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ETUDE DE LA FLEXION, POUR DIFFERENTES CONDITIONS
D’APPUI, DES PLAQUES RECTANGULAIRES D’EPAISSEUR
LINEAIREMENT VARIABLE

Application au cas d’une pression hydrostatique

HENRY FAVRE, Dr és Sc. techn.
Professeur a I'E.P.F.

Dans un mémoire paru il y a trois ans, B. Gilg et I'un
des deux auteurs du présent exposé ont développé une
méthode générale pour I'étude des plaques rectangu-
laires fléchies, d’épaisseur linéairement pariable, et I'ont
appliquée en supposant la plaque simplement appuyée
le long du contour 1. Nous désirons aujourd’hui étendre
ce calcul au cas ou deux cétés sont stmplement appuyeés,
et ou les deux autres satisfont a certaines conditions, lrés
générales, que nous préciserons plus loin.

Nous rappellerons tout d’abord I'équation différen-
tielle du probléme, et la solution de cette équation a
l'aide d’un développement en série (§ 1). Nous intégre-
rons ensuite, dans les nouvelles conditions d’appui, le
systeme d’équations auxquelles doivent satisfaire les
coefficients de ce développement (§2). Enfin, nous
appliquerons les résultats obtenus au cas d’une plaque

1 H. Favre et B. Grug, La plaque rectangulaire fléchie d'épaisseur

linéairement variable. Zeitschrift fiir angew. Math. u. Physik, Fasc. 5,
Vol. III, 1952, p. 354-371.

par

WALTER SCHUMANN, D" és Sc. nat.
Assistant a I'E.P.F.

simplement appuyée le long de trois cités et soumise a
une pression hydrostatique (§ 3). Cette étude nous per-
mettra, en particulier, d’examiner I'influence des condi-
tions d’appui et celle de la variation de I’épaisseur sur
les déformations, sur les moments de flexion et de tor-
sion, et sur les tensions. Elle nous donnera également
des renseignements utiles sur les réactions des appuis.

§ 1. Equation différentielle des plaques d'épaisseur
linéairement variable. Solution de cette équation
a I'aide d'un développement en série.

I’ équation régissant la flexion d'une plaque ot Uépais-
seur varie selon une loi quelconque est, en coordonnées
cartésiennes rectangulaires ! :

1 Voir S. Trmosaexko, Theory of Plates and Shells, Mc Graw-Hill
Book Company, New York et Londres, 1940, p. 195. Les axes z et y
sont situés dans le plan moyen de la plaque, z est perpendiculaire a ce
plan.
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C étant le déplacement d’un point du feuillet moyen,
))

A Tl'opérateur de Laplac(’ gy + PRk h (@, y) I'épaisseur,

E le module delastlutt, v le nombre de Poisson et
p (@, y) la surcharge par unité de surface.

Cette équation différentielle n’est évidemment appli-
cable que si 'épaisseur & est partout petite par rapport
aux autres dimensions et si le déplacement { d’un point
quelconque du feuillet moyen est lui-méme petit par
rapport a h, ce que nous supposerons essentiellement
dans la suite. Nous admettrons également qu’aucune
force n’agisse dans le plan de ce feuillet. Dans ces con-
ditions, I'équation (1), jointe a deux conditions le long
du contour, définit la fonction { (x, y).

Les expressions des moments de flexion M,, M, et
de torsion M,,, par unité de longueur, sont les mémes
que lorsque I'épaisseur est constante :

M,=—D @%+ y% M‘“*D€§+ 19'4&
M”:—U‘WDéé' I

Il en est de méme de celles des tensions o, 0y, Tay,
en fonction des moments :

M, M, Mz
T &y O = ey, Ty = 3my % 4
h3 /s ¢ h3/1s = h3/1s (*)

z désignant la distance d’'un point de la plaque au
feuillet moyen. En particulier, les valeurs de ces ten-

Oz =—

. . h .
sions aux points z = 5 de la face opposée ¢ a celle ou

agit la surcharge p sont données par les formules :

o : it
-4
b lhoeas e e L+ _Z

Fig. 1.

6M '
(O-")z? — hgl .= hg' y (T:yji = T ‘ (O)

Soit maintenant une plaque rectangulaire, de cotés a,
b (fig. 1). Choisissons les axes x, y, z indiqués dans la
figure et posons, pour I'épaisseur A en un point quel-

' 2
h = {1 + A(T)Uﬁ )] ho, (6)

conque :

d’ou
(h)y =0 = (1 —A)hy, (h)y=» =1 + Nhy, (7)

. . . b
hy désignant I'épaisseur le long de la droite y = 5 Le

nombre A est la variation, divisée par hy, que subit A
depuis cette droite jusqu'a 'un ou l'autre des cotés qui
lui sont paralleles. Nous supposons donc que h varie
uniquement dans la direction de 'axe y.

Dans ce cas, I'équation (1) devient, compte tenu des

relations (2) et (6), et en posant pour abréger :

Elj
N JAT 2y
AAT = [ — [E = (1) 11) AAT| —
. 3 . ,/ g 8 (2y > AT

+ (351—3)3%] o <27’f*‘> e o2 —

—n g () 5+ (1) et

Nous supposerons que les deux cétés paralléles a U'axe'y

sotent simplement appuyés et que les deux aulres sotent
formés de deux poutres dont les axes coincident avec les
droites y = 0 et y=>b. Désignons respectivement par B5’,

N
T
s

¥
IS

X
N

)

b b
\ =

|

v

dddl

L]
N\\\\%\\$

7.y
e

2
2

‘\\$~ﬁw%/mww

.




BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 163

C" les modules de rigidité a la flexion et a la torsion
[ -
de la poutre y = 0, et par B”, C” les grandeurs ana-
logues relatives a la poutre y = b. Les conditions aux
limites s’écrivent; si nous admettons que les deux
;
poutres et la plaque soient parfaitement solidaires ! :

cbtés & = 0 et # —a: g:Ou;i%:O;
5 50 g e g+

coté y=0:{ + df/' [% v d}} )
ot —pPevil]s tao
e e | Bt

coté y=b:{ + % [j;g v ilg]
€= [+ v

Dans ces relations, D', %, 5 DY dTI?/” désignent

respectivement les valeurs du module D et de sa dérivée
par rapport a y le long des cotés y = 0 et y = b. Ces
valeurs se calculent sans difliculté a I'aide des for-
mules (2) et (6).

Les conditions prescrites le long des cotés paralleles
a 'axe x sont trés générales. Elles comprennent les trois
cas particuliers importants :

coté simplement appuyé: B = oo, C = 0,

bord libre : B=10, € = 0 (11)

cOté encastré : B =00, € = oo.

Par exemple, si le cété y = 0 est libre et si le cité
opposé y = b est stmplement appuyé, on a:

B=C=0 e B =o0 C =0,

et les conditions (10) deviennent :

2
C=0 et J—%:O;

cotés =0 et z=a:

Ix
ARALS P*T S ;
5té u—0-: 25,575 0.4 19
eme g0 )I/[ﬂﬁ (2- ))mz Ty Vo2 0 42

')2
coté y = b: [=104 i:().

Revenons au cas général et remarquons que { dépend
non seulement de x, y, mais aussi de A. Nous pouvons
donc chercher a satisfaire a I'équation différentielle (9)
a I'aide du développement en série illimitée :

C(z,y,A —§01J+§111/7\+
@y R+ —\”gw (13)

! Les deux premiéres conditions (10) prescrivent aux déplacements 3
et aux moments Mz d’étre nuls le long des cotés paralléles a 'axe y.
Les quatre autres conditions peuvent s’établir par un raisonnement
analogue a celui que 'on fait dans le cas ot D) est constant (voir p. ex.
S. TimosuENKoO, loc. cit., p. 89 et suiv.).

2 Car si B” = oo, le cOté y = b reste rectiligne.

En introduisant cette série dans les deux membres
de I'équation (9), puis en identifiant les coeflicients des
mémes puissances de A, nous obtenons un systéme
d’équations différentielles simultanées pour les coefli-
cients {; (2, y) :

iy i
AL, By
oA
AAL, — Blb 450 AAQO]
AAgP;s[ ‘7‘351 L& AAgl]
1 — %l
3[ V) (7132J +
8/2% N\l [y ,\°
ﬂ(T 1) %+ (F—1) ast)
............ e
AAL —~3[zi§y’i+<%’ *1> AAE:‘—I}—
8, PLis
P 3 \‘ﬁ lAgz—Z — (1 — \)) {71‘2 } +
82y N\oAGia 2y \P,\ oo
+T)<7;‘1> - +(—b—1> AA;_Q]—

_<2_b'/ 1) [W{A;z_a <1-v)‘7;i";3}+

122y \JATis (2y 2 :
+ (7_ 1) ord, (7 - 1) AAg_g],

§ 2. Intégration du systéme d’équations pour les
coefficients du développement en série.

Les conditions auxquelles doit satisfaire la fonction {
le long du contour seront remplies, si chacun des coef-
ficients {; (z, y) satisfait séparément aux relations (10).
Nous pourrons alors déterminer ces coefficients comme
suit :

La premiére des équations (14), contenant la seule
fonction inconnue {y, n’est autre que celle d'une plaque
d’épaisseur constante hy, sous l'action de la surcharge
connue p (z, y), mais ou les conditions le long du con-
tour sont exprimées par les relations (10). Nous pour-
rons donc calculer {, par la méthode de Maurice Lévy,
qui consiste a développer le second membre de la pre-
miére des équations (14) en une série simple de sinus et
4 mettre également la fonction {; sous la méme forme.
En introduisant la valeur obtenue pour {, dans le
membre de droite de la seconde des équations (14), on
est conduit a des opérations analogues pour déter-
miner (;, cette grandeur devant également satisfaire
aux conditions (10) le long du contour. En introduisant
ensuite les valeurs {; et {; dans le membre de droite
de la troisieme des relations (14), on pourra calculer {,,
et ainsi de suite.

En somme, grace au développement en série (13), le
probléme est ramené a des caleuls successifs, par la
méthode de Maurice Lévy, d’une plaque d’épaisseur
constante, la surcharge considérée dans chaque calcul
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étant fonction des déformations de la plaque obtenues
par les opérations précédentes ! :

Aprés avoir esquissé la marche des calculs, nous allons
en préciser certains détails essentiels.

Considérons le membre de droite de la premiére des
équations (14) et développons-le en une série de sinus,

en posant :
P (.’L‘, y) = V e sin (o ), (15)
Do n=1
ou Qn == T%n ’ .

Les coeflicients ¢, sont donnés par la formule

2 .
=D, f p (z, y) sin (o @) da. (16 b)
]

Ce sont des fonctions de y qui, en général, peuvent
elles-mémes étre développées en une série de puissances,
en posant :

oo

en = 2 anp Y, (17)

u=0

les coeflicients @,y étant des constantes.

Dans de nombreuses applications, le développe-
ment (17) ne comprendra qu'un nombre fini de termes.
Ce sera en particulier le cas si la plaque est sous 'action
d’une pression constante ou sous celle d’une pression
hydrostatique, comme nous le verrons plus loin. Si le
développement est tllimité, on pourra en général négli-
ger les termes & partir d’un certain rang, sans commettre
d’erreur appréciable. Nous supposerons donc que la
série (17) ne comprenne que k -+ 1 termés, d’ou :

k

= an . (17

Remarquons que les coefficients ayy dépendent de la
surcharge de la plaque, mais pas des conditions aux
limites.

