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ÉTUDE DE LA FLEXION, POUR DIFFERENTES CONDITIONS

D'APPUI, DES PLAQUES RECTANGULAIRES D'ÉPAISSEUR

LINÉAIREMENT VARIABLE i ***«¦#
Application au cas d'une pression hydrostatique

HENRY FAVRE, D' es Se. techn.
Professeur à l'E. P. F.

par
WALTER SCHUMANN, Dr es Se. nat.

Assistant à l'E. P. F.

Dans un mémoire paru il y a trois ans, B. Gilg et l'un
des deux auteurs du présent exposé ont développé une
méthode générale pour l'étude des plaques rectangulaires

fléchies, d'épaisseur linéairement variable, et l'ont
appliquée en supposant la plaque simplement appuyée
le long du contour 1. Nous désirons aujourd'hui étendre

ce calcul au cas où deux côtés sont simplement appuyés,
et où les deux autres satisfont à certaines conditions, très

générales, que nous préciserons plus loin.
Nous rappellerons tout d'abord l'équation différentielle

du problème, et la solution de cette équation à

l'aide d'un développement en série (§ 1). Nous intégrerons

ensuite, dans les nouvelles conditions d'appui, le

système d'équations auxquelles doivent satisfaire les

coefficients de ce développement (§ 2). Enfin, nous

appliquerons les résultats obtenus au cas d'une plaque

1 H. Favre et B. Gilg, La plaque rectangulaire fléchie d'épaisseur
linéairement variable. Zeitschrift fur angew. Math. u. Physik, Fase. 5,

Vol. Ill, 1952, p. 354-371.

simplement appuyée le long de trois côtés et soumise à
une pression hydrostatique (§ 3). Cette étude nous
permettra, en particulier, d'examiner l'influence des conditions

d'appui et celle de la variation de l'épaisseur sur
les déformations, sur les moments de flexion et de

torsion, et sur les tensions. Elle nous donnera également-
dès renseignements utiles sur les réactions des appuis.

§ 1. Equation différentielle des plaques d'épaisseur
linéairement variable. Solution de cette équation

à l'aide d'un développement en série.

L'équation régissant la flexion d'une plaque où l'épaisseur

varie selon une loi quelconque est, en coordonnées
cartésiennes rectangulaires 1

:

1 Voir S. Timoshenko, Theory of Plates and Shells, Me Graw-Hill
Book Company, New York et Londres, 1940, p. 195. Les axes x et y
sont situés dans le plan moyen de la plaque, 2 est perpendiculaire à ce

plan.
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L étant le déplacement d'un point du feuillet moyen,
d2 d2

A l'opérateur de Laplace —g + rr\ h (x, y) l'épaisseur,

E le module d'élasticité, v le nombre de Poisson et

p (x, y) la surcharge par unité de surface.
Cette équation différentielle n'est évidemment applicable

que si l'épaisseur h est partout petite par rapport
aux autres dimensions et si le déplacement £ d'un point
quelconque du feuillet moyen est lui-même petit par
rapport à h, ce que nous supposerons essentiellement
dans la suite. Nous admettrons également qu'aucune
force n'agisse dans le plan de ce feuillet. Dans ces

conditions, l'équation (1), jointe à deux conditions le long
du contour, définit la fonction L {x, y).

Les expressions des moments de flexion Mx, My et
de torsion Mxy, par unité de longueur, sont les mêmes

que lorsque l'épaisseur est constante :

Mx ¦D 3% d%
dx* + v

dy2
My -

Mx (1 D

-D

dxdy

&l d%
dy2 + Vdx2

(3)

Il en est de même de celles des tensions <jx,oy, Txy,
en fonction des moments :

Mx My
A3/12 h3lt z, (4)

z désignant la distance d'un point de la plaque au
feuillet moyen. En particulier, les valeurs de ces ten-

h
sions aux points z k de la face opposée i à celle où

agit la surcharge p sont données par les formules :

1 \ QMX &My
h2

6JÇ
h2 (5)

Soit maintenant une plaque rectangulaire, de côtés a,
b (fig. 1). Choisissons les axes x, y, z indiqués dans la
figure et posons, pour l'épaisseur h en un point
quelconque :

d'où

h ' $ >> K,

(A)„ 0 (1 — X)Ao, (ä)„ (1 + A)Ä* (7)

h0 désignant l'épaisseur le long de la droite y Le

nombre A. est la variation, divisée par h0, que subit h

depuis cette droite jusqu'à l'un ou l'autre des côtés qui
lui sont parallèles. Nous supposons donc que h varie
uniquement dans la direction de l'axe y.

Dans ce cas, l'équation (1) devient, compte tenu des

relations (2) et (6), et en posant pour abréger :

AAÇ

3A2

£0
Eh%

' 12 (1 — v2)
"

£-3A
4 <>A£ ßy \
b dy J \b )aaç —

p(A£ - (1 - v) —2J +-b\j-lj—-
(t"-'HH'(ï~1 [24 [

32l\ 12/ 2y iVA£_i_/3
b dy^\bm <±M,

(8)

(9)

