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DIMENSIONNEMENT DES CONSTRUCTIONS FLECHIES

par t ANDRÉ SZÉCSI, ingénieur

1. Préface

Les méthodes de dimensionnement appliquées dans

la pratique se bornent à déterminer la sollicitation
maximum dans la fibre extrême de la section et la

comparent à la sollicitation admissible. En outre, elles

examinent si la construction ne subit pas des

déformations inadmissibles sous l'effet des charges effectives.

Dans l'étude qui suit nous voulons évoquer très brièvement

les imperfections de la méthode de dimensionnement

précitée et, d'autre part, nous nous proposons

d'esquisser une méthode de dimensionnement qui
corresponde beaucoup mieux au fonctionnement réel

des constructions. Enfin, nous démontrons par des

essais appropriés que les bases de calcul concordent

très bien avec la réalité.

2. Les imperfections de la méthode de dimensionnement
appliquée généralement dans la pratique

Cette méthode n'a pas donné satisfaction pour
certaines constructions. Pour ce motif, on a déterminé

des groupes de constructions pour lesquels la tension

admissible dépend aussi de la forme (et de données

particulières) de la section, ainsi que de la manière

d'appliquer les charges. Le problème de dimensionne¬

ment de ces constructions a été considéré généralement

comme problème de stabilité.
Il est significatif que les opinions ne concordent pas

entièrement sur l'appartenance de telle ou telle
construction au groupe de problèmes de stabilité ou au
contraire à celui des problèmes de tensions.

Il y a, en effet, des constructions pour lesquelles la
déformation ne joue pas grand rôle ; elle n'y influence

pas ou très peu le jeu des forces. Par contre, il y en a

d'autres pour lesquelles la déformation a une importance

capitale.
Mais il est tout de même erroné de diviser, en partant

de ce fait, les constructions en groupes différents,

parce que la séparation des divers groupes ne peut être

qu'arbitraire, donc fausse.

Un exemple typique est le problème du flambage

excentrique. Ce problème est traité par quelques

auteurs qui se basent sur la théorie d'élasticité classique,

comme un problème de tension d'ordre supérieur. Mais

en même temps, ils considèrent le problème du flambage

axial comme un problème de stabilité par excellence.

Que la distinction n'est pas juste est facile à prouver.
Il n'y a qu'à faire varier l'excentricité : il est absolument

impossible de déterminer une grandeur de l'excentricité
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pour laquelle le problème de tension se mue en un
problème de stabilité.

Dans un article précédent (Flambage excentrique,
B.T. n° 10 du 19 mai 1951), l'auteur a déjà établi

que, pour le dimensionnement des constructions, les

déformations qui sont provoquées par les charges et

effets multipliés par les facteurs de sécurité sont
déterminantes.

La différence entre ce principe fondamental et
l'examen des déformations provoquées par les charges
effectives selon la méthode classique est essentielle. Il
suffit, pour s'en convaincre, de remarquer qu'au-dessus
d'une certaine charge les déformations augmentent
beaucoup plus rapidement que les charges et les

tensions.
Par ailleurs, on peut constater que les valeurs

admissibles des tensions ne sont souvent en réalité que
des valeurs moyennes et que, dans nos constructions
dimensionnées par la méthode classique d'élasticité, les

tensions réelles maximum sont bien au-dessus de la
limite élastique de la matière (voir l'exemple des trous
de rivets). Or, si dans un point quelconque de la
construction la tension dépasse la limite élastique de la

matière, il se produit non seulement des déformations
élastiques, mais aussi des déformations plastiques, donc

supplémentaires. Ces déformations supplémentaires
peuvent être limitées à des régions très restreintes de

telle façon que leur effet dans la déformation totale de

la construction soit minime.
Elles peuvent avoir un effet défavorable pour la

résistance des constructions ou, au contraire, un effet

avantageux.
Dans le groupe « effet défavorable » se rangent les

colonnes comprimées, soit les problèmes du flambage ;

par contre, dans le groupe « effet avantageux » se

placent notamment les constructions fléchies.
On peut considérer que la méthode de calcul qui

tient compte des déformations réelles (donc élastique
et plastique) des colonnes comprimées (problèmes de

stabilité) est connue, mais on ne peut en dire autant
au sujet des constructions fléchies. C'est précisément
cette méthode de calcul basée sur les déformations
réelles et applicable aux constructions fléchies que
nous voulons établir ici.