La premiére des équations (14) s’écrit, dans ces con-
ditions :

<k

AAT, = E E Gap YH sIn (). (18)

n=1 p=0
Cherchons une solution représentée par la série

simple :

= E Yon sin (o @), (19)

n=1

1 Si les quatre cétés sont simplement appuyés, on peut faire également
les caleuls par la méthode de Navier a 1'aide de séries trigonomélriques
multiples, comme B. Girc et I'un des deux auteurs I'ont montré (loc.
cit., p. 358 et suiv.). La méthode de Maurice Livy présente le grand
avantage d’étre applicable au cas beaucoup plus général des condi-
tions (10) le long du contour. Elle n’est pas soumise & une restriction de
symétrie pour les surcharges p(z, y), comme il a été indiqué par erreur
p- 359 du mémoire cité.

les coeflicients Yo, ne dépendant que de y. Cette série
satisfait aux deux premiéres conditions (10), relatives
aux cdtés 2 =0 et z =a.

En substituant dans I’équation (18) et en identifiant
les coefficients de sin (o), on obtient pour chaque
fonction Y,, I'équation différentielle linéaire :

k
o Yoo — 20 Yy, + Vo =N amyr,  (20)

, ”

Y, Y, ... désignant les dérivées de Y,, par rapport

ay.
La solution générale de I'équation homogéne corres-
pondante peut étre mise sous la forme :

Yon=Aon ¥ ++ By eV + Cop ApYy €n¥ — Donornye—“ny, 1
(21)

Agny « ..y Dy étant des constantes. Cherchons une solu-
tion particuliere fo, (y) de I'équation compléte, en
posant :

fon (y) = V HE oy . (22)

on
p= u

En introduisant cette fonction de y dans la rela-
tion (20) et en identifiant, on obtient pour déterminer

les coefficients H(% le systéme :

7»+1 f](’») A s
L+J (k—1)
Hon — a’n k-1>
k+2 k—2) l+‘7 (k
A Ha(m — 2k (l‘ T 1) ]_Ian) = Qp, p—2 (23)

o HY —2.2. 1y HY) +4.3.2.1 o HY) = a0

qu’il est facile de résoudre. Comme les quantités a,y,
les coefficients HY dépendent de la surcharge de la

plaque, mais pas des conditions auz limites.
La solution générale de I’équation (20) est donc :

Yon = ?on + fon - Aon e _l_ Bnn e ! =

N
_Don apye Nt + > I(IJ) yu' (24)
u= 0

+ Con ot ye™n'

Pour déterminer les constantes A,,, ..., Dy, substi-
tuons d’abord I'expression (19) de {, dans les quatre
derniéres conditions aux limites (10), relatives aux
cotés y = 0 et y = b, puis identifions les coellicients de
sin (azz). Nous obtenons ainsi, aprés quelques transfor-
mations, le systéme :

B’ ¢’ dD'
—D cx;tYm(O)Z)o"(O () V+D:2 dy > 721Y0n(0)
C" 5y v - 2
MIT Sy, ¥ on(O) =Y on (0) —va, Yon (0)7
B,, C/l D" (25)
+ G Yon (8) =Y (0)= (29~ 525 ) Y, 0),
C" 5. 2vr
+Ulr a;z) on (b) =Y on (b) T VG;} on (b) <

L 11 est ici préférable, pour les calculs numériques, d’utiliser des
fonctions exponentielles plutdt que des fonctions hyperboliques.
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En remplagant, dans ces équations, Y,, par la solu-
tion générale (20), on obtient un systéme de quatre
équations linéaires d’ou l'on tire les valeurs cherchées
des quatre constantes (nous préciserons plus loin ce
systéme dans le cas général de la fonction Y, que nous
allons définir). Les quantités Aoy, ..., Doy dépendent
ainst non seulement de la surcharge, mais encore des con-
ditions aux limites.

La fonction {, étant maintenant entiérement déter-
minée, introduisons-la dans la seconde des équations (14).
On pourra en tirer la fonction {y a I'aide d’opérations
analogues a celles que nous venons de décrire. On
introduira ensuite {, et {; dans la troisitme des équa-
tions (14), et ainsi de suite. Toutes les fonctions {;
obtenues seront done mises sous la forme :

@ :E Yin sin (o, 2)

n=1

(i=0,1,2, ... 26
(26)

Yin ne dépendant que de y.

Pour montrer le développement des calculs, supposons
que Uon ait déterminé (g, Cy, ..., (i—1, c’est-a-dire Yy,
Yip, .oy Yicag, (n=1,2, ...), et voyons quelles opé-
rations permettent alors de calculer gi Dans ce but, rem-
plagons, dans I'équation de rang ¢ du systéme ( 14 s G
Gi—1, i—2, (i3 par leurs expressions (26). Nous obte-
nons, en identifiant les coefficients de sin (oga) :

o9 x A e 4 9t e
Q:Yv"”"la; Y z’n+ ¥ in =—3 [Z (_all) i_.l,n+ 2 i~1,n> ==
+ (TJ— d ) (G}L Y i—ln — ZQ; Y i—Llan + b} i—l,n):| =

8y o
—3 bZl alb)l—"‘+)z—f"11.+(l \))CX )z~°n,+

82 | 2

+3 (T —1)(a
2y N e 21

+ <T —1 (C(”) i—2n "‘an,) i——?,n+ )i—2,n>:| =

Y;'4~2,n + )‘y';'”—‘.’,n) +

2 24 2y, VoY,

_( bJ _1)[ 2 {_O{n) i—3mt Yz— 3,n (1——\1)&2) i_3’"}+
12 (24 9

T ( bJ - 1) (—a Y g+ Y3, +

2 2 _—
+ (7)‘1 = ) (c(i )fi_""’" o ld; 3 i—3n 4 ¥ i—.’i,n)]

