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Fig. 5.

la température, ainsi que le montre la courbe de rende-
ments représentée par la figure 5.

Les essais de Gondo ayant eu en partie un caractére
démonstratif, il n’est pas possible de donner la durée
des différentes opérations, montage, essai et démon-
tage. Toutefois, les participants & ces essais ont pu se
persuader de la grande simplicité du montage et des
manceuvres nécessaires aux mesures, doublée d’une
grande rapidité d’exécution.

Comparaisons des relevés obtenus par des mesures
thermodynamiques avec des relevés obtenus par
d’autres méthodes

Les essais effectués a I'usine de Gondo ne permettent
pas d’établir une telle comparaison et ce n'est d’ailleurs
pas leur but. Il s’agissait, dans le cas particulier, de
controler les caractéristiques des machines aprés une
modification destinée @ en augmenter la puissance. Par
contre, Electricité de France a publié un certain nombre
de comparaisons entre les mesures thermodynamiques
et des mesures aux moulinets ou au déversoir dans
Particle de MM. Willm et Campmas qu’il est intéressant
d’étudier.

On remarque d’une fagon générale que les mesures
effectuées par la méthode thermodynamique se com-
parent favorablement avec les autres types de mesure,
tant en ce qui concerne la valeur absolue des rende-
ments que la dispersion des points.

Conclusion

Non seulement une méthode de mesures de rende-
ments, rapide et peu coliteuse, est utile aux construc-
teurs parce qu’elle peut leur permettre de vérifier leurs
calculs et leurs essais en laboratoire plus fréquemment
que ce n'est le cas actuellement, mais elle représente
aussi un avantage certain pour Pexploitant. En effet,
celui-ci peut effectuer lui-méme et dans de honnes con-
ditions un contréle périodique des rendements, déter-
miner ainsi I'état d’usure de ses machines et échelonner
judicieusement ses campagnes de réparations.

Dans I'état actuel de la technique, la mesure de ren-
dements par la méthode thermodynamique permet d’ef-
fectuer d’excellents relevés dans un temps trés court
et a peu de frais. Elle n’exige qu'un minimum d’ap-
pareillage et réduit les arréts nécessaires pour la mise en
place et le démontage des installations a des valeurs
absolument négligeables. On se rend compte qu'il serait
particuliérement intéressant de pouvoir effectuer des
séries de comparaisons avec d’autres méthodes lors
d’essais de réception, comparaisons permettant de défi-
nir le champ d’application pratique et de préciser la
valeur des mesures thermodynamiques par rapport aux
essais classiques. Cecl étant fait, il n’est pas impossible
que la méthode thermodynamique constitue la méthode
de mesure la plus favorable et la plus stre dans le
domaine des chutes moyennes et élevées.
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UNE METHODE SIMPLE DE CALCUL
DE L’ABSORPTION DU SON PAR VISCOSITE SEULE,
DANS DES FLUIDES HOMOGENES LIMITES

par A. BOTTA, ingénieur E.P.U.L.

Voici une solution élémentaire du probléeme de la
propagation des ondes acoustiques dans des fluides
homogénes contenus dans certaines limites.

Les résultats simples mais non négligeables auxquels
on est conduit, sont susceptibles d’étre développés et
employés dans les applications techniques.

D’autre part, le mot élémentaire justifie les simpli-
fications introduites dans ce probléeme complexe et
nous dispense d’y revenir, d’autant plus que ce genre
de calculs est bien connu.

Champ sonore dans un fluide homogéne contenu
enfre deux demi-plans paralléles et parfaitement
rigides, en I'absence de sources, sauf a une limite.

Dans les champs sonores, la transmission de I'énergic
mécanique se fait par vibrations «élastiques» des
« particules » constituant le milieu continu.

[’énergie se dissipe aussi en se propageant, notam-
ment du fait de la viscosité.

Un élément du fluide se déplace et se déforme autour
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d’une position moyenne. Nous exprimons dans notre
cas I'hypothése que le mouvement vibratoire n’a lieu
que parallelement aux parois, selon axe ox, et qu’il
est le méme pour tous les points des droites paralléles
a l'axe oz.

Ce sont les conditions aux limites et 'absence de
sources sonores a lintérieur, qui nous aménent a
admettre un tel mouvement.
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Considérons (fig. 1) un élément de masse dm, ayant
au repos une densité p, et occupant le volume dV, =
ddydz

dm = p,dV,

Exprimons la lo1 de son mouvement en écrivant qu’il
y a proportionnalité entre les forces appliquées et
Iaccélération acquise par son barycentre (théoréme
du mouvement du barycentre).

Nous retiendrons les forces de pression sur les faces
dydz, et de viscosité sur les faces dudsz.

