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probabilité pour que l'erreur soit inférieure à 0,02 en
valeur absolue est de 0,997. Deux causes d'erreur
systématique sont encore à considérer : d'une part l'erreur
sur Apdl, qui peut atteindre + 0,01 ; d'autre part
l'erreur due à l'échange de chaleur entre le thermomètre

• +0,01 Nis:_0' Ne

suivante pour le coefficient d'échauffement r :

et les parois :
' Ä' ~- Nous indiquons donc la valeur

0,60 + 0,04
— 0,03

Au cours des essais, le nombre de Mach a varié de

0,12 à 0,30 ; le nombre de Beynolds (rapporté au
diamètre de la douille de protection), de 4.104 à 1.105.
Dans ce domaine de nombres de Beynolds, la couche
limite autour du cylindre constitué par la douille de

protection est encore en régime laminaire. En
conséquence, nous envisageons de compléter les essais décrits
ci-dessus par des essais effectués à des nombres de
Beynolds plus élevés, ou avec un degré de turbulence plus
grand, obtenu en plaçant un tamis à l'entrée du tuyau.
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APPLICATION DU CALCUL A L'AIDE DE SUITES A LA
H THÉORIE DES RÉGLAGES AUTOMATIQUES

par MICHEL CUÉNOD, ingénieur à la Société Générale pour l'Industrie, Genève

La théorie des réglages automatiques consiste
essentiellement à étudier les deux problèmes
suivants :

1. Détermination des conditions de stabilité
d'un réglage automatique.

2. Détermination des variations de la grandeur
à régler, à la suite d'une perturbation affectant

le dispositif de réglage.

Nous allons montrer quelques avantages
pratiques offerts par le calcul à l'aide de suites pour
la résolution de ce genre de problèmes (l)1.

1 Les chiffres entre parenthèses se réfèrent à la bibliographie
donnée en fin d'article.

I. Définitions
1. Description du réglage d'un groupe

hydro-électrique

A titre d'illustration, nous considérons le cas du
réglage de vitesse d'un groupe hydro-électrique
représenté schématiquement par la figure 1.

La turbine T entraîne le générateur G ainsi que
le générateur pilote GP. L'ouverture de la turbine
est commandée par le servo-moteur SM. Lorsque
le commutateur C est dans sa position 2, le moteur
M est alimenté par le générateur auxiliaire GA
dont la vitesse peut être variée à volonté,
indépendamment de celle du générateur G.



412 BULLETIN TECHNIQUE DE LA SUISSE BOMANDE
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Fig. 1. — Dispositif du réglage de vitesse
d'un groupe hydro-électrique.

Ainsi que le représente schématiquement la

figure 2, ce réglage peut être représenté comme
étant constitué par un circuit formé par 3 éléments :

Grandeur d'entrée Grandeur de sortie

couple moteur m vitesse angulaire n

vitesse ouverture de la
groupe G

dispositif
de réglage R

dispositif

angulaire n

ouverture de

turbine l

hydraulique H turbine Z couple moteur m

Le groupe est soumis aux variations k de la

charge qui constituent le « terme perturbateur »

provoquant les réactions du dispositif de réglage.
Les variations relatives n, l, m ne sont pas
simultanées mais sont liées entre elles par une certaine
relation fonctionnelle. Nous allons passer en revue
les différentes façons de caractériser cette relation.

Fig. 2.

G
R
II
n
l
m
k

— Représentation schématique du circuit de réglage
d'un groupe hydro-électrique.

Groupe (turbine + alternateur).
Dispositif de réglage.
Dispositif hydraulique.
Variation relative de la vitesse.
Variation relative de l'ouverture de la turbine.
Variation relative du couple moteur.
Variation relative de la charge électrique.

Dans ce but, nous admettons que le circuit de

réglage est ouvert et nous prenons en considération
le dispositif de réglage avec, comme « grandeur
d'entrée », la variation arbitraire relative de la
vitesse angulaire n*, et comme « grandeur de

sortie », la variation relative l de l'ouverture de la
turbine.

2. Equation différentielle du réglage

La méthode classique consiste à déterminer le

système d'équations différentielles auxquelles obéissent

ces deux grandeurs. Cette méthode a
l'inconvénient d'être laborieuse et de conduire à des

calculs inextricables, tant pour la détermination
des conditions de stabilité que pour l'étude de la

variation de la grandeur à régler, dès que le circuit
de réglage est un peu compliqué et dès que l'on ne
se contente pas d'une approximation très grossière
des caractéristiques dynamiques des organes de

réglage.

