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la température, ainsi que le montre la courbe de rendements

représentée par la figure 5.

Les essais de Gondo ayant eu en partie un caractère
démonstratif, il n'est pas possible de donner la .durée
des différentes opérations, montage, essai et démontage.

Toutefois, les participants à ces essais ont pu se

persuader de la grande simplicité du montage et des

manœuvres nécessaires aux mesures, doublée d'une
grande rapidité d'exécution.

Comparaisons des relevés obtenus par des mesures
thermodynamiques avec des relevés obtenus par

d'autres méthodes

Les essais effectués à l'usine de Gondo ne permettent
pas d'établir une telle comparaison et ce n'est d'ailleurs
pas leur but. Il s'agissait, dans le cas particulier, de
contrôler les caractéristiques des machines après une
modification destinée à en augmenter la puissance. Par
contre, Electricité de France a publié un certain nombre
de comparaisons entre les mesures thermodynamiques
et des mesures aux moulinets ou au déversoir dans
l'article de MM. Willm et Campmas qu'il est intéressant
d'étudier.

On remarque d'une façon générale que les mesures
effectuées par la méthode thermodynamique se

comparent favorablement avec les autres types de mesure,
tant en ce qui concerne la valeur absolue des rendements

que la dispersion des points.

Conclusion

Non seulement une méthode de mesures de
rendements, rapide et peu coûteuse, est utile aux constructeurs

parce qu'elle peut leur permettre de vérifier leurs
calculs et leurs essais en laboratoire plus fréquemment
que ce n'est le cas actuellement, mais elle représente
aussi un avantage certain pour l'exploitant. En effet,
celui-ci peut effectuer lui-même et dans de bonnes
conditions un contrôle périodique des rendements, déterminer

ainsi l'état d'usure de ses machines et échelonner
judicieusement ses campagnes de réparations.

Dans l'état actuel de la technique, la mesure de
rendements par la méthode thermodynamique permet
d'effectuer d'excellents relevés dans un temps très court
et à peu de frais. Elle n'exige qu'un minimum
d'appareillage et réduit les arrêts nécessaires pour la mise en
place et le démontage des installations à des valeurs
absolument négligeables. On se rend compte qu'il serait
particulièrement intéressant de pouvoir effectuer des
séries de comparaisons avec d'autres méthodes lors
d'essais de réception, comparaisons permettant de définir

le champ d'application pratique et de préciser la
valeur des mesures thermodynamiques par rapport aux
essais classiques. Ceci étant fait, il n'est pas impossible
que la méthode thermodynamique constitue la méthode
de mesure la plus favorable et la plus sûre dans le
domaine des chutes moyennes et élevées.
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55*4. $U£'00
UNE MÉTHODE SIMPLE DE CALCUL

DE L'ABSORPTION DU SON PAR VISCOSITÉ SEULE,
DANS DES FLUIDES HOMOGÈNES LIMITÉS

par A. BOTTA, ingénieur E.P.U.L.

Voici une solution élémentaire du problème de la
propagation des ondes acoustiques dans des fluides
homogènes contenus dans certaines limites.

Les résultats simples mais non négligeables auxquels
on est conduit, sont susceptibles d'être développés et
employés dans les applications techniques.

D'autre part, le mot élémentaire justifie les
simplifications introduites dans ce problème complexe et
nous dispense d'y revenir, d'autant plus que ce genre
de calculs est bien connu.

Champ sonore dans un fluide homogène contenu
entre deux demi-plans parallèles et parfaitement
rigides, en l'absence de sources, sauf à une limite.

Dans les champs sonores, la transmission de l'énergie
mécanique se fait par vibrations « élastiques » des
« particules » constituant le milieu continu.

L'énergie se dissipe aussi en se propageant, notamment

du fait de la viscosité.
Un élément du fluide se déplace et se déforme autour
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d'une position moyenne. Nous exprimons dans notre
cas l'hypothèse que le mouvement vibratoire n'a lieu

que parallèlement aux parois, selon l'axe ox, et qu'il
est le même pour tous les points des droites parallèles
à l'axe oz.

Ce sont les conditions aux limites et l'absence de

sources sonores à l'intérieur, qui nous amènent à

admettre un tel mouvement.

y+dy

y

1

1

1

f
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f

x+dx

Fig. 1.

Considérons (fig. 1) un élément de masse dm, ayant
au repos une densité p0 et occupant le volume dV0
dxdydz :

dm p0dV0

Exprimons la loi de son mouvement en écrivant qu'il
y a proportionnalité entre les forces appliquées et
l'accélération acquise par son barycentre (théorème
du mouvement du barycentre).