3. L'effet extérieur — déformation — tensions intérieures

Pour déterminer la nouvelle position d'équilibre
d'une construction chargée, il faut se baser sur le fait
que cette position s'établit à la suite du développement
des tensions intérieures et que celles-ci sont naturellement

précédées par leur cause soit par la déformation
due aux charges.

Dans le calcul, nous sommes obligés de procéder
comme suit :

On évalue d'abord la nouvelle position d'équilibre et,
après détermination des tensions intérieures, on contrôle
si les déformations calculées et évaluées concordent.
On peut parfois calculer directement les tensions
intérieures et, à partir de ce résultat, les déformations.

Dans tous les cas, il faut connaître les relations tensions-

déformations.
Tandis que dans le domaine élastique ces relations

peuvent être considérées comme connues, ce n'est pas
le cas dans le domaine plastique.

A titre d'exemple, on peut rappeler que dans le
domaine élastique le facteur de Poisson détermine la
déformation transversale et, par cela, la relation
tensions-déformations est strictement déterminée. Par
contre, dans le domaine plastique la situation est toute
différente.

Le facteur de Poisson n'est plus constant. La relation
force extérieure-tensions intérieures-déformations n'est
plus strictement déterminée. Les tensions intérieures
ne dépendent plus uniquement des forces extérieures
momentanées, mais aussi des déformations antérieures.

Ce dernier fait peut être constaté facilement si l'on
examine la déformation permanente après suppression
des charges. Cette déformation permanente signifie
que des tensions spéciales sont présentes, qui peuvent
être appelées tensions de structure. Elles correspondent
aux déformations permanentes, bien qu'il n'y ait
aucune charge extérieure.

Ce point peut être mis en évidence de la manière
la plus simple avec l'essai de traction.

Selon les essais, même si la charge (tension) o^
dépasse la limite de proportionalité ~P, la ligne de

décharge sera parallèle à la droite E donc elle se

comporte d'une manière élastique.
Dans la zone 0~p le facteur de Poisson (« m ») est

une constante de matériaux. Après décharge, le

diagramme se retrouve au point O en suivant la ligne
droite aO d'inclinaison tg a E.

En augmentant la charge (tension) jusqu'à o^ les

déformations sont décrites par la courbe ab. En déchargeant,

les déformations 'suivent une ligne droite qui
est parallèle à la ligne E, passe par le point C et coupe
l'axe e °/0o dans le point « d ».

La distance Od, égale a la distance b_b, est la
déformation permanente. La déformation permanente est
égale à la différence entre la déformation effective et la
déformation élastique. Ainsi, la déformation
supplémentaire et la déformation permanente ont les mêmes
valeurs.

-te¬

le

-cr

Fig. 1.
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Si, après la décharge, nous rechargeons l'éprou-
vette, nous constatons que la déformation, en partant
du point « d », suit la ligne E jusqu'au point « b »

correspondant à la tension maximale initiale.
Entre les points « d » et « b » la matière se comporte

comme si la limite de proportionnalité initialement
déterminée par le point « a » correspondant à la tension

-p avait été déplacée (donc augmentée), jusqu'au
point « b », correspondant à la tension initiale av

Si nous augmentons les charges (les tensions) au-delà

du point « b », les déformations suivent une courbe

qui se joint tangentiellement à la courbe ab.

On utilise souvent dans la pratique l'élévation

apparente de la limite de proportionnahté, par exemple,

pour les armatures du béton étiré à froid.
La cause de l'élévation apparente de la limite de

proportionnalité peut être trouvée dans les tensions de

structure mentionnées plus haut et dans le changement
du coefficient de Poisson « m » qui sont liées à la
déformation supplémentaire. Ce changement provoque dans

la matière un état qui est différent de l'état initial.
L'effet Bauschinger peut être également expliqué de

la même manière.
Nous soumettons notre éprouve tte initialement à la

charge a1; a2 cr3 O et nous constatons que la

déformation dans la direction l est e&. Après
déchargement, nous chargeons l'éprouvette graduellement

mais dans le sens contraire par les tensions ax ;

a, 0. Le ls démontrent que la déformation
dans la direction l est décrite par une courbe qui se

joint tangentiellement à la ligne droite E. Le point de

jonction n'est pas constant (<jp V Si la valeur de a1

devient plus grande, celle de ap diminue. La relation

n'est pas linéaire.
On peut constater que la déformation initiale totale,

donc la déformation élastique et supplémentaire,
détermine entièrement les déformations ultérieures, à

condition que les tensions restent entre les valeurs

cr, et a»

4. Bases du calcul

L'idée fondamentale de la méthode de calcul détaillée

ci-après est établie dans le paragraphe précédent. Ce

calcul est à appliquer surtout pour les matières ductiles

(acier doux). Sa signification n'est pas sans importance
pour' les constructions en béton armé ainsi que pour
le béton précontraint.