Désignons par € (z,y,t) le déplacement approximatif
de la face dydz se trouvant a Pabscisse x au repos, et
en x -+ & au temps ¢,
par

8P et 8P = 5P + 2L dy
Jx

les variations de pression, entre le mouvement et le
repos, sur les. faces dydz,
et par

Tet T =1+ s dy

Ay

les forces de viscosité, par unité de surface, sur les faces

dxdz.
La dynamique permet d’écrire, en premiére appro-
ximation,
8Pz, y,t) — 8P (x + dx, y, 1)] dydz —
— [T(z, yt) — T’ (@, y + dy, t)] dadz =

P8y,
= p" ‘)['Z

dadyd=.

Or, le volume occupé au temps { par la masse dm est

o
dV, = (d.z: - )’c; (ll') dydz.

Nous admettons que le coellicient de compressibilité

dV,— dV,
K= av, 5P
est constant, étant donné les faibles variations de
pression.
Alors
1 o
sp—— . %
K Jr
et
.- A B
SP-—SP = ; sz dl,.
D’autre part
0%
_ n (_Jy,)t ’

ou 1 est le coeflicient de viscosité du fluide.

Done

e P6
T T T e

—etd =y vy est,
Kpo Po

par définition, le coeflicient de viscosité cinématique.
Nous pouvons éerire finalement

Posons pour simplifier

diﬁ 1 (12§ - v (73§

Jat 2o 2 Jy? ot

On voit qu’on obtient une équation de d’Alembert
(qui régit la propagation des ondes indéformables de
célérité ¢) du type

1 7% "

2
u"&
; ‘172 (:2 (,l‘l )

complétée par un second membre di a la présence des
forces de viscosité dans le continu fluide.

Cherchons le régime permanent du champ sonore
correspondant a des vibrations sinusoidales et satis-
faisant aux conditions aux limites suivantes :

=0
£=10 pour :x =0 { 'Z —h ‘
. >
€ = I'(y)sinwt =10 [ =t
€ reste fini e, 02 y=Zh

€ = I' (y)sinwt représente l'action d’une source en
=

= 0.

Passons aux fonctions complexes et cherchons une
solution de la forme

€ (zyt) = X (2) Y (y) etot.
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Nous obtenons ainsi

-
. IV e A .
§(z, y,t) = \ Cy sin h ye " sin (ol — k)

n=1

avec

Voict un deuxiéme exemple d’intégration :

Champ sonore dans un cylindre a section circulaire

Si, au lieu de prendre comme limites deux demi-plans,
on considere une surface cylindrique (fig. 3), nous
pouvons écrire, avee les notations en figure,

1T

Fly) = Y Casin " y.

n=1

Les constantes (', sont done les coellicients de
Fourier de la fonetion F(y).

(Il est légitime d’écrire les deux séries précédentes
étant donné la forme de I'équation aux dérivées par-
tielles et la nature physique du probleme.)

Nous nous intéressons en particulier aux valeurs du
coellicient d’amortissement o et du nombre d’onde k.

Le calcul donne
2 2 2
n?m?y\2
w / + ]1200
Oty == = = =
a =+ . D)
2.9 .12
/ nA ¥
14+ \/1+ (727—
I w W
| =+ = —
y
B jece Plagons-nous dans le
S o 9 5 5 .
NG cas (flig. 2) ou l'ampli-
| —— & ) tude des vibrations de
! & H¥ . . ,
\ la smn'vck(‘st distribuée
— selon une sinusoide
7’
g ’
— b ¢ b L, . T
; y) = Cysin — .
r 1 (y) 1 hY
Fig. 2

Alors seulement les coeflicients «; et &, existent. Nous
pouvons les écrire d’autant plus exactement que la

. @ ; :
fréquence f= = est élevée
2
2
vTr? w
N = 5o 2 chair

On remarquera que la dispersion de la célérité est
devenue pour nous une quantité négligeable, puisque
hy = w/c.

. 2 2 1’f2 = 2

_Jr__

r/rz. t r Jrt

e L (,;sg 1 ,,2§~)_

La recherche d’une solution du méme type que pré-
cédemment, avec les mémes conditions aux limites,
mutlatis mutandis, améne a

- . —a.r
Efz, r,d) = E C; J, (% r) e ' sin (ot — k)
i=1 ‘

avec, si I'(r) sinwt représente I'action d’une source a
la limite @ = 0,

F () = Z Cid, (;; r)-

i=1

Les constantes C; sont les coeflicients d'un dévelop-
pement de Fourier-Bessel de la fonction F(r); R est
le rayon du cylindre, tandis que les ¢; sont les racines
positives de l'équation en a :

Joila) =10.

(On remarquera que, par la nature du probleme, la
fonction de Bessel J, apparait seule, car la fonction de
Neumann N, est exclue de la solution).

Les expressions donnant les coeflicients o; et k; sont
celles calculées dans le probleme précédent, ou la
quantité

nr . a;
—— B8t remp/(tcee par —

h R

Comme auparavant, supposons d’étre en présence du
cas le plus simple, c’est-a-dire celui ou 'amplitude des
vibrations de la source est donnée par

ol \ v (1
Fy(r) = Cy J, <R‘r)

/



ol a,, la plus petite racine positive de J, (@) = 0, vaut
a, = 2,4048.

