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PRINCIPES DU CALCUL A L’AIDE DE SUITES

par MICHEL CUENOD, ingénieur & la Socié Générale pour I'Industrie, Genéve !

I. Définition

Nous considérons une certaine fonction univoque
et réelle, déterminée par rapport & une variable
indépendante. A chaque valeur de la variable indé-
pendante correspond donc une et une seule valeur
de la fonction.

Lorsque l'on veul appliquer une certaine opé-
ration fonctionnelle & cette fonction et lorsque I'on
peut admettre que cette opération a un caractere
linéaire, 1l peut étre avantageux de la décomposer
en fonctions élémentaires auxquelles on applique
cette opération, et de superposer ensuite les résul-
tats obtenus. Le caleul opérationnel n’est pas
autre chose qu’une utilisation systématique de ce
procédé ; les fonctions élémentaires sont, dans ce
cas particulier, les composantes harmoniques ; cette
décomposition et cette recomposition peuvent étre
ramenées & des intégrations, sans que I'on ait besoin
de traiter chaque composante individuellement.

Une autre facon de décomposer une fonction est
de la considérer comme étant constituée par une
suite d’impulsions. La forme méme que I'on donne
4 ces impulsions importe peu. Elles peuvent avoir
lallure d’un triangle, d’une impulsion rectangu-
laire, d’'une fonction exponentielle, ete. Il est pos-
sible d’appliquer 'opération fonctionnelle considérée
a chacune des impulsions élémentaires, puis de
superposer les résultats ainsi obtenus. A Tanalyse
spectrale & laquelle conduit Pintégrale de Iourier
correspond ainsi une analyse tmpulsionnelle.

Soit I7(t) une certaine fonction représentée par
la figure 1 avec, en abscisse, la variable indépen-
dante t. A cette fonction F(¢) nous faisons corres-
pondre la suite S(I). Nous exprimons convention-
nellement cette correspondance par le signe (A)?2

FO) ASF)=Tfs - ifuse- -]

Cette suite est donnée par les valeurs de la fonc-
tion F(t) correspondant aux valeurs T, 27, 31,...,
nt,... de la variable indépendante, T étant I'unité
choisie pour la mesure de cette variable. Nous
décomposons ainsi la fonction F(t) en une suite
d’impulsions rectangulaires ayant 1 comme base
et les ordonnées fy, fay -« ., fns ... comme hauteur.
L’unité 1 doit étre choisie suflisamment petite pour
que I'on puisse admettre que sur 'intervalle d’une

! L’utilisation de calculateurs arithmétiques est étroitement liée
a I'élaboration de modes de calcul qui soient adaptés a Iexploita-
tion de ces machines; la « Méthode de calcul a I'aide de suites» qui
a fait I'objet d’une récente thése de doctorat, présentée a 1'Ecole
Polytechnique Fédérale de Zurich, par M. M. Cuiénop (Editions La
Concorde, Lausanne, 1955), ouvre a cet égard des perspectives inté-
ressantes et nous donnons ci-dessous un extrait de la premiére partie
de ce travail. (Réd.).

2 Conformément aux régles et recommandations pour les symboles
littéraux et les signes ASE Publ. 192, No 124,

unité, la fonction varie linéairement, c’est-a-dire
qu’elle puisse étre assimilée a sa tangente. L’exac-
titude du calcul & I'aide de suites peut &tre amé-
liorée en réduisant 'unité choisie pour la mesure
de la variable indépendante.

Réciproquement, nous pouvons dire que toule
sutte définit une certaine fonction en considérant
que chaque terme de la suite donne la valeur
moyenne de la fonction pour la valeur de la variable
indépendante caractérisée par l'ordre du terme
de la suite, puis en joignant entre eux les points
ainsi définis. Cette fonction n’a pas besoin d’étre
analytique. Elle peut étre donnée par un relevé
expérimental ou wune analyse statistique. La
variable indépendante peut &tre quelconque, cepen-
dant, nous ne considérons dans la suite que des
fonctions aveec une seule variable indépendante.
Dans la plupart des exemples d’applications que
nous développerons, cette variable sera le temps ;
aussi c’est la variable que nous adopterons dans
nos considérations générales ; toutefois, ces consi-
dérations sont valables également pour toute
autre variable.

Si nous comparons la décomposition d’une fonc-
tion en ses composantes harmoniques et sa décom-
position en une suite d’impulsions, nous voyons
qu'a Pintégrale de Fourier correspond le calcul
de la fonction pour les valeurs unités de la variable
indépendante. Cette seconde fagon de procéder
est particulicrement avantageuse lorsque la fonc-
tion n’est pas donnée sous forme analytique, mais
résulte, par exemple, d’un relevé expérimental. Il
suflit de mesurer la fonction pour les valeurs unités
de la variable indépendante.

Le principe de cette méthode a été exposé par
A. Tustin (1). Nous en avons fait I'objet d’un pré-
cédent article (2) et d’une theése de doctorat (3)
dont cet article est extrait.

Il. Opérations avec les suites

1. Addition et soustraction
Soit F(t) et G(t) deux fonctions, et S(F) =
[Frifas - sfns -1t S(G) = [g15 805 -+ -5 8ns - - -]
les deux suites correspondantes. Les termes de
la suite S(F' -+ G) résultant de Paddition de deux
suites S(I) et S(G) sont donnés par la somme des
termes correspondants

S(F 4 G) = S(F) + S(G) =[5 fe5 -~ 3fns ---]

5
_|_
g9

s

:ULT“S’1§I(2+S’25
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fu

F)

fl'f’
i

Il
ol T 2T 31 nT =

Fic. 1. — Définition de la suite correspondant
a une fonction donnée.

De la définition méme des suites découle la corres-
pondance suivante :

F(t) + G(t) A S(F + G).

De méme & la soustrac-
tion de deux suites cor-
respond une suite dont
les termes sont donnés
par la soustraction des
termes correspondants.

S(F)

*+ 5(G)

BIE

Exemple

: S(RG) Nous effectuons I'addi-
tion des deux suites carac-
térisées par les valeurs

numeériques suivantes :

Fic. 2. — Définition de S(F) = [1;251]
I'addition & l'aide de suites.

SF G =[1;2;4]4[1;2;2;1=[2;4;3;1].

La figure 2 donne la signification géométrique de
cette addition.

2. Produit et quotient simples

Les termes de la suite S(F.G) résultant du
produit simple des suites S(F) et S(G) sont donnés
par le produit des termes correspondants. Nous
désignons cette opération par un point (-).

HF-Gj=S(F)-3(G) = [f1; fas - -+ 1.0 - ]-
815 825 -+ -5 &3 -+ -1 =[1815 fo8as - -

.;](ngn; o ]

En particulier, si une suite est multipliée k fois
par elle-méme, nous disons que la suite est «élevée
ke fois a la puissance simple ». Les termes de la suite
qui caractérise cette puissance simple sont donnés
par les termes de la suite considérée, élevés chacun
a cette puissance :

S(F) =[5 155 -5 155 .- ).
Les termes de la suite S(F:G) résultant du quo-
tient simple de la suite S(F) par la suite S(G) sont

donnés par le quotient des termes correspondants.
Nous désignons cette opération par deux points (:).

S(F:G) = S(F) : S(G)=fys fos +rvs fus o]t
R TR I C T RN O .