Nous retiendrons les forces de pression sur les faces

dydz, et de viscosité sur les faces dxdz.
Désignons par £ [x,y,t) le déplacement approximatif

de la face dydz se trouvant à l'abscisse x au repos, et
en x -\- Ç au temps t,

par
78P

SP et SP' §P + -y—dx
dx

les variations de pression, entre le mouvement et le

repos, sur les.faces dydz,

et par

T et t ___
dy

dy

les forces de viscosité, par unité de surface, sur les faces
dxdz.

La dynamique permet d'écrire, en première
approximation,

[SP(x, y, t) - SP' (x + dx, y, t)] dydz -
- [t(z, y,t) — t' (x, y + dy, t)] dxdz

3^{x,y,t)
Po dt2 dxdydz.

Or, le volume occupé au temps t par la masse dm est

dVt ^(dx + Y dx\ dydz.

Nous admettons que le coefficient de compressibilité

dVt—dV0
dV0 SP

est constant, étant donné les faibles variations de

pression.
Alors

____!
K dx

SP

et

SP—SP'= -3-Àdx.
K dxi

D'autre part

t T) -^2.

ydt

où T) est le coefficient de viscosité du fluide.
Donc

dy2dtn^ïjtdy.
1

c et — v. v est,Posons pour simplifier
Kp„ p„

par définition, le coefficient de viscosité cinématique
Nous pouvons écrire finalement

rç i _w V ?l
s2 c dy" dt

On voit qu'on obtient une équation de d'Alembert
(qui régit la propagation des ondes indéformables de
célérité c) du type

fil i *§_ _ n
dx2 C2 ot2

complétée par un second membre dû à la présence des

forces de viscosité dans le continu fluide.

Cherchons le régime permanent du champ sonore
correspondant à des vibrations sinusoïdales et
satisfaisant aux conditions aux limites suivantes :

Ç 0 pour : x^O
1

1

2/ 01

y h

fj F(t/)sincot :x=0 t^O

Ç reste fini : x -> », 0^ y^h

Ç F (y)sino3t représente l'action d'une source en

x 0.

Passons aux fonctions complexes et cherchons une
solution de la forme

Ç* (x,y,t) =X(x)Y (y) ««-.
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Nous obtenons ainsi

E, (x, y,t) Y_ Cn

n l
sin —— ye sin (co£ — knx)

h

* (y) 2. Cn sm T"y'

Les constantes Cn sont donc les coefficients de
Fourier de la fonction F(y).

(Il est légitime d'écrire les deux séries précédentes
étant donné la forme de l'équation aux dérivées
partielles et la nature physique du problème.)

Nous nous intéressons en particulier aux valeurs du
coefficient d'amortissement a et du nombre d'onde k.
Le calcul donne

n-TT-v
1 +

kn

/

V
1 + h2w

Ü ^(y)

Plaçons-nous dans le
cas (fig. 2) où l'amplitude

des vibrations de

la source est distribuée
selon une sinusoïde

Fi (y) Ci sin r- y-

Fig. 2.

Alors seulement les coefficients o^ et kt existent. Nous
pouvons les écrire d'autant plus exactement que la

Irequence r -fl— est élevée

vre'
ai=2ch2 et /r1

co

c

On remarquera que la dispersion de la célérité est
devenue pour nous une quantité négligeable, puisque
kj ^ oo/c.

Voici un deuxième exemple d'intégration :

Champ sonore dans un cylindre à section circulaire

Si, au lieu de prendre comme limites deux demi-plans,
on considère une surface cylindrique (fig. 3), nous
pouvons écrire, avec les notations en figure,

Fig. 3.

F^r)

Fig. 4.

-2 W A
ï i_.» r iirdtx

La recherche d'une solution du même type que
précédemment, avec les mêmes conditions aux limites,
mutatis mutandis, amène à

et a

/ ^*" J° \ f>_ * sin (cot — ktx
• -i

avec, si F(r) sincoi représente l'action d'une source à

la limite x 0,

F(r) S CtJ'(ïr}
>=i

Les constantes C,- sont les coefficients d'un développement

de Fourier-Bessel de la fonction F(r) ; R est
le rayon du cylindre, tandis que les eu sont les racines
positives de l'équation en a :

J„(a) 0.

(On remarquera que, par la nature du problème, la
fonction de Bessel J0 apparaît seule, car la fonction de
Neumann N0 est exclue de la solution).

Les expressions donnant les coefficients oc» et /c,- sont
celles calculées dans le problème précédent, où la
quantité

IITT öj
—r- est remplacée par ¦=, •

h i— ti

Comme auparavant, supposons d'être en présence du
cas le plus simple, c'est-à-dire celui où l'amplitude des

vibrations de la source est donnée par

*"_< Cj J0 R
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où Oj, la plus petite racine positive de J0 {a) 0, vaut

ax 2,4048.

