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PRINCIPES DU CALCUL A L'AIDE DE SUITES

par MICHEL CUÉNOD, ingénieur à la Socié Générale pour l'Industrie, Genève1

I. Définition
Nous considérons une certaine fonction univoque

et réelle, déterminée par rapport à une variable
indépendante. A chaque valeur de la variable
indépendante correspond donc une et une seule valeur
de la fonction.

Lorsque l'on veut appliquer une certaine
opération fonctionnelle à cette fonction et lorsque l'on
peut admettre que cette opération a un caractère
linéaire, il peut être avantageux de la décomposer
en fonctions élémentaires auxquelles on applique
cette opération, et de superposer ensuite les résultats

obtenus. Le calcul opérationnel n'est pas
autre chose qu'une utilisation systématique de ce

procédé ; les fonctions élémentaires sont, dans ce

cas particulier, les composantes harmoniques ; cette
décomposition et cette recomposition peuvent être
ramenées à des intégrations, sans que l'on ait besoin
de traiter chaque composante individuellement.

Une autre façon de décomposer une fonction est
de la considérer comme étant constituée par une
suite d'impulsions. La forme même que l'on donne
à ces impulsions importe peu. Elles peuvent avoir
l'allure d'un triangle, d'une impulsion rectangulaire,

d'une fonction exponentielle, etc. Il est
possible d'appliquer l'opération fonctionnelle considérée
à chacune des impulsions élémentaires, puis de

superposer les résultats ainsi obtenus. A l'analyse
spectrale à laquelle conduit l'intégrale de Fourier
correspond ainsi une analyse impulsionnelle.

Soit F (t) une certaine fonction représentée par
la figure 1 avec, en abscisse, la variable indépendante

t. A cette fonction F(t) nous faisons
correspondre la suite S(F). Nous exprimons convention-
nellement cette correspondance par le signe A 2

F(t) A S(F) \j1 ;.-.;/- ;•••]¦
Cette suite est donnée par les valeurs de la fonction

F(t) correspondant aux valeurs t, 2t, 3t,...,
ut, de la variable indépendante, t étant l'unité
choisie pour la mesure de cette variable. Nous
décomposons ainsi la fonction F(t) en une suite
d'impulsions rectangulaires ayant t comme base

et les ordonnées fv f2, ¦ ¦ ¦, fn, • • • comme hauteur.
L'unité t doit être choisie suffisamment petite pour
que l'on puisse admettre que sur l'intervalle d'une

1 L'utilisation de calculateurs arithmétiques est étroitement liée
à l'élaboration de modes de calcul qui soient adaptés à l'exploitation

de ces machines ; la « Méthode de calcul à l'aide de suites » qui
a fait l'objet d'une récente thèse de doctorat, présentée à l'Ecole
Polytechnique Fédérale de Zurich, par M. M. Cuénod (Editions La
Concorde, Lausanne, 1955), ouvre à cet égard des perspectives
intéressantes et nous donnons ci-dessous un extrait de la première partie
de ce travail. (Réd.).

a Conformément aux règles et recommandations pour les symboles
littéraux et les signes ASE Publ. 192, N° 124.

unité, la fonction varie linéairement, c'est-à-dire
qu'elle puisse être assimilée à sa tangente. L'exactitude

du calcul à l'aide de suites peut être
améliorée en réduisant l'unité choisie pour la mesure
de la variable indépendante.

Réciproquement, nous pouvons dire que toute
suite définit une certaine fonction en considérant
que chaque terme de la suite donne la valeur
moyenne de la fonction pour la valeur de la variable
indépendante caractérisée par l'ordre du terme
de la suite, puis en joignant entre eux les points
ainsi définis. Cette fonction n'a pas besoin d'être
analytique. Elle peut être donnée par un relevé
expérimental ou une analyse statistique. La
variable indépendante peut être quelconque, cependant,

nous ne considérons dans la suite que des

fonctions avec une seule variable indépendante.
Dans la plupart des exemples d'applications que
nous développerons, cette variable sera le temps ;

aussi c'est la variable que nous adopterons dans
nos considérations générales ; toutefois, ces
considérations sont valables également pour toute
autre variable.

Si nous comparons la décomposition d'une fonction

en ses composantes harmoniques et sa
décomposition en une suite d'impulsions, nous voyons
qu'à l'intégrale de Fourier correspond le calcul
de la fonction pour les valeurs unités de la variable
indépendante. Cette seconde façon de procéder
est particulièrement avantageuse lorsque la fonction

n'est pas donnée sous forme analytique, mais
résulte, par exemple, d'un relevé expérimental. Il
suffit de mesurer la fonction pour les valeurs unités
de la variable indépendante.

Le principe de cette méthode a été exposé par
A. Tustin (1). Nous en avons fait l'objet d'un
précédent article (2) et d'une thèse de doctorat (3)
dont cet article est extrait.

II. Opérations avec les suites

1. Addition et soustraction

Soit F(t) et G(t) deux fonctions, et S(F)
[/i ; fi ; • • • ; U ; • • •]et siG) [gi; &; • ¦ • ; g»;.. •]
les deux suites correspondantes. Les termes de
la suite S(F -f- G) résultant de l'addition de deux
suites S(F) et S(G) sont donnés par la somme des

termes correspondants

S(F+ G) S(F) + S(G) [/i;/2; ...;/„; ...]
+ [gi; g2ï ••• g»; •••]

[/i + gi ; h + En ; •••;/« + gn ; • • •]
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Fig. 1. •—¦ Définition de la suite correspondant

à une fonction donnée.

De la définition même des suites découle la
correspondance suivante :

F(t)+ G(t)AS(F+ G).

De même à la soustraction

de deux suites
correspond une suite dont

- les termes sont donnés

par la soustraction des

termes correspondants.

S(f)

S(G)

•S(F*6)

Exemple

Nous effectuons l'addition

des deux suites
caractérisées par les valeurs
numériques suivantes :

Fig. 2. — Définition de
l'addition à l'aide de suites.

S (F) [1 ; 2 ; 1]

S(G) [1 ; 2 ; 2 ; 1]

S(F + G) [1 ; 2 ; 1] + [1 ; 2 ; 2 ; 1] [2 ; 4 ; 3 ; 1].

La figure 2 donne la signification géométrique de
cette addition.

2. Produit et quotient simples
Les termes de la suite S(F • G) résultant du

produit simple des suites S(F) et S(G) sont donnés

par le produit des termes correspondants. Nous
désignons cette opération par un point (•).

S(F-G) S(F).S(G) Uiif>;- ••;/«;¦••]•
•[gi;g2i •••;g»; •••] [/igi;/2g2; ¦••;/»gn;...].
En particulier, si une suite est multipliée k fois

par elle-même, nous disons que la suite est « élevée
k fois à la puissance simple ». Les termes de la suite
qui caractérise cette puissance simple sont donnés

par les termes de la suite considérée, élevés chacun
à cette puissance :

S(Ft) W; /*;...; /»;...].
Les termes de la suite S(F:G) résultant du

quotient simple de la suite S(F) par la suite S[G) sont
donnés par le quotient des termes correspondants.
Nous désignons cette opération par deux points (:).