3. Courbe de Nyquist

Une deuxième façon d'établir cette relation est
de relever expérimentalement la « courbe de

Nyquist » du dispositif de réglage que l'on obtient
de la façon suivante : on fait osciller la grandeur
d'entrée n autour d'une valeur moyenne avec une
pulsation u^ ; la grandeur de sortie l oscillera
également autour d'une valeur moyenne. On
mesure l'amplitude de l'oscillation de n, et on
représente le résultat de cette mesure par un
vecteur ./(u^), dont la grandeur absolue | Jx\ est égale
à l'amplitude de l'oscillation de l divisée par
l'amplitude de l'oscillation de n, et l'argument iu1} égal
au déphasage entre ces deux oscillations, ainsi que
le représente la figure 3.

&yj

Fig. 3. — Définition de la courbe de Nyquist.

Si l'on effectue la même mesure pour une autre
pulsation uj2 on obtiendra de façon générale un
autre vecteur J2. Si l'on répète cet essai pour une
série de pulsations différentes ui3, u)4, ; m» ;...
on obtient une famille de vecteurs J(uu3), J(uj4)

./(tuB) En reliant l'extrémité de ces différents

vecteurs, on obtient la courbe de Nyquist du
dispositif, appelée également, courbe de comportement

à fréquence variable.

4. Courbe de réponse

Une troisième façon de déterminer les carac-
ristiques dynamiques du dispositif de réglage est
de faire varier la grandeur d'entrée n, de mesurer
cette variation et de mesurer simultanément la
variation de la grandeur de sortie l ainsi que le
représente la figure 4a.

4 r\àn ^"0

s^Q
sJ<D

0 l

nï
1 .le

,1<D

0 f
a) à)

Fig. 4. — Définition de la courbe de réponse
du dispositif de réglage.

n(i) variation de la vitesse angulaire du groupe.
l[t) variation de la course du servo-moteur.
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Dans le cas particulier où ri fait un saut brusque
et reste ensuite constant, c'est-à-dire varie selon

un échelon rectangulaire ainsi que le représente
la figure 46, la variation relative de l qui en
résulte est définie comme étant la courbe de réponse
du dispositif de réglage 0„/(i)

«M«) m
n

autrement dit, c'est la variation relative de l
résultant d'une variation de n selon un échelon
rectangulaire unitaire.

Lorsque la variation de la grandeur d'entrée est
quelconque, la courbe de réponse peut se calculer
en résolvant l'équation intégrale de Volterra et en
intégrant la solution (2).

Soit l(t) la variation relative mesurée de la
course du servo-moteur résultant d'une variation
quelconque n(t) de la vitesse angulaire. La
résolution de l'équation intégrale suivante permet de
calculer la fonction Gni(t) :

t

t)_T.l(t) n{t) Gnl{t

Ainsi que nous l'avons vu, (1) cette fonction Gni(t)
est la variation de l que l'on obtiendrait si n variait
selon une impulsion unité. Comme l'échelon rectangulaire

unitaire est l'intégrale de l'impulsion unité,
il faut intégrer Gni{t) pour obtenir la courbe de

réponse. t

l Gm{t)dt.

Il est pratiquement très difficile, sinon impossible
d'effectuer directement ces opérations par voie
analytique. Nous avons vu que si on connaît les

transformations de Laplace, la résolution de

l'équation intégrale de Volterra revient à faire le

quotient de ces transformations. Il suffit de diviser
ce quotient par l'opérateur p pour obtenir l'expression

opérationnelle de la courbe de réponse.

1

- <Pnî
P P n(p)

0

Nous définissons le quotient

- f^(t)e^dt.

1(P)

n(p)
comme étant la

fonction de transfert q>ni du dispositif de réglage.
Malheureusement, si n(t) et l(t) ont des allures

compliquées, il n'est pas facile de leur appliquer la
transformation de Laplace ; d'autre part, la transformation

inverse peut également conduire à des
calculs compliqués. Ces difficultés s'aplanissent si
l'on fait usage du calcul avec les suites. Ainsi que
nous l'avons exposé précédemment, la résolution
de l'équation intégrale de Volterra est équivalente
au quotient composé des suites correspondant aux
deux fonctions connues (1). La suite 5(0„j(i))
correspondant à la courbe de réponse s'obtient donc en
faisant le produit composé de ce quotient composé
par la suite unitaire.

s(<M'))
S(/),[l ; 1 ; ; 1

S(n)

(1)

S(n). ^T]
S(l)

S(n) étant la suite correspondant à n(t)
S(l) étant la suite correspondant à l (i).

