Zeitschrift: Bulletin technique de la Suisse romande

Band: 81 (1955)

Heft: 21-22: Ecole polytechnique fédérale Zurich: centenaire 1855-1955,
fasc. no 2

Artikel: Application du calcul a I'aide de suites a la théorie des réglages
automatiques

Autor: Cuénod, Michel

DOl: https://doi.org/10.5169/seals-61382

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-61382
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

probabilité pour que 'erreur soit inférieure a 0,02 en
valeur absolue est de 0,997, Deux causes d’erreur sys-
tématique sont encore a considérer : d'une part I'erreur
sur Apgy, qui peut atteindre - 0,01 ; d’autre part
I'erreur due a I'échange de chaleur entre le thermometre

10,01

et les parois : 0 Nous indiquons done la valeur

suivante pour le coeflicient d’échauffement r:

-+ 0,04

r =060 " go3

Au cours des essais, le nombre de Mach a varié de
0,12 4 0,30 ; le nombre de Reynolds (rapporté au dia-
metre de la douille de protection), de 4.10% a 1.105.
Dans ce domaine de nombres de Reynolds, la couche
limite autour du eylindre constitué par la douille de
protection est encore en régime laminaire. En consé-
quence, nous envisageons de compléter les essais décrits
ci-dessus par des essais effectués a des nombres de Rey-
nolds plus élevés, ou avee un degré de turbulence plus
grand, obtenu en plagant un tamis a entrée du tuyau.
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APPLICATION DU CALCUL A L’AIDE DE SUITES A LA
THEORIE DES REGLAGES AUTOMATIQUES

par MICHEL CUENOD, ingénieur a la Société Générale pour I'Industrie, Genéve

La théorie des réglages automatiques consiste
essentiellement & étudier les deux problemes
suivants :

1. Détermination des conditions de stabilité
d’un réglage automatique.

2. Détermination des variations de la grandeur
a régler, 4 la suite d’une perturbation affec-
tant le dispositif de réglage.

Nous allons montrer quelques avantages pra-
tiques offerts par le calcul & I'aide de suites pour
la résolution de ce genre de probléemes (1)1

! Les chifires entre parenthéses se référent a la bibliographie
donnée en fin d'article,

I. Définitions

1. Description du réglage d'un groupe
hydro-électrique

A titre d’illustration, nous considérons le cas du
réglage de vitesse d’un groupe hydro-électrique
représenté schématiquement par la figure 1.

La turbine 7" entraine le générateur G ainsi que
le générateur pilote GP. L’ouverture de la turbine
est commandée par le servo-moteur SM. Lorsque
le commutateur C est dans sa position 2, le moteur
M est alimenté par le générateur auxiliaire GA
dont la vitesse peut étre variée a volonté, indépen-

damment de celle du générateur G.
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Fic. 1. — Dispositif du réglage de vitesse
I B B
d’un groupe hydro-é¢lectrique.

Ainsi que le représente schématiquement la
figure 2, ce réglage peut &tre représenté comme
étant constitué par un circuit formé par 3 éléments :

Grandeur d’entrée Grandeur de sorlie

groupe G couple moteur m vitesse angulaire n
ouverture de la

turbine [

dispositif vitesse

de réglage R angulaire n
dispositif ouverture de la
hydraulique // turbine /

couple moteur m

Le groupe est soumis aux variations k de la
charge qui constituent le «terme perturbateur»
provoquant les réactions du dispositif de réglage.
Les variations relatives n, [, m ne sont pas simul-
tanées mais sont liées entre elles par une certaine
relation fonctionnelle. Nous allons passer en revue
les différentes facons de caractériser cette relation.

Fic. 2. — Représentation schématique du circuit de réglage
d'un groupe hydro-électrique.
G Groupe (turbine 4 alternateur).
R Dispositif de réglage.
Il Dispositif hydraulique.
n Variation relative de la vitesse.
l Variation relative de I'ouverture de la turbine.
m  Variation relative du couple moteur.
k Variation relative de la charge électrique.

Dans ce but, nous admettons que le circuit de
réglage est ouvert et nous prenons en considération
le dispositif de réglage avec, comme «grandeur
d’entrée », la variation arbitraire relative de la
vitesse angulaire n*, et comme «grandeur de
sortie », la variation relative [ de 'ouverture de la
turbine.

