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Les nomogrammes des figures 10 (pour L ^ 6,00 m)
et 11 (pour L ^ 6,00) permettent de calculer rapidement

la valeur

A a (1,032 L + 30 CD) (24)

Pour un essai donné, il suffit alors d'introduire cette
valeur dans l'une des deux formules des figures 10 et
11 et d'y remplacer également les valeurs mesurées

pour trouver la valeur de k.
Les formules des figures 10 et 11 ne sont pas homogènes

car k s'indique en cm/s, alors qu'on mesure hm,

d et Ah en m, Q en 1/min et Ai en min.

Exemple : L 4,00 m O 0,20 m.

On tire de la figure 10 : A 9,54.

Essai à niveau constant : k

Essai d'abaissement : k

1 1
600 9,54

*

hm

1,308 d2Ah
9,54 ' KmAt

6. Comparaison entre les résultats des formules

simplifiées et ceux du nomogram me

Cette comparaison est représentée dans la figure 12.

La différence est surtout marquée pour les faibles

longueurs et les grands diamètres. La comparaison n'a

pas été poussée pour des L < 3,1 O, car les formules
simplifiées présentent une contradiction. Le débit de

l'essai ponctuel est en effet supérieur au débit de la
formule de superposition tant que L < 3,1 O ce qui est
évidemment impossible.

a a
krelax. ^simpl.

FiK. 12.
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SUR DE NOUVELLES METHODES DE CALCUL
EN TOPOGRAPHIE

par A. ANSERMET, ingénieur, professeur à l'Ecole polytechnique de l'Université de Lausanne

Au cours de ces dernières années, une certaine
évolution s'est manifestée dans le domaine de la
topographie, portant notamment sur

1° la substitution, dans bien des cas, de mesures
linéaires aux mesures angulaires ;

2° des changements de variables dans les calculs de

compensation ;

3° l'emploi de moyens graphiques pour calculer les

réseaux.

Le terme topographie est pris ici dans son sens le

plus large.
Considérons un réseau de points P,- (i 1, 2 n)

non encore compensé ; un premier calcul sommaire
fournira des valeurs approchées, provisoires, des divers
éléments à déterminer. Cela amène à distinguer, en
dehors des quantités mesurées, des valeurs provisoires
des longueurs, angles, coordonnées, qu'il ne faut pas
confondre avec les éléments définitifs, compensés.

P«

Fie. 1.
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En particulier les coordonnées des sommets, connues
approximativement, sont corrigées de quantités dxt et
dyt lors de la compensation. C'est la méthode classique
de la variation des coordonnées.

Le quadrilatère complet (fig. 1) est un élément essentiel

d'un réseau ; en représentation plane conforme, qui
est de règle, un côté quelconque P3 P4 forme avec sa

corde deux petits angles r et r' dont il est fait pour
le moment abstraction.

Désignons par Alt A2, At An, les angles
mesurés ; une fois la compensation achevée, Au prendra
la valeur At et on aura

(1) vk (At — A't) + (A't — At) dAt + ft

avec la condition [pvv] minimum Z (pvv)

les p étant les poids respectifs des angles. A't est donc
une valeur transitoire, provisoire, qui doit cependant
être calculée avec précision. Fréquemment on mesure
non pas des angles mais des directions ; ce cas est ici
laissé de côté pour ne pas trop allonger le présent
article. Les termes absolus ft sont assimilés à des quantités

directement mesurées pour l'attribution des poids,
car A't est indépendant des observations ; certains ft
peuvent être nuls.

Formation du système résiduel
C'est l'opération essentielle, parfois un peu complexe.

Sur les 2n coordonnées, quatre peuvent être choisies
arbitrairement au point de vue de la compensation si
le réseau est libre. Dans le cas de mesures linéaires,
trois coordonnées seulement ont des valeurs arbitraires.

Considérons l'angle P1P2P3 (fig. 1), par exemple :

dA2 d arc tg 1 + m1m2
(mx et m2 coeff. angulaires)

(2)

dA2
dA»

dAt — fi

h + vz Pi [dxi, dyu dx2, dy2, dx3, dy3)

h+v3 F3(
e4 F4

Les dA, dx. dy ne sont pas des différentielles mais
des accroissements et on néglige les termes en dx2, dy2,

dxdy dans les développements F2, Fs, Ft Le
calcul est effectué en radians ou plutôt en secondes et
les praticiens dressent en général des abaques pour
calculer rapidement les coefficients des dx, dy.

