
Zeitschrift: Bulletin technique de la Suisse romande

Band: 80 (1954)

Heft: 8

Artikel: Méthode générale de calcul des tensions mécaniques et thermiques
dans les disques de profil quelconque

Autor: Strub, R.A.

DOI: https://doi.org/10.5169/seals-60702

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-60702
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


80e année 17 avril 1954 N° 8

BULLETIN TECHNIQUE
DE LA SUISSE ROMANDE

Paraissant tous les quinze jours

Abonnements :
Suisse: 1 ait! 24 francs

Etranger: 28 francs
Pour sociétaires:

Suisse: 1 an, 20 francs
Etranger: 28 francs

Prix du numéro: Fr. 1.40
Ch. post, a Bulletin technique

de la Suisse romande »
N° H. 5775, à Lausanne.

Expédition
Imprimerie ce La Concorde »
Terreaux 31 — Lausanne.

Rédaction
et éditions de la S. A. du
Bulletin technique (tirés à
part). Case Chauderon 475
Administration générale

Ch. de Roseneck 6 Lausanne

Organe de la Société suisse des ingénieurs et des architectes, des Sociétés vaudoise
et genevoise des ingénieurs et des architectes, de l'Association des Anciens élèves
de l'Ecole polytechnique de l'Université de Lausanne et des Groupes romands des

anciens élèves de l'Ecole polytechnique fédérale.
Comité de patronage — Président: R. Neeser, ingénieur* à Genève; Vice-président:
G. Epitaux, architecte, à Lausanne; Secrétaire: J. Calame, ingénieur, à Genève —
Membres, Fribourg: MM. P. Joye, professeur; f E. Lateltin, architecte — Vaud:
MM. F. Chenaux, ingénieur; f H. Marti, ingénieur; E. d'Okolski, architecte; Ch.
Thévenaz, architecte — Genève : MM. f L. Archinard, ingénieur ; CL Grosgurin,
architecte; E. Martin, architecte; V. Rochat, ingénieur — Neuchâtel: MM. J. Béguin,
architecte; R. Guye, ingénieur — Valais: MM. J. Dubuis, ingénieur; D. Burgener,

architecte.

Rédaction: D. Bonnard, ingénieur. Case postale Chauderon 476, Lausanne.

Conseil d'administration
de la Société anonyme du Bulletin technique : A. Stucky, ingénieur, président ;

M. Bridel; G. Epitaux, architecte; R. Neeser, ingénieur.

Tarif des annonces
1/1 page Fr. 264.—
1/2 » » 134.40
1/4 » » 67.20
1/8 » » 33.60

Annonces Suisses S. A.
(ASSA)

©
Rue Centrale 8. Tél.22 33 28

Lausanne et succursales

SOMMAIRE : Méthode générale de calcul des tensions mécaniques et thermiques dans les disques de profil quelconque, par R. A.
Strijb, ing. E. P. U. L. — Installations de sécurité et de signalisation de la gare aux marchandises de Lausanne-Sébeillon. —
Les Congrès : Council on wave research coastal Engineering. — Nécrologie : Alphonse Laverrière. — Bibliographie. —
Avis a nos abonnés. — Service de placement. — Documentation générale. — Documentation du bâtiment. —
Nouveautés, Informations diverses.

MÉTHODE GENERALE DE CALCUL DES TENSIONS

t!l»W MÉCANIQUES ET THERMIQUES WÈm
DANS LES DISQUES DE PROFIL QUELCONQUE

par R. A. STRUB, ing. E.P.U.L.

Introduction

La détermination du champ de tensions mécaniques
et thermiques dans les disques de turbines à gaz ou à

vapeur ainsi que dans les roues de compresseurs centrifuges

par exemple est d'une grande importance pratique.
La méthode ancienne de Grammel [1] x consiste à

décomposer le disque en une série d'éléments d'épaisseur

constante. Afin d'atteindre une exactitude
suffisante, on doit avoir recours à un grand nombre
d'anneaux élémentaires, rendant par là même la méthode
relativement longue.

