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THEORIE DES PLAQUES PLASTIQUES

par WILLIAM PRAGER

Professeur de mécanique appliquée
Brown University, Providence, R.l., U.S.A.

I. Introduction

L'étude de la flexion des plaques a été un des premiers
problemes de I'élasticité qui ait attiré 'attention des
savants, probablement a cause de l'analogie avec la
théorie de la poutre, qui était bien développée. Cauchy
s’est intéressé a I'élasticité quand il fut nommé membre
d’une commission chargée d’étudier un mémoire de
Navier, traitant les plaques élastiques, soumis a
I’Académie des sciences en 1820. A cause de I'impor-
tance des contributions de Cauchy [1], le développe-
ment de la théorie mathématique de 1'élasticité est
done étroitement lié a celui de la théorie des plaques
élastiques.

La théorie de la plasticité, inaugurée par de Saint-
Venant [2], en 1870, n’a pas suivi la méme voie. Méme
dans les ouvrages récents sur la théorie de la plasti-
cité, on ne trouve que peu d’études traitant la flexion
plastique des plaques [3]. Des progres considérables ont
cependant été réalisés ces dernieres années. Nous pré-
sentons, dans cet article, un résumé de ces recherches
pouvant servir d’introduction aux travaux plus détaillés
publiés dans nombre d’articles et rapports récents,
dont certains ne sont pas encore accessibles.

2. Relations entre les moments fléchissants
principaux et les courbures principales

Les problémes envisagés dans cet article traitent les
plaques circulaires avec charges et supports a symétrie
cylindrique. Soient r, ¢, z les coordonnées cylindriques,
z étant I'axe vertical dirigé vers le bas, et supposons
la plaque limitée par les plans z = 4- h/2 et le cylindre
r= R. La plaque est soit simplement appuyée, soit
encastrée tout le long de son bord. La charge transver-
sale appliquée p = p(r) est considérée comme positive
quand elle est dirigée vers le bas.

A cause de la symétrie cylindrique de la charge et
du support, aucune tension tangentielle n’est transmise
a travers les sections ¢ = const. De plus, si I’épaisseur
L de la plaque est petite comparée au rayon R, les
tensions normales transmises a travers les sections
z = const. et les tensions tangentielles verticales trans-

mises a travers les sections r = const. sont petites
comparées aux tensions de flexion radiales et circonfé-
rentielles. Il s’ensuit que I'état de tension en un point
quelconque peut étre considéré comme un état plane,
les tensions principales étant la tension radiale o et la
tension circonférentielle .
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L’approximation de la théorie des plaques minces
est valable pour autant que les conditions tri-dimen-
sionelles d’équilibre des tensions locales solent rem-
placées par les conditions bi-dimensionelles d’équilibre
des résultantes des tensions, et que les conditions tri-
dimensionelles de compatibilité pour les déformations
locales soient remplacées par les conditions bi-dimen-
sionelles pour les courbures et la torsion de la plaque.

Dans le cas de la symétrie cylindrique considéré ici,
les résultantes des tensions sont le moment fléchissant
radial M, le moment fléchissant circonférentiel N et
Peffort tranchant 7'. Les moments {léchissants M et N
résultant respectivement des tensions o et T sont consi-
dérés comme positifs s’ils produisent des tensions de
traction dans la surface inférieure de la plaque. L’effort
tranchant 7" résulte des tensions tangentielles verticales
transmises a travers une section r = const. ; la force 7'
transmise de cylindre
r = const. est considérée comme positive si elle est
dirigée vers le bas. Toutes les résultantes des tensions

Iextérieur a lintérieur du

sont données par unité de longueur d’éléments d’arc
de la surface moyenne de la plaque.