Nous nous proposons d'établir dans ce travail les

relations pour l'acier doux. Nous fonderons ces relations

sur le diagramme (cTje) idéalplastique ci-contre.
Nous voulons établir une méthode de calcul

facilement applicable dans la pratique, donc relativement
simple. Elle est appelée à décrire dans ses grandes

lignes le comportement réel de la matière — donc des

constructions — même si les tensions extrêmes en

dépassent la limite élastique.
Nous faisons les hypothèses simplificatrices Suivantes :

1. Les sections planes restent planes.après déforma¬

tion : donc la répartition des déformations
spécifiques dans toute section reste linéaire.

<Y

<y c2̂

£%

uu

-cr

Fig. 2.

2. Les déformations des diverses fibres de la matière
suivent la loi du diagramme idéalplastique tension-
déformation selon figure 2.

Les hypothèses qui précèdent appellent quelques

remarques :

Les sections, comme on le sait, ne restent planes

que dans le cas où il n'y a pas d'efforts tranchants.
Mais en présence d'efforts tranchants, même les sections

avec sollicitations purement élastiques se déforment de

telle façon que leur forme ne reste plus pla.ne après la
déformation.

Remarquons ici que dès que la limite élastique

apparente de la matière est atteinte, l'allongement
(raccourcissement naturel) de la matière est accompagné

par des tensions de cisaillement considérables,
ceci à cause de la limite élastique apparente supérieure
et inférieure.

Ces tensions de cisaillement sont en équilibre entre
elles dans la section. Mais leurs effets se manifestent
d'une part par l'augmentation, rapide une fois amorcée,
de l'allongement (raccourcissement) correspondant à

la limite élastique, d'autre part dans la diminution
de la tension nécessaire pour atteindre la limite élastique

apparente de la matière.
Par la suite et justement pour cette raison, nous

appellerons « limite élastique apparente » la limite
inférieure.

La condition 2 exclut la thèse selon laquelle la partie
élastique de la section soutient la partie de la section

qui est déjà dans le domaine de la limite élastique

apparente. Ce fait est démontré irréfutablement par
les essais.

Ceci dit, nous avons déjà la possibilité d'établir les

relations : forces-déformations même dans le domaine

plastique et élasto-plastique.
Au sujet des efforts tranchants, nous pouvons dire

que leur effet est facile à calculer, car on peut admettre
d'une manière assez exacte que l'effort tranchant ' est

porté dans son ensemble par la partie encore élastique
de la section. La justesse de cette supposition ne laisse
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pas de doutes si l'on examine l'expression de la tension
de comparaison « ug ».

De la condition 1, il s'ensuit que, si dans une section,
sans tensions permanentes, nous connaissons la
délimitation entre les zones élastiques et plastiques, il est
suffisant de calculer les déformations de la partie
élastique —• naturellement en fonction des charges qui
lui incombent. La partie plastique va suivre les
déformations de la partie élastique.

Nous voulons aussi examiner dans la présente étude,
l'effet des charges répétées concernant les constructions
fléchies.

5. Flexion pure

Nous supposons que le plan des moments fléchissants
contient l'un des axes d'inertie principaux de la section.
Il s'agit donc de la flexion droite. La section peut
être quelconque.

Dans une étude précédente déjà mentionnée (1),
nous avons examiné les déformations occasionnées par
l'effet simultané de la force normale (traction ou
compression) et du moment fléchissant.

Dans les équations de cette étude, il faut poser
—0 O. (En flexion pure, il n'y a pas de tension
occasionnée par la force normale car cette dernière est
nulle.)

De cette manière, nous obtenons les conditions
d'équilibre pour une section quelconque.

Nous pouvons distinguer les cas suivants :

1. La sollicitation maximum ne dépasse nulle part la
limite élastique :

k
M
El

2. La sollicitation maximum atteint la limite élastique
d'un côté de la section.

Entre les droites y o, et y ßy0 les sollicitations
dans la section dues au moment fléchissant ont pour
valeur oy (fig. 3).

Entre les droites y ßy0 ; y y0 elles valent :

cjj, oy — kE (y — ßjA>).

La somme de sollicitations est nulle :

$<jy.dF 0.