Le second membre de cette équation est une fonction
connue de y, les quantités Yi 1,, Yioon, Yi sa
I'étant elles-mémes. 1l s’agit donc d’une équation diffé-
rentielle linéaire du quatrieme ordre, qui va nous per-
mettre de déterminer Yy, compte tenu des conditions
aux limites. La solution générale de I’équation homo-
géne peut de nouveau étre mise sous la forme :

Yin=Amesnv+ Bipe—ny 4 Cpotyyeont—D oy e—%ny, (28)

Ain, ..., Diy étant des constantes. Le lecteur vérifiera,
d’autre part, que I’équation (27) admet la solution
particuliére :

fny) = cqy? (Eg)esn + F{de—onv) 4
+ Gzya (Egi)eﬂny -— Fl(.;‘:)e—ﬁny‘) + ...

k1
T S
oyt (EQeony+ F{de—on) + S’H(“’ i,

(29)

ou EW If(l) HW

e oty B e HE:“) sont des constantes,
+1 demgnant toujours le nombre de termes de la
série (17"). On calcule ces constantes en résolvant le
systeme obtenu en substituant l'expression (29) dans
I'équation (27) et en identifiant les coeflicients des dif-
férents termes en y dans les deux membres. Cette opé-
ration montre que les constantes H{" dépendent des
quantités any, c’est-a-dire de la surcharge, mais pas des
conditions aux limites (nous l'avions déja reconnu
pour /%), Nous donnerons plus loin les valeurs de H¥
dans deux cas particuliers importants 1. Par contre, les
constantes Efl?, s F&) dépendent de ces conditions, car
elles s’expriment en fonction des constantes Agy, Ay,
oy Aicamy, Bons « vy Di—a, toutes déja calculées, qui,
elles-mémes, dépendent des conditions aux limites,
comme nous 'avons remarqué & propos du calcul de
Aon; ey Don-
En faisant successivement les calculs pouri = 1,2 . ..
on obtient :

3 3
B ==y Cns FR = D
3
Ef) =— 2bg[('l—v)Amvcwornb (cm+cm>] :
3
F%,) 2[)2 [(l ) mz_!_VDon_an ( o;z+D]n)]) (30)
2 7 + v D) 7 + v
2) (2
L(’n = ot%bz Con ) F"n) = (X%bz -Don. P
Egi}z) = oeeesavsmanen ) I"gi,) = oismeeamisaiew s s
Enfin, pour calculer Ay, .. ., Diy, substituons d’abord

I'expression (26) de {; dans les quatre derniéres condi-
tions aux limites (10). Nous obtenons entre Y;, et ses
trois premiéres dérivées par rapport a y, pour chaque
valeur de n, quatre relations identiques — aux indices ¢
prés — aux équations du systéme (25). En remplacant,
dans ces relations, Y7, par la solution générale

Y= )_/in -+ fin (y) s (31)

ot Yy, et fi ont respectivement les valeurs (28) et (29),
nous sommes ramenés a résoudre le systéme de quatre

s

équations a
L11Ain = L12Bin + L13Cin + L14Din =

B dn C’ (ID’ jm ( f17z (
D O)— (2—v + g ) e P+

LyyAin + LooBin + LogCin + LyyDin =

quatre inconnues :

o—S i fir (0)
= fun (0) — 75 fin (0) — =5~
o @)

Ly Ain + LgoBin + Lg3Cin + LgyDin =

B”Gn C" dD" fi’n (b) ﬂ;(b)
__ban, o (e ’
B 1)” fln( (~ Y 1)”2 d.l/ ) (o + Q?L

L41A4i-ﬂ + L4ZBi" _l_ L43CZ'71. —I— L44Din ==

C" ) fl,;l (

=V fin (b) == D_TI ]li" (b) T

an
ou

! Pour ne pas alourdir notre exposé, nous renongons a donner le
systeme d’équations permettant de calculer les constantes HS:). Ce
systéme est analogue a (23).



166 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

, Ba, €' dD’
by =l—=w—"p +pa g
B'ay, ¢’ (ll)’
by=v—l—p —pag’
C'dD' C"dD’
L13=—1—V+D—,2T1 [414=1+\I—~szd—y
) C'ay C'ay
1—1*\11L D’ ’ L22:1—V— D’ ’
C'a . Cle,
Lyy=2+ D,", Lyy=2— D,”,
n B"o, c" db" g
31_<_V+ Dr/ m_@)eny

Gn Crl ('ID”
Ly = < 14 o = e T) e—%nb

CU D”
L33 = [ﬁ 1 = P D”?‘ [[y (33)
(1 Bow Cl dA’I bl eond
+ ==Y + D” Duz d}j ) An e no

C” dD”
Ly = [1+V—(—m@+

B . CII dD/I
- (1 —v— D(’j’( e —) a,,b] e—onb |

D" dy
C’I n
L41 — (1 — vV — —Dg,-> eanb i
C‘Vﬂ ’

(/vl/ 5 C” i
2l [2 — (1 —v— 5 ) q,lb] e |

" n Cloi
L»14 = [2 -+ T(f =5 ( —V + D(f ) Cfnb:l e—anb

Pour résoudre le systéme (32) par rapport a Ay, ...,
Dy, on peut utiliser soit la théorie classique des déter-
minants, soit le procédé de Ualgorithme de Gauss, soit
encore les méthodes plus récentes du commandant
Cholesky * ou de I'astronome polonais Banachiewicz 2.
Des simplifications interviendront, en général, dans les
calculs, dues aux valeurs particuliéres (33) des coeffi-
ctents L, qui ne dépendent ni de Uindice i, ni des fonc-
tions fiy . Si l'on utilise par exemple le premier de ces
procédés, on remarquera que le déterminant fondamental
du systeme et les déterminants mineurs du 3¢ degré qui
interviennent dans le calcul des inconnues, lorsqu’on
développe les numérateurs en fonction des éléments des
colonnes correspondantes, ne dépendent que de U'tndice n
et peuvent étre calculés une fois pour toutes, indépendam-
ment de U'indice ¢ et des fonctions [ . On remarquera

nir

encore que pour n > b, les termes ou e~ = ¢~ 5 ?

figure comme facteur deviennent en général trés petits
et peuvent étre négligés, ce qui simplifie également le
caleul.

