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10. Conclusion

Aux différents cas traités ci-dessus, correspond, d’une
facon générale, le schéma fonctionnel représenté par la
figure 38 avec, tant dans la chaine d’action, que dans
la chaine de réaction, des ¢éléments non linéaires
et deux autres éléments linéaires, mais présentant un
retard par rapport au temps. Pour des oscillations de
faibles amplitudes, les critéres de stabilité classiques

peuvent étre utilisés, par contre, pour des amplitudes
importantes et des asservissements positifs trés forts,
peuvent se produire des instabilités 1.2,

I Traduit de l'allemand par M. Cuénod, Dr. és sciences techni-
ques, Genéve.

2 Littérature : « Drei Beispiele aus der Elektroservotechnik », par
Epvarp Gerecke. (Z. fir angewandte Mathematik und Physik
['/,;\.\II’], vol. V, 1954, fasc. 6, pages 443 a 465.)

INTRODUCTION A LA THEORIE DES
DISTRIBUTIONS POUR L’ETUDE DES REGLAGES LINEAIRES

par E. STIEFEL, Professeur a I'Ecole polytechnique fédérale, Zurich?!

Définition de la linéarité

Une des notions fondamentales de la servo-technique
est celle des «dispositifs de transfert » représentés en
principe par la figure 1. C’est un organe qui, excité par
la variation d’une certaine grandeur d’entrée (input),
est caractérisé par une certaine « réponse » de sa gran-
deur de sortie (output). Excitation et réponse sont des
fonctions du temps « t». Un exemple d’un tel dispositif
est donné par un circuit électrique. La grandeur d’en-
trée est la tension appliquée a ce circuit. La grandeur
de sortie est le courant qui parcourt ce circuit. Il serait
facile de donner d’autres exemples de dispositifs de
transfert parmi les appareils mécaniques ou hydrau-
liques.

Nous limitons nos considérations aux dispositifs de
transfert linéaire, c’est-a-dire a ceux pour lesquels le
principe de superposition est valable. Ce principe
s’exprime mathématiquement de la facon suivante :

Lorsque pour une excitation f,(t) un organe de trans-
fert donne la réponse g;(t) et que pour une excitation
[5(t) sa réponse est gy(t), 1l doit en résulter que pour
une excitation égale a la somme c¢f,(t) + cofo(t), sa
réponse doit étre égale a la somme c,g(t) + c,85(1), les
parameétres ¢; et ¢, étant des constantes quelconques.
Les notions de «linéarité» et de « non-linéarité » sont
fondamentales en mathématiques ; 1l n’existe aujour-
d’hut de théories générales et complétes que pour
I’étude des phénomeénes linéaires.

Suites de temps

Ainsi que le représente la figure 2, une fonction
quelconque du temps ¢ peut étre décomposée en premieére
approximation en une suite d’impulsions ayant une
base uniforme égale 4 h et comme hauteurs les ordon-

nées fo, f1, ++ s fus et se suivant a l'intervalle A.

1 Exposé présenté au cours de perfectionnement organisé par
I'A.S.P.A. les 7 et 8 décembre 1956, a Zurich, sur le théme ¢ Méthodes
modernes pour l'analyse de phénoménes dynamiques dans la méca-
nique, I'électrotechnique et 'automatique ».

Nous appelons « suite de temps », la suite (fo, f1, fo - - -
fa, ...) qui correspond a la fonction f(t).

- . 1
Considérons en particulier la suite (71’ () S0 S O)

qui ne comprend qu’un seul terme d’amplitude 7 les

autres termes étant nuls ainsi que le représente la
figure 3.

La suite caractérise une fonction discontinue pour
t = h, fonction que I'on peut définir comme étant une
«1impulsion unité » et a laquelle on a donné le nom de
«suite de Dirac» en '’honneur du physicien Dirac qui
le premier a opéré systématiquement avec des fonc-
tions de ce genre pour I’étude de phénomeénes physiques.

Ft)—— ———c——g(t)
SEV25575
Fig. 1. — Principe d'un dispositif de transfert.