Dans ce cas, nous aurons ainsi uniquement les

coefficients

2cR2
et k,=

avec les mêmes remarques que pour le cas précédent.

Conclusion

Voilà donc esquissé en un minimum de lignes cette
solution élémentaire.

Cherchons maintenant un point de comparaison.
A défaut de résultats empiriques, nous l'avons

choisi dans la solution du même problème (champ
sonore entre deux plans) donnée par Lord Rayleigh
dans son ouvrage The Theory of Sound (§ 352, Second

Edition, Dover Publications, New York, 1945).
Par la voie plus générale des équations fondamentales

de la mécanique des fluides, Lord Rayleigh a recherché,
en variables d'Euler, le champ permanent des

vitesses pour des ondes sinusoïdales, en admettant
toutefois des hypothèses moins restrictives que les

nôtres sur la direction des mouvements vibratoires :

il les suppose avoir lieu dans les plans z de, mais

non uniquement selon l'axe ox (se rapporter à la fig. 1).
On peut remarquer que nous avons calculé le champ

de l'élongation en variables de Lagrange, mais la
comparaison des coefficients d'amortissement et des

nombres d'ondes obtenus par les deux méthodes a un
sens.

D'autre part, quels que soient les mouvements
hypothétiques des « particules », le problème réel à

résoudre est identique : il n'est par conséquent pas
incohérent de comparer certains résultats.

Bornons nous à extraire des calculs de première
approximation du début du § 352, l'égalité 19) que nous
séparons en deux et présentons ici avec nos notations

1 / VCO 00 [a i

oc t- i / -h- et £_=--/- +
h 2co

tout en conservant la forme simplifiée originale.
(Ces expressions sont uniques, la solution n'étant pas

donnée sous la forme d'une série.)
Constatons d'abord qu'à ce stade d'approximation

il n'y a pas lieu d'épiloguer sur les valeurs des nombres
d'ondes, assimilables dans les deux cas de calculs à

k
co

c

Puis dessinons la figure 5 où oc(A,co) donne un plan
en coordonnées logarithmiques.

Les positions des plans A) et B) sont certainement
différentes, mais l'écart est plausible, car il s'agit aussi
de résultats tous deux approchés sous plusieurs aspects.

*,.

/' lO"10"

/ /

//$¦—t
7 a) 'V/ /lO '

/ / '/
s*

** / *
7 / *

i //
• '//

..•y/
/

S *

103 KT (a

— Comparaison des coefficient3
d'amortissement

vir2 1 hm

2* et B>a ^\/2
pour l'eau à 20° C (c 145.103 cm/sec,

v 10~~2 cm2/sec).
(échelles logarithmiques)

Il est aléatoire de s'engager dans un choix général, et
la conclusion pourrait être la suivante :

Les surfaces A) et B) devraient situer la zone donnant
l'ordre de grandeur du coefficient d'amortissement
par viscosité des ondes de la forme étudiée et de

fréquence audible, se propageant dans de l'eau comprise
entre deux plans limites, parallèles et rigides, situés
à faible distance l'un de l'autre.

Il en est de même dans le cas des autres liquides et de

gaz.

* Appendice relatif à l'emploi, dans des problèmes aux
limites, du coefficient d'amortissement

2 U)2

Q=3V^
des grandeurs caractéristiques attachées aux ondes sinusoïdales

unidimensionnelles ayant leur siège dans un milieu
supposé sans bornes.

En figure 5 est dessiné en pointillé (puisque non réel)
un plan qui a pour ligne de plus grande pente la droite
(en coordonnées logarithmiques)

2 UJ2

»=3 V^-
Il ressort de la comparaison que la simplification consistant

à employer cette formule dans des problèmes aux
limites serait une approximation excessive, du moins dans
la région des basses fréquences et faibles distances entre
limites.

Ce fait pourrait manifester son importance, par exemple,
dans les calculs de filtres acoustiques où l'on fait intervenir
la viscosité.

[Un exemple de filtre acoustique pour canalisations d'eau
se trouve dans un article de M. Pierre Liénard paru dans
le « Colloque international d'acoustique architecturale »,

Marseille, 11-17 avril 1950 (C.N.R.S.).
Ce filtre est basé sur une étude de M. Yves Rocard faisant

appel à une théorie du même auteur, théorie qui a, à son
point de départ, le coefficient d'absorption pour un milieu
sans bornes.

Remarquons d'ailleurs qu'il est possible de trouver dans
ces exemples de calcul de filtres acoustiques quelques questions

à préciser, dont celle-ci :

Il nous semble que, dans l'article cité, les formules n'aient
pas été adaptées d'une manière complète au cas des liquides.]
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