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10. Conclusion

Aux différents cas traités ci-dessus, correspond, d'une
façon générale, le schéma fonctionnel représenté par la
figure 38 avec, tant dans la chaîne d'action, que dans
la chaîne de réaction, des éléments non linéaires
et deux autres éléments linéaires, mais présentant un
retard par rapport au temps. Pour des oscillations de

faibles amplitudes, les critères de stabilité classiques

peuvent être utilisés, par contre, pour des amplitudes
importantes et des asservissements positifs très forts,
peuvent se produire des instabilités 1>3.

1 Traduit de l'allemand par M. Cuénod,. Dr. es sciences techniques,

Genève.
Littérature : « Drei Beispiele aus der Elektroservotechnik », par

Eduard Gehecke. (Z. für angewandte Mathematik und Physik
[ZAMP], vol. V, 1954, fasc. 6, pages 443 à 465.)

INTRODUCTION Ä LA THEORIE DES

DISTRIBUTIONS POUR L'ÉTUDE DES RÉGLAGES LINÉAIRES

par E. STIEFEL, Professeur à l'Ecole polytechnique fédérale, Zurich1

Définition de la linéarité

Une des notions fondamentales de la servo-technique
est celle des « dispositifs de transfert » représentés en
principe par la figure 1. C'est un organe qui, excité par
la variation d'une certaine grandeur d'entrée (input),
est caractérisé par une certaine « réponse » de sa grandeur

de sortie (output). Excitation et réponse sont des

fonctions du temps « t ». Un exemple d'un tel dispositif
est donné par un circuit électrique. La grandeur d'entrée

est la tension appliquée à ce circuit. La grandeur
de sortie est le courant qui parcourt ce circuit. Il serait
facile de donner d'autres exemples de dispositifs de

transfert parmi les appareils mécaniques ou hydrauliques.

Nous limitons nos considérations aux dispositifs de

transfert linéaire, c'est-à-dire à ceux pour lesquels le

principe de superposition est valable. Ce principe
s'exprime mathématiquement de la façon suivante :

Lorsque pour une excitation f^t) un organe de transfert

donne la réponse gx(t) et que pour une excitation
f2(t) sa réponse est g2(t), il doit en résulter que pour
une excitation égale à la somme cj-^t) -f- c^^t), sa

réponse doit être égale à la somme Cj^g^t) -\- c2g2(t), les

paramètres Cj et c2 étant des constantes quelconques.
Les notions de « linéarité » et de « non-linéarité » sont
fondamentales en mathématiques ; il n'existe aujourd'hui

de théories générales et complètes que pour
l'étude des phénomènes linéaires.

Suites de temps

Ainsi que le représente la figure 2, une fonction
quelconque du temps t peut être décomposée en première
approximation en une suite d'impulsions ayant une
base uniforme égale à A et comme hauteurs les ordonnées

/q, /j, ...,/», et se suivant à l'intervalle h.

1 Exposé présenté au cours de perfectionnement organisé par
l'A.S.P.A. les 7 et 8 décemhre 1956, à Zurich, sur le thème « Méthodes
modernes pour l'analyse de phénomènes dynamiques dans la
mécanique, l'électrotechnique et l'automatique ».

Nous appelons « suite de temps », la suite (f0, flt f2,

h qui correspond à la fonction f(t)

ier la suite It> 0, 0, OlConsidérons en particul

qui ne comprend qu'un seul terme d'amplitude -r> les

autres termes étant nuls ainsi que le représente la
figure 3.

La suite caractérise une fonction discontinue pour
t h, fonction que l'on peut définir comme étant une
« impulsion unité » et à laquelle on a donné le nom de

« suite de Dirac » en l'honneur du physicien Dirac qui
le premier a opéré systématiquement avec des fonctions

de ce genre pour l'étude de phénomènes physiques.

tm- •gtr)
SEV2S3P5

Fig. 1. — Principe d'un dispositif de transfert.