A partir du système (2), on peut concevoir diverses
solutions, selon la nature du problème.

I. Les inconnues du problème sont les dx, dy. Les dA
ne jouent pas de rôle. Le système d'équations
normales est :

• ' ddxx ddyx
d [pvv]
d dXa

0

solution qui fut déjà traitée sous tous ses aspects
([3] p. 117-142).

IL Les inconnues sont les résidus vlt v2, v„'.
Il y a autant de conditions qui lient ces inconnues

que de mesures surabondantes. Les équations y
relatives sont déduites directement de la figure ou aussi,

étant implicitement contenues dans le système (2),
obtenues en opérant des éliminations dans ce sîwitème.
Le degré de surdétermination du réseau fournit le

nombre de conditions. Entre les quatre angles
intérieurs du quadrilatère P^PJP^P^ par exemple, on aura :

dAx + dA2 + dA3 + dAt 0 vx + v2 + v3 + p4 —
— (/i + k + /s + h)

où le terme absolu w — (f1 -\- f2 + /s -f- /4) exprime
une discordance.

Dans les équations en dAx, dA2, dA3 il n'y a pas
de termes absolus, car entre les réseaux provisoire et
définitif (compensé), la figure a subi une déformation
laissant subsister les relations angulaires ou autres
fournissant les conditions ; du reste le système (2) le

montre clairement.
On peut aussi établir des relations entre les sinus

des angles, notamment en appliquant le théorème de

Céva généralisé. Dans le quadrilatère, il n'y a pas
moins de quinze manières de combiner ces sinus pour
former des équations ([4] p. 188) ; une seule est à

retenir ; des critères connus permettent au praticien de

faire un choix. On aboutit à des développements tels

que :

(4) a1dA1 + a2dA2 + a3dA3 +
a1v1 + a2v2 + a3v3 + + w' 0

où w' — (aji + «2/2 + aj3 +
Ce terme absolu étant déduit du système (2) où, le

plus souvent, exprimé en fonction des angles ou
lignes trigonométriques de ceux-ci ; le calcul de

terme est parfois assez fastidieux. D'autre part, sans
connaître ces w, w' il est possible d'effectuer la
compensation en ce qui concerne les poids des inconnues

et de fonctions de celles-ci.
Désignons encore par pt les poids primitifs, par p't

ceux des binômes (— ft + vt) c'est-à-dire les poids
nouveaux, amplifiés grâce à la compensation ; on sait
([3] p. 159) que

(5) [p : p']? nombre des mesures non
surabondantes.

de

ce

Ainsi pour k 1 on

(6)

J_
P'i Pi

Pi M.Pi

2

ß-. 2
.Pi

2

Pi i

a

p.i.p -• 2
P

P-3
.P

où les a, b, c, d sont les coefficients des vx, v2, f>3

dans les équations de condition ; certains coefficients
sont nuls.

Application :
Le petit réseau de Schwerd (Speyer-Mannheim) est

typique, étant caractérisé par une disparité de poids
extrême

7 < pt < 101

le calcul donne : 0,06 < (pt : p't) < 0,69.

C'est le poids primitif le plus fort qui est le moins
amplifié (0,69), tandis que l'angle le plus petit bénéficie
du quotient p : p' le plus favorable (0,06).
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III. Les inconnues sont les variations angulaires dAt.
Cette solution est assez nouvelle (voir [5]). C'est un

cas où les inconnues sont liées par des conditions dont
les équations ont la forme :

(7) [atdAt] 0 [bkdAk] [ctdAt]

Bien entendu, tous les dAt ne figurent pas dans une
même équation. Parmi les solutions à envisager, on
peut en retenir deux :

1° On commence par éliminer, en faisant un choix
judicieux, des éléments mesurés qui sont en
surnombre. Le problème se présente alors sous une
forme familière dont la solution est aisée.

2° La compensation sera fractionnée et comprendra
deux phases. Dans le système résiduel (2), le
nombre d'inconnues dAt doit être inférieur à

celui des équations, ce qui implique des éliminations

et, dans chaque cas, le calculateur est juge.
Le cas se présente aussi où, après avoir terminé
une compensation, le praticien procède à des

mesures complémentaires.