Le calcul basé sur le choix d'éléments à profil
hyperbolique [2], quoique s'adaptant souvent mieux aux
disques dont l'épaisseur décroît d'une façon uniforme du

gjäHKre vers la périphérie n'est cependant pas général
et ne peut être appliqué aux disques ayant des sections
divergentes.

Dès que la' solution correspondant au champ de
tensions dans les disques coniques convergents fut
connue [3], [4], Keller proposa leur utilisation comme

1 Les nombres entre crochets [] renvoient à la littérature donnée
en fin de cet article.

éléments de réduction [5], méthode qui fut simplifiée
plus tard par Salzmann [6],

La méthode n'était cependant pas générale et ne
s'appliquait qu'aux tensions mécaniques.

L'auteur du présent article a entrepris la généralisation
de la méthode en l'étendant aussi bien aux disques

élémentaires divergents que convergents et en l'adaptant

au calcul des tensions thermiques 2.

La méthode s'applique aux disques de profil absolument

quelconque et fut utilisée dès 1948 par la Division
des turbines à gaz de la maison Sulzer Frères, à
Winterthour (Suisse). Le principe de la méthode fut par
ailleurs exposé dans une discussion de l'auteur [7],
se rapportant aux travaux de Leopold [8], concernant
les tensions thermiques dans les disques.

Comme nous l'avons découvert récemment, une
méthode similaire a été proposée plus tard par Salz-
mann et Kissel dans leur publication nouvelle sur les
disques [9]. Les résultats présentés ici sont cependant
plus complets.

' Nous remercions ici la Direction du Lloyds Register of Shipping,
à Londres, qui a bien voulu nous donner le temps nécessaire k la
présente étude durant notre stage dans cette organisation en 1947.
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Notations

r rayon.

Tj rayon de référence ; p —

y épaisseur du disque.
u déplacement radial.
U-l vitesse périphérique en r£i
E module d'élasticité.

i u
S 1 2 ' ~ P°ur Ies tensions mécaniques.

y i. -\ disque de profil divergent dont

1 — v*
1

1— v2

1
- ¦ „ - pour les tensions thermiques,
i P ' "o

vitesse angulaire.
coefficient de Poisson.

masse spécifique.
9 température.
P coefficient linéaire de dilatation thermique,
c tension.
S coefficient de tensions pour une valeur unitaire

de n • U* ou de &.E.Q0 ou pour une tension
radiale ou tangentielle unitaire au rayon
intérieur d'un anneau élémentaire.

Les indices r et t signifient radial respectivement tan-
gentiel. Les indices i et a se réfèrent au diamètre
intérieur respectivement au diamètre extérieur du disque.

Hypothèses

a) Le métal composant le disque est supposé être

isotrope et élastique, obéissant à la loi de Hooke.

Il est possible cependant de tenir compte de la

variation des propriétés physiques du matériau en

fonction du rayon (module d'élasticité, coefficient
linéaire de dilatation thermique) en les faisant
varier d'un élément conique à l'autre.

b) Les tensions axiales, toujours petites dans le cas

de disques, sont supposées être négligeables. Ceci

est admissible puisque l'influence de la tension
axiale sur la distribution des tensions radiales et
tangentielles est en effet relativement faible.

c) Le coefficient de Poisson v e*6 admis constant et
égal à 0,3.

Equations générales

Nous considérerons comme connue l'équation
différentielle générale se rapportant à un disque en rotation
et soumis à un champ de température 6 f(r), [10]

dLy
dr '

v dLy
r dr

1

P(l
dLy
dr

d&

dr

s— a. a>*r +

(1)

dans laquelle le premier terme au second membre représente

l'influence de la force centrifuge et le second terme
l'influence d'un champ de température.

Pour un disque conique (fig. 1), l'épaisseur y varie
linéairement avec le rayon selon les lois suivantes :

y 1 disque convergent
ri

r
y ¦ 1 disque divergent

sommet est situé de l'autre côté de l'axe
de rotation.

Supposons d'autre part qu'un anneau élémentaire

conique soit soumis à un champ de température variant

linéairement, comme indiqué sur la figure 1.