Nous admettons qu'un dispositif de transfert a été
excité par une fonction de ce genre et qu'il en résulte
la réponse <p(<) représentée par la figure 4 et appelée
« réponse impulsionnelle ». Nous admettons que la
suite (a>0, Çj, q>n) qui caractérise cette réponse soit
connue. Quelle sera la réponse de ce dispositif pour
une variation quelconque de sa grandeur d'entrée On

peut répondre à cette question en faisant usage du
principe de superposition. Ainsi que l'indique la
figure 2, on peut décomposer la fonction f(t) en une
suite d'impulsions qui se suivent à l'intervalle h. La
réponse à la première impulsion d'amplitude f0 e-t
caractérisée par la suite de temps suivante :

fc/ofo. Ä/o9i> Ä/o?2. ¦ • •, Ä/o9»> • • •

La deuxième impulsion caractérisée par l'amplitude f1

et retardée de h par rapport à la première impulsion,
conduit à la réponse suivante :

0. */i9o> Ä/i9i> ¦¦•> A/ifn-i> •••
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Fig. 2. — Décomposition d'une fonction en une suite
d'impulsions.

On obtient ainsi comme schéma de calcul :

Ä/o9o> Ä/o9i> Ä/o92> Ä/o93> •••» hfo<?n, ¦¦¦
Ä/i9o> Ä/l9l> Ä/l92> • • •. hfi<fn-i, ¦ ¦ ¦

hh%, hh<Vi> ¦ ¦ •. hhVn-î, ¦ ¦ ¦

r0 9, %

Fig. 3. — Suite de Dirac

Fig. 4. — Exemple d'une
réponse impulsionnelle cp(()
et de sa décomposition en

une suite d'impulsions.

A/„ç0,

En utilisant le principe de superposition, on obtient
les termes de la suite qui caractérise la réponse cherchée

g(t) provoquée par l'excitation f(t) en effectuant
la somme des différentes colonnes de ce schéma de

calcul. Ainsi le nième terme de la suite (g0, glt g2,

gn, est donné par la formule suivante :

gn Ä(/o9» + /i9»-i + /29»-s + • • • + A»9o)- (*)

On dit que la suite g(t) est obtenue par le « produit
composé », ou « produit de composition » des suites f(t)
et <p(t). On retrouve ainsi le principe de Duhamel qui
énonce que la réponse d'un système de transfert linéaire
est donnée par le produit de composition de son excitation

par sa réponse impulsionnelle.

Exemple : f(t) (0, 1, 2, 3, (2)

1119(0 ' 2' 3' 4'

(0 (0, 1,
13

3'

Le produit composé de deux suites de temps permet
ainsi de calculer en première approximation la réponse
d'un système linéaire lorsque sa réponse impulsionnelle

est connue. Cette méthode de calcul a été découverte

par A. Tustin1, puis développée en Suisse par
M. Cuénod 2 qui l'a illustrée par de nombreux exemples.

Relevons que le produit composé s'effectue selon les
mêmes règles que celles qui régissent le produit de

polynômes en algèbre élémentaire, et que l'on peut
également effectuer le quotient composé de deux suites
comme indiqué en annexe.

1 A. Tustin : A method of analysing the behaviour of linear systems
in time-series. (The journal of the Institution of Electr. Eng. 1947,
vol. 94, N° 1, part II A.)

a M. Cuénod : Contribution à l'étude de phénomènes transitoires à
Vaide de. suites de temps. (Bulletin technique de la Suisse romande
1949, N° 16.)

Méthode de calcul à Vaide de suites (Dissertation E.P.F., 1955).

La suite de Dirac iy> 0, 0, 0, joue le rôle de

« suite unité ». Si dans la formule (1) on admet que la
suite (<p0, q>j, <p2, est égale à la suite de Dirac, on
obtient comme résultat que gn /«• Autrement, la
multiplication d'une suite par la suite de Dirac laisse
cette fonction inchangée.

Passage à la limite

Le calcul à l'aide de suites est d'autant plus exact
que l'unité choisie h est petite. On peut écrire la
formule (1) de la façon suivante :

g(t) h
/(o)ç(t) + f(h)y(t — h) /(2A)9(t — 2Ä) +

+ • ¦ • + /«9(*:

Lorsque l'on fait tendre h vers zéro, on obtient :

(0 =//(t)«P(« —T)rfr. (3)