:[g15 gas - - 5
81 &2 &n

De la définition méme des suites découlent les
correspondances suivantes :

F@)-G@t) A S(F-G)

F@F A S

F(t): Gt) A

3. Suites intercalaire et échelonnée

Il est souvent nécessaire de se servir de la
«suite intercalaire » S;(F) dont les termes sont
donnés par la moyenne des termes voisins :

Sell) = [fa; fa; fis; w505 fing cwil

(lo + 1)

avec fan =

fe =5 (f] + fz)

N = Bl =

(fam1 =+ 1)

DOl =

fin:

avec fo = valeur de F(t) pour ¢t = 0.

Ainsi que le représente la figure 3, la suite inter-
calaire S;([') caractérise en premiére approxima-
tion la valeur moyenne de la fonction F(t) pendant
le premier, le deuxiéme, ..., le n*™¢ intervalle.
Elle donne approximativement les valeurs de la
fonction F(t) pour les abscisses intercalaires

T/253t/2551/2; ... 2n—1) T/2; ...

et correspond a la suite S(F) avec un décalage
d’environ une demi-unité en avant.

F(I]T
il
I~
/
f
‘ /
¢ f
b
o t et ot -
!
F § _
' A
| F /
fo1 4fn /
? ish
7 T
1%
] of T aw nT —
‘
Fi6. 3. — Définition de la suite intercalaire Si(F).

Une autre facon de décomposer une fonction est
de la considérer comme étant donnée par la super-
position d’une succession d’échelons rectangu-
laires, ainsi que le représente la figure 4. Ces éche-
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s
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T T ;
F16. 4. — Définition de la suite échelonnée S, (F).

Décomposition d'une fonction [7(1)
en une suite d’échelons rectangulaires.

lons sont décalés les uns par rapport aux autres
d’une unité ; leur hauteur est donnée par la diffé-
rence entre les termes voisins de la suite intercalaire.
Nous définissons ainsi la « suite échelonnée » S, (F) :

Se(F):[fel;fez;feSQ -;/en; ol
fo+

avec fo = 5

f :f1+f2_fo+f1_f2—‘f0
&2 2 g 9

4 &

fs—h

f_;&+k4h+h
@Q = 9

2 2
f . /n—l '}‘ f’l L, ! /u—‘.’ + /n—l o /n - /n-2
o 2 2 3 SR

4. Produit et quotient composés

A. Produit composé

Considérons qu’il existe une certaine relation
fonctionnelle entre les deux grandeurs A(t) et B(t).
Par exemple A(t) est la force qui agit sur un point
et B(t) caractérise la position de ce point, ou A(t) est
une force électromotrice et B(t) est le courant qui
en résulte.

Nous supposons que I'on ait fait varier A(t) selon
une impulsion unitaire I(¢) représentée par la figure
ba et caractérisée par un rectangle dont la base est
égale & I'unité choisie et dont 'amplitude est égale
a 1/t, c’est-a-dire dont la surface est égale a 1.
Nous supposons que 1'on ait pu mesurer la varia-
tion de B(t) résultant de 'impulsion unitaire de A

DE
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et que P'on ait obtenu la courbe G, 5(t) représentée

par la figure 5b et caractérisée par la suite S(G.ip) :
.

S(Gu) = [g15 825 835 -+~ 5 8n3---)

Nous définissons la fonction G.p(t) comme étant
«la réponse impulsionnelle de B par rapport a A »,

VOB
H am
A8
: Y . va
g i
% /
/ 911 /
%
/) T
0 - ol t et ==
— T e
a b
e, 5. —Définition de la réponse impulsionnelle G 44(t)

d’une grandeur B A une variation de la grandeur A
selon une impulsion unitaire 7().

c’est-a-dire «la réponse de B & une impulsion uni-
taire de A».

Nous supposons que le phénomeéne considéré
est linéaire et superposable, ¢’est-a-dire que Ieffet,
4 savoir la variation de B(t), est proportionnel a
la cause, & savoir la variation de A(t). Nous suppo-
sons également que pour ¢ < 0, A(t) = B(t) = 0.
Nous nous proposons de déterminer la variation
de B(t) résultant d’une variation quelconque
de A(t) représentée par la figure Ga et caractérisée
par la suite S(A):

S(A) = [ay5 @3 - v} Waj, wen)
avec:

A(t) =g
t=10

Ainsi que le représente la figure Ga, cette varia-
tion de A peut étre considérée comme étant cons-
tituée par une suite d’impulsions intervenant
successivement aux abscisses 0; 1; 215 ...;nT; ...
et dont Pamplitude est donnée par les termes de
la suite intercalaire Si(A):

Si(A) = [aa ; a2 ;a:s ;

N S

1 1 1
[5 (ag + a1} ; 5((11 + as); ... 5 (@a—a - @n); = |
A(I)? amt
P / T 76,170
{ / b Ty TG, (1-T)
a; ¥ 12058
4 b a; TGy ()
|
of 7 et == L @ T 2T 37 -
a b
Fic. 6. - Définition du produit composé de deux suites.
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Ainsi que le représente la figure 6b, la variation
de B résultant de la premiére impulsion a1 est égale
a la réponse G4p(t) de B(t) & une impulsion unitaire,
réponse multipliée par aa: 1/t = Taa et caracté-
risée par la suite :

T [(l,'lgl 5 a8 Aings; ... 5 Qiafn; .. :I
La variation de B résultant de la 2m¢ impulsion as

est égale a la réponse de B multipliée par ta; et
décalée de 1 unité

T[0; apgi; ange; angs; ... 5 Gigmu_iy; Aizgn; - ...

La variation de B résultant de la 3m¢ impulsion a;s
est égale & la réponse de B multipliée par ta; et
décalée de 2 unités, et ainsi de suite.

La variation de B représentée par la figure 654 est
donnée par la superposition de ces différentes
variations partielles. Elle est caractérisée par la

suite S(B) :
S(B) = [by; by
by = 1 (ang)

by = 1 (airge + aizg)

by = T (angs + aiegz + aig)

i 5 by .s:] telle que:

bi=T (ailgn + ai28n—1 = e aingl)
=T Zaik‘gn+1—k =
=1

1
. ;1<A (k—1) 1) + A(kT)) - G ((n 4 k)r)-
Nous définissons la maniére dont la suite S(B) est

obtenue comme le produit composé de la suite

Si(A) par la suite S (G.p) et représentons ce pro-

duit par une étoile (x):

S(B) = 7 ([Si(4) * S(Gux)]). (1)

Le schéma de calcul d’aprés lequel s’effectue le
produit composé ressort du tableau suivant;
considérons d’une facon générale que l'on se pro-
pose de faire le produit S(A) s« S(B):

SA)= a, a a; ... an
S(B)': bl b:; b3 bn
a by asby ash, e anb1 ...
ab, ayb, .an—1bs...

aby -.Gn—2b3...

S(A)% S(B)=ayby; aby+azb;; abgtaby4agh,;...
n
oF \“ ag bnty1—k; ...
k=1

Nous constatons que I'on procéde de la méme
fagon que pour la multiplication, dans le systéme
décimal, des chiffres donnés par la succession des
termes des suites considérées, avec toutefois les
deux différences suivantes :

— lordre des chiffres doit étre retourné, c’est-
a-dire qu’il faut d’abord écrire les unités, puis
les dizaines, puis les centaines, etec.