Nous admettons qu'un dispositif de transfert a été
excité par une fonction de ce genre et qu’il en résulte
la réponse @(t) représentée par la figure 4 et appelée
«réponse impulsionnelle ». Nous admettons que la
suite (@g, @1, ... Pn) qui caractérise cette réponse soit
connue. Quelle sera la réponse de ce dispositif pour
une variation quelconque de sa grandeur d’entrée ? On
peut répondre & cette question en faisant usage du
principe de superposition. Ainsi que lindique la
figure 2, on peut décomposer la fonction f(t) en une
suite d’impulsions qui se suivent a l'intervalle k. La
réponse a la premiére impulsion d’amplitude f, e-t
caractérisée par la suite de temps suivante :

hfo®o, hio®1s hfoPe,

La deuxiéme impulsion caractérisée par 'amplitude f,

cws hfoPns

et retardée de h par rapport & la premiére impulsion,
conduit a la réponse suivante :

0, k190, hf1@1s - -5 hf1@n—1,
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——=f(t

7

%o

SEVe5576

Fig. 2. — Décomposition d'une fonction en une suite
d'impulsions.

On obtient ainsi comme schéma de calcul :

hio®os hfo®1s hfo®as hfo®s, -y hfo@u,
hfr@o; hiv@1, hf1®es -y Af1@u-1,
hfs®os hfsPr, ...y hjaPr—s2,

]lf'!q>07

En utilisant le principe de superposition, on obtient
les termes de la suite qui caractérise la réponse cher-
chée g(t) provoquée par l'excitation f({) en effectuant
la somme des différentes colonnes de ce schéma de

calcul. Ainsi le nieme terme de la suite (g, g, &, -- -,
2u, ...) est donné par la formule suivante :

gn = h(foPn + f1‘Pn—1 + fopn—2+ ... + [2Po)- (1)

On dit que la suite g(t) est obtenue par le « produit
composé », ou « produit de composition » des suites /(¢
et @(t). On retrouve ainsi le principe de Duhamel qui
énonce que la réponse d'un systéme de transfert linéaire
est donnée par le produil de composition de son excitation
par sa réponse itmpulsionnelle.

Exemple: f(t) = (0, 1, 2, 3, ) (2)
O |
P =Ly 3z )
5 413
g(” = <n~ la i’ 3 ’ )

Le produit composé de deux suites de temps permet
ainsi de calculer en premiére approximation la réponse
d’un systéeme linéaire lorsque sa réponse impulsion-
nelle est connue. Cette méthode de calcul a été décou-
verte par A. Tustinl, puis développée en Suisse par
M. Cuénod * qui I'a illustrée par de nombreux exemples.

Relevons que le produit composé s’effectue selon les
mémes régles que celles qui régissent le produit de
polynémes en algébre élémentaire, et que l'on peut
également effectuer le quotient composé de deux suites
comme indiqué en annexe.

L A. Tustin : A method of analysing the behaviour of linear systems
in lime-series. (The journal of the Institution of Electr. Eng. 1947,
vol. 94, No 1, part II A.)

2 M. Cuinon : Contribution a Uétude de phénoménes lransiloires a
UVaide de suites de temps. (Bulletin technique de la Suisse romande
1949, Neo 16.)

Méthode de calcul a Uaide de suites (Dissertation E.P.F., 1955).

s Fig. 3. — Suite de Dirac.
—_—t
h
SEV25577
Fig. 4. — Exemple d’une

@t

réponse impulsionnelle @(t)
et de sa décomposition en
une suite d’'impulsions.

SEV25578

1
La suite de Dirac (1? 0, 0, 0, ) joue le role de

«suite unité ». St dans la formule (1) on admet que la
suite (Qg, Py, Py, ...) est égale a la suite de Dirac, on
obtient comme résultat que g, = f,. Autrement, la
multiplication d’une suite par la suite de Dirac laisse
cette fonction inchangée.

Passage a la limite

Le calcul a l'aide de suites est d’autant plus exact
que I'unité choisie h est petite. On peut écrire la for-
mule (1) de la facon suivante :

fo)e(t) + f(h)9(t — h) + [(2h)p(t — 2k) +).
+ ... + [(O)e(0)

Lorsque I'on fait tendre & vers zéro, on obtient :

glt)y=nh <

glt) = [i(v) 9t —7) dr. (3)
0

Ce résultat est connu sous le nom de « I'intégrale de
composition ». Cependant ce passage a la limite n’est
pas admissible sans autre en ce sens que la notion
« d'impulsion » telle que nous I'avons définie s’évanouit.
Ainsi que le met en évidence la figure 3 lorsque h — 0,
I'amplitude de I'impulsion unité tend vers infini, cette
impulsion unité dégénére en une fonction de Dirac.
Cette fonction ne peut étre traitée avec les moyens
classiques de I'analyse. Cette difficulté a été ignorée du
temps de Heaviside ; ensuite elle a été contournée au
moyen des transformations de Laplace. Malgré tout le
parti que I'on peut tirer de ces transformations, elles
ne sont pas adéquates pour traiter des fonctions de ce
genre.