2. Equation différentielle du réglage

La méthode classique consiste a déterminer le
systeme d’équations différentielles auxquelles obéis-
sent ces deux grandeurs. Cette méthode a I'incon-
vénient d’étre laborieuse et de conduire a des
calculs inextricables, tant pour la détermination
des conditions de stabilité que pour I'étude de la

variation de la grandeur a régler, dés que le circuit
de réglage est un peu compliqué et dés que 'on ne
se contente pas d’une approximation trés grossiére
des caractéristiques dynamiques des organes de
réglage.

3. Courbe de Nyquist

Une deuxiéme facon d’établir cette relation est
de relever expérimentalement la «courbe de
Nyquist » du dispositif de réglage que I'on obtient
de la facon suivante : on fait osciller la grandeur
d’entrée n autour d’une valeur moyenne avec une
pulsation wy ; la grandeur de sortie [ oscillera
également autour d’une wvaleur moyenne. On
mesure 'amplitude de Toscillation de n, et on
représente le résultat de cette mesure par un vec-
teur J(w,), dont la grandeur absolue |J,| est égale
a 'amplitude de Poscillation de [ divisée par I'am-
plitude de l'oscillation de n, et Pargument y,, égal
au déphasage entre ces deux oscillations, ainsi que
le représente la figure 3.

Y ey

Fic. 3. — Définition de la courbe de Nyquist.

S1 'on effectue lJa méme mesure pour une autre
pulsation w, on obtiendra de facon générale un
autre vecteur J,. Si l'on répéte cet essal pour une
série de pulsations différentes wg, wy, ... ; Was. ..
on obtient une famille de vecteurs J(ws;), J(w,)

.y J(wy) ... En reliant extrémité de ces diffé-
rents vecteurs, on obtient la courbe de Nyquist du
dispositif, appelée également courbe de comporte-
ment a [réquence variable.

4. Courbe de réponse

Une troisieme facon de déterminer les carac-
ristiques dynamiques du dispositif de réglage est
de faire varier la grandeur d’entrée n, de mesurer
cette variation et de mesurer simultanément la
variation de la grandeur de sortie [ ainsi que le
représente la figure 4a.

'}
al ) Al
an
(o 7
al
0 ‘;> 4 {;
a b)
I'16. 4. — Définition de la courbe de réponse

du dispositif de réglage.

n(t) = variation de la vitesse angulaire du groupe.
[(t) = wvariation de la course du servo-moteur.
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Dans le cas particulier ot n fait un saut brusque
et reste ensuite constant, c’est-a-dire varie selon
un échelon rectangulaire ainsi que le représente
la figure 4b, la variation relative de [ qui en
résulte est définie comme étant la courbe de réponse
du dispositif de réglage ®,,(1)

(Dnl(l) = l_(_t‘)

n
autrement dit, c’est la variation relative de [
résultant d’une variation de n selon un échelon
rectangulaire unitaire.

Lorsque la variation de la grandeur d’entrée est
quelconque, la courbe de réponse peut se calculer
en résolvant I'équation intégrale de Volterra et en
intégrant la solution (2).

Soit [(t) la variation relative mesurée de la
course du servo-moteur résultant d’une variation
quelconque n(t) de la vitesse angulaire. La réso-
lution de I’équation intégrale suivante permet de
caleuler la fonction Gu(t):

>

1) = / (1) Gu(t — 1) dr.

0
Ainsi que nous I'avons vu, (1) cette fonction Gu(t)
est la variation de [ que 'on obtiendrait si1 n variait
selon une impulsion unité. Comme I’échelon rectan-
gulaire unitaire est I'intégrale de I'impulsion unité,
il faut intégrer Gy (t) pour obtenir la courbe de
réponse. ¢

Il est pratiquement trés diflicile, sinon 1mpossible
d’effectuer directement ces opérations par voie
analytique. Nous avons vu que si on connait les
transformations de Laplace, la résolution de
I'équation intégrale de Volterra revient a faire le
quotient de ces transformations. Il suflit de diviser
ce quotient par 'opérateur p pour obtenir I'expres-
sion opérationnelle de la courbe de réponse.

1 11 ;
— Qu = — _(P_) = / ‘Dnl(l) e—Pdt.
P pup
: ' l
Nous définissons le quotient % comme élant la
n(p

fonction de transfert o, du dispositif de réglage.

Malheureusement, si n(t) et [(t) ont des allures
compliquées, il n’est pas facile de leur appliquer la
transformation de Laplace ; d’autre part, la transfor-
mation inverse peut également conduire & des
calculs compliqués. Ces diflicultés s’aplanissent si
I'on fait usage du calcul avec les suites. Ainsi que
nous l'avons exposé précédemment, la résolution
de I'équation intégrale de Volterra est équivalente
au quotient composé des suites correspondant aux
deux fonctions connues (1). La suite S(®,,(t)) corres-
pondant a la courbe de réponse s’obtient donc en
faisant le produit composé de ce quotient composé
par la suite unitaire.