— il ne faut pas faire les reports d’une colonne
a l'autre lors de I'addition qui donne le résultat
de la multiplication.

Si nous effectuons le produit composé d’une
sutte par elle-méme k fois, nous disons symboli-
quement que nous « élevons cette suite a la puis-
sance composée k»

S(A) % S(A) % ... % S(A) = [S(A)]~.

Cette « puissance composée» ne doit pas étre
confondue avec la «puissance simple» (suite S(A*)),
obtenue en élevant chaque terme de la suite & la
puissance k ainsi que nous 'avons définie dans le
paragraphe précédent.

Ezemple.

Nous effectuons la multiplication entre les deux
suites caractérisées par les valeurs numériques sui-

vantes (en admettant T = 1):
S(4) = 2 21
§By=14'2"10 +
1 2 2 1
2 4 4 2
1 2 2 1
SA) *= SB)y=1 4 7 7 4 1

La figure 7 donne la signification géométrique de
ce produit composé. La surface hachurée (1) représente
la suite S(A) multipliée par le facteur 1; la surface
hachurée (2) représente la suite S(A) multipliée par 2
et décalée de 1 unité, la surface hachurée (3) repré-
sente la suite S(A) multipliée par 1 et décalée de
2 unités.

S(A)
S(8)
bi)’
N
/?fﬁ;; @)
SA*S(8) N
N
I'ic. 7. — Signification géométrique

du produit composé.
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B Quotient composé

Le quotient composé est I'opération inverse de
celle du produit composé. Soit & nouveau les deux
grandeurs A(t) et B(t) reliées entre elles par une
certaine relation fonctionnelle. Nous
que 'on ait déterminé la variation de B(t) résultant
d’une variation donnée de A(t) et que 'on connaisse
les suites S(B) et S(A) qui caractérisent,
variations. Si Ion effectue le quotient composé
de S(B) par S(A), on détermine la suite S(G.p)
qui correspond & la variation de B résultant d’une
variation de A selon une impulsion unitaire, &
savoir la réponse de B & une impulsion unitaire.
Nous exprimons symboliquement ce quotient
composé par le signe (¥) ou par une double barre
de fraction. La facon dont il s’opére ressort du
tableau suivant :

supposons

ces deux

a, ay ag ay by by by ...
b, by by a; 1 ( by\
a, a, D nllTl (11—’)—1 ST ity \az—alb—l),
b, by by
0 a.l—al{Tl ay—ay~  dg (1171
by by by)\?
Aoy Fl ay i)-lﬁ (ll<b_l> e

0O i

Nous cherchons combien de fois b, entre dans
ay, ce qui donne le premier terme de la suite du
quotient. Nous multiplions chaque terme de la
suite S(B) par a,/b; et soustrayons la suite ainsi
obtenue de S(A). Nous cherchons combien de fois
by entre dans le premier terme de cette nouvelle
suite, ce qui donne le deuxiéme terme de la suite
du quotient, et I'opération se continue ainsi.

Nous constatons que ce quotient composé s’ef-
[ectue selon les mémes regles que la division dans
le systéme décimal des chillres donnés par la
succession des termes des suites considérées, avec
la différence que, lors des soustractions, on ne
fait pas de report d’une colonne a lautre; le
résultat des soustractions, positif ou négatil, est
conservé dans la méme colonne.

Le calcul numérique d’un quotient composé
peut s’effectuer le plus commodément en faisant
usage de la formule de récurrence suivante :

Soit S(€) = [ey; e5; Cn; ...) la suite cherchée
obtenue par le quotient composé des suites S(A)

et S(B); le terme général ¢, se calecule au moyen
de la relation suivante :
en = 3 (@n— buc1 — by_yca — by_sc3— . . . — bocy_1)
2
ainsi nous obtenons :
a
4y
Cl == l)—
1
c:i( b(‘)-——i a—u%
2 b 2¥1 [) '2 ak [
1 1 71
! l
€3 = 3 (ag — bge; — bocy) =
1
d ( b b by\
3 2 2
= — i i == - -~<u. « )) el
3 1 2 1 )
by by by b/

TECHNIQUE
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Nous retrouvons bien les termes obtenus en

effectuant directement le quotient composé.

Lxemple
Nous contrulons qu’en divisant la suite S(A)xS(B)=
[1;4;7;7;4; 1] par la suite S(I)’) [1,2;2;1]
on retrouve bien la suite S(A) = [1; 2; 1]:
1 4 7 7 4 1 (1 2 2 1
1 2 2 1 1 9 1
0 2 b 6 4
2 4 4 2
01 2 2 1
1 2 2
00 0 0

Remarques
a) Nous considérons les deux polynomes :

Az) = (@ + ag2® + agz® + ...)
B(z) = (b + bya® 4 bea® 4 ...).

Nous effectuons le produit de ces deux polynomes
et obtenons le polyndome suivant :

A(2)-B(x) = (ay by) 2* + (ag by + ay by)
+ (aphy + asby + agby) 2t 4+

Nous reconnaissons dans les coeflicients des puis-
sances de a les termes de la suite obtenue par le pro-
duit composé de S (A) par S(B). Nous en concluons
que les termes de la série du produit ou du quotient
composé s’obtiennent selon les mémes régles que celles
qui permettent de calculer les coeflicients du polynéme
obtenu par le produit ou le quotient de 2 polyndmes.

Il est connu que le produit entre polyndmes est
commutatif et associatif, c’est-a-dire que l'ordre dans
lequel on effectue le produit entre polyndmes n'importe
pas et que l'on peut mettre en évidence un facteur
commun. Nous voyons ainsi que le produit composé
est également commutatif et associatif, ¢’est-a-dire que :

S(A)xS(B) = S(B)xS(A)
S(A)xS(B) + S(A)*S(C) = S(A)x[S(B)+S(C)].

b) Si nous combinons le produit et le quotient
composés, nous pouvons, si la variation de B résultant
de la variation de A est connue, calculer la variation
de B résultant d’une variation quelconque de A.
Autrement dit, nous pouvons ramener les variations
de 4 une variation unitaire de A, sans qu'il soit
nécessaire pour cela de connaitre l'expression analy-
tique des variations de A et B. Nous verrons que cette
propriété est avantageuse dans certaines applications
pratiques.

Nous avons vu que le quotient composé de la suite
S(A) par la suite S(B) donne en principe la variation
de la grandeur A résultant d’une variation de B selon
une impulsion unitaire. Cependant, les régles du calcul
4 Taide de suites sont valables lorsque les fonctions
considérées s’étendent sur un intervalle trés grand par
rapport 4 celui de I'unité choisie, ce qui n’est pas le
cas pour I'impulsion unité. Aussi, est-il préférable de
ne pas choisir cette impulsion unité comme fonction
unitaire de référence, mais de prendre I’échelon unité
U(t) = 1 ou la fonction exponentielle F(t) = 1 —e="/7.
Puisque le produit composé est commutatif, il
avantageux, en ce qui concerne 'exactitude des calculs,

ad +

est
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de commencer par faire le produit composé de la
suite qui figure au numérateur par la suite de la fone-
tion unitaire, puis d’appliquer & la suite qui en résulte
Popération du quotient composé avec la suite qui
figure au dénominateur.
¢) Considérons le produit composé S(C) = S(A)xS(B)
et effectuons la somme des termes de S(C) :
SC)=c;+co+c3...4+cn+ ...

