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THÉORIE DES PLAQUES PLASTIQUES

par WILLIAM PRAGER

Professeur de mécanique appliquée
Brown University, Providence, R.I., U.S.A.

I. Introduction

L'étude de la flexion des plaques a été un des premiers
problèmes de l'élasticité qui ait attiré l'attention des

savants, probablement à cause de l'analogie avec la
théorie de la poutre, qui était bien développée. Cauchy
s'est intéressé à l'élasticité quand il fut nommé membre
d'une commission chargée d'étudier un mémoire de

Navier, traitant les plaques élastiques, soumis à

l'Académie des sciences en 1820. A cause de l'importance

des contributions de Cauchy [1], le développement

de la théorie mathématique de l'élasticité est

donc étroitement lié à celui de la théorie des plaques
élastiques.

La théorie de la plasticité, inaugurée par de Saint-
Venant [21, en 1870, n'a pas suivi la même voie. Même
dans les ouvrages récents sur la théorie de la plasticité,

on ne trouve que peu d'études traitant la flexion
plastique des plaques [3]. Des progrès considérables ont
cependant été réalisés ces dernières années. Nous

présentons, dans cet article, un résumé de ces recherches

pouvant servir d'introduction aux travaux plus détaillés

publiés dans nombre d'articles et rapports récents,
dont certains ne sont pas encore accessibles.

2. Relations entre les moments fléchissants

principaux et les courbures principales

Les problèmes envisagés dans cet article traitent les

plaques circulaires avec charges et supports à symétrie
cylindrique. Soient r, 9, z les coordonnées cylindriques,
z étant l'axe vertical dirigé vers le bas, et supposons
la plaque limitée par les plans z ^ h/2 et le cylindre
r R. La plaque est soit simplement appuyée, soit
encastrée tout le long de son bord. La charge transversale

appliquée p p(r) est considérée comme positive
quand elle est dirigée vers le bas.

A cause de la symétrie cylindrique de la charge et
du support, aucune tension tangentielle n'est transmise
à travers les sections <p const. De plus, si l'épaisseur
h de la plaque est petite comparée au rayon R, les

tensions normales transmises à travers les sections

z const, et les tensions tangentielles verticales transmises

à travers les sections r const, sont petites
comparées aux tensions de flexion radiales et circonfé-
rentielles. Il s'ensuit que l'état de tension en un point
quelconque peut être considéré comme un état plane,
les tensions principales étant la tension radiale a et la
tension circonférentielle T.
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L'approximation de la théorie des plaques minces

est valable pour autant que les conditions tri-dimen-
sionelles d'équilibre des tensions locales soient
remplacées par les conditions bi-dimensionelles d'équilibre
des résultantes des tensions, et que les conditions tri-
dimensionelles de compatibilité pour les déformations
locales soient remplacées par les conditions bi-dimensionelles

pour les courbures et la torsion de la plaque.
Dans le cas de la symétrie cylindrique considéré ici,

les résultantes des tensions sont le moment fléchissant
radial M, le moment fléchissant circonférentiel N et
l'effort tranchant T. Les moments fléchissants M et N
résultant respectivement des tensions a et t sont considérés

comme positifs s'ils produisent des tensions de

traction dans la surface inférieure de la plaque. L'effort
tranchant T résulte des tensions tangentielles verticales
transmises à travers une section r const. ; la force T
transmise de l'extérieur à l'intérieur du cylindre
r const, est considérée comme positive si elle est

dirigée vers le bas. Toutes les résultantes des tensions

sont données par unité de longueur d'éléments d'arc
de la surface moyenne de la plaque.

Les conditions d'équilibre pour ces résultantes des

tensions sont

(rT)' + rp 0,

(rM)' — N — rT 0,

(1)

(1\

où le prime indique la dérivée par rapport à r. Sauf
dans le cas d'une charge appliquée au centre de la

plaque, l'effort tranchant T doit s'annuler pour r O.

L'intégration de l'équation (1) et la substitution du
résultat dans (2) donnent alors

rM)' — N — / rpdr (3)

Les équations d'équilibre sont indépendantes des

propriétés mécaniques de la matière constituant la

plaque. Elles ne sont cependant pas suffisantes pour
déterminer les résultantes des tensions en fonction de r,
et nous devons y adjoindre des équations qui reflètent
le comportement mécanique de la matière constituant
la plaque. Nous supposons que cette matière soit

parfaitement plastique et obéisse à la condition de

plasticité de Tresca [4], ainsi qu'à la règle de fluage y
associée [5]. La matière ne peut supporter aucun état
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de tension dont la tension tangentielle maximum
dépasserait o"o/2, où o"<> est la tension critique de plasticité
en traction simple. Le fluage plastique peut avoir lieu
seulement quand la tension tangentielle maximum est
égale à 0"0/2, et la matière reste rigide tant que la
tension tangentielle maximum est inférieure à o"0/2.