Nous supposerons que les deux côtés parallèles à l'axe y
soient simplement appuyés et que les deux autres soient

formés de deux poutres dont les axes coïncident avec les

droites y 0 et y b. Désignons respectivement par B',

(Z)
Oo

y=-K

y\

P

Fig. 1.
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i
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(1+X) h

yv

feuillet moyen
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C" les modules de rigidité à la flexion et à la torsion
de la poutre y 0, et par B", C les grandeurs
analogues relatives à la poutre y b. Les conditions aux
limites s'écrivent, si nous admettons que les deux
poutres et la plaque soient parfaitement solidaires * :

côtés x 0 et x Ç 0etg=0:

côté y=0 :

dx*
fil

+
dD'
dy

+ c- fil
>y* + v

ty\s>y%

3%
dx2

+ (2-
d%
dx2

lx2dy

côté j/= è

dx*
--D'

D'

d_

'>y

dD"
dy

C"

fil
dy2 dx-

fil
dy2

dy^

fil
dx2

fil
dx2dy

D" fil
VW

-v)

dx2

fil
dx2 +

(10)

dD' n, dD"
Dans ces relations, D —7— D —;— désignent

dy dy B

respectivement les valeurs du module D et de sa dérivée

par rapport à y le long des côtés y 0 et y — b. Ces

valeurs se calculent sans difficulté à l'aide des
formules (2) et (6).

Les conditions prescrites le long des côtés parallèles
à l'axe x sont très générales. Elles comprennent les trois
cas particuliers importants :

côté simplement appuyé : B oo, C 0,
bord libre : B 0, C 0, (11)
côté encastré : B — oo, C oo.

Par exemple, si le côté y 0 est libre et si le côté

opposé y b est simplement appuyé, on a :

B' C 0 et B" oo,

et les conditions (10) deviennent :

C" 0,

côtés x 0 et x a : l 0 et V| 0

n 3
cotew=0: —

dy
\32l fil'
3yi ' dx* =0' 5+^ 0

côté v b : l o 2, |ï-o.
(12)

3y2

Revenons au cas général et remarquons que l dépend
non seulement de x, y, mais aussi de À. Nous pouvons
donc chercher à satisfaire à l'équation différentielle (9)
à l'aide du développement en série illimitée :

l {x, y, A) So ix> y) + Si (*> y)^ +
oo

+ S2 (*, y) a2 + Y&x*. (13)

1 Les deux premières conditions (10) prescrivent aux déplacements 3

et aux moments Mx d'être nuls le long des côtés parallèles à l'axe y.
Les quatre autres conditions peuvent s'établir par un raisonnement
analogue à celui que l'on fait dans le cas où D est constant (voir p. ex.
S. Timoshenko, loc. cit., p. 89 et suiv.).

2 Car si B" oo, le côté y b reste rectiligne.

En introduisant cette série dans les deux membres
de l'équation (9), puis en identifiant les coefficients des
mêmes puissances de À, nous obtenons un système
d'équations différentielles simultanées pour les coefficients

£t (x, y) :

AASo £
AAÇj — 3

AAÇ2 -3
— 3

ff+(ï-
4^ASj
b dy t

b2\^°

rb\b

ly 1 AA^

¦v)3?l
dx2 +

dy
1 AAÇC

AAli — 3

— 3

4 «7AS.-.-1

b dy
ly
b

il/
b AS^-(l-v) ^

11 AA&_i

22S*-2l

(14)

+!(?M1HiuH-
iAE„.(1_v)^.|

?t(H^+(M^

§ 2. Intégration du système d'équations pour les
coefficients du développement en série.

Les conditions auxquelles doit satisfaire la fonction l
le long du contour seront remplies, si chacun des
coefficients I, (x, y) satisfait séparément aux relations (10).
Nous pourrons alors déterminer ces coefficients comme
suit :

La première des équations (14), contenant la seule
fonction inconnue £0, n'est autre que celle d'une plaque
d'épaisseur constante hQ, sous l'action de la surcharge
connue p (x, y), mais où les conditions le long du
contour sont exprimées par les relations (10). Nous pourrons

donc calculer £0 par la méthode de Maurice Lévy,
qui consiste à développer le second membre de la
première des équations (14) en une série simple de sinus et
à mettre également la fonction £0 sous la même forme.
En introduisant la valeur obtenue pour £o dans le
membre de droite de la seconde des équations (14), on
est conduit à des opérations analogues pour
déterminer lx, cette grandeur devant également satisfaire
aux conditions (10) le long du contour. En introduisant
ensuite les valeurs £ffl et Çj dans le membre de droite
de la troisième des relations (14), on pourra calculer Ja,

et ainsi de suite.
En somme, grâce au développement en série (13), le

problème est ramené à des calculs successifs, par la
méthode de Maurice Lévy, d'une plaque d'épaisseur
constante, la surcharge considérée dans chaque calcul
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étant fonction des déformations de la plaque obtenues

par les opérations précédentes 1
:

Après avoir esquissé la marche des calculs, nous allons
en préciser certains détails essentiels.

Considérons le membre de droite de la première des

équations (14) et développons-le en une série de sinus,
en posant :

P (x, y)
Do

Cn Sin (OaX),

TT II
OCn

(15)

(16 a)

Les coefficients e,t sont donnés par la formule
a

2

J]) I P (x> y) sin («nx) dx. (16 b)

Ce sont des fonctions de y qui, en général, peuvent
elles-mêmes être développées en une série de puissances,
en posant :

u=0
(17)

les coefficients Onu étant des constantes.
Dans de nombreuses applications, le développement

(17) ne comprendra qu'un nombre fini de termes.
Ce sera en particulier le cas si la plaque est sous l'action
d'une pression constante ou sous celle d'une pression
hydrostatique, comme nous le verrons plus loin. Si le
développement est illimité, on pourra en général négliger

les termes à partir d'un certain rang, sans commettre
d'erreur appréciable. Nous supposerons donc que la
série (17) ne comprenne que k -\- 1 termes, d'où :

2j a^nyu-
u=0

(17'

Remarquons que les coefficients anu dépendent de la
surcharge de la plaque, mais pas des conditions aux
limites.