Les conditions d’équilibre pour ces résultantes des
tensions sont

(rT) + rp =0, 1)
(rM)) — N —rT = 0, 2)

/

ot le prime indique la dérivée par rapport a r. Sauf
dans le cas d’une charge appliquée au centre de la
plaque, l'effort tranchant 7" doit s’annuler pour r = 0.
L’intégration de I'équation (1) et la substitution du
résultat dans (2) donnent alors

/

(rM) — N = — / rpdr. (3)

Les équations d’équilibre sont indépendantes des
propriétés mécaniques de la matiére constituant la
plaque. Elles ne sont cependant pas suflisantes pour
déterminer les résultantes des tensions en fonction de r,
et nous devons y adjoindre des équations qui refletent
le comportement mécanique de la matiére constituant
la plaque. Nous supposons que cette matiére soit
parfaitement plastique et obéisse a la condition de
plasticité de Tresca [4], ainsi qu'a la régle de fluage y
associée [5]. La matiére ne peut supporter aucun état

T
(N)
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tp ™)
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%
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Fig. 1.

de tension dont la tension tangentielle maximum
dépasserait o,/2, oli g, est la tension critique de plasticité
en traction simple. Le fluage plastique peut avoir lieu
seulement quand la tension tangentielle maximum est
éoale a o,/2, et la matiére reste rigide tant que la
tension tangentielle maximum est inférieure a o,/2.

Dans le cadre de notre approximation, les tensions
principales en un point de la plaque sont respectivement
la tension radiale de flexion o, la tension circonférentielle
de flexion T, et la tension normale au plan de la plaque,
cette derniére tension étant négligeable. Puisque la
tension tangentielle maximum est égale a la moitié
de la différence maximum des tensions principales, les
états critiques de tension pour lesquels il peut y avoir
fluage plastique sont représentés dans le plan o, T par
les points du périmeétre de I'hexagone de Tresca (fig. 1).

La regle de fluage adoptée dans cet article stipule
que pour tout état critique de tension qui n’est pas
représenté par un sommet de I’hexagone de Tresca, le
mécanisme de fluage est du cisaillement pur, les vitesses
de dilatation principales suivant les directions des
tensions principales maximum, intermédiaire, et mini-
mum étant respectivement o, 0, et —a. Puisque la
matiére ne présente pas d’effet de viscosité, la vitesse
de dilatation o peut prendre une valeur positive
quelconque. )

Pour illustrer cette régle de fluage, soient € et 1 les
vitesses de dilatation radiale et circonférentielle. Pour
un état critique de tension représenté par un point
intérieur du segment BC (fig. 1), nous avons e =0,
n > 0. De méme pour un point intérieur du segment
CD, nous avons —e¢ =1 > 0.

Pour un état critique de tension représenté par un
sommet de I'hexagone de Tresca, nous supposerons que
le mécanisme de fluage puisse étre une combinaison
linéaire arbitraire, a coeflicients positifs, des mécanismes
de fluage correspondants aux cdtés adjacents de I'hexa-
gone. Par exemple, au point B, nous aurons donc
>0, n>0, tandis qu'au point C nous aurons
0<—e<n.

Comme ces exemples le montrent, notre régle de
fluage n’établit pas une correspondance bi-univoque
entre les états critiques de tension et les mécanismes de
fluage. Il est cependant aisé de s’assurer que les vitesses
de dilatation radiale et circonférentielle déterminent
univoquement la puissance dissipée lors du fluage. On
trouve que, par unité de volume, la puissance dissipée
est donnée par

e+n). (4

d=o0e-+ 1T =o0,max (€, 7,

Soit ¢ = ¢(r) la vitesse verticale avec laquelle les
points de la surface moyenne de la plaque se déplacent
vers le bas. Les vitesses de courbure dans les directions
radiale et circonférentielle sont alors

kK=—¢" , A=—7¢[r. (5)

L’élimination de ¢ entre ces équations conduit a la
condition de compatibilité

k— (rA)" = 0. (6)
Nous supposerons que les points qui se trouvent ini-

tialement sur une normale au plan moyen de la plaque
restent sur la normale correspondante de la surface



moyenne fléchie, comme cela est supposé généralement
dans la théorie des plaques. Les vitesses de dilatation
radiale et circonférentielle sont alors