Le fait que les limites d’intégration de l'intégrale de
Laplace s’étendent jusqu’'a l'infini est une source de
diflicultés. Le moyen de se tirer d’affaire est d’élargir
la notion de fonction telle qu’elle est délinie dans ’ana-
lyse classique. En 1950, L. Schwartz a introduit cette
nouvelle notion de fonction généralisée qu’il a baptisée
distribution. Notre introduction a la théorie de ces
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nouvelles conceptions mathématiques est basée sur le
cours de A. Erdélyi ! qui traite la théorie simplifiée des
distributions, telle que I'a développée le Polonais
J. Mikusinski.

Distributions

Nous admettons que les fonctions du temps [f(¢), g(1),
etc., soient définies et continues pour ¢ > 0.

Le produit de composition défini par la formule (3)

s) = [1(x)glt—T)dr

de deux fonctions du temps quelconques [(t) et (1),
produit qui joue un réle si important dans la servo-
technique, peut s’écrire de la facon suivante :

g§=1-¢

Nous n’utilisons pas le signe d’une « étoile » entre f
et @ pour signifier ce produit. Toutefois pour éviter
toute confusion avec le produit algébrique, nous devons
faire usage d’une autre convention. Nous établissons
une différence entre la fonction «/» en tant qu’entité
(par exemple une courbe en représentation graphique)
et la valeur /(t), cette fonction au temps ¢t (ordonnée
de la représentation graphique au temps ¢). Le produit
composé f.@ se distingue ainsi sans ambiguité possible
du produit algébrique f(t).9(t) des deux valeurs des
fonctions au temps ¢.

Comme pour le produit composé de suites de temps,
les régles de caleul élémentaires sont également valables
pour ce produit de composition et nous pouvons écrire :

lg=sl, g+ h) =][g+[h (fe)h=[(gh).

Comme pour les suites de temps, on peut définir
I'opération inverse au produit composition, également
pour les fonctions, a condition toutefols que ce quotient
existe sous la forme d’une fonction continue; on peut
démontrer que dans ce cas le quotient est unique. Cepen-
dant 1l faut relever que ce « quotient composé » ne donne
pas toujours une fontion continue. Ainsi par exemple le
quotient composé f:f ne conduit pas a une fonction
continue g. Cela signifierait

fg=[ donc [(t)= [f("r) g(t —T) dT.
0

Pour t = 0, 1l en résulterait f(0) = 0, ce qui est une
contradiction dés que la valeur initiale de /(t) n’est pas
nulle.

Toutes les régles de calcul concernant les fractions
sont valables. Dés qu’un quotient composé de deux
fonctions continues ne « finit » pas et ne conduit pas a
une fonction continue, ce quotient est par définition
une distribution.

Cette explication peut paraitre un peu abstraite. Elle
n’est pas plus abstraite que ce que les enfants doivent
apprendre lorsqu’en 5¢ de 1'école primaire ils sont
mitiés a la division. Le maitre leur explique (peut-étre
avec des mots différents) qu'un nombre rationnel est le
nombre obtenu par le quotient de deux nombres
entiers lorsque ce quotient ne «finit » pas. Il s’efforce

U A. Erperyr: Operational calculus. (California Institut of Tech-
nology, Math. Department.)

de leur donner une représentation concréte de cette
opération en donnant 'exemple de la division en mor-
ceaux d'un giteau.

ler également nous avons la possibilité d’avoir une
représentation concréte de ce qu’est une distribution.
Pour illustrer le quotient g : f, nous faisons une approxi-
mation de f(¢) et de g(t) en suites de temps et nous for-
mons le quotient composé de ces deux suites. La nou-
velle suite ainsi obtenue est en représentation de la
distribution g: f, représentation d’autant meilleure que
I'unité choisie « h» est faible.

Cette distribution g:f est en servo-technique celle
qui caractérise la réponse impulsionnelle d’un systéme
dont on connait la distribution f de la réponse et la
distribution g de lexcitation qui a provoqué cette
réponse.