S(F:G) S(F):S(G) [f1; /,;...;/.;...]:

De la définition même des suites découlent les

correspondances suivantes :

F(t)-G{t) -\ S{F-G)
F(t)k A S {F*)
F(t) : G[t) A S{F : G).

3. Suites intercalaire et échelonnée

Il est souvent nécessaire de se servir de la
« suite intercalaire » Si(F) dont les termes sont
donnés par la moyenne des termes voisins :

Si{F) [fa ; fa; fa; ; /m; ...]
avec /a 2

(/o + /i)

1

1

(/i + /¦)

(/-i + U)

avec f0 valeur de F(t) pour t 0.

Ainsi que le représente la figure 3, la suite
intercalaire Si(F) caractérise en première approximation

la valeur moyenne de la fonction F(t) pendant
le premier, le deuxième, le nième intervalle.
Elle donne approximativement les valeurs de la
fonction F(t) pour les abscisses intercalaires

t/2 ; 3t/2 ; 5t/2 ; ; (2n-i) t/2 ;

et correspond à la suite S(F) avec un décalage
d'environ une demi-unité en avant.

rm

r 2r

rm

t*.,.
' ^r

MT
r n

Lgi; g2; h.i.
Lgi

.k. Jjl.
ï J

g2 g*

Fig. 3. •— Définition de la suite intercalaire Si(F).

Une autre façon de décomposer une fonction est
de la considérer comme étant donnée par la
superposition d'une succession d'échelons rectangulaires,

ainsi que le repe^ente la figure 4. Ces éche-
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Fig. 4. — Définition de la suite échelonnée Se(F).
Décomposition d'une fonction F[l)

en une suite d'échelons rectangulaires.

Ions sont décalés les uns par rapport aux autres
d'une unité ; leur hauteur est donnée par la
différence entre les termes voisins de la suite intercalaire.
Nous définissons ainsi la « suite échelonnée » Se (F) :

Se{F) [fel ; fei.', fez', ¦ ¦ ¦ ; fen', • ¦ • ]

avec fei

fe*

Jen ==z

/0 + /1
2

/1 + /1
__ /0+/1 h—h

2 2 2

/• + /8 h+h_h-h
2 2

/n—1 "T" /n /n—2 "f" /n- jn /«_

4. Produit et quotient composés

A. Produit composé

Considérons qu'il existe une certaine relation
fonctionnelle entre les deux grandeurs A(t) et B(t).
Par exemple A(t) est la force qui agit sur un point
et B(t) caractérise la position de ce point, ou A(t) est

une force électromotrice et B(t) est le courant qui
en résulte.

Nous supposons que l'on ait fait varier A(t) selon

une impulsion unitaire I(t) représentée par la figure
5a et caractérisée par un rectangle dont la base est

égale à l'unité choisie et dont l'amplitude est égale
à 1/t, c'est-à-dire dont la surface est égale à 1.

Nous supposons que l'on ait pu mesurer la variation

de B(t) résultant de l'impulsion unitaire de A

et que l'on ait obtenu la courbe Gsb(1) représentée

par la figure 56 et caractérisée par la suite S(Gjb) '•

S(GAB) [Si 52 > 63

Nous définissons la fonction Gab(î) comme étant
« la réponse impulsionnelle de B par rapport à A »,

im \

'fi/-;

1 Vr

i0
T •

GUI

Fia. 5. —Définition de la réponse impulsionnelle G^B(t)
d'une grandeur B à une variation de la grandeur A

selon une impulsion unitaire 1(1).

c'est-à-dire « la réponse de B à une impulsion
unitaire de A ».

Nous supposons que le phénomène considéré

est linéaire et superposable, c'est-à-dire que l'effet,
à savoir la variation de B(t), est proportionnel à

la cause, à savoir la variation de A(i). Nous supposons

également que pour t <^ 0, A(t) B{t) 0.

Nous nous proposons de déterminer la variation
de B(t) résultant d'une variation quelconque
de A(t) représentée par la figure 6a et caractérisée

par la suite S(A) :

S(A) [a1; a2; ; a„; ...]
avec :

A(t)
t 0

Ainsi que le représente la figure 6a, cette variation

de A peut être considérée comme étant
constituée par une suite d'impulsions intervenant
successivement aux abscisses 0 ; t ; 2t ; ; ni ;

et dont l'amplitude est donnée par les termes de

la suite intercalaire S^A) :

Si(A) [a,i ; a,-2 ;a« ; ; a»n ; ...]
1 1

ö («o + «i) ; ö K + "2) ; • • • ;
2 (fl"-1 + °n) s • • •

bTGthZO

A(l>\

fA f

a„\ /1 "h
1

1

'

0 1' 1T -T»

sa

/¦

r 2T 31
I k,

a b

Fig. 6. — Définition du produit composé de deux suites.
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Ainsi que le représente la figure 6b, la variation
de B résultant de la première impulsion an est égale
à la réponse Gab{() de B(t) à une impulsion unitaire,
réponse multipliée par aa- 1/t tan et caractérisée

par la suite :

t [aflgi ; otig2 ; Oflgs ; ; a,ig„ ; ¦ ¦.].
La variation de B résultant de la 2me impulsion an

est égale à la réponse de B multipliée par to« et
décalée de 1 unité

t [0 ; aegi; aag% ; at2g3 ; ¦¦¦ ; a&g(n-1) ; aagn; ...].
La variation de B résultant de la 3me impulsion a«
est égale à la réponse de B multipliée par to« et
décalée de 2 unités, et ainsi de suite.

La variation de B représentée par la figure 6b est
donnée par la superposition de ces différentes
variations partielles. Elle est caractérisée par la
suite S(B) :

S(B) [bx ; b&; • • • ; bn ; ] telle que :

h T (Oflgi)
bz t (a<ig2 + o«gi)
b3 T (a,ig3 + ang2 + oegi)

bn t (aagn + a,-2g«_i + + a<„gi)

Sa''* • gn+1—t

2(i4((* — 1) t) + A(kr)) ¦ GAB ((n + 1 - A)t

Nous définissons la manière dont la suite S(B) est
obtenue comme le produit composé de la suite
Si(A) par la suite 5 (Gab) et représentons ce
produit par une étoile (*) :

S(B) T([St(A)*S(GAt)]). (1)

Le schéma de calcul d'après lequel s'effectue le

produit composé ressort du tableau suivant ;

considérons d'une façon générale que l'on se

propose de faire le produit S(A) * S(B) :

S(A)= ax a2 «3 On

S[B)= h h h bn

a1b1 a2bi as&i Onbl

o162 o262 ..an—lbi...
axb3 ..On—263...

S(A)*S(B)=a1b1; a^-r-«^^; 0^3+a^-f-«^*,;...
n

; \ aie bn+i—f,
4=1

Nous constatons que l'on procède de la même
façon que pour la multiplication, dans le système
décimal, des chiffres donnés par la succession des

termes des suites considérées, avec toutefois les
deux différences suivantes :

— l'ordre des chiffres doit être retourné, c'est-
à-dire qu'il faut d'abord écrire les unités, puis
les dizaines, puis les centaines, etc.

— il ne faut pas faire les reports d'une colonne
à l'autre lors de l'addition qui donne le résultat
de la multiplication.

Si nous effectuons le produit composé d'une
suite par elle-même k fois, nous disons
symboliquement que nous « élevons cette suite à la
puissance composée k »

S(A) *S{A) * * S{A) [S(A)]k.