Dans ce cas, nous aurons ainsi uniquement les

coeflicients

va,? w

o = 2;-ﬁ2 el /\'1 =

avec ICS meémes remarques que pour le cas l)I‘("Céd(‘llt.

Conclusion

Voila donc esquissé en un minimum de lignes cette
solution élémentaire.

Cherchons maintenant un point de comparaison.

A défaut de résultats empiriques, nous l'avons
choisi dans la solution du méme probleme (champ
sonore entre deux plans) donnée par Lord Rayleigh
dans son ouvrage The Theory of Sound (§ 352, Second
Edition, Dover Publications, New York, 1945).

Par la voie plus générale des équations fondamentales
de la mécanique des fluides, Lord Rayleigh a recherché,
d’Euler, le

vitesses pour des ondes sinusoidales, en admettant

en variables champ permanent des
toutefois des hypothéses moins restrictives que les
notres sur la direction des mouvements vibratoires :
il les suppose avoir lieu dans les plans z = cle, mais
non uniquement selon 'axe ox (se rapporter a la fig. 1).

On peut remarquer que nous avons calculé le champ
de T'élongation en variables de Lagrange, mais la
comparaison des ceellicients d’amortissement et des
nombres d’ondes obtenus par les deux méthodes a un
sens.

D’autre part, quels que soient les mouvements
hypothétiques des « particules», le probléme réel a
résoudre est identique : il n’est par conséquent pas
incohérent de comparer certains résultats.

Bornons nous & extraire des calculs de premieére
approximation du début du § 352, I'égalité 19) que nous
séparons en deux et présentons ici avec nos notations

1 ) w 1

= = \v — = 1 _'_ T e———

he 2 LT c ] 2w
v

tout en conservant la forme simpliliée originale.

(Ces expressions sont uniques, la solution n’étant pas
donnée sous la forme d’une série.)

Constatons d’abord qu’a ce stade d’approximation
il n’y a pas lieu d’épiloguer sur les valeurs des nombres

d’ondes, assimilables dans les deux cas de calculs a

Puis dessinons la figure 5 ot a(h,w) donne un plan
en coordonnées logarithmiques.

Les positions des plans A) et B) sont certainement
différentes, mais I'écart est plausible, car 1l s’agit aussi
de résultats tous deux approchés sous plusieurs aspects.
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Vig. 5. — Comparaison des coefficients
d’amortissement
2
v 1 vw
S A o = et B) a= - -
& 3 2ch? ) he 2
pour Ueaw a 20° C (e = 145.10% em [sec,
Rt
k“@ v =102 cm?/sec).

(échelles logarithmicques)

11 est aléatoire de s’engager dans un choix général, et
la conclusion pourrait étre la suivante :

Les surfaces A) et B) devraient situer la zone donnant
I'ordre de grandeur du coeflicient d’amortissement
par viscosité des ondes de la forme étudiée et de fré-
quence audible, se propageant dans de I’eau comprise
entre deux plans limites, paralleles et rigides, situés
a faible distance I'un de l'autre.

Il en est de méme dans le cas des autres liquides et de
gaz.

* Appendice relatif & 1'emploi, dans des problemes aux
. > A 3 I
limites, du coeflicient d’amortissement
2 w?
=
3 2
des grandeurs caractéristiques attachées aux ondes sinusoi-
dales unidimensionnelles ayant leur siége dans un milieu
supposé sans bornes.

En figure 5 est dessiné en pointillé (puisque non réel)
un plan qui a pour ligne de plus grande pente la droite
(en coordonnées logarithmiques)

2 w?
= ="V —
w) 3 8

A =

Cl( .

Il ressort de la comparaison que la simplification consis-
tant & employer cette formule dans des problemes aux
limites serait une approximation excessive, du moins dans
la région des basses fréquences et flaibles distances entre
limites.

Ce fait pourrait manifester son importance, par exemple,
dans les caleuls de filtres acoustiques ou 'on fait intervenir
la viscosité.

[Un exemple de filtre acoustique pour canalisations d’eau
se trouve dans un article de M. Pierre Liénard paru dans
le «Colloque international d’acoustique architecturale »,
Marseille, 11-17 avril 1950 (C.N.R.S.).

Ce filtre est basé sur une é¢tude de M. Yves Rocard faisant
appel a4 une théorie du méme auteur, théorie qui a, a son
point de départ, le coefficient d’absorption pour un milieu
sans bornes.

Remarquons d’ailleurs qu’il est possible de trouver dans
ces exemples de calcul de filtres acoustiques quelques ques-
tions a préciser, dont celle-ci :

Il nous semble que, dans I'article cité, les formules n’aient
pas ¢té adaptées d’'une maniére compléte au cas des liquides.]
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