Après intégration, il vient :

F0 ct, — kE (S2 — ßy„ F2) (1)

S2 est le moment statique de la surface F2 par rapport
à la droite y 0.
Les moments des sollicitations dues au moment
fléchissant équilibrent ce dernier :

Sav.y.dF+M 0.
FJ 0

Après substitution de l'expression de cjy et intégration,
nous obtenons :

7-

ßr

^

u
Fie. 3.

S0 est le moment statique de la surface F0 par rapport
à la droite y 0 et J2 le moment d'inertie de F2 par
rapport à cette même droite.

Nous tirons successivement des équations (1) et (2) :

k
1 F, a,

(3)E S2 — ßy0 F2

et M kE(J2 — ßj/0 Sg) — oy S0. (4)

Les équations ci-dessus sont absolument générales
quelle que soit la forme de la section. Elles sont valables
aussi longtemps que les contraintes n'atteignent pas
la limite d'élasticité aussi de l'autre côté de la section.
Dès que cette limite est atteinte, le paramètre ß a une
valeur particulière ß„.

Nous pouvons alors écrire :

~y + oy, relation qui donne avec l'équation
CTj, CT/ — k0 E X (y0 — ß<j 2/0) :

CT/ U/ — k0 E (y0 — ß0 y0) ¦ (5)

Cette équation avec (3) nous livre ß0.
Si ß> ß„, la distribution des tensions dans la section
sera selon figure 4.

Entre les droites y 0 et y ßj/0 ct o).

1 ¦ oy — °yEntre les droites y py0 et y ßj/0 -j— „
cr (T/ — kE (y — ßy0).

Enfin, entre les droites y ßj/0 -|— „
et y y0 ; ct cr/.

L'équation d'équilibre des forces (tensions) s'écrit :

ct/ Fx + ct/ F2 — kE (S, — ß.y0 F,) + "oy Fâ 0 (6)

et celle des moments :

ct/ S„ — kE (J2 — py„ S2) + M 0.
ct/ S1 + ct/ S2 — kE {J2 — ß£A, S2) -f ct/ S3 + M 0. (7)
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Les formules ci-dessus étant valables pour toute forme
de section, leur application au cas d'une section rectangulaire

est la suivante :

De l'équation (6)

k
1 (CT/-CT/)2

2Ey.

CT/ CT/

CT/—ß(°y — °/)

X

qui devient avec

Ey0 ~ 1—2ß
(8)

et de l'équation (7)

M
byo2

(ct/ — ct/) [3(1 — fl2) —(ß — R)2] — 3ct/

qui devient avec

1

— CT/ CT/ Ä °y_

CT/—CT/

1
nous tirons

12:^-CT/[3-(2ß-l)2]

Les valeurs M et k peuvent également être exprimées
sans utiliser le paramètre ß :

M
by02 g/ bcr, 3

b G,
± -w / ô-

3AZ

(10)

(11)

4
è î/o2 oy

On peut imaginer que la rotation spécifique effective
1

k — est composée de deux parties :
p

La première partie kei est la valeur que l'on obtiendrait

si la section avait un comportement entièrement
élastique et la deuxième partie est la différence entre
la rotation réelle et la rotation élastique, soit la rotation
spécifique supplémentaire.

Nous pouvons donc écrire : kei -\- Ak k.

+-
i~

-£

h

r~2
F,J

f

// k effective

Cf

t +âk M e//C

AL

k tlash'a

Fig. 4.

Fis-. 5.

Dans la relation ci-dessus, nous connaissons la valeur

kei ïtt (J est le moment d'inertie total de la

section par rapport à son axe de gravité).
Avec cela, nous avons un procédé général à notre

disposition pour déterminer les déformations réelles
des constructions fléchies dans le cas où les tensions
dépassent la limite élastique.

Nous n'avons qu'à ajouter aux déformations
élastiques connues les déformations occasionnées par les

rotations spécifiques supplémentaires.
Si les moments effectifs de la construction sont

connus, la déformation de la dite construction est donc
possible à déterminer avec plus ou moins de travail
mais sans difficulté. On peut donc considérer que la
solution des constructions fléchies isostatiques est

connue dans le cadre de la méthode indiquée.
La solution des constructions hyperstatiques n'est

plus aussi simple.
Les conditions de déformations expriment que les

valeurs hyperstatiques recherchées doivent avoir des

grandeurs strictement définies.
Cependant, dès que les tensions effectives dépassent

la limite de proportionnalité de la matière, la relation
force-déformation cesse de rester linéaire et ce fait
complique passablement la solution des constructions
hyperstatiques. La loi de la superposition n'est plus
valable.