Cette « puissance composée » ne doit pas être
confondue avec la «puissance simple» (suite S(Ai)),
obtenue en élevant chaque terme de la suite à la
puissance k ainsi que nous l'avons définie dans le
paragraphe précédent.

Exemple.

Nous effectuons la multiplication entre les deux
suites caractérisées par les valeurs numériques
suivantes (en admettant T 1) :

S(A) 12
S{B) 12

2

1

1

1 2
2

2
4
1

1

4 2

2 2 1

S(A) * S{B) 14 7 7 4 1

La figure 7 donne la signification géométrique de

ce produit composé. La surface hachurée (1) représente
la suite S (A) multipliée par le facteur 1 ; la surface
hachurée (2) représente la suite S(A) multipliée par 2

et décalée de 1 unité, la surface hachurée (3) représente

la suite S (A) multipliée par 1 et décalée de
2 unités.

SM

SB

SW*S(3)

Fig. 7. — Signification géométrique
du produit composé.
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B Quotient composé

Le quotient composé est l'opération inverse de

celle du produit composé. Soit à nouveau les deux
grandeurs A(t) et B(t) reliées entre elles par une
certaine relation fonctionnelle. Nous supposons
que l'on ait déterminé la variation de B(t) résultant
d'une variation donnée de A(t) et que l'on connaisse
les suites S(B) et S(A) qui caractérisent ces deux
variations. Si l'on effectue le quotient composé
de S(B) par S(^4), on détermine la suite S(Gab)
qui correspond à la variation de B résultant d'une
variation de A selon une impulsion unitaire, à

savoir la réponse de B à une impulsion unitaire.
Nous exprimons symboliquement ce quotient
composé par le signe (*) ou par une double barre
de fraction. La façon dont il s'opère ressort du
tableau suivant :

&i
h
h

11 h
b, ^ ~a'V,

*1 K h
«1 i M
V h l"2--aiTj-'

0

Nous cherchons combien de fois bv entre dans

a1; ce qui donne le premier terme de la suite du
quotient. Nous multiplions chaque terme de la
suite S(B) par a1fb1 et soustrayons la suite ainsi
obtenue de S(A). Nous cherchons combien de fois
b1 entre dans le premier terme de cette nouvelle
suite, ce qui donne le deuxième terme de la suite
du quotient, et l'opération se continue ainsi.

Nous constatons que ce qxiotient composé
s'effectue selon les mêmes règles que la division dans
le système décimal des chiffres donnés par la
succession des termes des suites considérées, avec
la différence que, lors des soustractions, on ne
fait pas de report d'une colonne à l'autre ; le
résultat des soustractions, positif ou négatif, est
conservé dans la même colonne.

Le calcul numérique d'un quotient composé
peut s'effectuer le plus commodément en faisant
usage de la formule de récurrence suivante :

Soit 5(G) [cj ; ea ; c„ ; ] la suite cherchée
obtenue par le quotient composé des suites S(A)
et S(B) ; le terme général cB se calcule au moyen
de la relation suivante :

c« y- (a„ — bnc\ — 6„_1C2 — &„_2c3-
"i

ainsi nous obtenons :

1 1
c2 Tf («2 — Vl) T-

"1 °1
1

l)

Hh

h
(«S Vr

V

V2)

HK
l>2 l

11K etc.

Nous retrouvons bien les termes obtenus en
effectuant directement le quotient composé.

Exemple
Nous contrôlons qu'en divisant la suite S(A)*S(B)=

[1 ; 4 ; 7 ; 7 ; 4 ; 1] par la suite S{B) [1 ; 2 ; 2 ; 1]

on retrouve bien la suite S (A) [1 ; 2 ; 1] :

4 7

2 2

1 1 1

0 0

Remarques

a) Nous considérons

A{x)
B(x)

(a^x

ihx

1

0

les deux polynômes :

+ asx2 + ogx3 +
+ b^+ b3x*+

Nous effectuons le produit de ces deux polynômes
et obtenons le polynôme suivant :

A(x)-B(x) (ax bj x* + (a2 bx + at ba) x? +
+ (»1*3 + «2&2 + «A) xi +

Nous reconnaissons dans les coefficients des

puissances de x les termes de la suite obtenue par le
produit composé de S (A) par S (B). Nous en concluons

que les termes de la série du produit ou du quotient
composé s'obtiennent selon les mêmes règles que celles

qui permettent de calculer les coefficients du polynôme
obtenu par le produit ou le quotient de 2 polynômes.

Il est connu que le produit entre polynômes est
commutatif et associatif, c'est-à-dire que l'ordre dans

lequel on effectue le produit entre polynômes n'importe
pas et que l'on peut mettre en évidence un facteur
commun. Nous voyons ainsi que le produit composé
est également commutatif et associatif, c'est-à-dire que :

S(A)*S(B) S(B)*S{A)
S(A)*S(B) + S{A)*S{C) S(^)*[S(ß)+S(C)].

b) Si nous combinons le produit et le quotient
composés, nous pouvons, si la variation de B résultant
de la variation de A est connue, calculer la variation
de B résultant d'une variation quelconque de A.
Autrement dit, nous pouvons ramener les variations
de S à une variation unitaire de A, sans qu'il soit
nécessaire pour cela de connaître l'expression analytique

des variations de A et B. Nous verrons que cette
propriété est avantageuse dans certaines applications
pratiques.

Nous avons vu que le quotient composé de la suite
S(A) par la suite S(B) donne en principe la variation
de la grandeur A résultant d'une variation de B selon

une impulsion unitaire. Cependant, les règles du calcul
à l'aide de suites sont valables lorsque les fonctions
considérées s'étendent sur un intervalle très grand par
rapport à celui de l'unité choisie, ce qui n'est pas le

cas pour l'impulsion unité. Aussi, est-il préférable de

ne pas choisir cette impulsion unité comme fonction
unitaire de référence, mais de prendre l'échelon unité
U (t) 1 ou la fonction exponentielle F(t) 1 — e-*'1".

Puisque le produit composé est commutatif, il est

avantageux, en ce qui concerne l'exactitude des calculs,
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de commencer par faire le produit composé de la
suite qui figure au numérateur par la suite de la fonction

unitaire, puis d'appliquer à la suite qui en résulte
l'opération du quotient composé avec la suite qui
figure au dénominateur.
c) Considérons le produit composé S(C) S(A)*S(B)
et effectuons la somme des termes de S(C) :

S(C) Cj -f C2 + Cs + Cn +
a1b1-\-albi-\-aib1-\-alb3+aib2-\-a3bi+albi-!r

ai (hi + b2 + bs + bn +
+ «2 (À + h + b3 + + bn + +
+ an A + è2 + h + + bn + +

K + «2 + <h + ¦ ¦ ¦ + °n + ¦ ¦ ¦ (h + b2 +
b3+ +bn+

Nous voyons que la somme des termes d'un produit
composé est égale au produit de la somme des termes
des suites dont on effectue le produit :

TS{C) TS(A)-1S(B).
-On peut également démontrer que lorsque l'on

effectue le quotient composé entre deux suites S(C)
S (A) jji S(B), la somme des termes du quotient est
égale au quotient de la somme des termes de la
suite du numérateur par la somme des termes de la
suite du dénominateur :

15(C) 1S(A):TS(B).
Cette propriété est très commode pour le contrôle

numérique de l'opération d'un produit ou d'un
quotient composé.

d) Considérons les deux suites :

S(A) [1 ; 2 ; 3 ; 2 ; 1] et S(B) [1 ; 3 ; 2 ; 1].