S(Du(t)) = SH*51;..545..] S
Sl S(n)  S(n)=[l; —

S(n) étant la suite correspondant & n ()

S(l) étant la suite correspondant a [ (¢).

La suite de la dérivée de la courbe de réponse est
la suite de la réponse & impulsion unitaire Gpu(t) :

S(®n) = S(Gu) = S(Q—.
S(n)

Il est connu que, si différents organes de réglage
sont branchés en série, la fonction de transfert
est donnée par le produit des fonctions de transfert
de chacune d’elle.

Considérons par exemple que le circuit de
réglage d’un groupe hydro-électrique est ouvert,
c’est-a-dire que le commutateur C de la figure 1
est sur sa position 2. La variation de la vitesse n
du groupe résultant d’une variation quelconque de
la vitesse n* du groupe auxiliaire GA est la suivante
sous forme opérationnelle :

*
n=mn QuQPim Pmn

d’ou 1l résulte que la fonction de tranfert @,, du
circuit de réglage ouvert est la suivante :

n
Pan — n_, = Qnl Ptm Pmn.

Il est connu que le produit de deux fonctions
opérationnelles correspond a I'intégrale de Duhamel
a laquelle correspond également le produit des
deux suites qui s’y rapportent.

Calculée a P'aide de suites, la variation de n

*

résultant d’une variation de n* s’obtient de la
facon suivante :

S(n) = S(n*) xS (D) xS (Pln) %S (Prun).

S(®n), S(®,) et S(P,,,) sont les suites qui corres-
pondent aux dérivées des courbes de réponse
Du(t), Pin(t) et Pp,(t) autrement dit ce sont les
suites qui correspondent a la réponse du dispositif
de réglage et du groupe & une impulsion unité.

La suite de la courbe de réponse du circutt du
réglage ouvert est la suivante :

S(q)nn):[l 5 1 et 1 e ] *S(‘D,',[)*S((D;,,l) *S( ;rm)
=~ S((Dnl) * S(‘DI’,,,) * S((Dllnn)- (2)

Ce résultat illustre de fagon particulierement
frappante I'analogie que l'on peut relever entre
le calcul & I'aide de suites et le calcul opérationnel.

5. Détermination de la courbe de Nyquist
qui correspond a une courbe de réponse donnée

L’avantage de la courbe de réponse est qu’elle
donne une 1image trés concréte des caractéristiques
dynamiques de Porgane de réglage considéré et
qu’elle est relativement facile a déterminer expé-
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rimentalement. Son inconvénient est qu’elle ne
donne aucune indication immédiate sur la stabilité
du réglage. 11 est donc nécessaire de pouvoir
déterminer a partir d’une courbe de réponse
donnée, la courbe de Nyquist correspondante. Il
est connu que cette courbe de Nyquist se déter-
mine a I'aide de I'intégrale de Fourier (3) :
A
J(w) = jw / D) =it dw

.

0
ou exprimée un peu différemment :

[ oo
» ~

J(w) =w / ®(t) sin wtdt 4 Jw / ®(t) cos wedt.
'U :b

Si Pon remplace jw par p et que 'on divise cette
expression par p on retrouve lexpression de la
transformation de Laplace. Le résultat de cette
intégrale se trouve contenu dans les tables de
transformation du caleul opérationnel. Si I'on a
relevé expérimentalement une courbe de réponse,
on peut toujours trouver une approximation de
son expression mathématique en la considérant
comme étant une somme de fonctions du temps
potentielles ou exponentielles :

d(1) = E (ame®mt - but™ + cqtlel)

My eeey 4

o, étant réel ou complexe.

En déterminant la forme opérateur de cette
expression, en y remplagant p par jw et en la mul-
tipliant par jw on obtient ainsi directement l'ex-
pression de la courbe de Nyquist.

Pratiquement, cette méthode peut conduire a
des calculs assez laborieux, deés que l'allure de la
courbe de réponse ne se laisse pas traduire par
une expression mathématique simple.