La solution par fractionnement en deux phases a
ceci de particulier qu'elle donne lieu à trois valeurs

pour l'erreur moyenne quadratique pour une observation

de poids un. La méthode est aussi dite mixte.

Mesures linéaires
Le problème des mesures linéaires est devenu actuel

mais n'a pas encore été traité dans toute son ampleur,
surtout en ce qui concerne le calcul des réseaux déterminés

par ce moyen. En particulier la question des

poids à attribuer aux mesures se révèle assez complexe
([1] p. 22).

Considérons encore le quadrilatère P\P2P3Pi ; sur les

six côtés un est surabondant, d'où le système résiduel
([4] p. 171) :

dl1= — fl+v1= a\(dx2— dxx)-\-
+ b\{dy2 — dyJ
h+v2 a\(dx3— dxj)-\-
+ b'2(dy3 — dy1) a(8)

dl2
b'*

dls= — h+v9 Jda

b'e(dy*—dy3

les dl jouant ici le rôle des dA. On peut poser dxx
dy-i dx2 0 au point de vue de la compensation.

Si l'on ajoute un point PB, le nombre des côtés mesurés

peut être porté à dix, sur lesquels trois sont surabondants.

L'établissement des équations de condition est plus
laborieux que dans le cas d'observations angulaires,
surtout en ce qui concerne le terme absolu w (discordance).

Le réseau est fractionné en quadrilatères
complets si c'est possible.

En principe il y a deux modes de calcul :

1° Les équations de condition étant implicitement
contenues dans le système résiduel, on procède
à des éliminations judicieusement conçues. L'emploi

des machines à calculer modernes facilite ces

éliminations.
2° L'examen de la figure permet de poser de suite

les conditions, en exprimant par exemple qu'un

certain angle est susceptible d'être déterminé de
deux façons différentes ([1] p. 31) en fonction
d'éléments linéaires.

Si les points PyP2P3Pi sont situés à peu près sur
un même cercle, on a :

(9) PXP3 X P2P4 S PJ>2 X P3Pt + P2P3 X_Py.Pt
(formule de Ptolémée)

ce qui suffit en général pour ealculer les coefficients
des vlt v2, v3 mais pas le terme absolu, d'où une
complication. La détermination des poids après!
compensation est du reste indépendante des w.

Il n'y a qu'à appliquer la formule (6) en remarquant
que :

(10)

Pi

1

Pi
-5>ffiHï=5>^.1

p

5.2

2.X2
p

1

les a,-, bi, et étant les coefficients des Vi ([3] p. 159).

Application :
Considérons cinq points P\P2 ¦ ¦ ¦ Pg constituant un

pentagone à peu près régulier et les dix longueurs
mesurées entre ces points pris deux à deux.

1° Admettons des poids px p2 p]0 1

(i 1, 2, 10).
Il résulte de la formule (6) :

(P • P') 0,75 pour les cinq côtés
(p ; p') 0,65 pour les cinq diagonales

10

2, (p : p') 7 nombre de mesures non surabondantes.
1

L .1 1 .L.
'1 h '3 no

2° Admettons px : p2 : p3 : p10

(poids inverses des longueurs mesurées)

on trouve (p : p') 0,80 pour chacun des cinq côtés
et (p : p') 0,60 pour chacune des cinq dia¬

gonales

2 (P : P') 7.

Dans les deux cas, ce sont les poids des diagonales
qui sont amplifiés dans la plus forte proportion.

Encore une fois, l'élément complexe du problème est
la formation des poids plt p2, p10. Parmi les
suggestions faites à ce sujet, il y a heu de citer la suivante :

les points Plt P2, P3 seraient choisis sur une même
droite et constitueraient donc une ponctuelle rectiligne,
les longueurs mesurées étant toujours Px P2, Px P3
PyP5, P%P3, P2P4, • • • PiP&, ce qui implique une
compensation. A partir d'un point S, situé en dehors de
la ponctuelle, on mesurerait angulairement, avec une
haute précision, les directions SPlt SP2 SPS ou les

angles compris entre ces rayons pris deux à deux. Une
correspondance projective est ainsi établie

PA P8Â S(PtP2 Ps).
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On forme des groupes de quatre éléments en calculant
les rapports anharmoniques (P1P2P3P4) • • • (Pz^z^i^s)
et en confrontant ces valeurs avec celles obtenues par
voie angulaire (faisceaux de rayons). Les poids des

valeurs angulaires seraient considérés comme connus,
tandis que diverses hypothèses seraient faites pour les

poids des mesures linéaires. Il ne serait pas difficile
d'établir laquelle de ces hypothèses donne heu à la
meilleure concordance entre les rapports anharmoniques
déterminés en fonction d'éléments angulaires et linéaires.