E=KZ , = Az (7)

Introduisant (1) dans (4) et intégrant dans 'épaisseur &
de la plaque, nous obtenons la puissance dissipée par
unité d’aire de la surface moyenne

D = M, max (x|, A, [k +2A]), (8)
avec M, = o,h?/4. D’autre part
D = Mx + NA. 9)

Du rapprochement de (8) et (9) nous tirons la corres-
pondance qu’il y a entre les vitesses de courbure et les
moments fléchissants. Par exemple, si x et A sont posi-
tifs, le second membre de (8) se réduit a M, (x + A).
En égalant, pour des valeurs positives arbitraires de
K et A, cette expression au second membre de (9), on
a M = N = M,. Parmi les relations qui peuvent étre
obtenues de cette maniére, nous avons groupé dans
la table suivante celles qui nous seront utiles dans cet
article.

Tasre [
k>0,A>0: M=N=M,; (B)
k=0,A>0: (0<M<M,), N=M,; (BC)
0<—xk<A: M=0,N=M,; (C)
M—N=—M, \
0 < —K=A: ' (CD)
(—M, <M <0, 0<N< M,
—x>A>0: M=—M, N=0. (D)

Si les axes de coordonnées de la figure 1 représentent
maintenant M et N, et si o, est remplacé par M,
chaque ligne de cette table correspond & un sommet ou a
un coté de I'hexagone, comme il est indiqué entre
parenthéses. Les points du périmeétre de 1’hexagone
représentent des états critiques de tension M, N pour
lesquels I'élément considéré de la plaque peut se défor-
mer plastiquement. L’élément de la plaque reste rigide
pour les états de tension M, N représentés par les points
intérieurs de I'hexagone et ne peut pas supporter des
états de tension représentés par des points extérieurs a
I’hexagone. Cette derniére condition se traduit par les
inégalités entre parenthéses des deuxiéme et quatrieme
lignes de la table I. Nous dirons dorénavant qu’'une
région circulaire ou annulaire de la plaque est en régime
plastique B, BC... quand les conditions de la ligne cor-
respondante de cette table sont satisfaites.

Le régime plastique correspondant au coté AB de
I’hexagone implique que k > 0 et A = 0. Puisque ceci
est en contradiction avec la condition de compatibilité
(6), ce régime est impossible. La méme remarque peut
étre faite pour le régime DE. Finalement les régimes E,
EF, F, FA et A impliquent des valeurs négatives de A,
et donc des valeurs positives de ¢ qu’il n’est pas pro-
bable de voir se produire sous des charges positives.
En conséquence, seuls les régimes de la table I seront
considérés dans la discussion suivante.
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3. Charge de fluage

Considérons une plaque circulaire simplement
appuyée, ou encastrée sur son contour et constituée
d’une matiére rigide parfaitement plastique obéissant
a la condition de plasticité de Tresca et a la régle de
fluage y associée. Supposons cette plaque soumise a
une certaine distribution de charges graduellement
croissantes. La plaque restera rigide pour des charges
suffisamment faibles, et le fluage n’apparaitra que quand
I'intensité des charges aura atteint une valeur critique
dite charge de fluage de la plaque pour les conditions
considérées.

En appliquant les formules du paragraphe précédent
pour déterminer la charge de fluage d’une plaque, nous
devons garder présent a I'esprit le fait qu’en général la
plaque se scindera en une région circulaire centrale, et
en régions annulaires concentriques qui seront dans
des régimes plastiques différents. C’est pourquoi nous
allons discuter les relations qui existent entre les diffé-
rentes grandeurs mécaniques de part et d’autre d’une
circonférence [ séparant deux de ces régions.

Pour le probléeme statique considéré dans ce para-
graphe, I'équilibre et la cohésion de la plaque impli-
quent que l'effort tranchant 7', le moment fléchissant
radial M et la vitesse de déplacement ¢ soient continus
au travers de . En discutant le comportement des
grandeurs mécaniques restantes N, k et A, nous ne
considérerons pas le cas oi k = A = 0 sur I, car il est
peu probable quil se présente dans les applications.

