du paramétre n. Si les variables
ne sont pas dissociées, les résultats acquis ci-dessus
subsistent. On voit combien les systémes conformes se
prétent bien au calcul des réseaux. Le calcul graphique
des réductions r, r’ est immédiat.

Un c6té primordial du réseau suisse est Feldberg-
Lagern (F-L)

Xr— Xz= 43,35 km.
(r = 6",76, r' = 5".65).

Yz — Yr= 30,2 km.

L’abaque donne immédiatement : r —r" = 1”11
n=—1; (sexag.)

tandis que pour Xp = 102,75 km, X = 59,4 km
on lit r: 7" = 1,20 (chiffres soulignés).

D’autres abaques existent pour (r + r’), toujours en
valeurs absolues (voir [5]). Pratiquement, leurs échelles
seront en corrélation avec la précision désirée.

Les lignes qui précédent donnent un aperg¢u trés
sommaire de méthodes nouvelles ; en particulier pour
les compensations on recourt parfois a des symboles.
Au point de vue didactique, cela peut présenter de
I'intérét ; ces symboles ne procurent aucun résultat
nouveau et n’apportent aucun allégement lors d’appli-
cations numériques.
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