Ce résultat est connu sous le nom de « l'intégrale de

composition ». Cependant ce passage à la limite n'est
pas admissible sans autre en ce sens que la notion
« d'impulsion » telle que nous l'avons définie s'évanouit.
Ainsi que le met en évidence la figure 3 lorsque h -*¦ 0,
l'amplitude de l'impulsion unité tend vers infini, cette
impulsion unité dégénère en une fonction de Dirac.
Cette fonction ne peut être traitée avec les moyens
classiques de l'analyse. Cette difficulté a été ignorée du
temps de Heaviside ; ensuite elle a été contournée au
moyen des transformations de Laplace. Malgré tout le

parti que l'on peut tirer de ces transformations, elles
ne sont pas adéquates pour traiter des fonctions de ce

genre.
Le fait que les limites d'intégration de l'intégrale de

Laplace s'étendent jusqu'à l'infini est une source de
difficultés. Le moyen de se tirer d'affaire est d'élargir
la notion de fonction telle qu'elle est définie dans l'analyse

classique. En 1950, L. Schwartz a introduit cette
nouvelle notion de fonction généralisée qu'il a baptisée
distribution. Notre introduction à la théorie de ces
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nouvelles conceptions mathématiques est basée sur le

cours de A. Erdélyi x qui traite la théorie simplifiée des

distributions, telle que l'a développée le Polonais
J. Mikusinski.

Distributions

Nous admettons que les fonctions du temps f(t), g(t),
etc., soient définies et continues pour t > 0.

Le produit de composition défini par la formule (3)

hW //(t)9(« —T)d

de deux fonctions du temps quelconques f(t) et <p(t),

produit qui joue un rôle si important dans la servo-
technique, peut s'écrire de la façon suivante :

g f-<t-

Nous n'utilisons pas le signe d'une « étoile » entre /
et <p pour signifier ce produit. Toutefois pour éviter
toute confusion avec le produit algébrique, nous devons
faire usage d'une autre convention. Nous établissons
une différence entre la fonction «/» en tant qu'entité
(par exemple une courbe en représentation graphique)
et la valeur /(t), cette fonction au temps t (ordonnée
de la représentation graphique au temps t). Le produit
composé /.<p se distingue ainsi sans ambiguïté possible
du produit algébrique /(t).<p(t) des deux valeurs des

fonctions au temps t.
Comme pour le produit composé de suites de temps,

les règles de calcul élémentaires sont également valables

pour ce produit de composition et nous pouvons écrire :

fg gf, f(g + h) fg + fh, (fg)h f(gh).

Comme pour les suites de temps, on peut définir
l'opération inverse au produit composition, également

pour les fonctions, à condition toutefois que ce quotient
existe sous la forme d'une fonction continue ; on peut
démontrer que dans ce cas le quotient est unique. Cependant

il faut relever que ce « quotient composé » ne donne

pas toujours une fontion continue. Ainsi par exemple le

quotient composé / : / ne conduit pas à une fonction
continue g. Cela signifierait

fg f donc f(t) ff(i) g(t dr.

Pour t 0, il en résulterait /(O) 0, ce qui est une
contradiction dès que la valeur initiale de f(t) n'est pas
nulle.

Toutes les règles de calcul concernant les fractions
sont valables. Dès qu'un quotient composé de deux
fonctions continues ne « finit » pas et ne conduit pas à

une fonction continue, ce quotient est par définition
une distribution.

Cette explication peut paraître un peu abstraite. Elle
n'est pas plus abstraite que ce que les enfants doivent
apprendre lorsqu'en 5e de l'école primaire ils sont
initiés à la division. Le maître leur explique (peut-être
avec des mots différents) qu'un nombre rationnel est le
nombre obtenu par le quotient de deux nombres
entiers lorsque ce quotient ne « finit » pas. Il s'efforce

1 A. Erdélyi : Operational calculus. (California Institut of
Technology, Math. Department.)

de leur donner une représentation concrète de cette
opération en donnant l'exemple de la division en
morceaux d'un gâteau.

Ici également nous avons la possibilité d'avoir une
représentation concrète de ce qu'est une distribution.
Pour illustrer le quotient g : /, nous faisons une approximation

de f(t) et de g(t) en suites de temps et nous
formons le quotient composé de ces deux suites. La
nouvelle suite ainsi obtenue est en représentation de la
distribution g : /, représentation d'autant meilleure que
l'unité choisie « h » est faible.

Cette distribution g : / est en servo-technique celle
qui caractérise la réponse impulsionneUe d'un système
dont on connaît la distribution / de la réponse et la
distribution g de l'excitation qui a provoqué cette
réponse.