Une autre méthode pour passer de la courbe
de réponse & la courbe de Nyquist est de faire
usage d’un analysateur harmonique (4). Cet appa-
reil permet de réaliser graphiquement I'intégration

des coeflicients de Fourier a, et b, tels que :

1/ t
= — [ cos | 2 i
Qx T / ]“(t) cos <~Trn T) dt

©
0
t

1 ! {
— 5 (1) sin | 2 =dt)-
by T/F(l) Sin ( T™n T(t>

o

. . 2tn | o =
En identifiant T 4 w, on voit immédiatement

que cet appareil permet d’effectuer I'intégration
voulue.

Une remarque s’impose. Cette intégration doit
se faire sur un intervalle fini 7', celui pendant
lequel dure le phénoméne transitoire. Si la courbe
de réponse ne tend pas vers zéro en régime per-
manent, il faut lui soustraire une fonction simple
telle que cet écart s’annule.
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4 \
¢ P
AMWNWWmn_, L
0 Ve 0 &
a b)
I1c. 5. —— Détermination de la courbe de Nyquist

correspondant a4 une courbe de réponse donnée.

Si par exemple, I'organe considéré a un caractere
statique, ainsi que le représente la figure bHa, la
grandeur de sortie tend vers une constante. La
surface qu’il faut intégrer est la différence entre
la courbe de réponse et cette constante, telle que,
par exemple, la surface hachurée de la figure ba.

Si, par contre, 'organe considéré a un caractere
astatique, la grandeur de sortie tend en régime
permanent vers une variation linéaire, éventuelle-
ment superposée a une constante. C’est, dans ce cas,
cette fonction linéaire qu’il faut soustraire, ainsi
que le représente la figure 6b.

Une troisieme méthode pour passer de la courbe
de réponse & la courbe de Nyquist est de réaliser
I'intégration que cette transformation comporte
a I'aide de suites ; soit :

S(®) = [®(1) ; P(21) ; P(31)5 ... ; P(nT); .. .]

la suite qui correspond & la courbe de réponse et :

S(cos (wyt)) = [cos (wyT) ; cos (wy2T) ;

cos (wy;31) ;5 ... cos (wynT); .. .]

N5 .,
et: S(sin (wyt)) = [sin (w;T) ; sin (wy21) ;

sin (wy31) 5 ... 5sin (wynt); .. .]

les suites qui correspondent & cos (w,¢) et & sin (w, ).
Les intégrales

[ @) sin (wyt) dt et [D(t) cos (wyt) dt
0 0
peuvent ¢tre ramenées a deux sommes :

Re J(w;) = wyT E ®(nt) sin (wynT)

/

n=1

(3)

Im J(w;) = w;t Y ®(n1) cos (wynt).

n=1

Cette méthode correspond & la détermination des
coefficients de Fourier par la méthode classique
de Runge. Les sommes ainsi définies peuvent étre
aisément calculées a I'aide de machines a calculer.
Ainsi, 4 partir de deux variations simultanées
quelconques de la grandeur d’entrée et de la
grandeur de sortie d’un dispositif de réglage,
obtenues par un essai unique, facile a réaliser, il est
possible, & l'aide des suites, sans aucun artifice
mathématique, de déterminer les courbes de réponse
et les courbes de Nyquist du dispositif et d’analyser
ainsi toutes ses caractéristiques dynamiques.



II. Détermination des conditions
de stabilite

Les critéres permettant de déterminer les condi-
tions de stabilité d’un réglage automatique ont déja
fait I'objet de nombreuses publications (en parti-
culier 5 & 14), aussi nous contenterons-nous d’en
rappeler briévement leur principe.

Lorsque l'équation différentielle de réglage est
connue, le critére de Hurwitz donne les conditions
que les coeflicients de cette équation doivent
remplir pour que la partie réelle des racines de
I'équation caractéristique soit négative, c¢’est-a-dire
pour que le réglage soit stable (5). Ces conditions
peuvent étre également controlées graphiquement
a laide du critére de Leonhard (6).

Lorsque la courbe de Nyquist de chaque élément
du dispositif de réglage est connue, on obtient la
courbe de Nyquist du circuit de réglage Jz ouvert
en faisant le produit de ces différentes courbes de
Nyquist (c’est-a-dire en additionnant leur phase et
en faisant le produit de leur grandeur absolue pour
chaque pulsation) (7)

J[f ——— Jnl‘Jlm'Jnm~

Le signe négatif provient du fait que le réglage
agit en sens inverse de I’écart initial de la grandeur
a régler. La courbe symétrique par rapport a 'axe
réel correspond a la courbe de Nyquist pour des
valeurs de w négatives.