Deux distributions [: g et h:k peuvent étre consi-
dérées comme étant égales lorsque

[k = gh.

Les opérations au moyen de distributions sont défi-
nies par les mémes régles que celles qui régissent le
calcul avec des fractions.

" i h [k + gh
Addition:  —~ 4 TE T
o -3
h fh
kT gk

Produit de composition : ra

Distributions particuliéres

Lorsque [ est une fonction quelconque, le quotient
[:fn’est pas — ainsi que nous I’avons déja relevé —
une fonction ordinaire. C’est une distribution qui est
indépendante du choix de f ainsi que cela résulte de
notre définition d’égalité de deux fonctions. Nous dési-
gnons cette distribution par 1 parce que cette distri-
bution joue le role de I'unité dans le cas de multiplica-
tion de distributions

1g=§g=%=g-

Pour la derniére de ces équations on fait usage de la
faculté de «simplifier» le quotient de deux distribu-
tions. Comment se représenter exactement cette distri-
bution 1? Comme indiqué en annexe, le quotient
composé d'une suite de temps par elle-méme, donne
toujours comme résultat une suite de Dirac représentée
par la figure 3. La distribution 1 est ainsi le rectangle
dont la largeur est nulle et la hauteur infinie que nous
avons désignée sous le nom de fonction de Dirac et que
nous définissons maintenant comme étant la distribu-
tion de Dirac.

2. Nous désignons par «e» la fonction continue qui
est toujours égale a la valeur 1, & savoir :

e(t) = 1. (6)

En utilisant les définitions (4) et (5) du produit de
composition, nous obtenons

e/:fesz(T)e(x_T) dt — (/’;‘(T) dr. (7
0 0

La multiplication avec la distribution e correspond
donc a I'intégration (au sens d’une intégrale indéfinie).
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Une distribution particuliére qui a une grande impor-
tance est la distribution p fournie par la valeur réci-
proque de e

p=— (8)

e

Elle est représentée par la figure 5 (voir en annexe).
Pour une fonction continue et différenciable f(t), on
obtient la formule fondamentale suivante :

pi=f + 01 (9)
dans laquelle [’ est la dérivée de /. Comme dans I'algébre

ordinaire, nous n’avons pas besoin d’écrire le facteur
1 et obtenons ainsi

pi=1 +f(0). (10)
Démonstration

En partant de I'équation analytique classique qui
caractérise la relation entre les valeurs de la dérivée
f'(t) et de la fonction /()

{6 =10) + [ f(r)dr
0

on obtient, en utilisant les relations (6) et (7), I'équa-
tion suivante entre les fonctions [ et [’

f=10)e+ ef'.

La division par e et 'utilisation de la relation (8)
donnent

=Pt =10) + 1.

Cette formule fondamentale signifie que la multipli-
cation avec la distribution p correspond a la différen-
ciation.

p
-1
—t
h
SEV25579
Fig. 5. — Distribution correspondant a l'opération de

dérivation.

3. La notion «valeur de la fonction» n’existe pas
pour une distribution qui ne correspond pas a une
fonction continue. Ainsi cela n’a pas de sens de parler
de la valeur de la distribution de Dirac au temps ¢t = 0.
Tout au plus peut-on dire qu’il s’agit d’une impulsion
d’amplitude infinie et de durée infiniment courte.

Le probleme fondamental de la théorie des distribu-
tions est de déterminer si une distribution donnée est
une fonction continue et posséde une « valeur de fone-
tion » qui soit délinie en fonction de la variable indé-

1 Une table trés compléte de ces transformations est donnée dans
Ja publication de Bateman : Tables of integral transforms. (Mc Graw-
Hill, 1954), vol. 1.

pendante (t). Dans ce cas il s’agit de déterminer I'ex-
pression analytique de cette fonction. A titre d’exemple
nous prenons la distribution

1
p—a
dans laquelle « @ » est une constante numérique.

y = (11)

Nous chassons le dénominateur
py—ay =1
et divisons par p en utilisant la relation (8)

y = aley) + e.

Si y est une fonction continue, nous obtenons en
utilisant la relation (7) I’équation suivante entre les
valeurs de fonction y(t)

ylt)=a [ylr)dr + 1.