Deux distributions f : g et h : k peuvent êtrejponsi-
dérées comme étant égales lorsque

fk gh.

Les opérations au moyen de distributions sont définies

par les mêmes règles que celles qui régissent le
calcul avec des fractions.

Addition / fk

Produit de composition

gh

f h

k
A.
gk

Distributions particulières

Lorsque / est une fonction quelconque, le quotient
/ : / n'est pas — ainsi que nous l'avons déjà relevé —
une fonction ordinaire. C'est une distribution qui est
indépendante du choix de / ainsi que cela résulte de

notre définition d'égalité de deux fonctions. Nous
désignons cette distribution par 1 parce que cette
distribution joue le rôle de l'unité dans le cas de multiplication

de distributions

n / fg
i p — p ^= pxa j 6 i — a-

Pour la dernière de ces équations on fait usage de la
faculté de « simplifier » le quotient de deux distributions.

Comment se représenter exactement cette
distribution 1 Comme indiqué en annexe, le quotient
composé d'une suite de temps par elle-même, donne
toujours comme résultat une suite de Dirac représentée
par la figure 3. La distribution 1 est ainsi le rectangle
dont la largeur est nulle et la hauteur infinie que nous
avons désignée sous le nom de fonction de Dirac et que
nous définissons maintenant comme étant la distribution

de Dirac.

2. Nous désignons par « e » la fonction continue qui
est toujours égale à la valeur 1, à savoir :

¦

e(t) l. (6)

En utilisant les définitions (4) et (5) dugproduit de

composition, nous obtenons
t t

ef fe ff(r) e(t — t) dr f /(t) dr. (7)
o o

La multiplication avec la distribution e correspond
donc à l'intégration (au sens d'une intégrale indéfinie).
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Une distribution particulière qui a une grande importance

est la distribution p fournie par la valeur
réciproque de e

P =¦ (8)

Elle est représentée par la figure 5 (voir en annexe).
Pour une fonction continue et différenciable f(t), on
obtient la formule fondamentale suivante :

pf f + /(0)1 (9)

dans laquelle /' est la dérivée de /. Comme dans l'algèbre
ordinaire, nous n'avons pas besoin d'écrire le facteur
1 et obtenons ainsi

P/ /' + /(0).

Démonstration

(10)

En partant de l'équation analytique classique qui
caractérise la relation entre les valeurs de la dérivée
f'(t) et de la fonction f(t)

m f(0) + ff(T)dT

on obtient, en utilisant les relations (6) et (7), l'équation

suivante entre les fonctions / et /'
/ f(0)e + ef.

La division par e et l'utilisation de la relation (8)
donnent

-L/ D/ /(o) + /'.

Cette formule fondamentale signifie que la multiplication

avec la distribution p correspond à la différenciation.

/"
H%

/i

—-t

Fig. Distribution correspondant à l'opération de
dérivation.

pendante (t). Dans ce cas il s'agit de déterminer
l'expression analytique de cette fonction. A titre d'exemple
nous prenons la distribution

ï/ -^— (11)
p — a

dans laquelle « a » est une constante numérique.
Nous chassons le dénominateur

PV — ay 1

et divisons par p en utilisant la relation (8)

y a(ey) + e.

Si y est une fonction continue, nous obtenons en
utilisant la relation (7) l'équation suivante entre les

valeurs de fonction y(t)
t

y(t) a f y(r) di + 1.

o

Pour t 0 nous obtenons

2/(0) 1. (12)

D'autre part en différenciant cette équation on
obtient

y'(t) ay(t). (13)

La seule solution qui satisfasse l'équation différentielle

(13) compte tenu de la condition initiale (12) est

çOty

Il en résulte 6°* avec e 2,71828. (14)
p — a

Ce résultat illustre qu'à chaque expression rationnelle
de p pour laquelle le degré du numérateur est inférieur
à celui du dénominateur, correspond une fonction du

temps. Pour arriver à ce résultat il suffit d'utiliser la
décomposition en fraction simple.