En résumé, I’étude théorique d’une plaque rectan-
gulaire fléchie d’épaisseur linéairement variable com-
prend les opérations suivantes :

! Voir Benorr, Sur une méthode de résolution des équations nor-
males, etc. (procédé du commandant Croresky). Bull. géodésique 2
(1924).

2 Tu. Banacniewicz, Méthode de résolution numérique des équations
linéaires. Bull. internat. Acad. Polon. Sci., S. A., 1938, p. 393-404.

1. Calcul des coefficients ¢, de la formule (15), en
utilisant la formule (16 b), et des coeflicients any du
développement limité (17’), en appliquant par exemple
la formule de Maclaurin en négligeant le reste.

2. Détermination des constantes H® de la solution
particuliére (22) a l’aide du systéeme (23), puis des cons-
tantes H® (i = 1,2, ...) de la formule (29), & l'aide
de systémes analogues.

3. Calcul du déterminant fondamental et des déter-
minants mineurs du 3¢ degré du systéeme (32), pour un
certain nombre de valeurs de n, choisi suffisamment
grand pour permettre d’évaluer les séries (26) avec une
bonne approximation.

4. Détermination des constantes Ay, ..., Dy, al'aide
du systémc (32), en posant ¢ = 0. Les quantités f,, (0),
f'on (0), 5 Jou (BY, ['on (b}, figurant aux seconds
membres se déduisent de la formule (22).

5. Calcul des constantes E&),Fsz en utilisant les
deux premiéres formules du systéme (30). Ces deux
grandeurs et les quantités H{® déja obtenues, intro-
duites dans (29) ot I'on pose ¢ = 1, donnent la solution

particuliére fia (y).

6. Détermination des constantes Ay, o Din a
I'aide du systéme (32), en posant ¢ =1, les seconds
membres se déduisant de fi. (y).

Et ainsi de suite, jusqu’'a ce qu’on ait atteint une
valeur de 'indice ¢ suffisamment grande pour permettre
de calculer avec une bonne approximation la série (13),
ainsi que ses dérivées premiéres, secondes et éventuelle-
ment troisiémes, par rapport a , y.

7. Calcul des valeurs de la fonction ( (z,y, A) et de
ses dérivées, a I'aide de la série (13), puis détermination
des moments M, My, M., et des tensions oz, Oy, Tzy
en utilisant les formules (3), (4) et (5). On pourra
éventuellement calculer encore les réactions des apputs
a 'aide de formules simples a établir, en faisant inter-
venir les dérivées troisiemes de (.

Remarque. Nous avons supposé, jusqu’a présent, que
I'épaisseur de la plaque variait selon la formule (6),
c’est-a-dire que h était constant dans la direction z,
mais variait linéairement dans la direction y. On peut
considérer également le cas plus général ow Uépaisseur
parie linéairement en fonction des deux variables x et y,
c’est-a-dire ou

h:ho[1+7\(‘y 1)+u<i2ai’—1>], (6")

A et w étant des constantes. Un calcul analogue a
celui que nous avons fait dans le § 1 montre alors que
{ doit satisfaire a une équation aux dérivées partielles
passablement plus compliquée que (9). On peut cepen-
dant chercher a intégrer cette nouvelle équation a
l'aide de la série double

‘MZ

I
=)

C(@,y, A 0) = Z y) Ak (13)

1

En introduisant cette série dans 'équation différen-
tielle, on obtient pour les coefficients (i (x,y) le sys-
téme sulvant :
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AATx = Ly ({—1,%) + La (G, 6—1) +
+ Ly (Gi—2, %) + La (Gi—1,5—1) + (14")
+ Laa (Gi,k—2) + Losy (Ci—s.%) +
~+ Luba (Gi—2, k—1) + Lbaa (i1, 1—2) +
+ Loaa (Ci, x—3),
ou Ly, Lgy Ly, - . désignent des opérateurs
différentiels. On a, par exemple :

) Laaaa-u

\ 2 [(2y 4 0 .
Lb(...wz—‘st—f—l) AA(.,.)+7W7A(...)]»

Lba(,..)zfﬁl‘v(})’}~1‘> (ivﬁl) AA(...) +

22

4 2y J 4 22\ 2 , .
_|_~(—b—1)—:A(...)+Z(*41/)@A(--~)T

8 B (...)
4 (L —v) = ———="] .
ab Jx dy
Ainsi, en utilisant les équations (14’), on pourra
déterminer successivement (o, Cory iy Ci1s Cigy -oos €D
tenant compte des conditions aux limites. Comme pré-
cédemment, on est en effet ramené & des calculs succes-
sifs de la plaque donnée, la surcharge considérée dans
chaque calcul étant fonction des déformations de la
plaque obtenues par les opérations précédentes.
Malheureusement, la méthode de Maurice Lévy n’est
pas ici applicable, certains des opérateurs L contenant

non seulement des termes en y et (7%1 mais aussl en @
et ()_12 >

Dans le cas ou la plaque est simplement appuyée le
long du contour, on pourrait appliquer la méthode de
Navier, consistant a utiliser des séries trigonométriques
multiples, mais les calculs seraient alors beaucoup plus
compliqués que dans le cas ou I'épaisseur varie dans
une seule direction L.

§ 3. Application au cas d'une plaque rectangulaire
d’'épaisseur linéairement variable, simplement appuyée
le long de trois cotés et soumise a une pression
hydrostatique.