Cette question des poids étant élucidée, et si les

dl-y, dl2, dl3 sont choisis comme inconnues, il faut
éventuellement fractionner la compensation. Tout
dépend de la nature du problème.

Compensations fractionnées
Le lecteur trouvera un cas concret de ce mode de

calcul dans [5]. Sous une forme générale le système
initial est

(11)

Vi üiX

(12)

(13)

% + c(z — k (pi 1, i 1, 2, 3

d'où [av] [bv] [cv] 0.

*=[cri], y=[pq, z=[yl]
W [6p] [cy] 1

[aß] [ay] [6a] 0

[av] 0 [M [yv].
([3] p. 77-87)

Les a,-, ß,-, y,- étant des multiplicateurs connus.

2e phase : Il y a encore des équations de condition
dont on a fait jusqu'ici abstraction (fonctions F-^ 0,
F2 0 liant les inconnues).

Il en résulte des accroissements v\ pour les f,- et
§, T), Ç pour les inconnues qui deviennent x -\- %, y -\- T\,

(14) Vi=vi+v'i-, [VV] [w] + [vV]
car [w'] 0 ([4] p. 118).

Vi v( + a,-£ + 6,ti + Cj§

et en tenant compte de (13)

(15) S =[<*/], n [fV], l [yv']

expressions qui, introduites dans

Fx (* + e-, y ¦+ Ti, « + ö'•= 0

F't (*+ 6 y + n, * + i) 0

nous ramènent à une forme connue de compensation
mais avec des développements un peu plus longs. On

peut calculer le poids de fonctions

[?.•& + «*)]

où les facteurs <p< sont connus.
De plus, il faut confronter les trois valeurs :

[vv] : (n — u), [v'v'] : r et
[VV] :(n — u+r) ici u 3 ; r 2

suivant que l'on considère chaque phase séparément
ou l'ensemble de la compensation. Théoriquement, ces

trois résultats devraient concorder.
D'autres problèmes peuvent être posés, tels que le

tracé des ellipses d'erreur relatives aux sommets du
réseau ; dans la littérature ces ellipses sont en général

considérées isolément, individuellement, tandis que
dans la pratique elles sont parfois groupées et mutuellement

liées. Il faut tenir compte de cette corrélation
et la géométrie synthétique est applicable avec avantage

dans certains cas (voir [5]).

La déformation des réseaux en représentation plane
conforme

Il a été fait abstraction jusqu'ici de la courbure des

côtés PjP2, P\P3 '¦ ¦ ¦ La figure 1 montre, pour un de

ces côtés, en quoi consistent les corrections ou réductions

r, r' ; celles-ci sont négligeables en général pour
les réseaux très secondaires. Des abaques fournissent
de suite ces réductions ou, de préférence, les somme
(r + r'), différence (r — r'), quotient (r : r') en faisant
abstraction des signes. Le cas où la ©ourbure change
de signe entre deux sommets consécutifs est ici laissé
de côté.

Formules initiales
L'équation d'une surface rapportée à son plan

tangent et à des tangentes principales est

s8 y2 ¦

2RX + 2i?2 "•" " ' •

où Ri et R2 sont les rayons principaux de courbure

Ixdx ydv\2
ds2 dx2 + dy2 + (jf-+ Y-] +

A l'élément ds correspond dans le plan l'élément
a*iS mds

dS2 dX2 -f dY2 (X, Y coordonnées planes)

X x Y + v3+

u3 et v3 désignant les groupes de termes de 3e ordre
dont le rôle est prépondérant

dS2 dx2 + dy2 +

+ 2 (^dx2 +^dxdy+3-^ dxdy +^ dy2) +\dx dy J dx dy I
1

m2ds2 (1 + 2m0) (dx2 + dy2 + ™ (xdx + ydy)2) +

où R2 RxR2, tandis que m0 désigne le groupe homogène

de 2e ordre dans m. En identifiant mutuellement
les coefficients respectifs de dx2, dxdy, dy2 dans ces

développements puis intégrant on obtient :