Dans le cadre de notre approximation, les tensions
principales en un point de la plaque sont respectivement
la tension radiale de flexion a, la tension circonférentielle
de flexion t, et la tension normale au plan de la plaque,
cette dernière tension étant négligeable. Puisque la
tension tangentielle maximum est égale, à la moitié
de la différence maximum des tensions principales, les

états critiques de tension pour lesquels il peut y avoir
fluage plastique sont représentés dans le plan ex, t par
les points du périmètre de l'hexagone de Tresca (fig. 1).

La règle de fluage adoptée dans cet article stipule
que pour tout état critique de tension qui näest pas
représenté par un sommet de l'hexagone de Tresca, le

mécanisme de fluage est du cisaillement pur, les vitesses
de dilatation principales suivant les directions des

tensions principales maximum, intermédiaire, et minimum

étant respectivement a, 0, et —o. Puisque la
matière ne présente pas d'effet de viscosité, la vitesse
de dilatation ce peut prendre une valeur positive
quelconque.

Pour illustrer cette règle de fluage, soient £ et r) les

vitesses de dilatation radiale et circonférentielle. Pour
un état critique de tension représenté par un point
intérieur du segment BC (fig. 1), nous avons 6 0,

T) > 0. De même pour un point intérieur du segment
CD, nous avons — e r| > 0.

Pour un état critique de tension représenté par un
sommet de l'hexagone de Tresca, nous supposerons que
le mécanisme de fluage puisse être une combinaison
linéaire arbitraire, à coefficients positifs, des mécanismes
de fluage correspondants aux côtés adjacents de l'hexagone.

Par exemple, au point B, nous aurons donc
e > 0, r) > 0, tandis qu'au point C nous aurons
0 <—E <T).

Comme ces exemples le montrent, notre règle de

fluage n'établit pas une correspondance bi-univoque
entre les états critiques de tension et les mécanismes de

fluage. Il est cependant aisé de s'assurer que les vitesses
de dilatation radiale et circonférentielle déterminent
univoquement la puissance dissipée lors du fluage. On

trouve que, par unité de volume, la puissance dissipée
est donnée par

0"E + TT) 0"„ max j e H— -n ; (4)

Fiff. 1.

Soit v v(r) la vitesse verticale avec laquelle les

points de la surface moyenne de la plaque se déplacent
vers le bas. Les vitesses de courbure dans les directions
radiale et circonférentielle sont alors

k — v" À — v'jr. (5)

L'élimination de v entre ces équations conduit à la
condition de compatibilité

K — (rÂ)' 0. (6)

Nous supposerons que les points qui se trouvent
initialement sur une normale au plan moyen de la plaque
restent sur la normale correspondante de la surface
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moyenne fléchie, comme cela est supposé généralement
dans la théorie des plaques. Les vitesses de dilatation
radiale et circonférentielle sont alors

T] Az. (7)

Introduisant (1) dans (4) et intégrant dans l'épaisseur h
de la plaque, nous obtenons la puissance dissipée par
unité d'aire de la surface moyenne

D M0 max k,, |A ;

avec M0 o"<,A2/4. D'autre part

D Mk + NX.

(8)

(9)

Du rapprochement de (8) et (9) nous tirons la
correspondance qu'il y a entre les vitesses de courbure et les

moments fléchissants. Par exemple, si k et À sont positifs,

le second membre de (8) se réduit à M0 (k + X).
En égalant, pour des valeurs positives arbitraires de

K et X, cette expression au second membre de (9), on
a M N — M0. Parmi les relations qui peuvent être
obtenues de cette manière, nous avons groupé dans
la table suivante celles qui nous seront utiles dans cet
article.

k > 0, X > 0

k 0, A > 0

0<—k<A

M

Table I

N M0 (B)

(0 < M < M0), N M0 ; (BC)

M 0, N Mo ; (C)

M — N — Mo,
A: (CD)

\(—Mo<M<0, 0<N<Mo);j
— K>A>0: M — Mo, N 0. (D)