La première des équations (14) s'écrit, dans ces
conditions :

oo t
AA^ =^^o»j/ sin (onx). (18)

n=l [1=0

Cherchons une solution représentée par la série

simple :

So X, Ym sin (a„ (19)

1 Si les quatre côtés sont simplement appuyés, on peut faire également
les calculs par la méthode de Navier k l'aide de séries trigonométriques
multiples, comme B. Gilg et l'un des deux auteurs l'ont montré [loc.
cit., p. 358 et suiv.). La méthode de Maurice Lévy présente le grand
avantage d'être applicable au cas beaucoup plus général des conditions

(10) le long du contour. Elle n'est pas soumise à une restriction de
symétrie pour les surcharges p[xt y), comme il a été indiqué par erreur
p. 359 du mémoire cité.

les coefficients Yon ne dépendant que de y. Cette série
satisfait aux deux premières conditions (10), relatives
aux côtés x 0 et x a.

En substituant dans l'équation (18) et en identifiant
les coefficients de sin (cfax), on obtient pour chaque
fonction Yon l'équation différentielle linéaire :

oc* Y« 2<Y'm + YZ OnuîT (20)
u=0

Ym, Ym. désignant les dérivées de Ym par rapport
à y.

La solution générale de l'équation homogène
correspondante peut être mise sous la forme :

Ym Am ifW + Bm e-°W + Cm any ePriv — Dmanye-<^i, x

(21)

Aon, ¦ ¦ ¦, Dm étant des constantes. Cherchons une solution

particulière fm (y) de l'équation complète, en
posant :

fm(y)= VÄÜfoi^. (22)

En introduisant cette fonction de y dans la relation

(20) et en identifiant, on obtient pour déterminer
les coefficients H)£ le système :

ï+4

i+3 rr(i-l)
x*on ^ntc i

•'n, * -1 i
Jfc+2 H(fc-2) 2k(k-l)a^'H%7« X*-

ce4. //^ -2.2.1 (4 H% + 4.3.2.1 aj H% a^,

(23)

qu'il est facile de résoudre. Comme les quantités OnU,

les coefficients H^ dépendent de la surcharge de la

plaque, mais pas des conditions aux limites.
La solution générale de l'équation (20) est donc :

Ym Ym + ton 4» «V + B„ é^rfi +
k

i y* oc w+ Con «n ï/e »y ¦D„ cy/e 2 //£> c£ j,*. (24)
u=0

Pour déterminer les constantes A0 Don i substituons

d'abord l'expression (19) de Ç0 dans les quatre
dernières conditions aux limites (10), relatives aux
côtés y — 0 et y b, puis identifions les coefficients de
sin ((Xnx). Nous obtenons ainsi, après quelques transformations,

le système :

-g<4Yon(0)=Y;(0)-(2-v+^^')cr4yOTl(0),

7^YOT(0)==ron(0)--vo^Yon(0),

C dD"\ .__, tt*
+L%<Yon(b)=Y,m(b)-(^-V- D,^-

+j)»<Yon{b) Yon (b) — valYm (b)

(25)

1 II est ici préférable, pour les calculs numériques, d'utiliser des
fonctions exponentielles plutôt que des fonctions hyperboliques.
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En remplaçant, dans ces équations, YOT par la solution

générale (20), on obtient un système de quatre
équations linéaires d'où l'on tire les valeurs cherchées
des quatre constantes (nous préciserons plus loin ce

système dans le cas général de la fonction Y<„ que nous
allons définir). Les quantités Aon, ...,Dm dépendent
ainsi non seulement de la surcharge, mais encore des

conditions aux limites.
La fonction Ç0 étant maintenant entièrement

déterminée, introduisons-la dans la seconde des équations (14).
On pourra en tirer la fonction Çx à l'aide d'opérations
analogues à celles que nous venons de décrire. On
introduira ensuite £0 et Çx dans la troisième des équations

(14), et ainsi de suite. Toutes les fonctions Ç,-

obtenues seront donc mises sous la forme :

S»=y. Yin sin(cc„a:) (i 0, 1, 2, (26)

Yin ne dépendant que de y.

Pour montrer le développement des calculs, supposons
que l'on ait déterminé £0, £1; Çt_i, c'est-à-dire Y„n,
Yin, Yi—itn, (n 1, 2, et voyons quelles
opérations permettent alors de calculer li. Dans ce but,
remplaçons, dans l'équation de rang i du système (14), Çj,

li-i, li—2, li—3 par leurs expressions (26). Nous
obtenons, en identifiant les coefficients de sin (anx) :

T4

;KYi-l,n+yi-l,nHcÄ-2a2Y.B+Y =-3
21
b+ (^-i) (a*r*-i.»- 2«,!y;_1]B+ y;

3 p {— °£Yi_2,„ + Yt_Stn + (1—v)o^Y<_2in}-

+ l (Ï- 4) f" «»Yî-3,» +YUn) +

+ ($ - l)2(a*Y,_2>n - 2o£y: „„+ Y':")