Nous effectuons le quotient composé S(A) * S(B) ;

3 2 11 2 3 2 1 1

1 3 2 1
1

0 — 1 1 1 1

— 1 -3 — 2 — i
0 4 3 2 0

4 12 8 4

1 4 9 21

9—6
9—27

4
18

0
9

0 21 14

Nous obtenons ainsi une suite alternée instable.
Quelques indications sur le problème de la stabilité
du quotient alterné sont données dans l'annexe I de
la thèse dont cet article est extrait.

e) Dans de nombreux cas la relation dynamique qui
unit A à B est connue par la « courbe de réponse
<&ab de B par rapport à A », dite aussi « réponse
indicielle de B par rapport à A », c'est-à-dire par la variation

de B résultant d'une variation de A selon un
échelon rectangulaire. Cette courbe de réponse peut
soit' avoir été calculée, soit avoir été relevée
expérimentalement ; l'impulsion unité / (t) est égale lorsque
l'unité T est suffisamment petite à la dérivée de l'échelon

rectangulaire unitaire U(t) ; en première
approximation la réponse Gab (t) à l'impulsion unité est
donnée par la dérivée de la courbe de réponse Ojlb(£).

Nous avons vu que la suite échelonnée Se(A) décomposait

la fonction A (t) en une suite d'échelons
rectangulaires. La variation de B résultant d'une variation,
quelconque de A peut également se calculer en faisant
le produit composé de la suite échelonnée Se(A) par
la suite caractérisant la courbe de réponse Q>ab (t) :

'

S(B) [Se(A)*S(4>AB)}.
Ce mode de faire est avantageux, en particulier

lorsque A (t) ne s'annule pas en régime permanent,
mais tend vers une valeur constante, car le nombre
des termes de la suite échelonnée Se(A) se trouve
limité, tandis que les suites S(A) et St(A) ont un nombre
de termes illimité.

Selon la forme que l'on donne à la fonction unité
(triangle, fonction exponentielle, etc.), on peut donner
d'autres significations au produit composé, mais
l'opération de ce produit reste la même.

Réciproquement si l'on fait le quotient composé
de la suite S(B) qui caractérise l'effet par la suite
échelonnée Se{A) qui caractérise la cause, on obtient
en première approximation comme résultat la suite qui
caractérise la réponse indicielle de B par rapport à A.

5. Décalage

Soit G(t) une fonction telle que :

t < T* G(t) o
P°Ur t>T> G(t) ^_n.

La fonction G(t) est donc la fonction F(t) décalée
de l'intervalle T* ainsi que le représente la figure 8.

Soit S(F) [/i ; /2 ; ...;/„;...] la suite qui
correspond à F(t). On voit immédiatement que
la suite S(G) qui correspond à G(t) s'obtient par le

produit composé de la suite S(F) par la suite
[0 ; 0 ; 1], le nombre de zéros étant donné par
le quotient T*fi T.

5(G) [/i;/2; ...;/„; ...]*[0;0; ; 0 ; 1]
[0 ; 0 ; 0 ; /x ; /, ;...;/»;.. .]
S(F)*D(+T).

rm k

G(l

ni

Gf

Fig. 8. — Définition du décalage.

Nous définissons par D(-^-T) la suite qui caractérise

l'opération du décalage

D(+T) [0; 0; ; 0 ; 1].
Autrement dit, le produit composé d'une suite avec
D(-\-T) signifie que la fonction correspondant à

cette suite est décalée en arrière de l'intervalle T.
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Inversement, nous définissons par le produit
composé avec la suite D( — T) le décalage de T
unité en avant, c'est-à-dire que le (T -\- l)Dième

terme devient le premier terme de la nouvelle suite,
le (T + 2)nième terme devient le 2e terme, etc.,
les termes pour t < 0 étant supprimés.

Ainsi par exemple :

S(G) D(—1) * S{F)

D(-i)*[/1;/,;/,;...;/.;...]
L/2 /3 > /4 • ¦ • tn + l ; ¦ ¦ ¦}¦

6. Intégration

A. Première intégration.

Soit S(F) [/i ; /2 ; ...;/«; .] la suite qui
correspond à la fonction F(t) et Si(F) sa suite
intercalaire, ainsi que le représente la figure 3.

Si(F) | [/o + h ; h + h ; ¦ ¦ • ; fn-x + /.; • • •]•

Nous voyons immédiatement que cette suite
intercalaire S%(F) est obtenue par le produit
composé de la suite S(F) par la suite 0,5 [1 ; 1],

produit auquel on ajoute la suite 1-^ réduite à

un seul terme : J

St{F) S(F) *0,5 [1 ; 1] + [^
Cette suite intercalaire donne en première

approximation la valeur moyenne de la fonction
pendant les différents intervalles unitaires ; ainsi

que l'indique la figure 3, les valeurs de l'intégrale
t

i F(t)dt peuvent se calculer en faisant la somme

0

des impulsions définies par les termes de la suite
intercalaire et multipliées par l'unité choisie :

>(*)* £l+£t

J
2T

F[t)dt :,Ti +H4)'-„ + '. + !,'

f F(t)dt
/o + /1 /1 + /,

2 2

'k + fi + h+ ¦

+ ¦¦¦
fn-l + AA

T

+ /n-l+||-
La suite qui caractérise l'intégrale est donc la

suivante :

t

s( jF(t)dt\

/0~t"7l. /O 1 1 p /2. /O

0

T o i o ~r/l~r 9 i • • • > 9 "Tf\.\fi\ ¦ • • "T/n—1+ <¦>

Elle est obtenue en faisant le produit de la
suite intercalaire Si par la suite de la fonction
unitaire [1 ; 1 ; ; 1 ; ...] comme le montre le

produit composé ci-dessous :

0,5 (/o + h h + h
1 1

fi + /3
1

0,5 (/o + h fi + h
0,5 /„ + A
0,5

/» + /a
/1 + /,
fo + fi

0,5 (/o + /i /o + 2/: + /. /0 + 2A+2/. + /,. ••)
Nous avons vu que le produit composé était

commutatif, c'est-à-dire que l'ordre dans lequel on
effectuait le produit n'avait pas d'influence sur son
résultat. Nous en concluons que :

(h)dt

S(JF)*0,5[i;l] +
/o

* [1 ; 1; ...; 1;

^(F).[i;l]*[l;l;...;i;...] + /,[i;i;...il;...]

t(s(F)*[0,5;1;1;...;1;...]4-|[1;1;...;1;...]).
(2)

Nous retrouvons la même formule que celle
indiquée par A. Tustin (1) avec en plus le terme en
/0. Ce procédé d'intégration est bien connu sous
le nom d' « intégration selon la règle du trapèze ».

Exemple

Nous nous proposons de calculer l'intégrale de la
fonction linéaire. Nous savons que c'est une parabole.

F(t) fF(t)dt f tdt
2

S(F) [1; 2; ;n; ...] avec T l et /0 0.

