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SOLUTION AMELIOREE DE L'EQUATION DIFFERENTIELLE DE

LA LIGNE ÉLASTIQUE D'UNE POUTRE SOUMISE Ä LA FLEXION

par PAUL ROSSIER, professeur, Genève

En résistance des matériaux, on montre que la ligne
élastique d'une poutre soumise à la flexion satisfait à

l'équation

(1! MR K,

où M est le moment fléchissant.
R le rayon de courbure et
K une constante égale au produit du module d'élasticité

par un certain moment d'inertie de la section.
Le rayon R est

Le choix fait plus haut des axes permet de poser, en

nous limitant aux termes en x6.

y a2x2 + O3.T3 -f- aixi + o5.r5 -f- atx6,

avec a2 positif.
Cela fait, calculons y' et y" ; ce sont des polynômes

de degrés 5 et 4 et substituons dans l'équation (3), en
allant jusqu'aux a;4, et comparons les coefficients des

mêmes puissances de x dans les deux membres. Il vient
ainsi successivement :

i? \/(i±j/T.
y

Eliminons la racine par élévation au carré ; l'équation
(1) prend la forme

(2) K2y"2 M2(l +y'2f.
Pour intégrer cette équation différentielle, les

ingénieurs opèrent comme suit : ils placent l'origine en un
point invariable de la ligne élastique et l'axe des x
tangent à celle-ci. Comme la courbe cherchée est peu inclinée

sur l'axe des x, ils négligent y'2 devant l'unité ;

y reste seul et l'intégration se ramène à deux quadratures.

Comme dans les cas de la pratique, M est un
polynôme, ces opérations conduisent à un y qui est lui
aussi un polynôme dont le degré dépasse celui de M de

deux unités. Le problème est ainsi résolu sans difficulté.
Proposons-nous d'examiner l'erreur faite en posant

y'2 0. Pour fixer les idées, traitons le cas de la poutre
encastrée à une extrémité et soumise aux divers cas de

charge suivants :

I. Moment fléchissant constant (flexion circulaire) ;

II. Force unique à l'extrémité ; le moment varie
linéairement ;

III. Charge uniformément répartie ; le moment est

une fonction quadratique ;

IV. Charge décroissant linéairement de l'encastre¬
ment à l'extrémité libre et s'annulant en ce

point ; le moment est donné par une fonction
cubique.

De façon générale, nous pouvons poser :

M m0 + mxx -\- m%x2 -f- m3x3.

Sauf m0, certains de ces coefficients sont nuls dans les

cas I à III.
Pour alléger les calculs, posons encore :

M
Te p -f- qx -f- rx2 + ta3.

L'équation (2) devient

P mo
~2"== TT

q
«3 6

mx

M'
2r + 3/>3 2m2K2 + 3m03

24 24 Ä3

t + 3p2q m3K2 + 3m02mx
20 20K3,

15p5-
a6

2p2r + 15pç2
_24CT~

15m05 — 2m0! m2K2 + l5m0m02K2
240X5

Les deux premiers coefficients a2 et a3 sont ceux de

la théorie des ingénieurs. Pour les derniers, cette théorie
donne :

a ttï12 _ 12K
t

20 20iT
0.

(3) y"2 (p + qx + r.T2 + /.r3)2 (1 + ;/2)3.

Ainsi, la théorie des ingénieurs donne correctement
les coefficients des deux premiers termes du développement

en série de y. Pour les termes suivants, elle est en
faute.

Cela est très frappant dans le cas de la flexion circulaire.

L'équation (1) montre que la courbe élastique est

un cercle. La théorie simplifiée donne une parabole. La
théorie plus complète fournit les termes suivants :

y 2K ^ SK3 ^ 16/C5 '

Ce sont les premiers rermes du développement d'un

cercle de rayon La théorie simplifiée ne donne que

le premier terme.
Pour nous rendre compte de l'ordre de grandeur de

la différence entre les deux théories, examinons le cas

suivant, où les efforts et les déformations sont
considérables :

Module d'élasticité 2.107 tm~~3 (acier),
Moment d'inertie 5.10-7 m* 50 cm* (cela

correspond à peu près à une section rectangulaire de
5 cm de hauteur et de 4,8 cm de base). Il vient
K 10 tm2.
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I II III IV

m„ 1 1 0,5 0,33333
">i 0 -1 -1 — 1

m? 0 0 0,5 1

m3 0 0 0 — 0,33333
a2 a\ 5.10-2 5.10-2 2,5.10-2 1,6667.10-2
a3 a'3 0 — 1,67.10-2 -1,67.10-2 — 1,6667.10—2
ai 1,25.10—* 1,25.10-4 4,23.10-3 8,3333.10-3
a\ 0 0 4,17.10—3 8,3333.10—3
a5 0 -1,5.10-* — 3,75.10-5 -1,6833.10-3
"'5 0 0 0 — 1,6667.10—3
a6 6,25.10—7 6,31.10-iî 3,02.10-5 2,18.10-5

/(mm) 50,18 33,18 12,55 6,672
/'(mm) 50 33.33 12,40 6,667
A/(mm) 0,13 - 0,15 0,15 0,005

^ (%) 0,26 — 0,45 1,2 0,08

Poutre de 1 mètre de long soumise :

I. à un moment constant de 1 tonne-mètre,
II. à une charge de 1 tonne en l'extrémité,

III. à une charge uniformément répartie de 1 tonne,
IV. à une charge de 1 tonne, répartie linéairement,

nulle à l'extrémité libre.