Revenons au cas ou I'épaisseur varie uniquement
dans la direction de I'axe y, selon la formule (6), et
commencons par calculer les constantes H* dans deux
cas particuliers, celui d’une pression constante p, et
celui d'une pression hydrostatique p = yy.

1. Cas d’une pression constante p,. L’application de
la formule (16 b) montre que e, se réduit a la valeur
constante :

4 p,

é = =
% a-Dyict

En utilisant le systéme (23) (qui se réduit el 4 une
seule équation) et les systémes analogues dont il a été

! Voir H. Favre et B. Givg, loc. cit., p. 358-361.

question au § 2, donnés par la substitution de I'expres-
ston (29) dans I'équation (27), on obtient les valeurs :

HO = 4P,
on 5
a Dy,
ao — 2P ga_ %k
" aDyod i ab Dyal
O = 28p0 | 96U APy 960y f (3F)
* aDyod ab?®Dyo o abDyo
. 96 p
H®— ——E0
- zleDO x,

2. Cas d’une pression hydrostatique p = yy (la plaque
a ses cotés = 0 et 2 = a verticaux et limite un
liquide de poids spécifique y, dont la surface libre
atteint le coté y = 0).. La formule (16 b) donne, dans
ce cas:

. hyy

algay
La série (17") ne comprend également qu'un seul
terme :

by

ép = anlY, ou  ap = m
0 Sn

On en déduit pour les constantes H les valeurs :

4
H(LgZ:O» [[(olrzz‘yﬁ’
aDyo,

H(]u):_ 48y » HY = 12y ,

g ab Dy, " aDyad

o — My
" ab D, 0(;71 4 (35)

o _ 192y W by 96 (5 +v)y

- abDyo M aDyed | ab?Dyod
go_ 9y g _ 9%y ,

. ab Dy o T ab®Dyad

Remarquons que dans le cas plus général d’'une pres-
sion hydrostatique p = p, + yy, ou la surface libre du

liquide est située a la hauteur Po qu-dessus du coté

y = 0, les constantes H' s’obtiennent en ajoutant les
valeurs (34) et (35) de mémes indices.

Nous allons maintenant étudier en détail le cas d’une
plaque carrée a =b, sowmise a une pression hydro-
statique p = yy, en supposant le cété y = 0 libre et les
cotés x = 0, x = a, y = b simplement appuyés.

Les conditions aux limites sont alors exprimées par
les relations (12), car B’ = C' =0 et B" = oo, " = 0,
et les constantes H™ ont les valeurs (35), ou a = b.
Le systeme (32) se simplifie & un tel point que sa
solution peut étre mise sous la forme quasi explicite

sulvante :
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1
AL | (jutt) —
( p2ban g—gbc‘") —|— [lbdn

1—v
- Tx(f')> {Q%ﬁ o +( + b rban}
—in(b)etont T { —Vfin(0) — (2—) fT(O)
+f;i(30)+ﬂi" \+1 I {ﬁv/m o
+ 2 —y ) O BOH),

1 — (e2born — G—Zban) + 4[7('17;

— ()] gy 7+ (5 — bou) en 4

’ (0) 58925 | —s 5
e2bcn fin(0) 8| —1,58025 | —2 | —7,26680 | — 6 | —2,03424 | — 7| —1,02077 | — 8
5 bay —vuf. i ENTY
+ 2fin(b) e 1—\;{ vfin(0) + (2—v) o + BD| 10819 —2| 171220 | — 5| 7,98844 [ — 7| 1,06095 | — 7
" (B | _7,94625 | —3 | —3,63340 | — 6| —1,01712 | — 7 | —9,64886 | — 9
+ f@n(O) fzn(O)l 1 va (0) Hln, ) o 5 6 ) ,648
a2 o [ 1—v A
i i Ay, | —5,9038 | —3| —3,78395 | — 8| —7,78628 | —12 | —3,55495 | —15
fin(0) | fnl0) | Fin(0)) Bgy | 715255 | —2| 522483 | — 5| 2,30039 | — 6| 3,02019 | — 7
— (2 —v) . o T = [l Con | 504373 | —4| 748103 | — 9| 1,13540 | —12| 4,00030 | —16
n n n Dy, | 12,8500 | —3|—5,88865 | — 6 | —4,66759 |— 7 | —7,51924 | — 8
1 3+v 1 £ | —1,02088 | —3 | —2,37361 | — 9 | —2,02335 | —13 | —4,97071 | —17
Am =9 Cm + Din + 1_\7 fi71(0) -+ (Z{L) " 5
2 1—v | PG | —3,00408 | —3 | —2,79519 | — 6| —9,07472 | — 8 | —0,11794 | — 9
(2) 7 .
, e £ 2,00690 | —4 | 1,77151 | —10| 9,26077 | —15| 1,64058 | —18
+ (2—v) P - a — o I ) FS | —1,19213 | —3 | —2,49939 | — 7| —4,21204 | — 9 | —2,85476 | —10

3+v

Bz‘n:_2 [T_T‘ Cin + Din + +—— 1— {—me(O)—

= (== v} +

On o o3

fol0) | fl0) _ Fil0) H ;

f/f'
, 001 002 003 004 af[r
7w P = :
I
i
i
i
025 ¢
i
I
i
i
050 ;
1
I
I
i
075}
|
|
I
/
100 ==
(]
\%

Tableaw des valeurs des constantes Ag, Boy . . .
(multipliées par ER3/12 (1 —v?) )
pour une plaque carrée a = b appuyée le long des cotés
x = 0,2 = a,y = b, et soumise a une pression hydrostatique
p=1y (v=20,25)