(t _1) ^K7^»' Y'-3,» + (l-v)a^Y,-_3.n}+

12/2y
b \b
iy

' °n * i—3,n + ^-3,J +

(27)

+ f-1 (o^Y,-3,n-2a2Y;_3]„ + YT^J

Le second membre de cette équation est une fonction
connue de y, les quantités Y,_iin, Y,_2>n, Y,-_3in
l'étant elles-mêmes. Il s'agit donc d'une équation
différentielle linéaire du quatrième ordre, qui va nous
permettre de déterminer Y,„, compte tenu des conditions
aux limites. La solution générale de l'équation homogène

peut de nouveau être mise sous la forme :

Yin^^Aintfny-j-Bine-^V+CinOnyePny—Dinanye-^V, (28

Ai„, ¦ ¦ ¦, Dtn étant des constantes. Le lecteur vérifiera,
d'autre part, que l'équation (27) admet la solution
particulière :

tin(y) «y (3SJW + F<$e-°ny) +

+ °&(E'$e*r*-F%e-«ny) +
k+i

+ci+y+1 (E$e^v'+F$e^)+%HMcxW,
n=o

(29)

où Eg\ F«, Hg\ //<*+i> sont des constantes,
k + 1 désignant toujours le nombre de termes de la
série (17'). On calcule ces constantes en résolvant le
système obtenu en substituant l'expression (29) dans

l'équation (27) et en identifiant les coefficients des
différents termes en y dans les deux membres. Cette
opération montre que les constantes Hj^' dépendent des

quantités anu, c'est-à-dire de la surcharge, mais pas des

conditions aux limites (nous l'avions déjà reconnu

pour H^). Nous donnerons plus loin les valeurs de Hfâ'
dans deux cas particuliers importants 1. Par contre, les

constantes ¥.&, F-J, dépendent de ces conditions, car
elles s'expriment en fonction des constantes Aon, Ain,

Ai—itn, Bon, • • • > A—i,m, toutes déjà calculées, qui,
elles-mêmes, dépendent des conditions aux limites,
comme nous l'avons remarqué à propos du calcul de

A-on, • • ¦, Don.

En faisant successivement les calculs pour i 1, 2

on obtient :

Z'in ±cî ^onanb
F(l)1 In

P(l)_¦^27! —

1 o« -

F(2)

J?(l) _^în —

3_
ccfi2

3

<x!&2

7

'1—v)Aon+vCo

{l—v)Bm+vD0

ct£b2
Co. F(2)

1 2n

1 Zn

—¦ zn. Don >

OtnO

(Xnb (Con+Cin)

<x*b(Dm+Dn)

7_1_.,
Don ioc|&2

(30)

Enfin, pour calculer Ain, Di„, substituons d'abord
l'expression (26) de Çj dans les quatre dernières conditions

aux limites (10). Nous obtenons entre Y<„ et ses

trois premières dérivées par rapport à y, pour chaque
valeur de n, quatre relations identiques —• aux indices i
près — aux équations du système (25). En remplaçant,
dans ces relations, Y,„ par la solution générale

Yin Yin + fin (y), (31)

où Yin et fin ont respectivement les valeurs (28) et (29),
nous sommes ramenés à résoudre le système de quatre
équations à quatre inconnues :

L\%£>in ~T~ LiçUin -\- Ly^lJin —

C'dD'\fîn(0) fïn(0)
V + D'2dy) cc„ + ex»

•"21-" in ~r -^-'22^in \ ^23^*» "T" ^24^»« —

L>1\Ain -

B-Pf<n(0)-

V fin (0)
C
D Un (0) -

L$\Ain
B

-^32^'" \ ^SS^ti

fin (0)

•L,Z&L'in

"°S /m (o „ C"dD"\fin{b) JZ(b)
T fin{b^-[2-V-Ds-2-dy')-^n~+-^-'D

-"41"«n -^42^î"n i ^43W» i tj^A^in —

c
V fin {b) + jy, fin (b)

fïn{b)

(32)

1 Pour ne pas alourdir notre exposé, nous renonçons à donner le

système d'équations permettant de calculer les constantes ïI^T Ce

système est analogue à (23).
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B'an C' dD'
v ' D' + D'2 dy

B'an C' dD'

L13 —1—v +

L21 1 — v

C' dD'
W2~dy

C'a«

C'ctn

D' D'2 dy

r a
C' dD'

Lli=i + V-Dr2~dy"

L22 1 — v
d
D'

Li3 2+ D, L24 2
C'CLn

D'

LS2= (v-

L„

B'On C dD"
P" "~ P"2 dy

B"an C" dP"
P" + P"2 dy

C dP"
— l—v — D„2 dy

B"*n C" dP"\
-& -D^-dy-)^

C dD"

B"cxn C" dD"\
-f 1 — V fyT — VJTFÖ -TT CCnb

La 11

D" D"2 dy J

Ca„

e—^ni

—fyr I e0"16

L'A 1—V +
Ca»
D"

o
C"an

i /i C"aH.