Nous effectuons le produit composé donné par la
formule (2) :

S(F)

f F(t)dt

1 2 3 4 n
0,5 1 1 1 1

0,5 1 1,5 2 0,5n
1 2 3 n-i

1 2
1

n-2
n-3

0,5 2; 4,5 ;8

avec t m.
Nous retrouvons, en effet, les termes de la suite

parabolique correspondant à la fonction ta/2.
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B. Intégrations successives

En appliquant cette même opération à la
première intégrale, nous pouvons déterminer les
intégrales d'un ordre plus élevé. Nous obtenons ainsi,
pour l'intégrale double, en tenant compte du fait
que si F(0) :jzé co- on a :

/ F(t)dt 0

t([0,5;1;1;...1;...]*S(F)

si jdt jF(t)dt
o o

t[0,5;1;1;...;1;...]*

Un regroupement de cette expression donne :

t i

S( fdtfF(t)dt}=T*(s(F)*[0,5; 1;1; ;1; .]« +

1; ••.]*[!;!;...;1
o o

/o,+ 2-°([0,5;l;l;

En appliquant successivement la même
opération, nous obtenons l'expression suivante pour
la ktime intégration :

5 Il l
fdt jdt... fF{t)dt\ T*(s[F)*[0,5;1;1;...;1; ...f +

+ |([1;1;...;1;...]*[0,5;1;1;...;!;...]*-*))

Exemple

Nous nous proposons de calculer la deuxième
intégrale de l'échelon rectangulaire unitaire

rri,\ - i ° Pour ' < °
UW -\ i pour t > 0

S(U) [1 ; 1 ; 1 ; ; 1 ; ...] avec t/(0) 1 et T 1

dt U(t)dt

o o

si jdt j U(t)dt\

t t

[0,5;1;1;...;1;...]2*[1;1;... ;1;...] +
+ 0,5[1;1; ; 1 ;...]* [0,5 ; 1 ; 1 ; ...;1; ...]
[0,25; 1;2;3;...]*[1;1;...;1 ;...] +
+ 0,5 [0,5 ; 1,5 ; 2,5 ; 3,5 ; ...]
[0,25 ; 1,25 ; 3,25 ; ...] + [0,25 ; 0,75 ; 1,25 ; ...]
[0,5;2;4,5;8; ...].
Comme il fallait s'y attendre, cette suite correspond

bien à la fonction parabolique t2l2.

Cependant, pour les intégrales d'un ordre plus
élevé, l'approximation est moins bonne. Cela pro¬

vient du fait que la fonction ne varie plus
linéairement pendant un intervalle unitaire. La valeur
moyenne de la fonction sur cet intervalle n'est
plus donnée par sa valeur médiane. Une meilleure
approximation de l'intégration est obtenue en
faisant usage de la suite échelonnée Se(F), telle que
nous l'avons définie au paragraphe 3.

Il est connu que la /cième intégrale d'un échelon
rectangulaire unitaire est donnée par l'expression
suivante :

t t t

fdt j dt jU(t)dt p •

0 0 0

La suite qui correspond à cette intégration est
la suivante :

s(£)=£[l;2»;3»;...;»*;...]. "-
Considérons à nouveau une fonction F(t)

caractérisée par la suite S(F) et la suite échelonnée Se(F).
Nous pouvons intégrer chacun des termes de Se(F),
et ensuite superposer le résultat de ces différentes
intégrations.

Ainsi pour la kibme intégration, nous obtenons :

pour t

pour t 2t:

i! /o + A
kl '

2

Tire!

'f<L+h (1 + 2*) + /ATi?

pour t 3t :

/o+/i(1_| /2 /0 /^ _j_ 2*) _j_ M)kl V 2 ^ ' " ' "' 2

Nous obtenons le résultat du produit composé de
T*

la suite échelonnée par la suite j—. [1 ; 2* ; 3* ; ;

nk ; ]. La suite échelonnée est donnée par le

produit composé de la suite intercalaire Si(F) par
la suite [1 ; — 1] :

S.{F) Si(F) * [1 ; — 1]

S(F) * 0,5 [1 ;1] + *[!;-!].
Nous voyons ainsi que la /cième intégrale d'une

fonction F(t) est donnée par le produit composé
suivant :

i t t

si jdt jdt... j F{t)dt\ S(i<>0,5[l;l] +
o o 0

+ • [!;—!]•£-,[!; 2*; 3»; ; n"; ...]. (3)

Pour k 1 et k 2, c'est-à-dire pour la première
et deuxième intégrales, nous pouvons aisément
contrôler que nous obtenons le même résultat que
celui déjà obtenu.
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7. Dérivation

A. Première dérivation
Considérons à nouveau une fonction F(t) à

laquelle correspondent la suite S(F) et la suite
intercalaire Si(F).

Nous nous proposons de déterminer la dérivée
de la fonction à l'abscisse t m et pour ce faire,
nous considérons le petit triangle hachuré de la
figure 9. La base de ce petit triangle est égale à

l'unité choisie t, sa hauteur est égale à la différence
entre les deux termes voisins de la suite intercalaire.
Nous en concluons :

dF(t)
dt

F((n + 1)t) + F(nx) F (m) +F((re-1)T)\1

ra

VWW

MfrW

In-lft nt frrtlT

Fig. 9. — Définition de la dérivation
à l'aide de suites.

A insi pour :

'~T' dt~A 2 2 -2i[h h}

t 2 dF_\(h±h__k±k\_ A(/_nT' dt~i { 2 2 )~ 2tv'3 h)

dF 1 (fn+ l+ fn fn+fn-l\ 1

dt t 2 — 2t
^n+1 fn~^'

Nous obtenons donc pour la suite correspondant
à la fonction dérivée l'expression suivante :

dF /i + /«_/o_+ A h ±h_h + h
2 2 ' 2 2

fn + l T fn fn "T fn—1

2~ 9. ' "
ZT

L/2 /O ''13 /l fn +1 fn—i ; • • •]•

Nous voyons immédiatement que cette suite est
obtenue en faisant le produit composé de la suite
intercalaire par la suite [1 ; — 1], en divisant le

résultat ainsi obtenu par l'unité choisie t et en
décalant ce résultat d'une unité en avant, c'est-
à-dire en prenant le deuxième terme comme
premier terme, le troisième terme comme deuxième
terme, etc.

dF\ 1*SK
1

2t

S(F)*0,5[1;1] +

<)*[1;0;-1]+/0[1;

*[1;-1]*D(-1))

*D(-1)\ (4)

Le signe symbolique D (— 1) signifie ce décalage
en avant de 1 unité de temps.

Nous obtenons une expression légèrement
différente de celle indiquée par A. Tustin (1) qui définit
la suite correspondant à la differentiation comme
l'inverse de la suite correspondant à l'intégration
et qui obtient le résultat suivant :

dF\l_ S(F)
dt)- t [ÔT57l;l;...;lT^]

2 [1;-1]

S

:[2;-4;+4; -U: S(F)*
[i ; if

L'erreur qui affecte le résultat de la dérivation
obtenu par l'application de la formule (4) est

indiquée dans l'annexe II de la thèse dont cet
article est extrait.

Exemple
Nous nous proposons de calculer la dérivée de la

fonction parabolique :

»2

F(t) ^
dF
Tt

S

t F(0) 0

-2
0,5; 2; 4,5; 8; 12,5;

n
avec T : 1.