[Les valeurs indiquées sont encore a multiplier par 10 élevé
aux puissances indiquées dans les petites colonnes]

n 1 3 5 7
Aoy | —1,48059 | —3 | —2,47971 | — 8 | —5,58107 | —12 | —2,62547 | —15
By, | 504703 | —3| 8,18497 |— 6| 3,82351|— 7| 5,07803 | — 8
Con | 285457 | —4| 2,17045 | — 9| 3,15173 | —13| 1,090435 | —16
Doy | —1,62287 | —3 | —3,06223 | — 6 | —1,43380 | — 7 | —1,00426 | — 8
2| 416065 | —3| 570733 | — 6| 266281 — 7| 3,53649 | — 8
Ay, | 1,53365 | —3| 7,00795 | — 9| 9,76176 | —13 | 3,33736 | —16
By, | 1,76656 | —2| 2,35723 | — 5| 1,11857 |— 6| 1,49639 | — 7
Cr1p | 112378 | —3| 7,20219 | — 9| 1,00571 | —12| 3,43234 | —16
Dyp | —5,41489 | —4 | —5,14900 | — 6 | —3,15798 | — 7 | —4,62800 | — 8

E(l) —2,72591 | —4 | —6,90875 | —10 | —6,01936 | —14 | —1,49290 | —17

(36) o0

—1,54973 | —3 | —9,74739 | — 7 | —2,73835 | — 8 | —2,69777 | — 9

2| 35700 | —2 | —2,00672 | — 5 | —8,13606 | — 7| —7,71909 | — 8
a9 780806 | —2| 4,23398 | — 5| 1,73366 | — 6| 2,21403 | — 7

2n
2D | —3,17850 | —2 | —1,45336 | — 5| —4,06848 | — 7| —3,85954 | — 8
2| 10175 | —2| 154206 | — 6| 2,50008 | — 8| 1,75504 | — 9
A My
001 002 005 &y 908 a Iy
T 'T\ L R S

s Y
a ] v
_ gere e . | e o e e e s
— === 1" approximation 2% approxrmaltion —— 3 “approximation
Fig. 2. — Plaque carrée, simplement appuyée le long des trois cotés © =0, v = a, y = b, soumise a une pression

hydrostathue p =7Yy. Cas ou A =0,2 et v=0,25. Diagrammes des grandeurs Z, Mz et My le long de 'axe vertical
de la plaque (z = a/2), pour les trois premiéres approximations.
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cote libre cote libre o
\ \ 00402 . X
d < S
\\ Q
!
!
| i £h; !
v surface é gv surface
¥ / 25y /e a5y
trors cotes appuyes trots cotes appuyes
epaisseur /ineairement variable epalsseur constante Fig. 3. — Plaque carrée,
d’épaisseurlinéairement
! & ! X variable (A = 0,2) ou
T > == constante, appuyée le
T long de trois ou de qua-
—\ tre cotés et soumise a
une pression hydrosta-
_\\ tique p = Yy. Surfaces
E h} 7
\ il pour v = 0,25.
——/
_—/
/ I
| 3 | 3
d £Eh : £h
gy surface —2¢ yv surface —2¢&
ady 7 oy
ap d ’ e
quatre cotes appuyes qualtre céles appuyes
epaisseur lineairement variable epasseur constante

Le calcul numérique de ces constantes est donce, dans
ce cas, relativement rapide. En faisant les opérations
dans l'ordre indiqué a la fin du paragraphe précédent,
et en poussant les calculs jusqu'a ¢t = 2 et n = 7 (par
raison de symétrie, seuls les nombres n impairs inter-
viennent), nous avons obtenu, en choisissant v = 0,25,
les valeurs des constantes A, ..., D, Einy, Fin, ...,
HY,

supposant A = 0,2 1 et en limitant la série (13) a ses

.., HE™ indiquées dans le tableau ci-contre. En

trois premiers termes, il a été ensuite facile de calculer
les valeurs approchées de { (z,y,A) et de ses deux pre-

1 Les valeurs indiquées pour les constantes dans les tableaux peu-
vent étre utilisées pour des valeurs quelconques de A, pourvu que la
série (13) soit convergente.

miéres dérivées par rapport 4 z et y, d’ou I'on a déduit,
a 'aide des relations (3) et (5), les valeurs des moments
Mz, My, My, et celles des tensions (0z);, (0y);, (Tay);-
Les diagrammes de la figure 2 représentent les valeurs
obtenues pour les grandeurs {, M, et My le long de I'axe
pertical (x = a/2) de la plaque, pour les trois premiéres
approximations du calcul. Dans la premiére approxi-
mation, on a limité la série (13) & son premier terme,
dans la deuxiéme, a ses deux premiers termes, etc.
On voit que la convergence est assez rapide et qu’il
serait mnutile d’aller jusqu’a la quatriéme approxima-
tion. C’est pourquoi tous les calculs ont été faits en
limitant la série (13) & ses trois premiers termes.

A titre de comparaison, nous avons fait également
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core’ lrbre
o b4 -

4
g 02

v ¢.r(//'/”are /5 Y surface /0}), /702/6 Va

trols cotes appuyes
epalsseur lineairement variable

cote lrbr
/ gl

Q03350
0798

y\iysurface M, [a% JU/‘f&(E/&}){~/7026'9‘

tross cotes appuyes
epalsseur constante

i 3 2
gy 1, 3 surface(Gy). hy)a%)

Fig. 4. — Plaque carrée,
d’épaisseurlinéairement
._>X _>X variable (A = 0,2) ou

0004

constante, appuyée le
long de trois ou de qua-
lre cotés et soumise a
une pression hydrosta-
tique p = yy. Surfaces
i; . (0z)i h3
ady a’y

, pour

===

|
\

quatre cotes appuyes
epaisseur linesirement variable

les calculs dans les mémes hypothéses, mais en suppo-
sant I'épaisseur constante (A = 0), puis en admettant de
nouveau une épaisseur linéairement variable (A = 0,2),
mais la plaque appuyée le long des quatre cétés 1, et enfin,
en supposant simultanément U'épaisseur constante et la
plaque appuyée le long de ses quatre cétés.