= ayby4-a,by+ayb +a by +asby+-agh -+ aby+ ...

=ay(by+ by + by ... 4+ bu+ ...)

+oay (by+ by by 4 ... F b )

b o by ety By o B ) A

=(gg+ay+az+ ... +an+ ...) (b + by +

Bk Lo By e
Nous voyons que la somme des termes d’un produit

composé est égale au produit de la somme des termes
des suites dont on effectue le produit :

IS(C) = IS(A)-Z S(B).

On peut également démontrer que lorsque 1'on
effectue le quotient composé entre deux suites S(C) =
S(A) % S(B), la somme des termes du quotient est
¢gale au quotient de la somme des termes de la
suite du numérateur par la somme des termes de la
suite du dénominateur :

IS(C) = =S(A) : S(B).

Cette propriété est trés commode pour le controle
numérique de Popération d'un produit ou d’un quo-
tient composé.

d) Considérons les deux suites :
DAY =11;24352;4] et S(B)=[1:852:1]:
Nous effectuons le quotient composé S(A)% S(B);
1 2 3 2 1 1 3 2 1
i 3 2 1 1 1 4 —q 9 g
0 —1 1 il
9

0

0—9 —6— 4 0
g 1B

0 21 14 9

Nous obtenons ainsi une suite alternée instable.
Quelques indications sur le probleme de la stabilité
du quotient alterné sont données dans 'annexe [ de
la thése dont cet article est extrait.

¢) Dans de nombreux cas la relation dynamique qui
unit A a B est connue par la «courbe de réponse
®,p de B par rapport a A», dite aussi «réponse indi-
cielle de B par rapport a A», c’est-a-dire par la varia-
tion de B résultant d’'une variation de A selon un
échelon rectangulaire. Cette courbe de réponse peut
soit avoir été calculée, soit avoir été relevée expéri-
mentalement ; I'impulsion unité 7 (t) est égale lorsque
Punité T est sullisamment petite a la dérivée de I’éche-
lon rectangulaire unitaire U(f); en premiére appro-
ximation la réponse Gz (t) a Uimpulsion unité est
donnée par la dérivée de la courbe de réponse .z ().

Nous avons vu que la suite échelonnée S, (A) décom-
posait la fonction A (¢) en une suite d’échelons rectan-
gulaires. La variation de B résultant d’une variation
quelconque de A peut également se calculer en faisant
le produit composé de la suite échelonnée S,(A) par
la suite caractérisant la courbe de réponse D,p(t):

S(B) = [Se(A) x S(Pap)]-

Ce mode de faire est avantageux, en particulier
lorsque A (t) ne s’annule pas en régime permanent,
mais tend vers une valeur constante, car le nombre
des termes de la suite échelonnée S.(A) se trouve
limité, tandis que les suites S(A) et Si(A) ont un nombre
de termes illimité,

Selon la forme que I'on donne a la fonction unité
(triangle, fonction exponentielle, ete.), on peut donner
d’autres significations au produit composé, mais
Iopération de ce produit reste la méme.

Réciproquement si I'on fait le quotient composé
de la suite S(B) qui caractérise effet par la suite
échelonnée Se(A) qui caractérise la cause, on obtient
en premiére approximation comme résultat la suite qui
caractérise la réponse indicielle de B par rapport a A.

5. Décalage

Soit G(t) une fonction telle que :
t<T* Git)=o
t>T* Git)= F(—T*).

La fonction G(t) est donc la fonction F(t) décalée
de Pintervalle 7* ainsi que le représente la figure 8.

Soit S(H)= [f15 fap = 5wy «:+] 18, suite qui
correspond a ['(¢). On voit immédiatement que
la suite S(G) qui correspond & G(t) s’obtient par le
produit composé de la suite S(/7) par la suite
[0; ... 05 1], le nombre de zéros étant donné par
le quotient 7" jt = T.

S(G)= [[LiTfss -~ 2Jay ~ o] #[0; 0% ...5'05 1]
= 050 .o O 55 <nub ol o
= S(F) « D(+T).

pour

)
G() T
£
G
- o
Fre. 8. — Définition du décalage.

Nous définissons par D(-+7') la suite qui carac-
térise l'opération du décalage
DEET) = [0 0 <oay 0511
Autrement dit, le produit composé d’une suite avec
D(+4T) signific que la fonction correspondant &
cetle suile est décalée en arriére de D'intervalle 7.
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Inversement, nous définissons par le produit
composé avec la suite D(—T) le décalage de T
unité en avant, c’est-d-dire que le (7" 4 1)niewe
terme devient le premier terme de la nouvelle suite,
le (T + 2)vieme terme devient le 2¢ terme, etc.,
les termes pour t < 0 étant supprimés.

Ainsi par exemple :

S(G) = D(—1) = S(F)
=D(—) *[fi;fasfas---5fns..]
:[/2§f3§f45 ---;/,.+1; ]

6. Intégration

A. Premiére intégration.

Soit S(I) (fi5 fas o5 [ns -..] la suite qu
correspond & la fonction I'(t) et S;(F') sa suite inter-
calaire, ainsi que le représente la figure 3.

SUF) = Slo+ fys fut fos oo i foc - fui - ]

Nous voyons immédiatement que cette suile
intercalaire Si(F) est obtenue par le produit
composé de la suite S(I) par la suite 0,5 [1; 1],

produit auquel on ajoute la suite léﬂ réduite a
un seul terme: -

Si(F) = S(F)+0,5 [1; 1] + [’;)9}

Cette suite 1intercalaire donne en premiére
approximation la valeur moyenne de la fonction
pendant les différents intervalles unitaires ; ainsi

que I'indique la figure 3, les valeurs de I'intégrale
t

A
/F(t)dt peuvent se calculer en faisant la somme
v

0

des impulsions définies par les termes de la suite
intercalaire et multipliées par 'unité choisie :

fot1
021_r

T

/ "Flde —

o
0
2T

t/,F(t)dt W, <f0 ‘; 1 _+_l(1 ’;‘ fz)

</0+f1 /:2>T

’HT

o (bbb by,

4 4

o [n
—(7 fit ot - + /Iz—1+7)‘)T
La suite qui caractérise I'intégrale est donc la
sulvante :
t

S( /‘F(z)d{) -

\L

[’:"iﬁl &+f1 f;” fo—}—f1+f2+ 4 /n_1+fn]

avec t = nrt.

DI
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Elle est obtenue en faisant le produit de la
suite intercalaire S; par la suite de la fonction
unitaire [1; 1; ... ; 1; ...] comme le montre le
produit composé ci-dessous :

055 (f0+fl f1+f2 f2+f3 "')

1 1 1 sl
05 Got fr hth it 7o )
075( f0+/l fl+f2 "‘)
05 ( fot 1y 3
05 Got /s fot Zhtfa Tot 2ht9%htiar)

Nous avons vu que le produit composé était
commutatif, c¢’est-a-dire que 'ordre dans lequel on
effectuait le produit n’avait pas d’influence sur son
résultat. Nous en concluons que :

t

S< / 1‘7(t)dt\) .