Si N, k et A sont continus au travers de [, I'état de
tension sur [ doit étre représenté par un sommet de
I’hexagone. Il en est de méme siA est continu mais k dis-
continu au travers de TI.

Une circonférence au travers de laquelle A et ¢" sont
discontinus sera appelée une circonférence-charniére.
Dans le cas de la symétrie cylindrique considéré ici,
le concept de la circonférence-charniére remplace le
concept de la rotule plastique, familiere dans 1’étude
de la poutre plastique. Une circonférence-charniére doit
étre considérée comme le cas limite d’'un anneau borné
par des circonférences trés voisines, au travers duquel ¢’
varie trés rapidement, mais de facon continue. Quand
les circonférences bornant I'anneau se confondent, le
rapport k/A devient infini. En conséquence, sur une
circonférence-charniére, nous devons avoir le régime B
ou le régime D, si nous ne considérons que les régimes
de la table I. En d’autres termes, la vitesse angulaire ¢’
doit étre continue sauf, au plus, sur les circonférences
pour lesquelles | M = JM,.

Pour déterminer la charge de fluage d’une plaque cir-
culaire avec charges et supports & symétrie cylindrique,
nous devons donc résoudre le probléme suivant. L’in-
tensité p = p(r) de la charge étant donnée a un facteur
constant pres, trouver la plus grande valeur [ de ce
facteur pour laquelle on peut trouver des fonctions
M(r), N(r) et ¢(r) telles que, dans le domaine 0 = r = R,
les conditions suivantes soient satisfaites :

1. Le domaine 0 =r =R se scinde en des inter-
valles tels que, dans tout intervalle, les fonctions M,
N et ¢ soient respectivement de classe C1, C° et C2,

2. M et N satisfont a I'équation d’équilibre (3) dans
laquelle p doit étre remplacé par fp; au centre de la
plaque, M = N.
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3. Le point M, N se trouve a lintérieur de I’hexa-
gone, ou sur le périmétre de I’hexagone de la figure 1 ;
dans le premier cas, les vitesses de courbure (5) doivent
s’annuler ; dans le second cas, elles doivent étre liées
aux moments fléchissants M, N, en conformité avec la
table I.

4. La vitesse angulaire ¢’ ne peut étre discontinue
que lorsque M = M,.

5. Quand la plaque est simplement appuyée, M = 0
et ¢ = 0 pour r = R ; quand la plaque est encastrée,
v =0 et soit ¢ = 0, soit M = M, pour r = R ; dans
ce dernier cas le contour r = R est une circonférence-
charniére.

Les exemples suivants illustreront la fagon de résou-
dre de tels problemes.

4. Exemples

La plaque simplement appuyée, représentée dans la
figure 2, a une épaisseur constante et est soumise aux

|

a —»4——0—»1
—Q/7a?
o [T s,
-

— R § R -

Fig. 2.

charges P et (; la premiére est distribuée uniformé-
ment sur toute la plaque, tandis que la seconde est
distribuée uniformément sur un cercle central de
rayon a. En conséquence
P

4 €

w2 ' Tra®

pour 0 = r < q,

p=

(10)

P
l oy pour a < r = R.
Les moments fléchissants M et N résultant de ces
charges sont positifs dans toute la plaque. Il s’ensuit que
la plaque se trouve dans le régime plastique BC, c¢’est-a-
dire que le moment fléchissant circonférentiel N a par-
tout la valeur M,. Avec cette valeur connue de NN, et
avec la condition initiale M = N = M, pour r = 0,
I'intégration de I'équation d’équilibre pour la charge fp
donne

ﬂ/]o—% i (% - &,) r? pour 0 = r = q,

. TTa”

1, P 1,0 a®
y i Pl Y 599 2R,
M, Gf'n'Hz’ ()'f <3a ) poura=r=R

TTa? r
(11)