2--^ + (l-v--^)a„6
Can 1—v a„è

gCCn!>

(33)

Pour résoudre le système (32) par rapport à Ai„,
Din, on peut utiliser soit la théorie classique des

déterminants, soit le procédé de l'algorithme de Gauss, soit
encore les méthodes plus récentes du commandant
Cholesky 1 ou de l'astronome polonais Banachiewicz2.
Des simplifications interviendront, en général, dans les

calculs, dues aux valeurs particulières (33) des
coefficients L, qui ne dépendent ni de l'indice i, ni des fonctions

fin. Si l'on utilise par exemple le premier de ces

procédés, on remarquera que le déterminant fondamental
du système et les déterminants mineurs du 3e degré qui
interviennent dans le calcul des inconnues, lorsqu'on
développe les numérateurs en fonction des éléments des

colonnes correspondantes, ne dépendent que de l'indice n
et peuvent être calculés une fois pour toutes, indépendamment

de l'indice i et des fonctions /,«. On remarquera
mr

encore que pour n > 5, les termes où e—"n* — e ä
figure comme facteur deviennent en général très petits
et peuvent être négligés, ce qui simplifie également le
calcul.

En résumé, l'étude théorique d'une plaque rectangulaire

fléchie d'épaisseur linéairement variable
comprend les opérations suivantes :

1 Voir Benoit, Sur une méthode de résolution des équations
normales, etc. (procédé du commandant Cholesky). Bull, géodésique 2

(1924).
' Th. Banachiewicz, Méthode de résolution numérique des équations

linéaires. Bull, internat. Acad. Polon. Sei., S. A., 1938, p. 393-404.

1. Calcul des coefficients e„ de la formule (15), en
utilisant la formule (16 b), et des coefficients Onu du
développement limité (17'), en appliquant par exemple
la formule de Maclaurin en négligeant le reste.

2. Détermination des constantes Hj™ de la solution
particulière (22) à l'aide du système (23), puis des

constantes HfJ (i 1, 2, de la formule (29), à l'aide
de systèmes analogues.

3. Calcul du déterminant fondamental et des
déterminants mineurs du 3e degré du système (32), pour un
certain nombre de valeurs de n, choisi suffisamment
grand pour permettre d'évaluer les séries (26) avec une
bonne approximation.

4. Détermination des constantes Aon, • • •, Dm à l'aide
du système (32), en posant i 0. Les quantités /„« (0),
f'on (0), fon{b), f'on (b), figurant aux seconds
membres se déduisent de la formule (22).

5. Calcul des constantes E^, F^„ en utilisant les

deux premières formules du système (30). Ces deux
grandeurs et les quantités ffj„ déjà obtenues,
introduites dans (29) où l'on pose i 1, donnent la solution
particulière /i« (y).

6. Détermination des constantes Ain, Pin à

l'aide du système (32), en posant i 1, les seconds
membres se déduisant de f\n {y)-

Et ainsi de suite, jusqu'à ce qu'on ait atteint une
valeur de l'indice i suffisamment grande pour permettre
de calculer avec une bonne approximation la série (13),
ainsi que ses dérivées premières, secondes et éventuellement

troisièmes, par rapport à x, y.
7. Calcul des valeurs de la fonction l (x, y, À) et de

ses dérivées, à l'aide de la série (13), puis détermination
des moments Mx, Mv, Mxy et des tensions <sx, ay, t^
en utilisant les formules (3), (4) et (5). On pourra
éventuellement calculer encore les réactions des appuis
à l'aide de formules simples à établir, en faisant intervenir

les dérivées troisièmes de Ç.

Remarque. Nous avons supposé, jusqu'à présent, que
l'épaisseur de la plaque variait selon la formule (6),
c'est-à-dire que h était constant dans la direction x,
mais variait linéairement dans la direction y. On peut
considérer également le cas plus général où l'épaisseur
varie linéairement en fonction des deux variables x et y,
c'est-à-dire où

An 1
2y
b l +n

2a
1 (6'

À et u étant des constantes. Un calcul analogue à

celui que nous avons fait dans le § 1 montre alors que

l doit satisfaire à une équation aux dérivées partielles
passablement plus compliquée que (9). On peut cependant

chercher à intégrer cette nouvelle équation à

l'aide de la série double

Ç(*,2/,À,u)=2 ^S*^)^*- (13')
»=0 k=0

En introduisant cette série dans l'équation différentielle,

on obtient pour les coefficients £« (x, y) le
système suivant :
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AAÇoo yr '
Ml

AAla Lb gi-i,«;) + L0 (5<,*_i) +
+ L„0 di—2, t) + £&a (S«—1, *—l) +
+ Loa (Si,*—2) + Lbbb (Ci—3, *) +
+ Lbba (Si—2, Jr—l) + -^ftaa (Si—1, A— 2)

+ Ana (£<,*—s),

(14')

où Lj, La, Li La désignent des opérateurs
différentiels. On a, par exemple

— 3
1-/2,/

1 AA
4 d

A

¦.iQ -1

*y — 1 A(.

(1

b dy

AA +
d

3y
+

ab dx dy

Ainsi, en utilisant les équations (14'), on pourra
déterminer successivement Ç00, Ç01, Ç10, £u, £12, en
tenant compte des conditions aux limites. Comme
précédemment, on est en effet ramené à des calculs successifs

de la plaque donnée, la surcharge considérée dans
chaque calcul étant fonction des déformations de la
plaque obtenues par les opérations précédentes.

Malheureusement, la méthode de Maurice Lévy n'est

pas ici applicable, certains des opérateurs L contenant
d

non seulement des termes en v et — > mais aussi en x
Jy

d
et —.dx

Dans le cas où la plaque est simplement appuyée le

long du contour, on pourrait appliquer la méthode de

Navier, consistant à utiliser des séries trigonométriques
multiples, mais les calculs seraient alors beaucoup plus
compliqués que dans le cas où l'épaisseur varie dans

une seule direction 1.