Le critéere de Nyquist énonce que le réglage est
stable si, lorsqu’on parcourt la courbe de Nyquist

1
il
100 \
Instable
14
stable \
0! 0t 0! — I
it
¢0t N
" L
T §
o [>
I'16. 6. — Condition de stabilité d’un réglage statique
avec retard.
0 pour 0 <t Ty
1 t—T - »
o) = 5 ,172—; 71,1 pour T, <t<T,
1 #
5 pour t>T,
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Jr de w= + oco & w= — co on entoure le point
(- 1, jo) dans le sens des aiguilles d’une montre
autant de fois que le systéme ouvert a de racines
instables (8).

Les criteres de Hurwitz, de Leonhard et de
Nyquist ont recu déja de nombreuses applications
et ont chacun leurs avantages et leurs inconvénients.

w

L’aide que peuvent apporter les suites pour la déter-
mination des courbes de Nyquist peut faciliter
encore I'application du critére de Nyquist. Nous
voulons rappeler une troisitme méthode qui peut
rendre de grands services & l'ingénieur praticien
face a un réglage automatique dont il doit mettre
au point la stabilité.

Nous supposons que I'on ait pu déterminer, soit
expérimentalement, soit par le caleul, la courbe de
réponse du réglage ouvert ®,,. En premiére approxi-
mation, cette courbe de réponse peut étre assimilée
a une des courbes indiquées dans I'ouvrage, donné
par la référence 9, et représentée par les figures
6, 7, 8, 9 et 10. Sur ces figures sont représentées
également les conditions que les coeflicients, qui
caractérisent ces courbes de réponse, doivent
remplir pour que le réglage soit stable. Ces relations
sont établies de la facon suivante : soit @u, I'ex-
pression écrite sous forme opérationnelle de la courbe
de réponse du réglage ouvert. En posant @,, =1
on obtient I'équation caractéristique dont on dé-
termine les racines en posant comme condition que
leur partie réelle soit négative.

Ainsi, lorsque l'on se propose d’ausculter la
stabilité d’un réglage automatique, 1l suflit d’ouvrir

l

1NN\

ot

instable

’ S

apériodique stable \

0! 0! R p £

n

._LA_‘
S0
3
) L

Fic. 7. — Condition de stabilité d'un réglage statique

avec retard et une courbe exponentielle.

I 0 pour (< T,
d(t) = 1/ 1 y
y l 5 (l —e 7'2('471)> pour (> T,
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Fic. 8. Condition de stabilité d'un réglage statique

avec retard et deux courbes exponentielles.

0 pour t < Ty
o =1 1 1 t— T, t— Ty ]
— |1 _ (T,e™ 7, — Tye 7,
l 5 [ T 7}—'13(7'0 ki )

pour (> Ty

IS

TF1c. 9. — Condition de stabilité d'un réglage astatique
avec retard et caractéristique linéaire.
l 0 pour 0 <t < T,y
o) =9 t—T,
|7

pour > T,

™

Condition de stabilité

l_
T 2

Pulsation de l'oscillation  wy =

o R T
Cas limite apériodique 5. =

Constante de temps du
cas limite apériodique

son circuit de réglage, de déterminer, par un essai
facile a réaliser, les variations des grandeurs qui
caractérisent les extrémités de ce circuit de réglage
ouvert, puis a l'aide de suites, de déterminer la
courbe de réponse du réglage ouvert, d’assimiler
cette courbe de réponse a4 une des courbes repré-
sentées par les figures 6 4 10 dont on peut déduire
immédiatement les conditions de stabilité sans
calcul ni procédé graphique (9).

[
P
% 0 pour t < T,
Ot) =1t=T, T, '1 _’?Z‘)
! = R
our T
3 I/ - L ! -
i1 B
o 3
/]
)
#0 | #
o /
. //
¢ @
. ®
-5
0 o ! 0 0o T
Q@ instable
@) stable périodique
Q) stable apériodigue
Fic. 10. — Condition de stabilité d’un réglage astatique

avec retard et une courbe exponentielle, et une caracté-
ristique linéaire.

I1l. Détermination des variations
de la grandeur a régler

A mesure que la technique des réglages automa-
tiques se développe, la stabilité du réglage apparait
comme une condition nécessaire, mais non pas
sullisante. On exige que, & la suite d’une pertur-
bation agissant sur le dispositif de réglage, I’écart
de la grandeur a régler par rapport a sa valeur de
consigne soit réduite & un minimum, tant en
amplitude qu’en durée. Cette condition nécessite
de pouvoir calculer cet écart. Considérons a nouveau
le réglage de vitesse d'un groupe hydro-électrique
représenté par la figure 1. Nous supposons que
'on a pu déterminer la courbe de réponse du
réglage ouvert, ainsi que la courbe de réponse de
la vitesse par rapport a la charge, obtenue par la
mesure de la variation de la vitesse résultant d’une
variation de la charge selon un échelon rectangu-
laire, le dispositif de réglage étant bloqué.