Puisque M doit s’annuler pour r = R, le facteur f
déterminant la charge de fluage vaut

6 M,

-

= (12)

— i
P+Q (3 g 7?)
Notons que ce facteur ne dépend pas du rayon R de la

plaque, mais uniquement du rapport a/Rl. L’équation
(12) contient les cas particuliers suivants :

1. Une charge P uniformément répartie sur toute la
plaque : f = 6wM,/P.

2. Une charge concentrée Q) appliquée au centre de
la plaque : f = 21wM,/Q.

La vitesse verticale ¢ associée aux moments fléchis-
sants (11) est donnée par

g2 (1 _%), (13)

ou ¢, est la vitesse verticale du centre de la plaque.
Puisque la matiére n’est pas visqueuse, la vitesse ¢
n’est déterminée qu'au facteur ¢, pres.

Considérons maintenant une plaque encastrée d’épais-
seur uniforme et soumise & une charge p uniformément
répartie. La partie de la plaque intérieure a une cer-
taine circonférence r = p sera dans le régime plastique
BC, et l'anneau extérieur sera dans le régime CD.
Cette derniére condition implique que k = — A, d’ou :

¢" +¢'[r=0 pour p=r=R. (14)

Puisque ¢ s’annule pour r = R, I'équation différentielle
(14) implique que la vitesse verticale ¢ est proportion-
nelle a log(R/r) dans Panneau p =r = R. Il s’en-
suit que la vitesse angulaire ¢" ne peut pas s’annuler &
I'encastrement, qui doit donc étre une circonférence-
charniére. En conséquence, M = — M, a I’encastre-
ment.

Dans la région centrale r < p, nous avons le régime
plastique BC, donc N = M,. Avec cette valeur de
N et la condition initiale M = N = M, pour r = 0,
I'intégration de I’équation d’équilibre pour la charge /p
donne

il
M=M,— 6 fpr?  pour0=r=np. (15)

Puisque sur la circonférence r = p nous passons du
régime plastique BC au régime plastique CD, il faut
que M = 0 sur cette circonférence. Done
6 M,

I

2

p:

(16)

Pour r > p nous avons le régime CD, done N =M —
— M,. Avec cette valeur de IV et la condition initiale
M = 0 pour r = p, l'intégration de I’équation d’équi-
libre pour la charge fp donne

r. X ”
M = M, logg——zifp(rzﬁpz). (17)
Au contour r = R, nous avons M = — M,. Si nous

remplacons, dans I'équation (17), fp par la valeur tirée
de (16), nous obtenons I'équation transcendante

R 3 IR? \
1+ log 5 :i(\p—g—q, (18)
qui détermine R/p. La résolution numérique de cette
équation, et la substitution du résultat dans (16), don-
nent le facteur /. Exprimé en fonction de la charge totale
P = R, ce facteur est f= 11,26M,/P. Pour la
plaque encastrée ce facteur est done presque le double
du facteur trouvé pour la plaque simplement appuyée.

Le lecteur trouvera des résultats supplémentaires
concernant les charges de fluage des plaques circulaires
dans un article de Hopkins et Prager [7].
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5. Economie maximum de matiére

Considérant une plaque circulaire avec charges et
supports a symétrie cylindrique, nous nous proposons
de déterminer I'épaisseur variable & = h(r) de la plaque
de telle fagon qu’il n'y ait pas fluage avant que les
charges atteignent une valeur prescrite. Une solution
quelconque de ce probléeme sera dite admissible. La
solution admissible qui utilise le minimum de matiére
est particulierement intéressante. Méme si cette plaque
de poids minimum n’est pas de réalisation pratique,
elle sert de point de comparaison utile pour juger
d’autres déterminations de plaques.