Nous effectuons le produit composé donné par la
formule (4) :

0,5 2 8 12,5
1 0 — 1

0,5 2 4,5
— 0,5

8

— 2
12,5

-4,5
0,5 2 6 8

Nous supprimons le premier terme de la suite ainsi
obtenue et divisons cette suite par 2. Il en résulte :

s(^-tÇj S(t) [l;2;3;i;...;n;...],
ce qui est bien le résultat auquel il fallait s'attendre.

B. Dérivations successives

La seconde dérivée s'obtient en appliquant la
même opération à la suite qui caractérise la
première dérivée :

/d2F\

~ (\S{F')*[1 ; 0 ; - l]+/'(0) [1 ; - 1]]*D(-1)

où f0 est donnée par la valeur de -j- pour 0

tïrVS(F")

*[I;0;—1]]*Z>

[S (F) i]2 + /o[i;-i]
2ï

1

-TjT(r0[ii-i.]*D(-i)
avec [1; 0; — 1]« [1; 0; — 1]*[1; 0; - 1]

[1 ; 0 ; — 2 ; 0 ; 1]

et Z)(—2) décalage de deux unités en avant.

D'une façon générale, la suite de la dérivée
d'ordre k est obtenue de la façon suivante :
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f« i%) (^([¥)*[i;0;-iF +

+ /0[i ; - 1] * [1 ; 0 ; - l]*"1] * D(-k)^j +

+ (^([/ô[1;-1]*[1;0;-1]*_2]*jD(1"-,C))+'"

+ 4([/ri)[1;-1]j*D(-1))- (5)

Exemple

Nous nous proposons de calculer la deuxième
dérivée de la fonction parabolique :

t%

F(«)=2 avec F(0) F'(0) 0.

Nous obtenons en admettant T 1 et en effectuant
le produit composé donné par la formule (5) dans
laquelle on pose k 2 :

0,5 2 4,5 8 12,5 18 24,5
1 0—2 0 _1_
0,5 2 4,5 8 12,5 18 24,5

-1 —4 —9 —16—25
0,5 2 4,5

0,5 2 3,5 4 4 4 4

Nous supprimons les deux premiers termes et
obtenons après avoir divisç par 4 :

i.-" "5(g0 [O,875;l; l;...;!;..]
A part le premier terme, nous obtenons bien le

terme constant U 1, ainsi qu'il fallait s'y attendre.
L'inexactitude qui affecte le premier terme montre
les limites de la précision du calcul à l'aide de suites

pour les dérivées d'un ordre supérieur.

III. Equations différentielles
linéaires

1. Equations différentielles linéaires du 1er ordre

Considérons tout d'abord une équation linéaire
différentielle du type suivant :

a^+ bx F(t).dt w

Cette équation est obtenue par la dérivée de

l'équation intégrale suivante :

DE LA SUISSE ROMANDE

t t

+ b j xdt + C= f F(t)dt.

C est la constante d'intégration à déterminer par
les conditions aux limites. Pour t 0 nous obtenons

:

dor

ax(0) + C 0

C= — ax{0).

Nous obtenons ainsi :

t t

a{x — x{0)) + b f xdt j F(t)dt.
0 0

Nous traduisons cette équation intégrale sous
forme d'équations de suites. Soit S (x) [xx ; xz ;

..';''; xn ; ¦ ¦] la suite de la fonction que l'on se

propose de déterminer et dont on connaît la valeur
initiale x(0) xQ, et soit S(F) [/x ; /2 ; • • • ;

fn ; ...] la suite qui correspond à la fonction F(t),
avec la valeur initiale /0 F(0).
En utilisant la formule (2), nous obtenons :

a S{x) — ax0 [1 ; 1 ; ; 1 ; ...] +
+ b-r(s(x)*[0,5;l;l; ;1; ...]

i~9 [.>'¦••'>•*
x (S(F) * [0,5 ; 1 ; 1 ; ; 1

+ |[1;1; ...; 1; ...]

+

+

Nous résolvons cette équation par rapport à Six) :

S(x) (6)

S(F)*T[0,5;l;l;...;1;...]+g(/0-6a;0)-rax0Vl;l;...;l;...]

[a + 0,5 b x ; b x ; b T ; 6t;
Ce quotient composé permet de calculer la suite
S(x) qui caractérise la solution de l'équation
différentielle. On voit que le (n + l)ième terme est
donné par la relation suivante :

¦-n + l ¦ + xn +
/n + l

2

¦'n+l'

Si l'on soustrait cette expression de celle obtenue
pour le n,éme terme, on obtient la formule de
récurrence suivante :

(%n f 1 'x») + -f (x" + xn+i) ^ (/» T /»-i-^-

Cette formule peut être également obtenue en
appliquant directement à l'équation différentielle
la formule (4) de la differentiation à l'aide de suites :

2x
[S{x) * [1 ; 0 ; ¦ 1] * D(— 1)] + b S (x) S{F).

En effectuant le produit composé que contient la
parenthèse, on obtient entre les termes voisins du
Tjième terme de la suite S(x) la relation suivante :

2t l-n + l hxn TT"*»-!2t
/»•

Cette relation correspond à celle que nous avons
déjà obtenue, avec la différence que dans le cas
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précédent l'unité était réduite de moitié et que
la relation était appliquée entre les termes voisins
et le terme intermédiaire de la suite intercalaire.

Cette formule de récurrence correspond à un cas

particulier de la méthode d'intégration classique
d'Adams. Il est connu que cette méthode s'applique
aux équations différentielles non linéaires du type
(3):

dx
aTt <p(x,t).

En intégrant cette équation dans l'intervalle t de

tn à tn+i et en appliquant la règle du trapèze,
on obtient :

a(a;„+i — x„)
'n + l
/ ta(x,t)dt ~ - t q>(xn, tn)+ q>(:c„+iA+i) j ¦

Dans le cas particulier où l'équation différentielle
est linéaire, on peut poser :

<ç(x, t) — bx + F(t).

Il en résulte :

a {x„+1 — xn) - — bxn + /» — bxn+1 + /n+i).

On retrouve l'expression déjà obtenue. On peut en
conclure que la méthode de résolution d'une équation

différentielle du premier ordre au moyen du
calcul à l'aide de suites selon la formule (6) est

identique à l'application de la méthode d'Adams
lorsque l'intégration que nécessite cette méthode
est effectuée selon la règle du trapèze. Toutes les
considérations concernant la stabilité et la précision

de la méthode d'Adams peuvent ainsi être
étendue« à notre cas (3 à 7).

2. Equations différentielles linéaires d'un ordre
supérieur

Considérons une équation différentielle du
deuxième ordre :

d2x dx _,,a-M+bdi+CX F^-
Cette équation est obtenue par la dérivée de

l'équation suivante :

t t

a -jC -f bx + c f xdt + C1— I F(t)dt
o n

avec Gx= - (ai (0) + fcc(0))

dx
i(0) -j- pour t 0.et

Nous introduisons cette constante dans l'équation

que nous avions obtenue, ce qui donne :

t t

« (J~ * (0)) + b(x — x(0)) + c fxdt fF(t)dt.