0

:r(’k[S(F)*O 5[1; 1]+f2°]*[1;1; 1;...])

(S(F)*[l;l.]*[l;l;...;1;...]—I—fo[l;l;...;’l;...])

S

e T(S(F)*[O,S;1;1;...;‘1;...}+%’[1;1;...;1;...]).

Nous retrouvons la méme formule que celle
indiquée par A. Tustin (1) avec en plus le terme en
f.. Ce procédé d’intégration est bien connu sous
0 o
le nom d’ « intégration selon la régle du trapeze ».

tod B

Ezemple

Nous nous proposons de calculer U'intégrale de la
fonction linéaire. Nous savons que c’est une parabole.

"‘d ’l 12
/I(z)t:/m=§

S} =[1; 255 3m; w:2] avee T=1 et

F(t)y=1t

fo="0.

Nous effectuons le produit composé donné par la
formule (2):

S(Fy=1 2 3 4 #
05 1 1 1 1.
05 1 15 2 0,5m..
1 2 3 Bl 2.
1 2 n-2 ..
1 n-3 ..
) ’l B a a o T or
S( / F(t)dt) —05;2; 45;8 ......

0

Nous retrouvons, en effet, les termes de la suite
parabolique correspondant a la fonction (2/2.
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B. Intégrations successives

En appliquant cette méme opération a la pre-
miére intégrale, nous pouvons déterminer les inté-
grales d’un ordre plus élevé. Nous obtenons ainsi,
pour I'intégrale double, en tenant compte du fait

que s1 I"(0) £ » on a:

Un regroupement de cette expression donne :
t

t
s( fan [Fayan) 2(SERO5 s T

;1;...]))-

En appliquant successivement la méme opé-
ration, nous obtenons I'expression suivante pour
la k#me intégration :

t t

S< /;lt/:h..

(2
0 0 0

—}—]f)—o(['l;'.l;...;1;...]*[0,5;1;1;...;1;...]"_1)>

+l0s5 0505515 ut5 15

/F<t>dt)—rk(S<F)*[0,5;1;1;...;1;...1'-+

Exemple

Nous nous proposons de calculer la deuxi¢me inté-
grale de I'échelon rectangulaire unitaire

0 pour ¢t <0
"1 1 pour £ >0

S(U)y=1[1;1;1;...;1;...] avec U0)=1 et T=1

U (1)

t t

o g 2

/ dt / Ul = -

o %
l’l {l
S| (u/U(z)dl):
«© l() /
= [05;1;1; ISP L[« B ERPRNE I [ () RS
=5 [Lody e gz o R[04 ;4 o ]
= [0253152:35...]=l; 1 =1 ]+
+0,5[0,5;1,5;25;35;...]
—[0,25;1,25;325; ...]+[0,25;0,75;1,25; ...]
—[05;2;45;8;...].

Comme 1l fallait s’y attendre, cette suite correspond
bien a la fonction parabolique ¢?/2.

Cependant, pour les intégrales d’un ordre plus
éleve, approximation est moins bonne. Cela pro-
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vient du fait que la fonction ne varie plus linéai-
rement pendant un intervalle unitaire. La valeur
moyenne de la fonction sur cet intervalle n’est
plus donnée par sa valeur médiane. Une meilleure
approximation de l'intégration est obtenue en fai-
sant usage de la suite échelonnée S.(F), telle que
nous 'avons définie au paragraphe 3.

Il est connu que la k= intégrale d’un échelon
rectangulaire unitaire est donnée par Pexpression
sultvante :

t t t

/,(lt/,dl... ' ‘

[ Ud = -
o0 0

Lia suite qui correspond & cetle intégration est
la suivante :

/ 1k o ‘
S(/ﬁ):ﬁ ;2% 3% .. .5 6k ... ]

Considérons & nouveau une fonction F(t) carac-
térisée par la suite S() et la suite échelonnée S.(F).
Nous pouvons intégrer chacun des termes de S, (F),
et ensuite superposer le résultat de ces différentes
intégrations.

Ainsi pour la k*m¢ intégration, nous obtenons :

k
pour { — T: /;r—'fo—i;il

E/f .
pour ¢ = 271: ]% kig::)kj} (1 + 2% + f},éﬁ)

pour t — 31

:‘! ('fogfl(_l+2k+ Sk)iéjf"(l—}—"l")—f—fs’—ﬁ‘)'

y4) &

Nous obtenons le résultat du produit composé de
k

con 5 , . T Y
la suite échelonnée par la suite i [Ls 255 3% ..l
.

n¥; ...]. La suite échelonnée est donnée par le
produit composé de la suite intercalaire S;(/7) par
la suite [1; —1]:

So(F) = Sy % fly—1]
- [S(F) £05[1;1] + [’%"ﬂ* [1;— 1.

Nous vovons ainsi que la ki®me intégrale d’une
fonction [(t) est donnée par le produit composé
suivant :

+[§1H*[1;;1]*%[1;2";3k; cos ] (3)

Pour k = 1 et k = 2, c’est-a-dire pour la premiére
et deuxiéme intégrales, nous pouvons aisément
contrdler que nous obtenons le méme résultat que
celui déja obtenu.
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7. Dérivation
A. Premiere dérivation

Considérons & nouveau une fonction [F(t) &
laquelle correspondent la suite S([7) et la suite
intercalaire S;(I7).

Nous nous proposons de déterminer la dérivée
de la fonction & I'abscisse t = nt et pour ce faire,
nous considérons le petit triangle hachuré de la
figure 9. La base de ce petit triangle est égale a
I'unité choisie 1, sa hauteur est égale a la différence
entre les deux termes voisins de la suite intercalaire.
Nous en concluons :

(ﬂl_)‘ L (F((/z +1)7) 4 F(n1) ]«'(n‘l’l+£"((n—1)1’))1‘
T

9 B)
t=nT
F 4
a /'_
% (fy? fry)
il
4 oyt ol ()T ¢
Fic. 9. — Définition de la dérivation

a laide de suites.

Ainsi pour :

IF 1 (fo+f i 1
=T, ((W = T (f2 D) h = fa j/()) = 2—1‘, (fz*‘fo)
na 1 (fdFs f - 1 "
t = 2T, ((Tt = (/3“_5/“ I 2*]{1) = 9t (Is—h)
o 1 n+ + ‘n ’n+'n-— i 1 1
P=ng (:zz:%("’%i ) e taa—fon).

Nous obtenons done pour la suite correspondant
a la fonction dérivée expression suivante :

5(li_} L=+ 1a /0+/1. 3+ [a f.z—}—/]' )
' ( (l[’)_'r 2 9 9 9 3 sns 5
/n+l + /11 s "n —I— /."71 . :I

9 9 5 e
1 ) :
:271:[/‘27"0’&4}1;'-';/11+1_fn~1;-..].

Nous voyons immédiatement que cette suite est
obtenue en faisant le produit composé de la suite
intercalaire par la suite [1;—1], en divisant le
résultat ainsi obtenu par l'unité choisie T et en
décalant ce résultat d’une unité en avant, c’est-
a-dire en prenant le deuxiéme terme comme pre-
mier le troisieme terme comme deuxiéme
terme, elc.