0<

Si les axes de coordonnées de la figure 1 représentent
maintenant M et N, et si cx0 est remplacé par M„,
chaque ligne de cette table correspond à un sommet ou à

un côté de l'hexagone, comme il est indiqué entre
parenthèses. Les points du périmètre de l'hexagone
représentent des états critiques de tension M, N pour
lesquels l'élément considéré de la plaque peut se déformer

plastiquement. L'élément de la plaque reste rigide
pour les états de tension M, N représentés par les points
intérieurs de l'hexagone et ne peut pas supporter des
états de tension représentés par des points extérieurs à

l'hexagone. Cette dernière condition se traduit par les

inégalités entre parenthèses des deuxième et quatrième
lignes de la table I. Nous dirons dorénavant qu'une
région circulaire ou annulaire de la plaque est en régime
plastique B, BC... quand les conditions de la ligne
correspondante de cette table sont satisfaites.

Le régime plastique correspondant au côté AB de

l'hexagone implique que k > 0 et A 0. Puisque ceci
est en contradiction avec la condition de compatibilité
(6), ce régime est impossible. La même remarque peut
être faite pour le régime DE. Finalement les régimes E,
EF, F, FA et A impliquent des valeurs négatives de A,
et donc des valeurs positives de v' qu'il n'est pas
probable de voir se produire sous des charges positives.
En conséquence, seuls les régimes de la table I seront
considérés dans la discussion suivante.

3. Charge de fluage
Considérons une plaque circulaire simplement

appuyée, ou encastrée sur son contour et constituée
d'une matière rigide parfaitement plastique obéissant
à la condition de plasticité de Tresca et à la règle de

fluage y associée. Supposons cette plaque soumise à

une certaine distribution de charges graduellement
croissantes. La plaque restera rigide pour des charges
suffisamment faibles, et le fluage n'apparaîtra que quand
l'intensité des charges aura atteint une valeur critique
dite charge de fluage de la plaque pour les conditions
considérées.

En appliquant les formules du paragraphe précédent
pour déterminer la charge de fluage d'une plaque, nous
devons garder présent à l'esprit le fait qu'en général la
plaque se scindera en une région circulaire centrale, et
en régions annulaires concentriques qui seront dans
des régimes plastiques différents. C'est pourquoi nous
allons discuter les relations qui existent entre les
différentes grandeurs mécaniques de part et d'autre d'une
circonférence T séparant deux de ces régions.

Pour le problème statique considéré dans ce
paragraphe, l'équilibre et la cohésion de la plaque impliquent

que l'effort tranchant T, le moment fléchissant
radial M et la vitesse de déplacement v soient continus
au travers de T. En discutant le comportement des

grandeurs mécaniques restantes N, k et A, nous ne
considérerons pas le cas où k A 0 sur T, car il est

peu probable qu'il se présente dans les applications.
Si N, k et A sont continus au travers de T, l'état de

tension sur T doit être représenté par un sommet de

l'hexagone. Il en est de même si A est continu mais k
discontinu au travers de [~.

Une circonférence au travers de laquelle A et v' sont
discontinus sera appelée une circonférence-charnière.
Dans le cas de la symétrie cylindrique considéré ici,
le concept de la circonférence-charnière remplace le

concept de la rotule plastique, familière dans l'étude
de la poutre plastique. Une circonférence-charnière doit
être considérée comme le cas limite d'un anneau borné

par des circonférences très voisines, au travers duquel v'
varie très rapidement, mais de façon continue. Quand
les circonférences bornant l'anneau se confondent, le

rapport k/A devient infini. En conséquence, sur une
circonférence-charnière, nous devons avoir le régime B
ou le régime D, si nous ne considérons que les régimes
de la table I. En d'autres termes, la vitesse angulaire v'
doit être continue sauf, au plus, sur les circonférences

pour lesquelles | M M0.
Pour déterminer la charge de fluage d'une plaque

circulaire avec charges et supports à symétrie cylindrique,
nous devons donc résoudre le problème suivant.
L'intensité p p(r) de la charge étant donnée à un facteur
constant près, trouver la plus grande valeur / de ce
facteur pour laquelle on peut trouver des fonctions
M(r), N(r) et v(r) telles que, dans le domaine 0 ^ r ^ R,
les conditions suivantes soient satisfaites :

1. Le domaine 0 ^ r ^ R se scinde en des
intervalles tels que, dans tout intervalle, les fonctions M,
N et v soient respectivement de classe C1, C° et C2.