Pour ¢ = 0 nous obtenons
y(0) = 1. (12)
D’autre part en différenciant cette équation on
obtient
y'(t) = ay(). (13)
La seule solution qui satisfasse 1’équation différen-
tielle (13) compte tenu de la condition initiale (12) est

y — Eal.
. 1 o
Il en résulte : T e avec € = 2,71828.  (14)

Ce résultat illustre qu’a chaque expression rationnelle
de p pour laquelle le degré du numérateur est inférteur
a celut du dénominateur, correspond une fonction du
temps. Pour arriver a ce résultat il suffit d’utiliser la
décomposition en fraction simple.

A titre d’exercice, il est facile de démontrer la cor-
respondance suivante :

1 1
Pta e

Ces correspondances sont groupées dans des tables
qui ont été établies bien avant la découverte de la
théorie des distributions. Ainsi que les relations (14)
et (15) le laissent supposer, il suflit d’utiliser les tables
des transformations de Laplace inverses pour déter-
miner la valeur des fonctions qui correspondent a une

sin at. (15)

distribution donnée (au cas ou cette valeur existe) 1.

Fonction de transfert en électrotechnique

Le circuit électrique représenté par la figure 6 se
compose d’une résistance R, d’une inductivité L et est
alimenté par la tension variable u(t). Ce circuit constitue

ut) = in

L
Y\

SEV25580

Fig. 6. — Circuit électrique composé d’une résistance R
et d’une inductivité L.
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ulh ) it
—_ —_— —
R+L,
SEV255681
Fig. 7. — Diagramme fonctionnel correspondant au circuit

électrique représenté par la figure 6.

un dispositif de transfert tel que le définit la servo-
technique et tel que le représente la figure 7 avec u(t)
comme ¢ excitation » et le courant i(t) comme réponse.
On sait que le courant i(t) est défini par I’équation
différentielle suivante :

du .

L —— + Ri(t) = u(t).
dt
Si au temps t = 0 le courant est nul, nous pouvons

écrire en utilisant la formule (10)

Lpt + Ri=u

B w o 1
“R+ILp R+Lp"

il en résulte ¢ (16)
i est ainsi obtenu par le produit de composition de
I'excitation u par la distribution 1: (R 4 Lp). Compte
tenu du principe de Duhamel, nous voyons que I'ex-
pression
1 1 1
R+Lp L R (17)
P+

peut étre définie comme la fonction de transfert ou plutot
la distribution de transfert du dispositif de transfert
pris en considération. Nous écrivons cette expression
dans le rectangle de la figure 7 qui symbolise cette
relation de transfert. Dans ce cas particulier, ainsi que
I'indique la relation (14), a cette distribution corres-
pond une fonction, a savoir

R
1 =t
7€
La formule (16) conduit ainsi & I'intégrale de compo-

sition sulvante :

t R
——

i(t):%fu(:—ﬂe L gr, (18)
0

Cette intégrale est la solution analytique du pro-
bleme tel qu’il est posé.

Il est d’usage en électrotechnique de donner une
interprétation un peu différente de la formule (16). Par
analogie & la loi d’Ohm, I'expression R 4 Lp est assi-
milée & une impédance généralisée ; en particulier le
terme Lp est assimilé & une inductance. Si dans le
circuit intervient une capacité C et que I'on définit de

méme une capacitance y on peut également utiliser
Cp =

la loi d’Ohm pour les circuits alternatifs ainsi que les

lois de Kirchhoff.

Exemple : Machine a courant continw compoundée

La partie de gauche du schéma de principe donné par
la figure 8 représente le circuit d’excitation (impé-
dance Ry + Lyp). La grandeur de sortie constituée par
le courant i, est multiplié¢e par une constante K et

Y ! o 4 [ k | A T :
Ry*Lop | | | Retp |
Sy
SEV25562 =
Fig. 8. — Diagramme fonctionnel d’une machine a courant

continu compoundée.

transformée en une tension qui alimente du courant ¢
le circuit de charge caractérisé par 'impédance R + Lp.
En vue d’obtenir une caractéristique déterminée de la
tension par rapport au courant, un asservissement en
retour reconduit une partie (—pt) du courant au
point A ; il en résulte que lorsque le courant augmente,
I'excitation de la machine, et partant sa tension, dimi-
nuent.