La suite de la dérivée de la courbe de réponse est
la suite de la réponse à l'impulsion unitaire Gni(t) :

s («fry src S (71)

Il est connu que, si différents organes de réglage
sont branchés en série, la fonction de transfert
est donnée par le produit des fonctions de transfert
de chacune d'elle.

Considérons par exemple que le circuit de
réglage d'un groupe hydro-électrique est ouvert,
c'est-à-dire que le commutateur C de la figure 1

est sur sa position 2. La variation de la vitesse n
du groupe résultant d'une variation quelconque de
la vitesse n* du groupe auxiliaire GA est la suivante
sous forme opérationnelle :

n n* <PnJ <P/m mm„

d'où il résulte que la fonction de tranfejt rp„„ du
circuit de réglage ouvert est la suivante :

<Pn
n
*n

<Pn! CD*m <Pmn.

Il est connu que le produit de deux fonctions
opérationnelles correspond à l'intégrale de Duhamel
à laquelle correspond également le produit des
deux suites qui s'y rapportent.

Calculée à l'aide de suites, la variation de n
résultant d'une variation de n* s'obtient de la
façon suivante :

S(n) S(n*)*S(4>'n[)*S(<P'lm)*S{Vmi).

S(<t>£j), S(<t>;m) et S(4>ot„) sont les suites qui
correspondent aux dérivées des courbes de i|B?onse
^»((t); 0fcn(£) et ^»»(O autrement dit ce sont les
suites qui correspondent à la réponse du dispositif
de réglage et du groupe à une impulsion unité.

La suite de la courbe de réponse du circuit du
réglage ouvert est la suivante :

S(q>„„) [l ; 1 ; ; 1 ; .] * S(d>y*5((pi'm) *S(<D^,)

S(0„,) * S(<D_0 * 5(0^»). (2)

Ce résultat illustre de façon particulièrement
frappante l'analogie que l'on peut relever entre
le calcul à l'aide de suites et le calcul opérationnel.

5. Détermination de la courbe de Nyquist
qui correspond à une courbe de réponse donnée

L'avantage de la courbe de réponse est qu'elle
donne une image très concrète des caractéristiques
dynamiques de l'organe de réglage considéré et
qu'elle est relativement facile à déterminer expé-
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rimentalement. Son inconvénient est qu'elle ne
donne aucune indication immédiate sur la stabilité
du réglage. Il est donc nécessaire de pouvoir
déterminer à partir d'une courbe de réponse
donnée, la courbe de Nyquist correspondante. Il
est connu que cette courbe de Nyquist se détermine

à l'aide de l'intégrale de Fourier (3) :

J(uj) /uu / 0(f) e-»'"' dm

ou exprimée un peu différemment :

J(uu) uj / 0(f) sin uufdf + /uu / 0(f) cos tuf dt.

'o o

Si l'on remplace /uu par p et que l'on divise cette
expression par p on retrouve l'expression de la

transformation de Laplace. Le résultat de cette
intégrale se trouve contenu dans les tables de

transformation du calcul opérationnel. Si l'on a

relevé expérimentalement une courbe de réponse,
on peut toujours trouver une approximation de

son expression mathématique en la considérant

comme étant une somme de fonctions du temps
potentielles ou exponentielles :

<D(f) V {amea^ + b„tH + CgfV)
m q

am étant réel ou complexe.
En déterminant la forme opérateur de cette

expression, en y remplaçant p par /uu et en la
multipliant par /tu on obtient ainsi directement
l'expression de la courbe de Nyquist.

Pratiquement, cette méthode peut conduire à

des calculs assez laborieux, dès que l'allure de la

courbe de réponse ne se laisse pas traduire par
une expression mathématique simple.