2. M et N satisfont à l'équation d'équilibre (3) dans
laquelle p doit être remplacé par fp ; au centre de la
plaque, M N.
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3. Le point M, N se trouve à l'intérieur de l'hexagone,

ou sur le périmètre de l'hexagone de la figure 1 ;

dans le premier cas, les vitesses de courbure (5) doivent
s'annuler ; dans le second cas, elles doivent être liées

aux moments fléchissants M, N, en conformité avec la
table I.

4. La vitesse angulaire v' ne peut être discontinue

que lorsque M M0.
5. Quand la plaque est simplement appuyée, M 0

et v 0 pour r R ; quand la plaque est encastrée,
v — 0 et soit v' 0, soit M M„ pour r R ; dans

ce dernier cas le contour r R est une circonférence-
charnière.

Les exemples suivants illustreront la façon de résoudre

de tels problèmes.

4. Exemples

La plaque simplement appuyée, représentée dans la
figure 2, a une épaisseur constante et est soumise aux

_i_
n -r-Q/xa2

MDI>^
^A TS.

Fi

charges P et Q ; la première est distribuée uniformément

sur toute la plaque, tandis que la seconde est
distribuée uniformément sur un cercle central de

rayon a. En conséquence

P Q_

ira2
P

tt/i-2

P
txR2

pour 0 ^ r < a,

(10)

pour a <C r R.

Les moments fléchissants M et N résultant de ces

charges sont positifs dans toute la plaque. Il s'ensuit que
la plaque se trouve dans le régime plastique BC, c'est-à-
dire que le moment fléchissant circonférentiel N a

partout la valeur M0. Avec cette valeur connue de N, et
avec la condition initiale M N M0 pour r 0,

l'intégration de l'équation d'équilibre pour la charge fp
donne

iJP Q

M=
M0 f \ttä2 + ira5 pour 0 ^= r :

1 P 10 -ia- poura;=r^=jR.
(11)

Puisque M doit s'annuler pour r R, le facteur /
déterminant la charge de fluage vaut

6-rrM,,
/

0 3
R

(12)

Notons que ce facteur ne dépend pas du rayon R de la
plaque, mais uniquement du rapport afR. L'équation
(12) contient les cas particuliers suivants :

1. Une charge P uniformément répartie sur toute la
plaque : / 6 txM0JP.

2. Une charge concentiée Q appliquée au centre de
la plaque : / 2 -nMo/Q.

La vitesse verticale v associée aux moments fléchissants

(11) est donnée par

v v0 1 — R (13)

où v0 est la vitesse verticale du centre de la plaque.
Puisque la matière n'est pas visqueuse, la vitesse v
n'est déterminée qu'au facteur v0 près.

Considérons maintenant une plaque encastrée d'épaisseur

uniforme et soumise à une charge p uniformément
répartie. La partie de la plaque intérieure à une
certaine circonférence r p sera dans le régime plastique
BC, et l'anneau extérieur sera dans le régime CD.
Cette dernière condition implique que k — A, d'où :

v" -f- v'fr 0 pour p R. (14)

Puisque v s'annule pour r R, l'équation différentielle
(14) implique que la vitesse verticale v est proportionnelle

à log (Rfr) dans l'anneau p ^= r ^ R. Il s'ensuit

que la vitesse angulaire v' ne peut pas s'annuler à
l'encastrement, qui doit donc être une circonférence-
charnière. En conséquence, M — M0 à l'encastrement.

Dans la région centrale r < p, nous avons le régime
plastique BC, donc N M0. Avec cette valeur de
N et la condition initiale M — N M„ pour r 0,
l'intégration de l'équation d'équilibre pour la charge fp
donne

1
M M0—çifpri pour 0 ^ r =ë£ p. (15)

Puisque sur la circonférence r p nous passons du
régime plastique BC au régime plastique CD, il faut
que M 0 sur cette circonférence. Donc

„ 6M,
fP

(16)

Pour r > p nous avons le régime CD, donc N M —
— M0. Avec cette valeur de N et la condition initiale
M 0 pour r p, l'intégration de l'équation d'équilibre

pour la charge fp donne

M Mo los \fp(r* (17)

Au contour r — R, nous avons M — M0. Si nous
remplaçons, dans l'équation (17), fp par la valeur tirée
de (16), nous obtenons l'équation transcendante

1 + log
R

2\p
R*

2 (18)

qui détermine -R/p. La résolution numérique de cette
équation, et la substitution du résultat dans (16),
donnent le facteur /. Exprimé en fonction de la charge totale
P TcR*p, ce facteur est / 11,26M„/P. Pour la
plaque encastrée ce facteur est donc presque le double
du facteur trouvé pour la plaque simplement appuyée.