(16) y 2Bxy

relation dans laquelle on peut substituer les (X, Y)
aux (x, y) (voir [5]) et

(17)
4fl2 + -3 (x3—3xy2)+ g- (Zxhj — y*)

y3 -)- x2y A B
3(^-3^+3(32/%-^)

(18)

m2

X+iY X0+ iY0

+ ^(A-Bi)(X0 + iY0)* + WÊÊ
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Cas où les variables sont dissociées
C'est le plus fréquent en pratique ; un seul

mètre n définit la projection n ^ 1).
para-

(19) i= 4fl2
1 — n)X2+ (l + n)Y

Pour m donné et n variable, c'est l'équation d'un
faisceau circonscrit à un carré. La courbure C des côtés
du réseau se déduit de (19) par la formule de C. M. Schols
([2] p. 150 et [5]). On trouve

C--

(20)

^Logm 1 /dm Tr
T»r — bp sm V -
dN m va

dm
cos V]

1

2R2

dS sin V

(1-

dY,

n) X sin V — (1 -

dS cos V dX

dY

- n) Y cos V

([5], [2] p. 149).

où N désigne la direction normale à l'arc de
transformée.

On vérifie sans peine que pour un contour fermé tel
que jPjPgP^P^Pj, la variation totale de courbure

§ CdS

est indépendante du paramètre n définissant le système
de projection conforme.

Il y a corrélation entre les formules de Schols et de
Gauss-Bonnet. En un point, il y a trois directions,
pour lesquelles C 0, C maximum et X sin V -f-
-f- Y cos V 0 (C indépendant de n) ; ces deux
dernières directions peuvent coïncider en certains points.

De plus, pour un côté quelconque P3Pt, l'expression

(21)

J 4

/ CdS

est indépendante du paramètre n si P3P^ est la corde
d'une hyperbole ayant les axes de coordonnées comme
asymptotes
tandis que le quotient r : r se déduit de r : r' ^. C : C"
(C, C courbures aux premier et second tiers du côté).

(22)
Enfin pour le maximum de C on a (voir [5]) :

(23) Ca W2^ 2X2 fl sys

En appliquant la formule (19), on trouve pour le
territoire suisse : m ^ 1,000112 pour n — 0,45. Si
l'on cherche à réduire le plus possible le maximum de
courbure Cmax, il faut adopter le paramètre n — 0,24
et alors m ^ 1,000159.

Une suggestion formulée par G. Darboux tend à
rendre minima la valeur moyenne du carré du gradient
de Log. m pour le territoire considéré. Cette valeur M
s'exprime par :

(24)

M f(dLogm\2 dhoemX2] r r
dY J \dXdY : I I dXdY

Le numérateur de cette fraction pouvant être converti
en une intégrale curviligne, le contour fermé étant une
des courbes définies par la formule (19).

0.6

o?s

M

Fis. 2.

Et l'on constate que les termes en n s'éliminent dans M

pour toutes les courbes appartenant à un même faisceau
m const. Les considérations qui précèdent contribuent

à fixer le choix du paramètre n. Si les variables
ne sont pas dissociées, les résultats acquis ci-dessus
subsistent. On voit combien les systèmes conformes se

prêtent bien au calcul des réseaux. Le calcul graphique
des réductions r, r' est immédiat.

Un côté primordial du réseau suisse est Feldberg-
Lägern (F-L)

Xp — A"z= 43,35 km.
(r 6",76, r' 5",65).

Yr Yi 30,2 km.

L'abaque donne immédiatement : r -— r' 1",11

n — 1 ; (sexag.)

tandis que pour Xp 102,75 km, X& 59,4 km
on lit r : r 1,20 (chiffres soulignés).

D'autres abaques existent pour (r -f- r'), toujours en
valeurs absolues (voir [5]). Pratiquement, leurs échelles
seront en corrélation avec la précision désirée.

Les lignes qui précèdent donnent un aperçu très
sommaire de méthodes nouvelles ; en particulier pour
les compensations on recourt parfois à des symboles.
Au point de vue didactique, cela peut présenter de
l'intérêt ; ces symboles ne procurent aucun résultat
nouveau et n'apportent aucun allégement lors d'applications

numériques.
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