. ;
S(g)zl([sm*o 501317+ m] [1; —1]+D(—1))

dt] T\

= g([strstts 011 41151 ]ep) @)

Le signe symbolique D (— 1) signifie ce décalage
en avant de | unité de temps.

terme,

DE
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Nous obtenons une expression légérement diffé-
rente de celle indiquée par A. Tustin (1) qui définit
la suite correspondant a la différentiation comme
I'inverse de la suite correspondant & Iintégration
et qui obtient le résultat suivant :

(tu ) 1 S(F)
de) T 0551505505 .]
2 [1;—1
N T S J=S(F)«=. L1
T T [434]

L’erreur qui affecte le résultat de la dérivation
obtenu par l'application de la formule (4) est
indiquée dans P'annexe IT de la these dont cet
article est extrait.

Exemple

Nous nous proposons de calculer la dérivée de la
fonction parabolique :

=1 F(0)y=0

T2 dt

o 2
5 g " _ n
S<9—>:[O,u;2;4,a;8;12,:.); e ,} avec T=1.

Nous effectuons le produit composé donné par la
formule (4) :

~

05 2 45 8 125

tr 0 —1

05 2 45 8 125
— 05 —2 —A45

05 2 4 6 8

Nous supprimons le premier terme de la suite ainsi
obtenue et divisons cette suite par 2. Il en résulte :

S(if):5(1>=[1;2;3;4;...

70 STG .y

ce qui est bien le résultat auquel il fallait s’attendre,

B. Déripations successiyes

La seconde dérivée s’obtient en appliquant la
méme opération & la suile qui caractérise la pre-
miere dérivée :

S(F") = s( —

#1505 —1]1+/(0)[1;

dF)

- Zi <[b — 1]]«D(— 1)>

s 14 , dr
ou fg est donnée par la valeur de g pour t=0

S(7) = e ([ [SP)$10:05 — 12+ 4o 11, —1)

)
Pl J)Jﬁlr (15— ‘1]*1)(41))
(

aveec [1;0;—1]2= 1,0, 1]%[1;0; — 1] =
[l ) 0 . 2 > 0; 1]
et D(—2) = décalage de deux unités en avant.

D’une facon générale, la suite de la dérivée
d’ordre & est obtenue de la facon suivante :
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S®) = 8 ) = e ([SF)s115 05 — 11+

i
- falts — 11 % [15 0 — 17 ] D(—h) )+
q ; il q1k—2 ,
+ e [£o[15 —11%[1;0; —1] ]*D(t-_k)>+
+z (e m—ao—n) 6
Iixemple

Nous nous proposons de calculer la deuxieme
dérivée de la fonction parabolique :
i 5
F(i) == avee F(0)=I"(0)=0.
Nous obtenons en admettant T = 1 et en effectuant
le produit composé donné par la formule (5) dans
laquelle on pose k= 2:

05 2 45 8 125 18 245 .......
1 0 =2 0 1 L o

05 2 45 8 125 18 245 ......
—1 —4 —9 —16 —25 ......

0,5 2 45 ...

05 2 35 4 4 4 & ...

Nous supprimons les deux premiers termes et
pPp ISpgles I
obtenons aprés avoir divis¢ par 4 :
[d? ? -
(ﬁ§>:[0,8/5; Tyl 0515,

A part le premier terme, nous obtenons bien le
terme constant U = 1, ainsi qu’il fallait s’y attendre.
L’inexactitude qui affecte le premier terme montre
les limites de la précision du calcul a laide de suites
pour les dérivées d’un ordre supérieur.

Ill. Equations différentielles
linéaires
1. Equations différentielles linéaires du 1 ordre

Considérons tout d’abord une équation linéaire
différentielle du type suivant :
dx
a — -+ bx = F(t).
dt L ( )
Cette équation est obtenue par la dérivée de
I'équation intégrale suivante :

t t
s B / odt + C = / F)de.
] b

C est la constante d’intégration a déterminer par
les conditions aux limites. Pour ¢ = 0 nous obte-
nons :

az(0) +C =0

done C = —az(0).

Nous obtenons ainsi :
t

=

alw—(0) +b / t‘:rdt :L/ F(t)dt.

0

Nous traduisons cette équation intégrale sous
forme d’équations de suites. Soit S (z) = [z, ; 2y ;
3@ ...] la suite de la fonction que 'on se
propose de déterminer et dont on connait la valeur
initiale 2(0) = x, et soit S(F) = [f;; fa; .-
fus ...] la suite qui correspond & la fonction F(t),
avec la valeur initiale f, = F(0).
En utilisant la formule (2), nous obtenons :

aSx)—azxy[1;1;...;1;...]+

+br<S(:v)*[0,5;1;l;...;‘1;...]+

—}—];;)[1;1;..."'

Nous résolvons cette équation par rapport a S(z) :
S(z) = (6)
SIF) %%[0,551:15 ...513 ]T(g (fo—bxy) +a.vo>[’l il i ]

7[(:—!—67,51)T;b’r;b‘r;...;b‘r;...]

Ce quotient composé permet de calculer la suite
S(x) qui caractérise la solution de I'équation diffé-
rentielle. On voit que le (n - 1)®me terme est
donné par la relation suivante :

fmﬂ~mﬁwﬂ?+a+%+uwwﬁfgj

fO f / f'nﬂ
= (P4 hHht o+,
Si I'on soustrait cette expression de celle obtenue
pour le nime terme, on obtient la formule de
récurrence suivante :

b
@ (@t — o) + 5 (@0 + 2us)) = 5 (fa + fasa):

—

Cette formule peut étre également obtenue en
appliquant directement & Iéquation différentielle
la formule (4) de la différentiation a I’aide de suites :
a .. . A ;

5 [S(x) % [1;0; — 1]« D(—1)] 4+ b S (z) = S(F).
En effectuant le produit composé que contient la
parenthese, on obtient entre les termes voisins du
nime terme de la suite S(x) la relation suivante :

a a
o= Ta+1 + bl‘rl——.—“xnfl — fn~
271 2T

Cette relation correspond & celle que nous avons
déja obtenue, avec la différence que dans le cas
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précédent I'unité était réduite de moitié et que
la relation était appliquée entre les termes voisins
et le terme intermédiaire de la suite intercalaire.

Cette formule de récurrence correspond & un cas
particulier de la méthode d’intégration classique
d’Adams. Il est connu que cette méthode s’applique
aux équations différentielles non linéaires du type
{3)

dx

a = @ (2,1).

En intégrant cette équation dans l'intervalle 1 de
ta & t,11 et en appliquant la regle du trapeze,
on obtient :
a1 — %a) =
Iw+l
2

= / (p(;v,t)clt ~ 3 <(p(-1'/L, tu)‘i‘ ¢(:l‘11+1,171+1)> :

t?l

Dans le cas particulier ot I'équation différentielle
est linéaire, on peul poser:

¢(z,t) = — bz + F(1).

Il en résulte :

a (Typr — Ta) = 1)- {— b+ fo—b@aga + fani)s
2

On retrouve lexpression déja obtenue. On peut en
conclure que la méthode de résolution d’une équa-
tion différentielle du premier ordre au moyen du
calcul & T'aide de suites selon la formule (6) est
identique & lapplication de la méthode d’Adams
lorsque l'intégration que nécessite cette méthode
est effectuée selon la régle du trapeze. Toutes les
considérations concernant la stabilité et la préci-
sion de la méthode d’Adams peuvent ainsi étre
étendues & notre cas (3 a 7).