Le lecteur trouvera des résultats supplémentaires
concernant les charges de fluage des plaques circulaires
dans un article de Hopkins et Prager [7].
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5. Economie maximum de matière

Considérant une plaque circulaire avec charges et
supports à symétrie cylindrique, nous nous proposons
de déterminer l'épaisseur variable h h(r) de la plaque
de telle façon qu'il n'y ait pas fluage avant que les

charges atteignent une valeur prescrite. Une solution
quelconque de ce problème sera dite admissible. La
solution admissible qui utilise le minimum de matière
est particulièrement intéressante. Même si cette plaque
de poids minimum n'est pas de réalisation pratique,
elle sert de point de comparaison utile pour juger
d'autres déterminations de plaques.

Une solution admissible a en général un mode unique
de fluage plastique. Par exemple, une plaque simplement

appuyée, d'épaisseur constante et soumise à une
charge uniformément répartie se déformera suivant le

mode (13). D'autre part, la solution admissible de poids
minimum doit présenter une infinité de modes de

fluage. En effet, le nombre de modes de fluage linéairement

indépendants d'une structure de poids minimum
est égal au nombre des dimensions qui sont au choix du

constructeur. Une plaque dont l'épaisseur varie
continuellement présentera donc une infinité de modes de

fluage linéairement indépendants. Pour que ces modes
de fluage soient possibles, tout en satisfaisant à l'équation

d'équilibre, l'état de tension en tout point de la

plaque doit admettre des mécanismes de fluage
multiples. En d'autres termes, l'état de tension en tout
point d'une plaque de poids minimum est représenté

par un sommet de l'hexagone de la figure 1.

Pour illustrer l'application de ce principe, considérons

la plaque simplement appuyée représentée dans

la figure 3. Puisqu'en tout point de la plaque, M et N

U- a

nh r >

Fig. 3.

sont positifs, l'état de tension doit partout être représenté

par le sommet B de l'hexagone, mais maintenant,
le moment critique M0 est une fonction de r. Avec M

N M0, l'intégration de l'équation d'équilibre (3)
donne

MB-

pa?, R
-ö-log-l a

~2~log7

1

pour a

pour 0

R,

a,

(19)

où les constantes d'intégration ont été déterminées

par le fait que M„ est continu à travers la circonférence

r a, et s'annule au contour r R. Puisque
M0 (JohP/b, l'équation (19) donne la valeur de l'épaisseur

h de la plaque en fonction de r.
Notons que (19) donne h 0 pour r R. Ceci est

une conséquence du fait que les tensions tangentielles
verticales transmises à travers les sections r const,
ont été supposées petites comparées aux tensions de

flexion o" et t. Si cette hypothèse est valable pour la

plupart des plaques, elle ne se justifie cependant plus

au voisinage d'un contour simplement appuyé, car les

tensions de flexion s'annulent sur ce contour. Le calcul
de la poutre simplement appuyée et de poids minimum

[8], présente le même défaut.

6. Expériences. Accroissement de la charge de fluage
avec la flèche

La théorie précédente est faite pour une matière très
idéalisée qui reste rigide au-dessous de la limite de

plasticité, et qui est capable de déformations plastiques
illimitées, une fois ce point atteint. Il reste à voir jusqu'à
quel point les résultats de cette théorie concordent avec
les mesures effectuées sur une matière élastico-plas-
tique, telle que l'acier doux. Un important
programme d'expériences, élaboré pour répondre à cette
question, est en cours à Brown University. La figure 4

montre quelques résultats obtenus par Foulkes et
Onat, dans le cadre de ce programme [9]. Des plaques
circulaires en acier doux, simplement appuyées, ont été
soumises à une charge appliquée au centre. La figure 4

montre l'accroissement de la flèche centrale 5 en fonction

de la charge Q pour des plaques qui avaient le
même rayon de 5 pouces et des épaisseurs de 1 pouce,
0,5 pouce et 0,25 pouce. Le comportement théorique
d'une plaque parfaitement plastique, est représenté
dans la figure 4, par la ligne brisée OAB. Pour les ordres
de grandeur des flèches donnés par la figure 4, le

comportement de chacune des plaques expérimentées est

représenté approximativement par deux droites ; la
charge correspondant à l'ordonnée de leur point
d'intersection définit la charge pratique de fluage. Pour les

plaques épaisses, avec Rjh 5 et 10, cette charge
pratique de fluage est aux environs de 90 % de la charge
théorique de fluage. Ceci nous donne une mesure de la
signification pratique de notre théorie, pour les plaques
relativement épaisses. Pour la plaque très mince où