La solution des systèmes hyperstatiques s'obtient
aussi dans ce cas sur la base des conditions de
déformation. Mais, en général, nous sommes obligés d'estimer
les valeurs hyperstatiques recherchées et de contrôler
si les conditions de déformation sont satisfaisantes ou
non.

Nous supposons que nous connaissons la relation
« moments fléchissants » — « rotations spécifiques »

supplémentaires — par un ou plusieurs diagrammes selon
les sections de la construction.

Nous pouvons avec ce ou ces diagrammes facilement
calculer les efforts notamment les moments fléchissants

par la méthode générale suivante :

Il s'agit donc de déterminer avec les indications de
la figure 6 ci-contre, la valeur Me_ du moment fléchissant

qui charge la section /—/.

On peut imaginer le jeu des forces de la construction
réparti en deux composantes :
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,* M, *-}

M MtL.

\
* MA\\\\-rflffl h.

-—a,—. • a.'

La première est la partie élastique avec les moments
fléchissants A/eiastique et la seconde est l'effet des rotations

spécifiques supplémentaires.
Par le diagramme mentionné ci-dessus, nous connaissons

déjà la répartition de ces rotations spécifiques
supplémentaires. Nous pouvons les considérer comme
attachées à chaque section suivant la dimension
longitudinale de la construction.

Si donc la section examinée se trouve à l'endroit où

justement les rotations spécifiques supplémentaires
existent, il faut les séparer en deux parties et déterminer
les valeurs

Sàkda et K2 J AA- da

Si la section examinée se trouve d'un seul côté de
l'endroit où les rotations spécifiques supplémentaires
existent, il faut travailler avec l'expression

K J" Akda + $Akda.

Nous pouvons donc écrire :

M_ M_ + MKl + M«, (12

Si la valeur M_ a été bien estimée, l'équation 12

est satisfaisante.
Dans cette équation MKl et MKt sont les moments

produits par les rotations relatives kx et k2. Il s agissent
sur une construction fonctionnant d'une manière
élastique.

Cette méthode est valable d'une manière générale et
ne dépend pas du degré hyperstatique de la construction.

Il faut encore connaître la place exacte des valeurs k
donc des résultantes des rotations spécifiques
supplémentaires.

Si la figure des moments est, par exemple, celle qui
est dessinée sur la figure 6, il est évident que l'endroit
des valeurs Kt et k2 sera très proche de la section /—/.

On peut même dire qu'en cas de symétrie, la résultante

de (kjj k2) k se trouvera exactement dans
cette section.

La situation est différente si la figure des moments
est telle que nous l'avons représentée sur la figure 7.

Mais avec les diagrammes, moments fléchissants -

rotations spéc. supplémentaires, nous pouvons facile-

MeL

^m^r- Mm at J

a. —»

Fie. 7.

ment déterminer les résultantes Kj et k2 de ces rotations

spéc. supplémentaires, ainsi que leur lieu, donc
leur emplacement exact.

6. « Rotule » plastique

Nous ne voudrions pas aborder une autre partie de

cette étude sans relater très brièvement la thèse de

la « rotule » plastique souvent débattue dans le cadre
de la théorie de la plasticité.

La matière des sections utilisée presque exclusivement
dans la pratique est répartie de telle façon que la
condition d'économie (c'est-à-dire le moment d'inertie
maximum avec une quantité de matière minimum)
soit satisfaite.

Dans ce cas, dès que la tension de la fibre extrême
de la section la plus sollicitée atteint la limite élastique,
la capacité de résistance de la section est déjà utilisée

presque dans sa totalité. Une grande rotation spécifique
supplémentaire suivra une augmentation des moments
fléchissants relativement petite.

De ce fait, prouvée par les essais, résulte la notion
de la rotule plastique qui signifie qu'avec un moment
constant, la rotation de la section devient libre.

Cette condition, qui peut correspondre d'une manière
satisfaisante à la réalité pour certaines constructions,
ne peut être généralisée, par exemple, par la méthode
d'égalisation des moments. Pour arriver à l'égalisation
des moments, il est généralement nécessaire d'avoir
des déformations d'une grandeur telle qu'elles sont
déjà inadmissibles.

D'autre part, il est absolument erroné d'examiner
uniquement la section la plus sollicitée de la construction.