Une solution admissible a en général un mode unique
de fluage plastique. Par exemple, une plaque simple-
ment appuyée, d’épaisseur constante et soumise a une
charge uniformément répartie se déformera suivant le
mode (13). D’autre part, la solution admissible de poids
minimum doit présenter une infinité de modes de
fluage. En effet, le nombre de modes de fluage linéaire-
ment indépendants d’une structure de poids minimum
est égal au nombre des dimensions qui sont au choix du
constructeur. Une plaque dont I'épaisseur varie conti-
nuellement présentera donc une infinité de modes de
fluage linédairement indépendants. Pour que ces modes
de fluage soient possibles, tout en satisfaisant a I'équa-
tion d’équilibre, I'état de tension en tout point de la
plaque doit admettre des mécanismes de fluage mul-
tiples. En d’autres termes, I'état de tension en tout
point d'une plaque de poids minimum est représenté
par un sommet de I’hexagone de la figure 1.

Pour illustrer 'application de ce principe, considé-
rons la plaque simplement appuyée représentée dans
la figure 3. Puisqu’en tout point de la plaque, M et N

fe 0 —< a —f

o, (T

'

Fig. 3.

sont positifs, I'état de tension doit partout étre repré-
senté par le sommet B de 'hexagone, mais maintenant,
le moment critique M, est une fonction de r. Avec M =
= N = M,, l'intégration de I'équation d’équilibre (3)
donne

( pa R a? r2)
S (’1 )
M,= (19)

2
glogﬁ pour @ =r = R,
2 r

2

pour 0 = r = gq,

ou les constantes d’intégration ont été déterminées
par le fait que M, est continu & travers la circonfé-
rence r = a, et s’annule au contour r = R. Puisque
M, = o,h?[4, 'équation (19) donne la valeur de I'épais-
seur h de la plaque en fonction de r.

Notons que (19) donne & = 0 pour r = R. Ceci est
une conséquence du fait que les tensions tangentielles
verticales transmises a travers les sections r = const.
ont été supposées petites comparées aux tensions de
flexion o et T. Si cette hypothése est valable pour la
plupart des plaques, elle ne se justifie cependant plus

au voisinage d’un contour simplement appuyé, car les
tensions de flexion s’annulent sur ce contour. Le calcul
de la poutre simplement appuyée et de poids mini-
mum [8], présente le méme défaut.

6. Expériences. Accroissement de la charge de fluage
avec la fleche

La théorie précédente est faite pour une matiére trés
idéalisée qui reste rigide au-dessous de la limite de plas-
ticité, et qui est capable de déformations plastiques 1lli-
mitées, une fois ce point atteint. Il reste a voir jusqu’a
quel point les résultats de cette théorie concordent avec
les mesures effectuées sur une matiére élastico-plas-
tique, telle que l'acier doux. Un important pro-
gramme d’expériences, élaboré pour répondre a cette
question, est en cours & Brown University. La figure 4
montre quelques résultats obtenus par Foulkes et
Onat, dans le cadre de ce programme [9]. Des plaques
circulaires en acier doux, simplement appuyées, ont été
soumises & une charge appliquée au centre. La figure 4
montre 1’accroissement de la fleche centrale 8 en fonc-
tion de la charge Q pour des plaques qui avaient le
méme rayon de 5 pouces et des épaisseurs de 1 pouce,
0,5 pouce et 0,25 pouce. Le comportement théorique
d’une plaque parfaitement plastique, est représenté
dans la figure 4, par la ligne brisée OAB. Pour les ordres
de grandeur des fleches donnés par la figure 4, le com-
portement de chacune des plaques expérimentées est
représenté approximativement par deux droites; la
charge correspondant a I'ordonnée de leur point d’in-
tersection définit la charge pratique de fluage. Pour les
plaques épaisses, avec R/h = 5 et 10, cette charge pra-
tique de fluage est aux environs de 90 9%, de la charge
théorique de fluage. Ceci nous donne une mesure de la
signification pratique de notre théorie, pour les plaques
relativement épaisses. Pour la plaque trés mince ou
R|h = 20, la théorie précédente ne nous donne aucune
indication valable. Ceci est di a I'importante déforma-
tion que cette plaque peut subir dans le domaine élas-
tique. Au début du fluage plastique, la plaque n’est plus
plane, comme le suppose la théorie.