Une autre méthode pour passer de la courbe
de réponse à la courbe de Nyquist est de faire

usage d'un analysateur harmonique (4). Cet appareil

permet de réaliser graphiquement l'intégration
des coefficients de Fourier a„ et b„ tels que :

a„ ^ j F(t) cos (2un^jdt

b„= j, f F[t) sin (2nn^,d.t

En identifiant —— à uu, on voit immédiatement

que cet appareil permet d'effectuer l'intégration
voulue.

Une remarque s'impose. Cette intégration doit
se faire sur un intervalle fini T, celui pendant
lequel dure le phénomène transitoire. Si la courbe
de réponse ne tend pas vers zéro en régime
permanent, il faut lui soustraire une fonction simple
telle que cet écart s'annule.

*ffl fil)

a) b)

Fig. 5. — Détermination de la courbe de Nyquist
correspondant à une courbe de réponse donnée.

Si par exemple, l'organe considéré a un caractère
statique, ainsi que le représente la figure 5a, la

grandeur de sortie tend vers une constante. La
surface qu'il faut intégrer est la différence entre
la courbe de réponse et cette constante, telle que,
par exemple, la surface hachurée de la figure 5a.

Si, par contre, l'organe considéré a un caractère
astatique, la grandeur de sortie tend en régime
permanent vers une variation linéaire, éventuellement

superposée à une constante. C'est, dans ce cas,
cette fonction linéaire qu'il faut soustraire, ainsi

que le représente la figure 66.

Une troisième méthode pour passer de la courbe
de réponse à la courbe de Nyquist est de réaliser
l'intégration que cette transformation comporte
à l'aide de suites ; soit :

S(0) [0(t) ; <p(2t) ; <p(3t) ; ; <p(*t) ; ...]
la suite qui correspond à la courbe-de réponse et :

S (cos (uUj^f)) [cos (uUjT) ; cos (u)1 2t) ;

cos (uJjSt) ; ; cos (u^rrr) ; .]

et : S (sin (uuxf)) [sin (u)1i) ; sin (oj^t) ;

sin (uux3t) ; ; sin (u^rcT) ; ...]
les suites qui correspondent à cos (ujjf) et à sin (u^f).

Les intégrales
oo oo

At>(f) sin (u^f) dt et f<t>(t) cos (u^t) dt
ö ô

peuvent être ramenées à deux sommes :

Re «/(tUi) uUjj V 0(nr) sin(uu1nT)

(3)

Im J(^)x) u^T V 0(«t) cos (uj1ni).

Cette méthode correspond à la détermination des

coefficients de Fourier par la méthode classique
de Runge. Les sommes ainsi définies peuvent être
aisément calculées à l'aide de machines à calculer.

Ainsi, à partir de deux variations simultanées

quelconques de la grandeur d'entrée et de la
grandeur de sortie d'un dispositif de réglage,
obtenues par un essai unique, facile à réaliser, il est

possible, à l'aide des suites, sans aucun artifice
mathématique, de déterminer les courbes de réponse
et les courbes de Nyquist du dispositif et d'analyser
ainsi toutes ses caractéristiques dynamiques.
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II. Détermination des conditions
de stabilité

Les critères permettant de déterminer les conditions

de stabilité d'un réglage automatique ont déjà
fait l'objet de nombreuses publications (en particulier

5 à 14), aussi nous contenterons-nous d'en
rappeler brièvement leur principe.

Lorsque l'équation différentielle de réglage est

connue, le critère de Hurwitz donne les conditions
que les coefficients de cette équation doivent
remplir pour que la partie réelle des racines de

l'équation caractéristique soit négative, c'est-à-dire
pour que le réglage soit stable (5). Ces conditions
peuvent être également contrôlées graphiquement
à l'aide du critère de Leonhard (6).

Lorsque la courbe de Nyquist de chaque élément
du dispositif de réglage est connue, on obtient la
courbe de Nyquist du circuit de réglage Jr ouvert
en faisant le produit de ces différentes courbes de

Nyquist (c'est-à-dire en additionnant leur phase et
en faisant le produit de leur grandeur absolue pour
chaque pulsation) (7)

JR Jnl'Jlm'Jmn.

Le signe négatif provient du fait que le réglage
agit en sens inverse de l'écart initial de la grandeur

'^aégler. La courbe symétrique par rapport à l'axe
réel correspond à la courbe de Nyquist pour des
valeurs de uu négatives.