Le tableau donne les valeurs des coefficients a de la
théorie complète et des coefficients a' de la théorie des

ingénieurs, les flèches en l'extrémité libre / et /' (des

A/
ingénieurs), la différence A/ et sa valeur relative

/
Ainsi que l'on pouvait s'y attendre (sinon la réalité

aurait brutalement prouvé aux ingénieurs l'insuffisance
de leurs hypothèses et de leurs calculs), les différences
entre les deux théories sont petites, généralement
inférieures à 1 %. Or, il est difficile de connaître les modules

d'élasticité avec cette précision. Ainsi la théorie des
ingénieurs est satisfaisante. Elle l'est d'autant plus que
dans le développement en ' série de puissances de la
déformation y, les deux premiers coefficients sont
correctement déterminés par la théorie simplifiée.

Dans toute théorie, il faut soigneusement distinguer
les hypothèses de caractère physique faites pour
simplifier un problème de celles qui sont ajoutées pour
rendre moins pénible la solution des problèmes
mathématiques ainsi posés. Les hypothèses de la résistance
des matériaux, par exemple le fait de négliger les
contractions et dilatations transversales, la continuité et
l'homogénéité de la matière, sont des hypothèses de
caractère physique. Mais le fait de négliger un terme
parce qu'il gêne le développement mathématique est
une sorte de défaite du mathématicien, chose que celui-
ci n'aime pas, même si les corrections qu'il apporte sont
pratiquement négligeables aux yeux du praticien.

ECOLE POLYTECHNIQUE DE L'UNIVERSITÉ
DE LAUSANNE

Hommage au professeur A. Stucky à l'occasion du

trentième anniversaire de son enseignement dans notre
Ecole polytechnique

Les anciens élèves du professeur Alfred Stucky ont
appris il y a quelques jours, par le «Bulletin n° 1 de
l'A3 E2 P. L. », l'anniversaire de sa trentième année
d'enseignement.

C'est en 1926 en effet que M. Landry, alors directeur
de l'Ecole d'ingénieurs de Lausanne, qui s'y connaissait
en hommes et avait pu apprécier les capacités techniques,

le jugement rapide, l'audace réfléchie et la clarté
d'esprit de M. Stucky, le fit appeler au poste de professeur

extraordinaire d'hydrométrie et de travaux hydrauliques.

M. Stucky nous permettra de rappeler, à l'occasion
de cet anniversaire, quelques traits de sa brillante
carrière :

Né en 1892 à La Chaux-de-Fonds, M. Stucky fit ses
études à l'Ecole polytechnique fédérale, dont il obtint
le diplôme d'ingénieur civil en 1915, et le doctorat es

sciences techniques en 1921 par une thèse fort remar¬

quée sur le calcul des barrages arqués. En 1915 déjà,
à 23 ans, il fut chargé d'une mission scientifique au
Portugal. Entré ensuite au bureau d'études Grüner de

Bâle, il en devient bientôt l'associé et y élabore entre
autres le projet de barrage de la Jogne, dont le type,
à l'époque, constituait pour l'Europe une audacieuse
nouveauté.

Dès sa nomination à notre Ecole, M. Stucky s'établit
à Lausanne et va mener de front son enseignement et
son propre bureau technique. Il est immédiatement
appelé à collaborer à des travaux importants. D'emblée,
il s'impose comme constructeur de barrages. Son
activité, loin de se borner à la Suisse, s'étend rapidement
dans tous les pays voisins et hors d'Europe, en Afrique
du Nord, au Katanga, au Pérou, au Venezuela par
exemple. Jusqu'à ce jour, il a participé à l'édification
de trente-quatre barrages.

Dans chacune de ses entreprises, le professeur Stucky
apporte sa note personnelle, innovant constamment,
perfectionnant sans cesse les techniques de construction
et les méthodes de calcul. Ses deux activités de professeur

et d'ingénieur-conseil se développent parallèlement

et s'enrichissent l'une l'autre : ses étudiants
récoltent les fruits de ses expériences pratiques, tandis
que ses collaborateurs bénéficient des études théoriques
destinées à son enseignement.
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