Cette équation est obtenue par la dérivée de

l'équation suivante :

t t t

aix— fxiO) dt\+ bi fxdt — fx(0)dt\ +
0 0 0

t t t t

c dt xdt + C2 j dt j F(t-r c (t) dt

avec
0 0

C2 — aa:(0).

En considérant que a:(0) et i(0) sont des
constantes, nous obtenons :

t

a(x — a;(0) — i(0) t) + b I xdt — x(0)t\ +
o

t t t t
/* /* r* r*

+ c j dt j xdt= j dt j F(t)dt
0 0 Ou

soit :

x + b I xdt -f c / dt j a dt

t t

jdt jF(t)dt + (oi(0) + bx (0)) t + ax (0)-

o o

Nous traduisons à nouveau cette équation
intégrale sous forme d'équation de suites et introduisons

les expressions des premières et deuxièmes
intégrations à l'aide de suites :

a S(x) + bx (S(x)* [0,5 ; 1 ; 1 ; ; 1 ; ...] +

+ Ç[1 ; 1 ; 1 ; ...;1;...]W

+ ci2('s(a;)*[0,5;l;l;...;l;...]a +

+ Ç[0>5;1;1;...;1;...]*[1;1;1;. ..;!;..
T2 5(F)* [0,5; i; !;...;!;... ]» +

+ §[0,5; 1;1 .;!;.. +
+ t{ai0 + bx0) [1 ; 2 ; 3 ; ; n ; ...] +

+ oa;0[l;l;l; ;1; ...]
avec. x0 x(0) ; i0 i(0) ; /0 F(0).

Nous résolvons cette équation par rapport à S(x)
et effectuons les produits composés contenus dans
les parenthèses :

S(a S(F)*t2[0,25;1;2;3 ;...] +

+ 2" (/o — ca;0)[0,5 ; 1,5 ; 2,5 ; 3,5 ;

+ t (ai0 + bx0)[l ; 2 ; 3 ; ...] +

+ [ax
biXt

[1 ; 1 ; ; 1 ;2

S [a - 0,5 6t + 0,25ct2 ; 6t + et2 ; bi + 2ct2 ; bi -

+ 3ct2 ;...]. (7)
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On peut aisément étendre ce procédé de calcul
à des équations différentielles d'un ordre supérieur.
Cependant les calculs deviennent assez compliqués
et l'approximation devient moins bonne par suite
des intégrations d'un ordre supérieur que cela
nécessite.

3. Exemples

A. Calcul d'un dispositif mécanique

Considérons le dispositif mécanique représenté par
la figure 10 formé par un amortisseur B et un ressort F.
Nous nous proposons de calculer la course X au point P
en fonction de la force K qui agit
sur ce point. Ce système obéit à

l'équation différentielle suivante, dans

l'hypothèse que l'on peut négliger la
masse de la partie mobile :

dX *

b-+fX K(t)

avec
b constante d'amortissement

et / caractéristique du ressort.

Nous considérons une variation
de Z et de X par rapport à un état
initial de repos et posons :

H«

et

K

X
K0+ AA'

X0 + AX.

Fig. 10. —Dispositif
mécanique constitué
par un amortisseur

et un ressort.

dX
Nous tenons compte du fait que K0 fX0, qi

dt- 0 et obtenons :

b dx

JTt

AK

+ x

AX
Xn

Nous définissons par T -r- la constante de temps

du dispositif mesurée à l'aide de l'unité T et obtenons :

m dx

dt
k.

Considérons le cas particulier où k a la forme d'un
échelon rectangulaire ainsi que le représente la courbe 1

de la figure 11

* *[!; I; ; 1

Nous admettons par exemple que la constante de

temps T 8 sec et que T 1 sec. La solution
analytique de l'équation différentielle dans ce cas particulier

est donnée par une courbe exponentielle :

—y- =1 — e t 1

t

¦e—s

La suite correspondant à cette fonction, que repré
sente la courbe 2 de la figure 11, est la suivante :

S | [0,119 ; 0,221 ; 0,313 ; 0,393 ; 0,463 ; 0,527 ;

0,581; 0,631; 0,675; ...].
Pour résoudre cette équation à l'aide de suites,

nous admettons T 1. Nous utilisons la formule (6)
et obtenons ainsi :

T. b T 1 « /o 0

rS(«) +S(a:)*[0,5;l;l;
S(k) * [0,5 ; 1 ; 1 ;

k
+ 9.

-° [1 ; 1 ; ; l
Nous considérons à nouveau une variation de la

force selon un échelon rectangulaire et obtenons, en
admettant T 8 :

x [1; 2; 3; 4 ; .-.]
,5 ; 1 ; 1 ; 1; ...]

Nous effectuons ce quotient composé :

1 ;8,5

0,118; 0,221; 0,313; 0,393;
12 3 4 5
1 0,118 0,118 0,118 0,118

01,882 2,882 3,882 4,882
1,882 0,221 0,221 0,221

0 2,661 3,661 4,661
2,661 0,313 0,313

0 3,348 4,348

et on obtient :

s(^r [0,118 ; 0,221 ; 0,313 ; 0,393 ; 0,463; 0,527;...].

Cette variation se confond avec la courbe 2 de la
figure 11 et correspond bien au résultat?TO)tenu par
voie analytique.

x.k

t

IS Jir.r

Fig. 11. — Réponse du dispositif mécanique
à une variation de la force

selon un échelon rectangulaire.
Courbe 1 : variation relative de la force K.
Courbe 2 ; variation relative de la course X calculée par

voie analytique et calculée au moyen de suites
lorsque l'unité choisie n'est pas négligeable.

Courbe 3 : variation relative de la course d'un dispositif
avec retard.

Courbe 4 : variation relative de la course X calculée au
moyen de suites lorsque l'unité choisie est
négligeable.
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Le grand mérite de cette dernière méthode
d'intégration est qu'elle se prête bien à l'intégration des

équations différentielles dont le terme perturbateur est
quelconque, tel que, par exemple, celui qui est défini
par la courbe de la figure 12 à laquelle correspond la
suite suivante :

S{k) Ä [1 ; 1,6 ; 1,5 ; 1,3 ; 1 ; 0,7 ; 0,5 ; 0,4 ; 0,3 ; 0,22 ;

0,15 ; 0,09 ; 0,04 ; 0,02]
avec k0 0.

1 x,t

(5

^-1

o.s

\-—„^^
2

{
0 /0 1. 'sec

Fig. 12. — Réponse du dispositif mécanique
à une variation de la force selon une allure quelconque.
Courbe 1 : variation relative de la force K.
Courbe 2 : variation relative de la course du point X.

Si nous effectuons le produit composé de cette suite
par la suite [0,5 ; 1 ; 1 ; 1 ; ; 1 ; .] et le quotient
composé par la suite [8,5 ; 1; 1; ...; 1; ...] nous
obtenons :

; 1 ;...]*[1 ;1,6 ; 1,6 ; 1,3 ;1; 0,7 ; 0,5; 0,4 ; 0,22 ; 0,15 : 0,09 ; 0,04 ; 0,02]

k

[0,5 ; 1 ; 1 ;

[8,5; 1; 1;1; ; 1; ...]

Le résultat de ce quotient composé est représenté
par la courbe 2 de la figure 12. Nous voyons que par
suite de l'amortissement, la variation de x se trouve
ralentie et en quelque sorte écrasée.