2. Equations différentielles linéaires d’'un ordre
supérieur

Considérons une équation différentielle du deu-
xieme ordre :

d*x dx
uw—{—b% o= F{t) .

Cette équation est obtenue par la dérivée de
I'équation suivante :

t 14
‘l " L be e / wdt 4 Cy= / F(o)de
0 0
avec Cy=—(az (0) + ba (O})
et 2(0) = (LI/Z pour t= 0.

Nous introduisons cette constante dans I'équa-
tion que nous avions obtenue, ce qui donne :
t t

J'((l)) 4 (‘/llll */’j (t)dt.

©
(1] 0

dt

(‘l’ i (0)) + b (a-

Cette équation est obtenue par la dérivée de
I'équation suivante :

t t
a <.17 - / (0 )(ll) + b < / adt — / a‘(())d[> +
0 ‘[ ’f U /£ 0 /5
i /dz /wdt +C = /(It/F(t) dt
lU LH .” T)
avec Coy = —az(0)

En considérant que a(0) et
tantes, nous obtenons :

2(0) sont des cons- "

t

aw— a(0) — (0) &) + b ( / il — ar(O)t) o

O
t l t

i /clt / wdt — / dt [ Flode

o
0 0 1)
So1l @
t

ax /ldl—}—c/dt/thz

LS
0 0

= /}(lt /‘ (6)dt + (ax(0) 4+ ba (0)) t + az (0)-

(] 0
Nous traduisons & nouveau cette équation inté-
grale sous forme d’équation de suites et introdui-
sons les expressions des premiéres et deuxiémes
intégrations & 'aide de suites :

aS(x)—{—bT(S(x)*[O,5;1;’l;...;1;...]+

4+ D515,

= <(I’) (05445 . 05 Ly . L T8 4

+0105,151; ...;1;...]*[1;1;...;1;...]>+
i + t(azg + bxy) [1;253; ...5n; ... ]+
+azg[1;1;1;...51;...]
avec, zo = 2(0) ; &= #(0) 5 f5 = F(0).

Nous résolvons cette équation par rapport a S(z)
et effectuons les produits composés contenus dans
les parentheses :

S(z) = [S(I") *72[0.25 ;1 s 2533512204

2
+ 5 (fo— cx)[0,5 51,552,553

+ 1 (azy + bzg)[1;2;3; ...]+

35
[
+

¥ [a + 0,5b1 + 0,25¢12; bt + c12; bt + 2c12; b1 +
+ B ... (7)



198 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

On peut aisément étendre ce procédé de calcul
a des équations différentielles d’un ordre supérieur.
Cependant les calculs deviennent assez compliqués
et Papproximation devient moins bonne par suite
des intégrations d’un ordre supérieur que cela
nécessite,

3. Exemples

A. Calcul d’un dispositif mécanique

Considérons le dispositif mécanique représenté par
la figure 10 formé par un amortisseur B et un ressort /7.
Nous nous proposons de calculer la course X au point P
en fonction de la force K qui agit
sur ce point. Ce systéme obéit a
I'équation différentielle suivante, dans
Ihypothése que I'on peut négliger la
masse de la partie mobile : ‘

dX xl ‘P/P

b +HIX=K() %——%a
avec

= constante d’amortissement P
et f = caractéristique du ressort.

K

Nous considérons une variation
de K et de X par rapport a un état

initial de repos ct posons : o
Fi6. 10. — Dispositif

K= K| AK mécanique constitué
par un amortisseur
et X = 1\'0 + AX el un ressort.

Nous tenons compte du fait que K, = jX,, que

dX

09— 0 et obtenons:

dt
bdx . ;
———f =k
[ dt
AK AX

avec = —— r=—.
K, X,

Nous définissons par 7 oo la constante de temps

du dispositif mesurée a I'aide de I'unité T et obtenons :
dx
Tt — + 2= k.
di

Considérons le cas particulier ot & a la forme d’un
échelon rectangulaire ainsi que le représente la courbe 1
de la figure 11

k=de[Ly Ly coeg Lgin:)s

Nous admettons par exemple que la constante de
temps 7'= 8 sec et que T =1 sec. La solution ana-
Iytique de I'équation différentielle dans ce cas parti-
culier est donnée par une courbe exponentielle :

a(t) - .Y

2 =l P=1-—¢8,

La suite correspondant a cette fonction, que repré
sente la courbe 2 de la figure 11, est la suivante :

s i): (0,1195 0,221 ; 0,313 ; 0,393 ; 0,463 ; 0,527 ;
o 0,581 ; 0,631 ; 0,675; ...].

Pour résoudre cette équation a laide de suites,
nous admettons T = 1. Nous utilisons la formule (6)
et obtenons ainsi:

a:’[" b:T:l el f():fl'():()
T'S{x)+S(z) % [0,5;1;1 ST
= S(k)x 051515 ... 51;...]

I\'
S EE ER P,

Nous considérons a nouveau une variation de la
force selon un échelon rectangulaire et obtenons, en
admettant 7" = 8 :

Nous effectuons ce quotient composé :
1 2 3 4 5 E,S; 717;__7’1; 1;7777;
10,118 0418 0,418 0,418 ... |90a-Go0r 0 a13 (3087,
01,882 2,882 3,882 4,882 ...

1,882 0,221 0,221 0,221 ...

0 2,6613,661 4,661 ...
2,661 0,313 0,313 ...

0 3,3484,348 ...

et on obtient :
S(%)z [0,118; 0,221 0,313 0,393 ; 0,463 ; 0,527;...].

Cette variation se confond avec la courbe 2 de la
figure 11 et correspond bien au résultat obtenu par
voie analytique.

X &
3 "
2
\
\
‘ 1
\
; I
| |
: [
|
1‘ -
0 5 10 15 sec ¢
Fic. 11. — Réponse du dispositif mécanique

a une variation de la force
selon un échelon rectangulaire.

Courbe 1 : variation relative de la force K.
Courbe 2: variation relative de la course X calculée par
voie analytique et calculée au moyen de suites
lorsque I'unité choisie n’est pas négligeable.
variation relative de la course d’un dispositif
avec retard.
Courbe 4 : variation relative de la course X calculée au

moyen de suites lorsque l'unité choisie est

négligeable.

Courbe 3 :



Le grand mérite de cette derniére méthode d’inté-
gration est qu’elle se préte bien & l'intégration des
équations différentielles dont le terme perturbateur est
quelconque, tel que, par exemple, celul qui est défini
par la courbe de la figure 12 a laquelle correspond la
suite sulvante :

S(k) = ]{:[1 14,65 1,5651.3; 450,75 0,5;0,4; 0,3 50,22
B 0,15 0,09 ; 0,04 ; 0,02]

avec kg = 0.

Axk

15

1

|
L
5

0
Fic. 12. — Réponse du dispositil mécanique
a une variation de la force selon une allure quelconque.

Courbe 1 :
Courbe 2:

variation relative de la force K.
variation relative de la course du point X.

Si nous effectuons le produit composé de cette suite
par la suite [0,5;1;1;1; ...;1; ...] et le quotient
composé par la suite [85; 1; 1; ...; 1; ...] nous
obtenons :

s ( z..) —
k
1065051 3 vy ]:..,]*[151.6;1,5:1
:. - [-\',5:1;1;1;.:;1;...]