Le critère de Nyquist énonce que le réglage est
stable si, lorsqu'on parcourt la courbe de Nyquist

Jr deuu= + ooàuu — oo on entoure le point
(+ 1, jo) dans le sens des aiguilles d'une montre
autant de fois que le système ouvert a de racines
instables (8).

Les critères de Hurwitz, de Leonhard et de

Nyquist ont reçu déjà de nombreuses applications
et ont chacun leurs avantages et leurs inconvénients.
L'aide que peuvent apporter les suites pour la
détermination des courbes de Nyquist peut faciliter
encore l'application du critère de Nyquist. Nous
voulons rappeler une troisième méthode qui peut
rendre de grands services à l'ingénieur praticien
face à un réglage automatique dont il doit mettre
au point la stabilité.

Nous supposons que l'on ait pu déterminer, soit
expérimentalement, soit par le calcul, la courbe de

réponse du réglage ouvert 0„„. En première approximation,

cette courbe de réponse peut être assimilée
à une des courbes indiquées dans l'ouvrage, donné

par la référence 9, et représentée par les figures
6, 7, 8, 9 et 10. Sur ces figures sont représentées
également les conditions que les coefficients, qui
caractérisent ces courbes de réponse, doivent
remplir pour que le réglage soit stable. Ces relations
sont établies de la façon suivante : soit <pBn

l'expression écrite sous forme opérationnelle de la courbe
de réponse du réglage ouvert. En posant q>„„ 1

on obtient l'équation caractéristique dont on
détermine les racines en posant comme condition que
leur partie réelle soit négative.

Ainsi, lorsque l'on se propose d'ausculter la
stabilité d'un réglage automatique, il suffit d'ouvrir

instable

stable

instable

apériodique stable

T,

<rV I

-jfV 1
0

O _

Fig. 6. — Condition de stabilité d'un réglage statique
avec retard.

4>lt)

0 pour 0 < t < T,

o f—fl P°ur r><'<r'
1

6 pour t>T2

*ffi|n

Fig. 7. — Condition de stabilité d'un réglage statique
avec retard et une courbe exponentielle.

*(*)

0 pour t < Tj

T,{'~T,)) pour t > T,
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Fig. 8. — Condition de stabilité d'un réglage statique
avec retard et deux courbes exponentielles.

0(1)

0 pour t < T3

1 + Tx—Tt

*—T* t—T.
T.e T,

pour t > Tj

«Tffl

Fig. 9. — Condition de stabilité d'un réglage astatique
avec retard et caractéristique linéaire.

0(t)

0 pour 0 < l < Tx

t—T,
T5

Condition de stabilité

pour t > Tj

T,

Pulsation de l'oscillation U)0
TT 1

2 7\

Cas limite apériodique
Ti

Constante de temps du
cas limite apériodique T0 T,.

son circuit de réglage, de déterminer, par un essai

facile à réaliser, les variations des grandeurs qui
caractérisent les extrémités de ce circuit de réglage
ouvert, puis à l'aide de suites, de déterminer la
courbe de réponse du réglage ouvert, d'assimiler
cette courbe de réponse à une des courbes
représentées par les figures 6 à 10 dont on peut déduire
immédiatement les conditions de stabilité sans
calcul ni procédé graphique (9).

*ffl

0(0
0 pour f < T

it—T,
[ Ts

t > r,
m f-r,

t.
pour

r, t

®

©

CD

(T) instabil

(|) stable périodique

(D stabil apériodique

Fig. 10. — Condition de stabilité d'un réglage astatique
avec retard et une courbe exponentielle, et une caracté¬

ristique linéaire.

III. Détermination des variations
de la grandeur à régler

A mesure que la technique des réglages automatiques

se développe, la stabilité du réglage apparaît
comme une condition nécessaire, mais non pas
suffisante. On exige que, à la suite d'une perturbation

agissant sur le dispositif de réglage, l'écart
de la grandeur à régler par rapport à sa valeur de

consigne soit réduite à un minimum, tant en

amplitude qu'en durée. Cette condition nécessite
de pouvoir calculer cet écart. Considérons à nouveau
le réglage de vitesse d'un groupe hydro-électrique
représenté par la figure 1. Nous supposons que
l'on a pu déterminer la courbe de réponse du
réglage ouvert, ainsi que la courbe de réponse de
la vitesse par rapport à la charge, obtenue par la
mesure de la variation de la vitesse résultant d'une
variation de la charge selon un échelon rectangulaire,

le dispositif de réglage étant bloqué.
Les variations de n résultant des variations de

n* et de k peuvent se superposer. En appliquant
l'intégrale de Duhamel, nous voyons que pour des

variations quelconques, la variation de la vitesse
est donnée par la somme des deux intégrales
suivantes (2, 3) :

t t

n{t) fj 0t„(f-T)/c(T)dT+ Ci 0BB(f — t) n* (t) _t.
_/ %J
0 0
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Nous écrivons cette même expression sous une
forme un peu différente :

i(t)--
dt

d
0*n(* — T)rc(T)dT+ - / 0nn(f — j)n* (t)_T.