§ 3. Application au cas d'une plaque rectangulaire
d'épaisseur linéairement variable, simplement appuyée

le long de trois côtés et soumise à une pression
hydrostatique.

Revenons au cas où l'épaisseur varie uniquement
dans la direction de l'axe y, selon la formule (6), et
commençons par calculer les constantes /jTJJJ' dans deux
cas particuliers, celui d'une pression constante p0 et
celui d'une pression hydrostatique p yy.

1. Cas d'une pression constante p0. L'application de

la formule (16 b) montre que e„ se réduit à la valeur
constante :

4p0
aD0a.n

En utilisant le système (23) (qui se réduit ici à une
seule équation) et les systèmes analogues dont il a été

1 Voir H. Favre et B. Gilo, loc. cit., p. 358-361.

question au § 2, donnés par la substitution de l'expression

(29) dans l'équation (27), on obtient les valeurs :

H™ — 4/>o

a£0c£

^2_po_
H<U

24 Po

abD0<xn

H<0)11 ïn
24 Po +

H(2).

aDoal

96 Po

ab2D0*l'

96(l + v)p0 (1)

ab2Dnal ' 2n

96 Po

abD0c£

(34)

2. Cas d'une pression hydrostatique p yy (la plaque
a ses côtés x 0 et x a verticaux et limite un
liquide de poids spécifique y, dont la surface libre
atteint le côté y 0).. La formule (16 b) donne, dans
ce cas :

Cn
4yy

aD0an

La série (17') ne comprend également qu'un seul
terme :

Oniy, OU Onl
4y

aD0On

On en déduit pour les constantes HW les valeurs

48y 12 y

*y
«A>a„'

H(0)11 171

abDn

*iï

11 ln

24

aD0al

Y
abD0al '

H (0) 192y
abD0a7n

H (D _ 24y 96 (5 + v)y

H™ ¦¦

96y

a^o«,
:. i/<32 96y

afc2A><8
'

(35)

Remarquons que dans le cas plus général d'une pression

hydrostatique p p0 + yy, où la surface libre du

liquide est située à la hauteur — au-dessus du côté
y

y 0, les constantes H^„ s'obtiennent en ajoutant les

valeurs (34) et (35) de mêmes indices.
Nous allons maintenant étudier en détail le cas d'une

plaque carrée a b, soumise à une pression
hydrostatique p yy, en supposant le côté y 0 libre et les

côtés x 0, x a, y b simplement appuyés.
Les conditions aux limites sont alors exprimées par

les relations (12), car B' C 0 et B" oo, C" 0,
et les constantes H($ ont les valeurs (35), où a b.

Le système (32) se simplifie à un tel point que sa

solution peut être mise sous la forme quasi explicite
suivante :
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(sin — 3 + v
o2ban ¦

1—V

&(b)\l 3-

e-2&a») + 46ot„
(fin(b) -

«r a271=^e6an+12 + H ^6anr

-2fin(b)e-^+ f^L»(_v/,,(0)-(2-v)»+

/S.(0) /K(0)l 1

r- j—-< — v/<„(0) +
OS a

+ [Z V}
On + a2

A„ 3 + v
1 —v1 326a« — e-26cm\ _(_ 4^

/*.(»)

./„(&))! =3+^«-**
\2(l-v) bain I e*an t

*" f /fc(0)+ 2/*(6) «** - f=^ j-v/*(0) + (2-v)^ +

,9 .f*(0) £(0) /E(0)
— (^ — v) -- h -—j- + -^3-an an aK

Ai—1-s*-in — o Wra ~T~ a Din |1—v 1—V

,„ ./î.(0) /&(0) /£(0)V
^ v) "Z r » -3-?an o-z

Bin — a
3 + v
1—v ^in ~r ¦^-'in

1 i
1 —v 1"

-v/«,(0)-

-v/*(0)-

,9 » /£.(0) /*(<)) /£(0)
lan

(36)

Tableau des valeurs des constantes Am, Bm
(multipliées par £A'/12 (1—v») a*-r)

pour une plaque carrée a 6 appuyée le long des côtés
x 0, x a, j/ 6, et soumise à une pression hydrostatique

P ïy (v 0,25)
[Les valeurs indiquées sont encore à multiplier par 10 élevé

aux puissances indiquées dans les petites colonnes]