En effet, les rotations spécifiques supplémentaires
apparaissent sur une longueur de la construction plus
ou moins grande et leur grandeur est déterminée d'une
manière précise par les' moments fléchissants sur toute
cette région.

En outre, les rotations spécifiques supplémentaires
peuvent être également réparties d'une manière
uniforme (voir fig. 8). Comme nous le voyons ici, toutes
les sections sur la longueur « a » sont celles qui sont
les plus sollicitées et, selon la thèse de la rotule plastique,
il faudrait envisager un nombre infini de ces rotules.

Cette supposition sera absolument fausse pour une

poutre avec seeti- H pour laquelle il n'y

aurait pas une augmentation rapide de déformation au
moment où la sollicitation de la fibre extrême (i) de
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la section atteint la limite élastique. Par contre, si la
même poutre est retournée à 90°, et si elle est de

nouveau sollicitée dans le plan vertical, elle présente
des particularités toutes différentes.

Dès que la tension dans les ailes atteint la limite
élastique, la déformation (rotation spécifique
supplémentaire) ne sera pratiquement plus limitée.

Par ce simple exemple, il est démontré entre autres que
la tension des fibres extrêmes n'est pas une valeur à

adopter pour le dimensionnement des constructions. Les

déformations sont déterminantes.

7. Etat de tension après décharge

Dans notre étude, nous avons toujours supposé que
la matière de la construction a été sans tension avant
le chargement et que cette matière se comporte d'une
manière idéalplastique exprimée ,par les conditions
(1) et (2).

Si la tension maximum de la fibre extrême d'une
section quelconque n'atteint pas la limite élastique
sous l'effet des charges, la construction n'a aucune
tension après le déchargement.

Par contre, si sous l'effet des charges les fibres
extrêmes de la section ont atteint la limite élastique
et si elles ont subi une déformation non élastique
(plastique), nous aurons des tensions dans la construction

après la décharge.
Ces tensions sont composées de deux composantes.

La première appartient à la section, la deuxième à la

construction, plus exactement aux conditions d'appui
de la construction. Cette dernière ne se manifestera que
si la construction est hyperstatique.

Nous nous occuperons tout d'abord des tensions du

premier groupe.
Il découle des conditions 1 et 2 que la rotation

spécifique de la section, provoquée par le déchargement :

Mk= + -2j=~-kd

se produira d'une manière parfaitement élastique.

Conséquence : La rotation spécifique résiduelle A A:

aura la même valeur que la rotation spécifique
supplémentaire Ak. A/c Ak.

Les tensions résiduelles auront pour n'importe quelle

distance de fibre « y » une valeur qui sera la différence

entre les tensions dessinées sur la figure 9 « a » et celles

M
qui sont données par la formule ay ei — —¦ ~j Z. Ces

tensions résiduelles sont représentées sur la figure 9b.

Les tensions résiduelles du deuxième groupe peuvent
être calculées en déterminant les efforts de la construction

provoquée par les A/c uniquement.
Naturellement, pour obtenir les valeurs des tensions

résiduelles effectives, il faut tenir compte des effets des

deux groupes.

8. L'effet des charges répétées

Après les explications du chapitre précédent, nous

sommes en mesure d'admettre que les tensions provoquées

par les charges et par les déchargements sont

connues. En outre, si les effets de la première charge

ne sont pas dépassés en grandeur par les effets des

charges ultérieures, le comportement de la construction
sera entièrement élastique, bien que la construction
ait subi des déformations plastiques lors du premier
chargement.

Par contre, si une charge suivante est plus grande

que celle qui a provoqué la première déformation
plastique, cette déformation plastique augmentera.
Elle atteindra la valeur qui correspond à cette dernière

et le jeu des forces s'établira donc comme si la première
déformation plastique n'avait pas existé.

Etant donné que, conformément à la condition 2,

nous avons supposé que les fibres de la section se

déforment selon la loi exprimée par les diagrammes
tensions-déformations concernant la matière, la prise
en considération de l'effet des charges variables et

répétées n'occasionne aucune difficulté. Nous devons

seulement prendre garde que les sollicitations réelles

des fibres de la section ne dépassent pas les limites
de fatigue alternée de la matière.

En fait, cela n'est que rarement restrictif car généralement

le poids propre de la construction et les charges

utiles provoquent des sollicitations dans le même sens.

De ce fait, il résulte qu'après décharge les tensions

correspondant aux poids propres auront généralement
les mêmes sens et direction que les tensions maximum.'

(A suivre)
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