Lorsque le circuit de réglage est fermé, la vitesse
re* est égale à la vitesse du groupe re. La variation
de vitesse re résultant d'une variation k (t) de la

charge se calcule analytiquement en résolvant
l'équation intégrale suivante :

1 f* AI*
re(f) jt / 0iB(f— T)rc(T)OT + jj 0nn(«—T>(T)dT.

0 0

La résolution directe de cette équation offre
certaines difficultés. Elle est facilitée en faisant

usage du calcul à l'aide de suites. Nous avons vu
que l'équivalent de l'intégrale de Duhamel était le

produit composé (1). Nous obtenons ainsi :

S(re) =[1 ;—l],5(<P_,)*S(Är) + [1 ;—l]*S(0Bn)*S(n).

Nous résolvons cette équation par rapport à S (re).

Il en résulte :

S(n)
S(k)*S{4>tn)*[li — i]
[1]—[!;—!]* S (<P_.)

(4)

En effectuant les produits et quotients composés

que cette expression comporte, on obtient ainsi la

suite qui caractérise la variation de la grandeur à

régler à la suite d'une perturbation. Nous insistons
sur le fait que S(k), S(0i„) et S(0„„) peuvent être
des suites absolument quelconques, obtenues par
exemple par voie expérimentale.

L'analogie entre le calcul à l'aide de suites et le
calcul opérationnel apparaît comme particulièrement

évidente. En posant :

n (p) fonction opérationnelle de re (f)
k (p) » » » k (t)
<P*n(p) » » » 0*n(*)
<Pn»(p) » » » 0nn(t),

l'équation intégrale de réglage devient la suivante :

n(p) <P*n{p)'k[p) + cpnn(p)-n(p).

Nous la résolvons par rapport à n (p) et obtenons :

n(p) k{p)
<Ptn(p)

1 + «Pnn (p)

En appliquant la transformation opérateur-
temps à cette expression, on obtient la variation
de la vitesse résultant d'une variation donnée de la
charge. Cependant, si k (t), 0*n(O et <$>nn(t) ont été
relevés expérimentalement et ne peuvent pas être
exprimés analytiquement, la méthode de calcul à
l'aide de suites est la seule qui puisse être appliquée.

(à suivre)

LA MACHINE A COUDRE

Son évolution au cours des temps

par L. ALAMARTINE, ingénieur E.P.F., Genève

La machine à coudre, dont la fabrication soulève des

problèmes aussi ardus que les autres appareils utilisés

par l'homme, n'est pour ainsi dire jamais citée dans les

revues et périodiques de documentation générale ; on
ne la rencontre que dans des journaux spécialisés
n'atteignant pas le grand public.

Le but de la présente note est de résumer l'évolution
de la machine à coudre depuis ses débuts jusqu'à nos

jours.
L'origine de la couture remonte aux temps les plus

reculés de l'histoire de l'humanité. Les hommes primitifs

se vêtirent de peaux de bêtes qu'ils assemblèrent

en perçant des trous avec des arêtes de poissons et en
utilisant de la ficelle faite de boyaux ou de fibres.

Peu à peu, les temps évoluèrent (âges du bronze et du
fer) et les aiguilles en métal apparurent munies d'un
trou (chas) dans la partie supérieure, l'outil principal
pour la couture à la main (fig. 1).

Les premières tentatives de réalisation de la couture

par un moyen mécanique eurent lieu au milieu du
XVIIIe siècle, en cherchant d'abord à imiter la couture
à la main, ce qui n'alla pas sans difficultés ; on le con¬

çoit aisément en songeant à la complexité des mouvements

que la main effectue.

Fig. 1.
Aiguille

primitive.

^

ac

Fig. 2. — Machine Joseph Madersperger.
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