Les variations de n résultant des variations de
n* et de k peuvent se superposer. En appliquant
I'intégrale de Duhamel, nous voyons que pour des
variations quelconques, la variation de la vitesse
est donnée par la somme des deux intégrales
suivantes (2, 3):

t
*d *d
nlt) = [ 5, anlt—TIk(T)dr+ / & Om(t—1)n* (1) dr.
o o

0 0

t
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Nous écrivons cette méme expression sous une
forme un peu différente :

/ Opa(t— T)h(1)dT + / Opu(t—T)n* (1)dx.

Lorsque le circuit de réglage est fermé, la vitesse
n* est égale & la vitesse du groupe n. La variation
de vitesse n résultant d’une variation k (f) de la
charge se calcule analytiquement en résolvant
I'équation intéﬂrale sulvante :

dl/ (Dlnn

La résolution directe de cette équation offre
certaines difficultés. Elle est facilitée en faisant
usage du calcul a I'aide de suites. Nous avons vu
que I'équivalent de I'intégrale de Duhamel était le
produit composé (1). Nous obtenons ainsi :

S(n) =[1;—1] % S(Pen) xS (k) + [1 ; — 1] S(Pra) xS(n).

Nous résolvons cette équation par rapport a S (n).
Il en résulte :

](' ClT —|— [ lm T)dT.

() xS (@) #[1;—1]
SO = —esw

En effectuant les produits et quotients composés
que cette expression comporte, on obtient ainsi la

suite qui caractérise la variation de la grandeur a
régler & la suite d’une perturbation. Nous insistons
sur le fait que S(k), S(®pn) et S(Pn,) peuvent étre
des suites absolument quelconques, obtenues par
exemple par voie expérimentale.

L’analogie entre le calcul & I'aide de suites et le
calcul opérationnel apparait comme particuliére-
ment évidente. En posant :

n(p) fonction opérationnelle de n(t)

k(p) » » » k (t)
Qrn (p) » » » D (t)
®un(p) » » » Pan(t),

I'équation intégrale de réglage devient la suivante :

n(p) = @ra(p)-k(p) + @un(p)-n(p)-

Nous la résolvons par rapport & n (p) et obtenons :

n(p) = k(p) (2P f":p(n_’j)(p) -

En appliquant la transformation opérateur-
temps & cette expression, on obtient la variation
de la vitesse résultant d’une variation donnée de la
charge. Cependant, si % (1), ®p, (2) et D, (t) ont été
relevés expérimentalement et ne peuvent pas étre
exprimés analytiquement, la méthode de calcul a
I’aide de suites est la seule qui puisse étre appliquée.

(a suivre)

LA MACHINE A COUDRE

Son évolution au cours des temps

par L. ALAMARTINE, ingénieur E.P.F., Genéve

La machine a coudre, dont la fabrication souléve des
problémes aussi ardus que les autres appareils utilisés
par 'homme, n’est pour ainsi dire jamais citée dans les
revues et périodiques de documentation générale ; on
ne la rencontre que dans des journaux spécialisés n’at-
teignant pas le grand public.

Le but de la présente note est de résumer I'évolution
de la machine a coudre depuis ses débuts jusqu’a nos
jours.

L’origine de la couture remonte aux temps les plus
reculés de I’histoire de "’humanité. Les hommes primi-
tifs se vétirent de peaux de bétes quils assemblérent
en percant des trous avec des arétes de poissons et en
utilisant de la ficelle faite de boyaux ou de fibres.

Peu a peu, les temps évoluérent (dges du bronze et du
fer) et les aiguilles en métal apparurent munies d’un
trou (chas) dans la partie supérieure, I'outil principal
pour la couture a la main (fig. 1).

Les premiéres tentatives de réalisation de la couture
par un moyen mécanique eurent lieu au milieu du
XVIIIe siécle, en cherchant d’abord a imiter la couture
a la main, ce qui n’alla pas sans difficultés ; on le con-

coit aisément en songeant a la complexité des mouve-
ments que la main effectue.

Fig. 1.
Aiguille
primitive.

Fig. 2. — Machine Joseph Madersperger,
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