Le courant i, est obtenu par la relation suivante :

. U
"= Ry + Lop
Au courant se soustrait au point A le courant pi, il
en résulte
SR
u= K R0+L0p—pL
. K U )
et L_R+Lp(R0+Lop—pL

Nous résolvons cette équation par rapport a i et
obtenons

K
= (By+ Lop) (R+ pK + Lp)

i (19)
Le facteur de u, est la fonction de transfert @
- K
?= Ry + Lop) (R+ pK + Lp)

Nous introduisons les abréviations suivantes :

R, R+ pK
= = et ) = —— .
Ly L
et obtenons en utilisant les tables de transformation de
Laplace

K ¢ W—g™

(’est la réponse du systéme a une excitation ayant la
forme d’une impulsion de Dirac. Cette réponse tend vers
zéro avec le temps. Le réglage est done stable.

Si la tention uy(t) est constante = U, il en résulte en
utilisant soit le principe de Duhamel, soit la formule (19) :

i(t)=U '/.qJ(T) d.
0

En effectuant cette intégrale on obtient

.\_KU(l W a
=TT \ab ™ a—b
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Aprés un certain temps s’établit la valeur suivante :

KU kU

W =TT ab = RRLpK) (24

Nous constatons avec satisfaction que notre théorie

conduit ainsi exactement au méme résultat que celui

auquel les ingénieurs sont habitués depuis I'époque de

Heaviside. La différence réside dans les nouveaux fon-

dements de ce calcul qui satisfait la rigueur mathéma-

tique (de méme que les transformations de Laplace) et

qui répond & une signification physique plus évidente
des phénomeénes.

Annexe

Opérations avec les suiles de temps a Uaide d'une « fonction
généralrice »

Il est commode d’attribuer a une suite de temps [(t) =
= (fo» fvs [2» -+ s [n, ...) de facon purement formelle un
polynéme en & constitué par la série des puissances en

oo

fod+ha+fa2+ o L fuan 4+ .= Y fuan,
d
n=>0

Nous appelons cette série la « fonction génératrice » de
la suite.

Si ¢ () = (@0 Pry oy - Py -2
est une deuxiéme suite

et @+ @@ + @2 + ... + @uan = E Pt
n=20

la fonction génératrice correspondante, le produit de ces
deux fonctions génératrices conduit a une nouvelle série

(foPo) + (fo®1 + H1P0) @ + (foPot [r®P1 + foPo) 22 + ...

Ainsi que lU'indique la formule (1), nous voyons que le
coeflicient de a7 correspond au niéme terme du produit com-
posé de deux suites (a4 l'exception du facteur z). Autrement
dit :

La fonction génératrice du produit composé de deux suites
est égale au produit des fonctions génératrices des deux fone-
tions correspondantes (multipliées en outre par h).

I | I I

Pour effectuer le quotient composé des deux suites cor-
respondant aux fonctions /(1) et @(t), il suflit de diviser les
fonctions génératrices correspondantes en utilisant les régles
classiques du calcul a l'aide de séries de puissances.

Exemple : () = (1, 7, 21, 35, ...)
ot) = (1, % 6, %, ...]

(1 + 7z + 212% 4 352% 4 ...): (1 + 4o + 62% + 4a® + . ..)
=1+4+3x+4+322+2%+4 ...
1+ 4+ 6a% + 423
3x + 1522 + 31a8
3x + 1222 + 1328
3a% + 13a®
32?2 4 1223

Gk

1 8 8 41
en résulte / = ( E, —y —y )
®

I

R Rk

A titre d’exercice, on peut controler que pour toute

fonction f(t), le quotient % correspond a la suite de Dirac

1
(E’ 0, 0, 0, >

Il est également facile de prouver que

; , _ (1 1
: ) P11, 1) = (ﬁ & 0,0,...)

(Vour fig. 5.)

(1, 0, 0, 0,
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Introduction

La premiére qualité que I'on exige d'un réglage auto-
matique, c’est qu'il soit stable. Nous nous proposons
d’examiner quelles sont les causes qui peuvent rendre
un réglage instable, puis les remédes que l'on peut
apporter a cette instabilité,

Pour fixer les idées, nous prenons comme exemple le
cas du réglage de vitesse d’un groupe hydro-électrique
en service isolé tel que le représente en principe la
figure 1.

La turbine T, alimentée par la conduite forcée C
entraine le générateur G qui débite son énergie sur la
charge K, constituée par I'ensemble des consommateurs
du réseau. Le régulateur R accouplé a I'axe du groupe
mesure la vitesse angulaire n de cet axe et commande,
par I'intermédiaire du servo-moteur S, I'ouverture I de
la turbine. Par suite de I'inertie de I'eau dans la conduite
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