33;1;0,7;0,6;0,4 ;C

.15:0,09;0,04;0,02

Le résultat de ce quotient composé est représenté
par la courbe 2 de la figure 12. Nous voyons que par
suite de I'amortissement, la variation de z se trouve
ralentie et en quelque sorte écrasée.

B. Calcul d’une corde chargée

La figure 13 représente une corde de longueur [
tendue entre deux points A et B et portant une charge
dont la répartition est donnée par la courbe w(a).
Soit K la traction a laquelle la corde est soumise & ses
deux extrémités. Nous nous proposons de déterminer
la fleche y(2) en chacun des points de cette corde.

w(x)

,_."..n.mummn|||m||n|||||||||I|IIIIW"W”HNIIIIIIIIMHn

Y=~
o ;

wix)

K

Fic. 13. — Détermination de la flexion d'une corde
avec charge répartie de fagon quelconque.
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I est connu que y(x) est donnée par
différentielle suivante (8):

d*y(z) w(x)
da? K

I’équation

Nous intégrons cette équation deux fois et obtenons :
T z z

yla) = ﬁ( / dx / ‘% dx + / Cidx + C2>.
bt it by

0 0

C; et Cysont les constantes d’intégration & déterminer
par les conditions aux limites.
Pour 2 =0, nous posons y(x)=0. Comme les
, )
lntégrales sont nécessairement nulles pour cette valeur
de 2, nous en concluons que :

y(0) =0 = C,.

La constante d’intégration () se détermine par la
condition y(l) = 0.
Nous obtenons ainsi :

z z
7 2

1 o :
= (L/ (lai/ w(z)de 4 Cla‘)

/
(8] 0

1 1

2

(e :
C,=— IT/ dxt/ w(x)d.
0

0

avec

Si la répartition de la charge est quelconque et ne
se laisse pas exprimer de fagon analytique, il est avan-
tageux de se servir du calcul a I'aide de suites pour
effectuer ces intégrales doubles.

A titre d’illustration, nous considérons le cas parti-
culier d’une charge constante égale & w, entre z, et x,
et nulle ailleurs, ainsi que le représente la courbe 1 de
la figure 14.

X

Fre. 14. — Flexion d’une corde chargée
dans un cas particulier.

Courbe 1: allure de la charge.
Courbe 2: allure de la corde.

Dans ce cas de charge particulier, il est possible de
faire le calcul par vole analytique et I'on obtient le
résultat sulvant :

Wa T }
Y=0K 1 <({ — )2 — (l~41‘2)2> pour 0 <<a<a

wo [
y = 212_ [7 GF— ) — {f — s B (& ~w1)2]

pour

wo [ _ . .
Y= 213, [l— ((—z)2—(l—2)%) —(z—2,)2 + (= ﬁxz)zjl

pour iz, < o< L

En admettant, par exemple: [ = 10
z, = 4
Ty = L,

nous obtenons la flexion représentée par la courbe 2 de
la figure 14 caractérisée par les ¢quations suivantes:
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- ‘VO T war) ) )
Y 9K 10 (36—9) = 21\.-,7} pour 0 <z <4
y =22 (27 5— (z—4)?) = =2 (—a® + 10,7z — 16)
2K V7 2K

Vo

¥=gp

(—a*+ 10,72 — 16 + 22 — 142+ 49) =

:%(—331—{—33) pour 7 <z < 10.

La suite qui correspond & cette fonction est la sui-
vante :

S(y) =

QKM 35;2,70;4,05; 5,40;6,25; 6,105 4,95; 3,30; 1,65].

Nous appliquons la méthode de calcul & l'aide de
suites. Soit S(w) la suite qui caractérise la charge :

S(w) =w[0;0;0;1;15;1;1;0;0;0].

Nous déterminons la suite qui caractérise 'intégrale
double de w(z) :

z z

S< /d%w( )(lr>_svo[0 0;0;0,5;2;4,5;7,5;10,5;13,5]
900

o (o g w135 g
IKL/ ‘lf/ T
0

Nous obtenons ainsi :

done C; =

Vo

S(y) = 1[135[ 2;3;4;5;6;7;8;9;10] —

—[0;0;0;05; 5 7,5;10,5;13,51] =
= ;J [1,35;2,70; 4,05; 5,405 6,25; 6,10; 4,955 3,30; 1,65].
\

Ce sont les mémes valeurs que celles obtenues par
voie analytique.

Cet exemple présente un coLé pratique, car il indique
comment résoudre le probleme d'une ligne électrique
aérienne avec charge inégalement répartie. Il permet
de controler la position des conducteurs pour une
pOlLLC partiellement déchargée de givre, contrdle qui,
sinon, doit se faire par voie graphique ou empirique.
D’autres problemes tels que celui de la flexion d’une
poutre encastrée avec une répartition quelconque de
la charge peuvent étre traités selon le méme principe.

IV. Equations différentielles
avec décalage

Il arrive parfois, en particulier dans I'étude de
phénomeénes de propagation et de 1'églagc, que 'on
ait & résoudre des équations différentielles dont la
variable est caractérisée par un décalage.

De telles équations conduisent a des calculs
trés compliqués si 'on se propose de les résoudre

a Paide des méthodes de calculs classiques ; elles
se laissent par contre aisément résoudre au moyen
du calcul & l'aide de suites. Soit par exemple une
équation différentielle du 1€r degré :

I

T) = F(1).
Nous intégrons cette équation et obtenons en
tenant compte des conditions aux limites :

t t

alx—ag)+ b / z(t—T) dt z/ F(t) dt.
b 5
Nous traduisons cette équation sous la forme
d’une équation de suites :

a S(z) +bT<[S #[05;1;1;...50;...]+

.;1;...]]*D(+e)>=

avec: 6<§<6+1,

0 est la valeur du décalage mesurée au moyen de
Punité 1; lorsque cette unité est suflisamment
petite, on peut admettre que

T
O~ —-
T

Nous résolvons cette équation par rapport & S(z):

S(z) =

T T
S(F)sT1[0,5;1;1;.515..]+ [[;/.,{»azo]—[g Illa]t D (+9)]:[1 o OO |

[@3 0350 5wy 050,56 brig B 5 BTG iy DR vl

Le nombre de zéros qui caractérise la suite du déno-
minateur est égal & 6 — 1.

Exemple

Nous admettons que la fonction ['(t) est caractérisée
par un échelon rectangulaire et admettons les valeurs
numériques suivantes :

a=28sec;b=1;T = 4 sec,
ag = fo= 0.
En choisissant 'unité égale & 1 seconde, nous obtenons
comme équation :

8 8(z) + S(x)+[06;1;1;...51;..1=[1351;...5
ls1;..51;..]«[05351;
[8;030;0;05;151;...;

S(z) =

Le résultat de ce quotient composé est représenté par
la courbe 3 de la figure 11. On voit que cette courbe 3
est située au-dessus de la courbe 2 obtenue au para-
graphe précédent avec T = 0 ; par suite du décalage
quil faut prendre en considération, la variation de x
dépasse tout d’abord sa nouvelle valeur d’équilibre.
Si ce décalage est important, le phénomeéne prend une
allure oscillatoire.

(A suivre).
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