n 1 3 5 7

^on —1,48059 —3 —2,47971 — 8 —5,58107 —12 —2,62547 —15

Ban 5,04703 —3 8,18497 — 6 3,82351 — 7 5,07803 — 8

con 2,85457 —4 2,17045 — 9 3,15178 —13 1,09435 —16

»on —1,62287 —3 —3,06223 — 6 —1,43380 — 7 —1,90426 — 8

on 4,16065 —3 5,70733 — 6 2,66281 — 7 3,53649 — 8

A\n 1,53365 —3 7,09795 — 9 9,76176 —13 3,38736 —16

2,n 1,76656 —2 2,35723 — 5 1,11857 — 6 1,49639 — 7

°ln 1,12378 —3 7,20219 — 9 1,00571 —12 3,43234 —16

¦»m —5,41489 —4 —5,14900 — 6 —3,16798 — 7 —4,62800 — 8

ln —2,72691 —4 —6,90876 —10 —6,01936 —14 —1,49290 —17

*ln —1,54973 —3 —9,74739 — 7 —2,73836 — 8 —2,59777 — 9

fl(0)Mln —1,58925 2 —7,26680 — 6 —2,03424 — 7 —1,92977 — 8

„(1)Sln 1,24819 —2 1,71220 — 5 7,98844 — 7 1,06096 — 7

fl<2>
ln —7,94625 —3 —3,63340 — 6 —1,01712 — 7 —9,64886 — 9

•^n —5,9038 —3 —3,78395 — 8 —7,78628 —12 —3,66495 —15

s2n 7,15255 —2 5,22483 — 5 2,30039 — 6 8,02019 — 7

C2ît 5,04373 —4 7,48193 — 9 1,13649 —12 4,00030 —16

Hn 2,8500 —3 —5,88865 — 6 —4,66759 — 7 —7,51924 — 8

2n —1,02988 —3 —2,37361 — 9 —2,02336 —18 —4,97071 —17

2n —3,09408 —3 —2,79519 — 6 —9,07472 — 8 —9,11794 — 9

42)2ra 2,09690 —4 1,77151 —10 9,26077 —16 1,64058 —18

j(2)•r2n —1,19213 —3 —2,49939 — 7 —4,21294 — 9 —2,86476 —10

2/1 —6,35700 2 —2,90672 — 6 —8,13696 — 7 —7,71909 — 8

si1»
2» 7,80806 2 4,23398 — 5 1,73366 — 6 2,21403 — 7

2n —3,17850 2 —1,45336 — 5 —4,06848 — 7 —3,88954 — 8

a2ra 1,01176 —2 1,54206 — 6 2,59008 — 8 1,76504 — 9

Eh0 „
s y ^

Mr Ma
0.01 0.02 0.03 0.04 asjf 0 0.01 002 O.OS âty 0 0.01 0.02 0.03 a1^

0.2S

\
Q.7S

y_j. ilV

-> 0

0.25

0.S0

S^s

A ^

V O)

OJS

1.00

1 re approximation ¦ — 2 approximation ¦ 3 approximation

Fig. 2. — Plaque carrée, simplement appuyée le long des trois côtés a; 0, x a, y b, soumise à une pression
hydrostatique p fy. Cas où \ 0,2 et v 0,25. Diagrammes des grandeurs Z, Mx et My le long de l'axe vertical

de la plaque (x a/2), pour les trois premières approximations.
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cote fibre
0.0487 0

^r.

Eh
surface

trois côtes appuyés
épaisseur linéairement variab/e

-•¦>

Eh'c
surface —7—y V

s*/
quatre côtes appuyés

épaisseur linéairement variable

cote libre 00402 Q0'
$

yy

^^

Eh
Zsurface

trois côtes appuyés
épaisseur constante

0"

th0
surface —r^y v

quatre côle's appuyés
épaisseur constante

x
Fig. 3. — Plaque carrée,
d'épaisseur linéairement
variable (X 0,2) ou
constante, appuyée le
long de trois ou de quatre

côtés et soumise à
une pression hydrostatique

p fy. Surfaces
F h3
—^Z, pour v 0,25.
a*^ r

Le calcul numérique de ces constantes est donc, dans

ce cas, relativement rapide. En faisant les opérations
dans l'ordre indiqué à la fin du paragraphe précédent,
et en poussant les calculs jusqu'à i 2 et n 7 (par
raison de symétrie, seuls les nombres n impairs
interviennent), nous avons obtenu, en choisissant v 0,25,

les valeurs des constantes Am, Di„, Em, Fin, • • • >

Hfj-f Äf„ indiquées dans le tableau ci-contre. En

supposant À 0,2 1 et en limitant la série (13) à ses

trois premiers termes, il a été ensuite facile de calculer
les valeurs approchées de l (x, y, À) et de ses deux pre-

1 Les valeurs indiquées pour les constantes dans les tableaux
peuvent être utilisées pour des valeurs quelconques de X, pourvu que la
série (13) soit convergente.

mières dérivées par rapport à x et y, d'où l'on a déduit,
à l'aide des relations (3) et (5), les valeurs des moments

Mx, My, Mxy et celles des tensions (ai)f, (cry),, (Txy)f
Les diagrammes de la figure 2 représentent les valeurs

obtenues pour les grandeurs Ç, Mx et Mv le long de l'axe
vertical (x a/2) de la plaque, pour les trois premières

approximations du calcul. Dans la première approximation,

on a limité la série (13) à son premier terme,
dans la deuxième, à ses deux premiers termes, etc.

On voit que la convergence est assez rapide et qu'il
serait inutile d'aller jusqu'à la quatrième approximation.

C'est pourquoi tous les calculs ont été faits en
limitant la série (13) à ses trois premiers termes.

A titre de comparaison, nous avons fait également
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côte'fibre .cote libre

yysurface fy/aty surfacefc-x); hf/aty
trois côtes appuyés

épaisseur fine'airement variable

->
nM

të
012

0?°

^surface tix/asf surface fa).AJ/a*/'
quatre côtés appuyés

épaisseur fine'airement variab/e

<&
f<?