A titre d'exercice, il est facile de démontrer la
correspondance suivante :

1 l^
p2 + a2 a

sin at. EU
Ces correspondances sont groupées dans des tables

qui ont été établies bien avant la découverte de la
théorie des distributions. Ainsi que les relations (14)
et (15) le laissent supposer, il suffit d'utiliser les tables
des transformations de Laplace inverses pour déterminer

la valeur des fonctions qui correspondent à une
distribution donnée (au cas où cette valeur existe) M

3. La notion « valeur de la fonction » n'existe pas

pour une distribution qui ne correspond pas à une
fonction continue. Ainsi cela n'a pas de sens de parler
de la valeur de la distribution de Dirac au temps t 0.

Tout au plus peut-on dire qu'il s'agit d'une impulsion
d'amplitude infinie et de durée infiniment courte.

Le problème fondamental de la théorie des distributions

est de déterminer si une distribution donnée est
une fonction continue et possède une « valeur de fonction

» qui soit définie en fonction de la variable indé-

Fonction de transfert en électrotechnique

Le circuit électrique représenté par la figure 6 se

compose d'une résistance R, d'une inductivité L et est
alimenté par la tension variable u(t). Ce circuit constitue

ufW^fe

-CZr-
R

L

\ f im

1 Une table très complète de ces transformations est donnée dans
la publication de Bateman : Tables of integral transforms. (Me Graw-
Hill, 1954), vol. 1.

Fig. 6. Circuit électrique composé d'une résistance R
et d'une inductivité L.



BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 293

u(t) 1

R*Lf
Ut)

SBvzssat

Fig. 7. — Diagramme fonctionnel correspondant au circuit
électrique représenté par la figure 6.

un dispositif de transfert tel que le définit la servo-
technique et tel que le représente la figure 7 avec u(t)
comme « excitation » et le courant i(t) comme réponse.
On sait que le courant i(t) est défini par l'équation
différentielle suivante :

L -=- + Ri(t) u(t).

Si au temps t 0 le courant est nul
écrire en utilisant la formule (10)

nous pouvons

Lpi + Ri

il en résulte (16)R + Lp R + Lp

i est ainsi obtenu par le produit de composition de

l'excitation u par la distribution 1 : (R + Lp). Compte
tenu du principe de Duhamel, nous voyons que
l'expression

1 1_ 1

L ' ~
R + Lp

~L
(17)

peut être définie comme la fonction de transfert ou plutôt
la distribution de transfert du dispositif de transfert
pris en considération. Nous écrivons cette expression
dans le rectangle de la figure 7 qui symbolise cette
relation de transfert. Dans ce cas particulier, ainsi que
l'indique la relation (14), à cette distribution correspond

une fonction, à savoir

La formule (16) conduit ainsi à l'intégrale de composition

suivante :

t R

T)6 dr. (18)

Cette intégrale est la solution analytique du
problème tel qu'il est posé.

Il est d'usage en électrotechnique de donner une
interprétation un peu différente de la formule (16). Par
analogie à la loi d'Ohm, l'expression R -f- Lp est
assimilée à une impédance généralisée ; en particulier le

terme Lp est assimilé à une inductance. Si dans le

circuit intervient une capacité C et que l'on définit de
1

«

même une capacitance -^-> on peut également utiliser

la loi d'Ohm pour les circuits alternatifs ainsi que les

lois de Kirchhoff.

Exemple : Machine à courant continu compoundée

La partie de gauche du schéma de principe donné par
la figure 8 représente le circuit d'excitation (impédance

R0 -\- L0p). La grandeur de sortie constituée par
le courant ip est multipliée par une constante K et

%*¦<," «?(.p

-pi

Fig. 8. — Diagramme fonctionnel d'une machine à courant
continu compoundée.

transformée en une tension qui alimente du courant i
le circuit de charge caractérisé par l'impédance R -f- Lp.
En vue d'obtenir une caractéristique déterminée de la
tension par rapport au courant, un asservissement en

retour reconduit une partie (— pi) du courant $lBs

point A ; il en résulte que lorsque le courant augmente,
l'excitation de la machine, et partant sa tension,
diminuent.