Méme dans le cas de la plaque relativement épaisse,
pour laquelle la surface moyenne est pratiquement plane
au début du fluage, la théorie précédente ne peut gueére
donner plus qu’une estimation de la charge au début du
fluage. Quand le fluage continue, la plaque plane se
déforme en une coque de révolution. Pour prévoir
Paccroissement de la charge qui est nécessaire pour
maintenir le fluage, les formules précédentes doivent
étre remplacées par les formules correspondantes pour
les coques de révolution [10]. Comme cette fagon de
procéder est assez complexe, Onat et Haythornth-
waite [11] ont proposé la méthode simplifiée suivante.

La distribution des vitesses (13) implique que le plan
moyen de la plaque se transforme en un céne. Supposons
done que la plaque conserve une forme conique au
début du fluage. Si la plaque peut glisser librement sur
son support annulaire, ce type de déformation n’en-
traine aucune vitesse de dilatation radiale ou de cour-
bure radiale. Il s’ensuit que la distance r d’un point de
la surface moyenne conique, au sommet du cone, est
la méme que la distance initiale de ce point au centre
de la plaque plane. Quand 'angle B que les génératrices
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du cone forment avec sa base horizontale, est petit, la
fleche centrale peut s’écrire

S ~ RP, (20)
et la dilatation circonférentielle de la surface moyenne
vaut

cos p— 1~ — P2 (21)
Puisque la matiére n’est pas visqueuse, 'unité de temps
est arbitraire et nous pouvons donc identifier le temps
avec l'angle B. La vitesse de dilatation circonférentielle
de la surface moyenne est alors
Mo & — P. (22)
De méme, on trouve que la vitesse de courbure circon-
férentielle vaut

A= lr. (23)
La puissance dissipée par unité d’aire de la surface
moyenne est donc

h/2
Y P -
D= J o Mo + Az dz:oa{ﬁ + A lz} (24)
—h/2

Remplagons n, et A par leurs valeurs (22) et (23) et
intégrons (24) sur la surface moyenne de la plaque.
Nous obtenons ainsi la puissance totale dissipée

R

f‘z'rerdr:%'rrcoRSZ—}—Q'n'zWaR, (25)

0
avec M, = o,h*/4. D’autre part, la puissance de la
charge centrale Q vaut QR, puisque I’équation (20)
donne la valeur R pour la vitesse verticale du point
d’application de . En égalant le second membre de
(25) a QR, et résolvant par rapport a (), nous trouvons

4 52
0 = 2 M, (1 +3 P) (26)

A cause des hypotheses simplificatrices faites au
cours de I'établissement de cette formule, qui est repré-
sentée par la courbe AC de la figure 4, nous ne pouvons
pas espérer plus qu'une évaluation grossiére de I'accrois-
sement de la charge Q) en fonction de la fleche 8. Pour
la plaque la plus épaisse, pour laquelle R/h = 5, nous
obtenons un accord assez bon entre I'expérience et les
valeurs données par cette formule.

14 -
QMg %

1.2

Fig. 5.

Une autre confirmation de notre théorie peut étre
obtenue de la facon suivante, indiquée par Haythornth-
waite et Onat [12]. Aprés que la plaque a subi une
certaine déformation plastique, elle est déchargée et
inversée sur son support annulaire, de fagon qu’elle pré-
sente 1'aspect d’une coque légérement bombée. Quand
cette coque est de nouveau chargée, le fluage plastique
en réduit la fleche et la charge de fluage décroit avec
elle. A Dinstant ou la fleche s’annule, la charge de
fluage doit avoir la valeur donnée par notre théorie.
La figure 5 représente les résultats d’une telle expé-
rience réalisée par Haythornthwaite et Onat. La ligne
pointillée de cette figure correspond a la formule (26).
Pour des valeurs suflisamment petites de la fleche, I'ac
cord entre 'expérience et la théorie est excellent.
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