Ç.a?*
&?,
?rs

Of
P.à

yy
surface fix/as^ su/facefa^-nj/afy

trots cotes appuyés
épaisseur constante

OOÛ

01J

-p

y y'surface A/^/aty surfacefO"x)-h0/a'TJ*

quatre côtes appuyés
épaisseur constante

Fig. 4. — Plaque carrée,
d'épaisseur linéairement
variable (X 0,2) ou
constante, appuyée le
long de trois ou de quatre

côtés et soumise à
une pression hydrostatique

p yy. Surfaces
Mx « (ox)ihl
-s- et ?—^—- poura3 y arç

v 0,25.

les calculs dans les mêmes hypothèses, mais en supposant

l'épaisseur constante (A 0), puis en admettant de

nouveau une épaisseur linéairement variable (A 0,2),
mais la plaque appuyée le long des quatre côtés 1, et enfin,
en supposant simultanément l'épaisseur constante et la

plaque appuyée le long de ses quatre côtés.

La figure 3 donne les courbes de niveau des surfaces

représentant la fonction l, dans les quatre cas considérés.

Les figures 4, 5, 6 montrent, dans les parties des carrés
situées à gauche de l'axe de symétrie x= a/2, les courbes

de niveau des surfaces représentant respectivement Mx,
My, Mxy et, dans les parties situées à droite de cet

* Ce cas avait déjà été traité par H. Favre et B. Gilg comme nous
l'avons remarqué dans notre introduction.

axe, les courbes des surfaces représentant les tensions
(CTi)j, (ay)t-, (tzj^j, toujours pour les quatre cas étudiés.

Toutes ces figures montrent éloquemment l'influence
de la variation de l'épaisseur et celle, en général plus
considérable, des conditions d'appui, sur les déformations

et sur les efforts intérieurs de la plaque.
Dans le cas des trois côtés appuyés, la variation de

l'épaisseur entraîne une augmentation des déformations
(comparer les deux parties supérieures de la figure 3).
Le contraire se produit — dans une beaucoup moins
grande mesure il est vrai — lorsque la plaque repose sur
quatre côtés (voir les deux parties inférieures de la
figure 3). Dans ce dernier cas, si l'épaisseur varie, la
surface f est quasi symétrique par rapport au plan
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côte' libre
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y ^ surface <%/asf surface[G^). hj/aty
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Fig. 5. — Plaque carrée,

d'épaisseur
linéairement variable (X=0,2)
ou constante, appuyée
le long de trois ou de
quatre côtés et soumise
à une pression
hydrostatique p yy. Sur-

My of (Ov)ihî
faces et

a"y aT
pour v 0,25.

horizontal y b/2, ce qui montre que la plaque se

déforme sensiblement comme si son épaisseur et sa

surcharge étaient constantes. Cela signifie que la variation

d'épaisseur compense, en quelque sorte, la variation de

la pression, quant aux déformations.

L'influence de la variation de l'épaisseur sur la répartition

des moments Mx et des tensions (o*); est plus

grande dans le cas des trois côtés appuyés que dans celui

où la plaque repose le long du contour entier (comparer
entre elles les deux parties supérieures de la figure 4,

puis les deux parties inférieures). On voit également que
la suppression de l'appui du quatrième côté entraîne,

dans les deux cas de variation d'épaisseur considérés, une

importante augmentation des moments Mx et des

tensions (crx)j (comparer les deux parties de gauche de la

figure 4 d'une part, et les deux parties de droite, d'autre

part).
La variation de l'épaisseur engendre une diminution

des moments My et des tensions (oy)j, surtout lorsque la

plaque est appuyée le long de trois côtés (comparer les

deux parties supérieures, puis les deux parties inférieures

de la figure 5). La suppression de l'appui du quatrième
côté entraîne une diminution de ces moments et de ces

tensions, particulièrement sensible dans le cas de l'épaisseur

variable (comparer les deux parties de gauche, puis
celles de droite de la figure 5).

Enfin, la variation de l'épaisseur engendre une augmentation

des valeurs absolues des moments de torsion Mxy,

surtout dans la partie inférieure de la plaque, mais ne

modifie pas sensiblement les tensions tangentieUes (Txy)j
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(comparer les deux parties supérieures, puis les deux
parties inférieures de la figure 6). La suppression de

l'appui du quatrième côté entraîne une augmentation
sensible des valeurs de | Mxy \ et de \ (Txy)j | dans la partie
inférieure de la plaque, mais une diminution dans la partie
supérieure (comparer les deux parties de gauche, puis
les deux parties de droite de la figure 6).

On voit ainsi que, dans le cas d'une plaque carrée
soumise à une pression hydrostatique p yy, il est
difficile de porter un jugement global sur l'influence
favorable ou défavorable — que peut avoir une variation
de l'épaisseur sur les déformations et les efforts
intérieurs : cette influence dépend beaucoup des conditions
d'appui et des grandeurs considérées. Les quelques

remarques que nous avons formulées permettront
cependant au constructeur, dans certains cas, de juger

s'il a intérêt ou non à faire varier l'épaisseur d'une
plaque.

Enfin, nous avons encore calculé les réactions des

appuis de la plaque carrée, d'épaisseur linéairement
variable (À 0,2), soumise à la pression hydrostatique
P YV> dans le cas où le côté y 0 est libre et où les

trois autres côtés sont simplement appuyés. A titre de

comparaison, nous avons également fait le calcul dans
les mêmes hypothèses, mais en supposant l'épaisseur
constante. La figure 7 est une représentation graphique
des résultats obtenus. Elle montre qu'une variation
d'épaisseur de la plaque entraîne : dans la partie
inférieure, une augmentation, dans la partie supérieure, une
diminution des valeurs des réactions.

Zurich, le 20 avril 1955.
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