Le courant i0 est obtenu par la relation suivante :

^o + LoP

Au courant se soustrait au point A le courant pi, il
en résulte

pi

et

\R0 + LoP

K I U„

R + Lp V?,, + LoP ~P

Nous résolvons cette équation par rapport à i et
obtenons

K
(R0 + LoP) (R + pK + Lp) u0. (19)

Le facteur de u0 est la fonction de transfert <p

K
9~ (R0 + LoP)(R + pK + Lp)'

Nous introduisons les abréviations suivantes :

i?0 R + pK
a -y— et b jt-5— •

et obtenons en utilisant les tables de transformation de

Laplace

W
K

~LJL
(20)

C'est la réponse du système à une excitation ayant la
forme d'une impulsion de Dirac. Cette réponse tend vers
zéro avec le temps. Le réglage est donc stable.

Si la tention Up(t) est constante U, il en résulte en
utilisant soit le principe de Duhamel, soit la formule (19) :

i(t) U f<f(r)d-r.

En effectuant cette intégrale on obtient

KU 1
i(t)

LqL \ ab

1-6, 1
-

-r e e
b a

a
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Après un certain temps s'établit la valeur suivante

KU 1 KUit L0L ab R0(R+pK)
21)

Nous constatons avec satisfaction que notre théorie
conduit ainsi exactement au même résultat que celui
auquel les ingénieurs sont habitués depuis l'époque de
Heaviside. La différence réside dans les nouveaux
fondements de ce calcul qui satisfait la rigueur mathématique

(de même que les transformations de Laplace) et
qui répond à une signification physique plus évidente
des phénomènes.

Annexe

Opérations avec les suites de temps à l'aide d'une <t fonction
génératrice »

Il est commode d'attribuer à une suite de temps f(t)
(/„, /,, f2, fn, de façon purement formelle un

polynôme en x constitué par la série des puissances en x

U + /> + t&% + ¦ ¦ ¦ + fnXn + ^ /„s".
n=0

Nous appelons cette série la « fonction génératrice » de
la suite.

Si cp (t) (m0, mj, <p2, m„,
est une deuxième suite

et <p0 + q>lX + cp^ -f + m„i» V <pnx"

n 0

la fonction génératrice correspondante, le produit de ces
deux fonctions génératrices conduit à une nouvelle série

(/o<Po) + (/o<Pi + /l<Po) x + (/om2+ /i<Pi + /2q>o) x2 +
Ainsi que l'indique la formule (1), nous voyons que le

coefficient de x" correspond au nième terme du produit composé

de deux suites (à l'exception du facteur h). Autrement
dit:

La fonction génératrice du produit composé de deux suites
est égale au produit des fonctions génératrices des deux fonctions

correspondantes (multipliées en outre par h).
Pour effectuer le quotient composé des deux suites

correspondant aux fonctions f(t) et q>(i), il suffit de diviser les
fonctions génératrices correspondantes en utilisant les règles
classiques du calcul à l'aide de séries de puissances.

Exemple: f(t) (1, 7, 21, 35,
<p(t) (1, 4, 6, 4,

(1 + 4.r + 6s2 + 4s3 +
1 + 3x + 3s2 + Xs +

;i + lx + 21a;2 + 35s3 + •-•):(!
1 + te + 6s2 + 'tx3

3x + 15s2 + 31s3
3s + 12s2 + 13s3

3x2 + 13s3
3.r2 + 12s3

/ /lIl en résulte — — >

cp \h
3 3 1

V V h

A titre d'exercice, on peut contrôler que pour toute

fonction /((), le quotient -j correspond à la suite de Dirac

r> 0, 0, 0,

Il est également facile de prouver que

1'°'°'°' -):{!. L* l)=(i'
(Voir fig. 5.)

h2
0,0,
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Introduction

La première qualité que l'on exige d'un réglage
automatique, c'est qu'il soit stable. Nous nous proposons
d'examiner quelles sont les causes qui peuvent rendre
un réglage instable, puis les remèdes que l'on peut
apporter à cette instabilité.

Pour fixer les idées, nous prenons comme exemple le
cas du réglage de vitesse d'un groupe hydro-électrique
en service isolé tel que le représente en principe la
figure 1.

La turbine T, alimentée par la conduite forcée C
entraîne le générateur G qui débite son énergie sur la
charge K, constituée par l'ensemble des consommateurs
du réseau. Le régulateur R accouplé à l'axe du groupe
mesure la vitesse angulaire n de cet axe et commande,
par l'intermédiaire du servo-moteur S, l'ouverture l de
la turbine. Par suite de l'inertie de l'eau dans la conduite
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