Rfh 20, la théorie précédente ne nous donne aucune
indication valable. Ceci est dû à l'importante déformation

que cette plaque peut subir dans le domaine
élastique. Au début du fluage plastique, la plaque n'est plus
plane, comme le suppose la théorie.

Même dans le cas de la plaque relativement épaisse,

pour laquelle la surface moyenne est pratiquement plane
au début du fluage, la théorie précédente ne peut guère
donner plus qu'une estimation de la charge au début du

fluage. Quand le fluage continue, la plaque plane se

déforme en une coque de révolution. Pour prévoir
l'accroissement de la charge qui est nécessaire pour
maintenir le fluage, les formules précédentes doivent
être remplacées par les formules correspondantes pour
les coques de révolution [10]. Comme cette façon de

procéder est assez complexe, Onat et Haythornth-
waite [11] ont proposé la méthode simplifiée suivante.

La distribution des vitesses (13) implique que le plan
moyen de la plaque se transforme en un cône. Supposons
donc que la plaque conserve une forme conique au
début du fluage. Si la plaque peut glisser librement sur
son support annulaire, ce type de déformation
n'entraîne aucune vitesse de dilatation radiale ou de courbure

radiale. Il s'ensuit que la distance r d'un point de

la surface moyenne conique, au sommet du cône, est
la même que la distance initiale de ce point au centre
de la plaque plane. Quand l'angle ß que les génératrices
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du cône forment avec sa base horizontale, est petit, la
flèche centrale peut s'écrire

6 m Rp, (20)

et la dilatation circonférentielle de la surface moyenne
vaut

cos ß — 1 «* — ß2/2. (21)

Puisque la matière n'est pas visqueuse, l'unité de temps
est arbitraire et nous pouvons donc identifier le temps
avec l'angle ß. La vitesse de dilatation circonférentielle
de la surface moyenne est alors

H.« —ß. (22)

De même, on trouve que la vitesse de courbure
circonférentielle vaut

A *a V- (23)

La puissance dissipée par unité d'aire de la surface

moyenne est donc
h/2

D I 0o \r\o

—A/2

Xz\ dz — <j0 (24)

Remplaçons r\0 et A par leurs valeurs (22) et (23) et
intégrons (24) sur la surface moyenne de la plaque.
Nous obtenons ainsi la puissance totale dissipée

R

trDdr= »TC<JoR& + 2-nMoR, (25)t
avec M0 0"oA2/4. D'autre part, la puissance de la
charge centrale O vaut QR, puisque l'équation (20)
donne la valeur R pour la vitesse verticale du point
d'application de Q. En égalant le second membre de

(25) à QR, et résolvant par rapport à O, nous trouvons

4 52^
Q 2mM.[l 3 K- (26)

A cause des hypothèses simplificatrices faites au
cours de l'établissement de cette formule, qui est
représentée par la courbe AC de la figure 4, nous ne pouvons
pas espérer plus qu'une évaluation grossière de l'accroissement

de la charge Q en fonction de la flèche 5. Pour
la plaque la plus épaisse, pour laquelle Rfh 5, nous
obtenons un accord assez bon entre l'expérience et les
valeurs données par cette formule.
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Une autre confirmation de notre théorie peut être
obtenue de la façon suivante, indiquée par Haythornth-
waite et Onat [12]. Après que la plaque a subi une
certaine déformation plastique, elle est déchargée et
inversée sur son support annulaire, de façon qu'elle
présente l'aspect d'une coque légèrement bombée. Quand
cette coque est de nouveau chargée, le fluage plastique
en réduit la flèche et la charge de fluage décroît avec
elle. A l'instant où la flèche s'annule, la charge de

fluage doit avoir la valeur donnée par notre théorie.
La figure 5 représente les résultats d'une telle
expérience réalisée par Haythornthwaite et Onat. La ligne
pointillée de cette figure correspond à la formule (26).
Pour des valeurs suffisamment petites de la flèche, l'ac
cord entre l'expérience et la théorie est excellent.
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