La figure 3 donne les courbes de niveau des surfaces
représentant la fonction , dans les quatre cas considérés.
Les figures 4, 5, 6 montrent, dans les parties des carrés
situées a gauche de I'axe de symétrie = a /2, les courbes
de niveau des surfaces représentant respectivement M,

M,, My, et, dans les parties situées a droite de cet

1 Ce cas avait déja été traité par H. Favre et B. Girc comme nous
I'avons remarqué dans notre introduction.

i 2
% ¢JU/’/§9(‘€ /3% /Jw/&re/&jf)/. b3y
guslre cotes gppuyes

epalsseur constante

axe, les courbes des surfaces représentant les tensions
(02);5 (0y)4 (Tay);, toujours pour les quatre cas étudiés.

Toutes ces figures montrent éloquemment 'influence
de la variation de I'épaisseur et celle, en général plus
considérable, des conditions d’appui, sur les déforma-
tions et sur les efforts intérieurs de la plaque.

Dans le cas des trois cétés appuyés, la variation de
Uépaisseur entraine une augmentation des déformations
(comparer les deux parties supérieures de la figure 3).
Le contraire se produit — dans une beaucoup moins
grande mesure il est vrai — lorsque la plague repose sur
quatre cétés (voir les deux parties inférieures de la
figure 3). Dans ce dernier cas, si I'épaisseur varie, la

surface { est quasi symétrique par rapport au plan
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cote’ lrbre X

cote libre F

i g 2/.3
yvmrfac'e /‘@/a r JU/’fa(é’/@)l. b, /a Iy
trors cotes appuyes
epalsseur linesirement variable

v "v surface /@/a?” surfsce (). /702/‘93/

lrols cotes appuyes

epassseur constante

Fig. 5. — Plaque car-
A X ré:, d’épaisseur linéai-
f P 7T ' ” - > rement variable (A=0,2)
%’ 00% 0,004 .92 ou constante, appuyée
; qe. le long de trois ou de
000 0008 %2 5 GO0 :
. 0 quatre cotes et soumise
0-012 @_‘—\0&0& a une pression hydro-
0 0_016 oz statique p = Yy. Sur-
0 4 My . (oy)i b
00(Z —% faces uTr et —f’#
U
O‘O'ZA Qr pour v = 0,25.
NS
NI
NS
SIS
V4 ~
S \_/

i ks 2/,3
¥ surface 19, /%) / surface (7). ooy
quatre cotes sppuyes
epalsseur linesirement variable

horizontal y = b/2, ce qui montre que la plaque se
déforme sensiblement comme si son épaisseur et sa sur-
charge étaient constantes. Cela signifie que la variation
d’épaisseur compense, en quelque sorte, la variation de
la pression, quant aux déformations.

Linfluence de la variation de U'épatsseur sur la répar-
tition des moments My et des tensions (0x); est plus
grande dans le cas des trots cotés appuyés que dans celut
o la plaque repose le long du contour entier (comparer
entre elles les deux parties supérieures de la figure 4,
puis les deux parties inférieures). On voit également que
la suppression de Uappui du quatriéme coté entraine,
dans les deux cas de variation d’épatsseur considérés, une
importante augmentation des moments Mx et des ten-

stons (0y); (comparer les deux parties de gauche de la

' 2
4 \'y surface %/a“’/ surface (G). /70/9?‘

quatre cotes appuyés
epalsseur constante

figure 4 d’une part, et les deux parties de droite, d’autre
part).

La variation de Uépaisseur engendre une diminution
des moments My et des tensions (oy);, surtout lorsque la
plaque est appuyée le long de trois cités (comparer les
deux parties supérieures, puis les deux parties inféricures
de la figure 5). La suppression de Uappui du quatriéme
coté entraine une diminution de ces moments et de ces
tensions, particuliérement sensible dans le cas de U'épats-
seur variable (comparer les deux parties de gauche, puis
celles de droite de la figure 5).

Enfin, la variation de U'épaisseur engendre une augmen-
tation des valeurs absolues des moments de torsion Myy,
surtout dans la partie inférieure de la plaque, mais ne

modifie pas sensiblement les tenstons tangentielles (Txy);
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(comparer les deux parties supérieures, puis les deux
parties inférieures de la figure 6). La suppression de
Papput du quatriéme cété entraine une augmentation sen-
el de (Txy);

inférieure de la plaque, mais une diminution dans la partie

sible des valeurs de | My dans la partie
supérieure (comparer les deux parties de gauche, puis
les deux parties de droite de la figure 6).

On voit ainsi que, dans le cas d’une plaque carrée
soumise a une pression hydrostatique p = yy, il est
difficile de porter un jugement global sur l'influence
favorable ou défavorable — que peut avoir une variation
de I'épaisseur sur les déformations et les efforts inté-
rieurs : cette influence dépend beaucoup des conditions
d’appui et des grandeurs considérées. Les quelques
remarques (ue nous formulées

avons permettront

cependant au constructeur, dans certains cas, de juger

g ,!‘,surface Myt surface (G); ho%’f
qualre cotes appuyes
epalsseur constante

s'il a intérét ou non & faire varier 1'épaisseur d’une
plaque.

Enfin, nous avons encore calculé les réactions des
appuis de la plaque carrée, d’épaisseur linéairement
variable (A = 0,2), soumise & la pression hydrostatique
p = Yy, dans le cas ou le c¢dté y = 0 est libre et ou les
trois autres cOtés sont simplement appuyés. A titre de
comparaison, nous avons également fait le caleul dans
les mémes hypothéses, mais en supposant 1'épaisseur
constante. La figure 7 est une représentation graphique
des résultats obtenus. Elle montre qu'une variation
d’épaisseur de la plaque entraine : dans la partie infé-
rieure, une augmentation, dans la partie supérieure, une

diminution des valeurs des réactions.

Zurich, le 20 avril 1955.
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