B. Calcul d'une corde chargée

La figure 13 représente une corde de longueur l
tendue entre deux points A et B et portant une charge
dont la répartition est donnée par la courbe w(x).
Soit K la traction à laquelle la corde est soumise à ses
deux extrémités. Nous nous proposons de déterminer
la flèche y(x) en chacun des points de cette corde.

vraci

irfiiffliii 1

- Wttt

K *W^***"
~~?

K X

1

Fig. 13. — Détermination de la flexion d'une corde
avec charge répartie de façon quelconque.

Il est connu que yix) est donnée par l'équation
différentielle suivante (8) :

d2yjx)
dx2

w(x)
~K~

Nous intégrons cette équation deux fois et obtenons :

y(x) J dx
'w(s)

K
dx -\- I Cxdx -f- Cj

Cx et C2 sont les constantes d'intégration à déterminer
par les conditions aux limites.

Pour x — 0, nous posons yix) 0. Comme les
intégrales sont nécessairement nulles pour cette valeur
de x, nous en concluons que :

j/(0) 0 C2.

La constante d'intégration C1 se détermine par la
condition yil) 0.

Nous obtenons ainsi :

— — j i dx j wix)dx -f- Cxx

0 0
j ;

Cx —— dx w{x)dx.

Si la répartition de la charge est quelconque et ne
se laisse pas exprimer de façon analytique, il est
avantageux de se servir du calcul à l'aide de suites pour
effectuer ces intégrales doubles.

A titre d'illustration, nous considérons le cas particulier

d'une charge constante égale à w0 entre xx et x2
et nulle ailleurs, ainsi que le représente la courbe 1 de
la figure 14.

Fig. 14. — Flexion d'une corde chargée
dans un cas particulier.

Courbe 1 : allure de la charge.
Courbe 2 : allure de la corde.

Dans ce cas de charge particulier, il est possible de
faire le calcul par voie analytique et l'on obtient le
résultat suivant :

y 2K l (l—xtf — il—xzf) pour 0<

2K f ((« *,)¦ (* «.)¦) (* —;"*l)"

pour xx <^ x <^ x2

2K 7-(('-*l)2-('-*2)2)-(

pour x3 <C x <^ l.

En admettant, par exemple : l =10
xx 4

xz 7,

nous obtenons la flexion représentée par la courbe 2 de
la figure 14 caractérisée par les équations suivantes :
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wo x ,oa o\ _ «"o. 2 7* 2è ïô (36-9) 2Ä ' pour 0 -<[ a; < 4

2/ § (2,7*-(*-4)») §(-*> + 10,7:

pour 4 <d a; <^ 7

2/

16)

^ (— x2 + 10,7 a; — 16 + x2 — 14 x + 49)

^ (- 3,3 x + 33) pour 1 <^ x 10.

La suite qui correspond à cette fonction est la
suivante :

%)

H [1,35 ; 2,70 ; 4,05 ; 5,40 ; 6,25 ; 6,10 ; 4,95 ; 3,30 ; 1,65].

Nous appliquons la méthode de calcul à l'aide de

suites. Soit S(w) la suite qui caractérise la charge :

S(«.) wa [0 ; 0 ; 0 ; 1 ; 1 ; 1 ; 1 ; 0 ; 0 ; 0].

Nous déterminons la suite qui caractérise l'intégrale
double de w(x) :

Si /dx/iv(a:)da;l «<0[0;0;0;0,5;2;4,5;7,5;10,5;13,5]
o o

i i

a r w° Ca f i \a ^o13^ „c^odonc C1 — —l dx wix)dx —— — —1,35 — ¦

0 0

Nous obtenons ainsi :

S(y) J [1,35 [1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10] -
- [0 ; 0 ; 0 ; 0,5 ; 2 ; 4,5 ; 7,5 ; 10,5 ; 13,5]]

t?[1,35; 2,70; 4,05; 5,40; 6,25; 6,10; 4,95; 3,30; 1,65].
K

Ce sont les mêmes valeurs que celles obtenues par
voie analytique.

Cet exemple présente un côté pratique, car il indique
comment résoudre le problème d une ligne électrique
aérienne avec charge inégalement répartie. Il permet
de contrôler la position des conducteurs pour une
portée partiellement déchargée de givre, contrôle qui,
sinon, doit se faire par voie graphique ou empirique.
D'autres problèmes tels que celui de la flexion d'une

poutre encastrée avec une répartition quelconque de

la charge peuvent être traités selon le même principe.

IV. Equations différentielles
avec décalage

•Il arrive parfois, en particulier dans l'étude de

phénomènes de propagation et de réglage, que l'on
ait à résoudre des équations différentielles dont la
variable est caractérisée par un décalage.

De telles équations conduisent à des calculs
très compliqués si l'on se propose de les résoudre

à l'aide des méthodes de calculs classiques ; elles
se laissent par contre aisément résoudre au moyen
du calcul à l'aide de suites. Soit par exemple une
équation différentielle du 1er degré :

dx(t)
~d.C + bx(t— T) F{t).

t{x—x0)+b / x(t —T)dt=f F(t)

Nous intégrons cette équation et obtenons en
tenant compte des conditions aux limites :

t t

dt.

o

Nous traduisons cette équation sous la forme
d'une équation de suites :

a S(x) + bx i[S(x) * [0,5 ; 1 ; 1 ; ; 1 ; .] +

+ |[1 ;!;...;!;...]]*£>(+ 9))

SvF)*t[0,5;1;1 +

+ T
/o| + 0^0) [1 ; 1 ; ; 1; ...],

avec : < 1.

6 est la valeur du décalage mesurée au moyen de
l'unité t ; lorsque cette unité est suffisamment
petite, on peut admettre que

Nous résolvons cette équation par rapport à S(x) :

S(x)
r i8(fJ.T[0^;l;l;..;l;...]+ Fï/„+(u:„l—[|^ol» ^(+6) .[1;1;...;1;..J

[a; 0 ; 0 ;... ; 0 ; 0,5 irr ; irr ; 6t ;... ; 6t ; ...]

Le nombre de zéros qui caractérise la suite du
dénominateur est égal à 6 —• 1.

Exemple
Nous admettons que la fonction Fit) est caractérisée

par un échelon rectangulaire et admettons les valeurs
numériques suivantes :

a 8 sec ; b 1 ; T 4 sec,

xo /o 0-

En choisissant l'unité égale à 1 seconde, nous obtenons

comme équation :

SS(x) + S(x), [0,5 ;1;1;...;1;...] P;1;...;1 ;...], [0,6 ;l;l;...;ip
fi ; 1 ;... ; 1 ; ...] « [0,5 ; 1 ; 1 ; ; 1 ; ...]

S(x)
[8 ; 0 ; 0 ; 0 ; 0,5 ; 1 ; 1 :... ; 1 ;...]

Le résultat de ce quotient composé est représenté par
la courbe 3 de la figure 11. On voit que cette courbe 3
est située au-dessus de la courbe 2 obtenue au
paragraphe précédent avec T 0 ; par suite du décalage

qu'il faut prendre en considération, la variation de x
dépasse tout d'abord sa nouvelle valeur d'équilibre.
Si ce décalage est important, le phénomène prend une
allure oscillatoire.

(A suivre).
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