(3)e„ i
Le terme correspondant aux tensions thermiques

dans l'équation (1) devient alors analogue au terme dû
à la force centrifuge dans un disque dont la masse

spécifique serait inversement proportionnelle au rayon.
Introduisant des valeurs sans dimensions, ainsi que

les relations (2) et (3) dans l'équation différentielle (1)

on obtient :

.p ± i+ pJ
i

ç + p(p±i) m
—

m 2 M

§=

(4)

équation dans laquelle le signe supérieur correspond au

cas où le sommet du disque élémentaire est situé du
côté opposé par rapport à l'axe de rotation.

L'équation différentielle (4) est linéaire, du second

ordre et à coefficients variables. La solution de l'équation

homogène, sous la forme de séries hypergéomé-

triques, a déjà été donnée pour les disques convergents
[3], [4] et différentes méthodes ont été proposées pour
.en calculer les valeurs-limites.dans les cas de convergence

très lente [11]. Pour les deux disques divergents

par contre, les séries deviennent en général divergentes
et un autre mode de résolution doit être trouvé. Nous
avons'TCBilisé la méthode d'intégration graphique due

au professeur Meissner [12]. Le degré d'exactitude de

la méthode dépend essentiellement de la grandeur des

sauts d'intégration et de l'échelle à laquelle le calcul

graphique est conduit.

^
Axe de rotation.

m$ti$

mm

M^7%IIP
2. — Disque

d'épaisseur constante.

(2)
Fig. 1. —¦ Disque convergent

ou divergent.



BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 99

Les solutions particulières de l'équation (4) ont la

forme d'un polynôme du troisième degré lorsque le

terme correspondant à la force centrifuge est seul considéré

et d'un polynôme du second degré dans le cas se

référant aux tensions thermiques seulement. Les
relations donnant les tensions correspondant aux solutions

particulières sont reproduites dans un appendice placé

en fin de cet article.
L'intégration de l'équation différentielle (4) conduit

à la connaissance des déformations radiales qui à leur

tour sont liées par la loi de Hooke aux tensions tangen-
tielles et radiales. En introduisant les notations sans

dimensions, on obtient :

Sr v

S, ^ + vÇ 1

(1±P)

(1±P)

relations dans lesquelles le dernier terme correspond à

une distribution linéaire de la température.

Représentation graphique des résultats d'intégration

Comme l'équation différentielle (4) est linéaire, le

principe de superposition est applicable. La combinaison

linéaire de plusieurs solutions correspondant à des

conditions aux limites données est donc une nouvelle
solution. Il est avantageux de faire usage de cette
propriété puisque nous avons recours à l'intégration
graphique qui donnera nécessairement un type de

solutions correspondant chaque fois à des conditions aux
limites choisies d'avance.

Nous avons imposé des conditions aux limites bien
définies au rayon intérieur p; de l'anneau conique
élémentaire considéré et les tensions sans dimensions S,

et St au rayon extérieur de l'anneau ont été calculées au

moyen de l'intégration graphique, des solutions
particulières de l'équation différentielle (4) et des relations (5).

Les conditions aux limites au rayon intérieur et le

symbole des coefficients de tensions correspondant au

rayon extérieur sont donnés dans le tableau suivant.

Tensions
correspondant au rayon

extérieur
de l'anneau

Conditions aux limites au rayon intérieur
d'un anneau conique

u- U\ 0
sans rotation

i O,

0 ; u- U\ 0

(sans rotation
b) Ct| 1

0 ; u- U* 1

(rotation)
% ° ni tu

d) au 0 ; On 0; ß-£-90 1

(gradient de
température

TV

Les résultats d'intégration sont présentés sous forme
de graphiques 3 à 5 pour les disques d'épaisseur
constante dont la solution est bien connue et peut être

trouvée purement par voie mathématique [13] et dans

M^-
jmi">*-

(rr=o crr=s'"r

ffi-0 (Tt=Smt

-0.5

-0A

-03

-0.2

-ai

0.2 OA 0.6

rj£!

/

7
0.8 10

N

4^

0.2

r=r.r^-

0^1 (Tr Sr

crr=o o;=s';

rç- f <Ç-St"

*rH=K)

MV-o

U.J

03

-t

0.1 \\
OA 0.6

P

0.8 10

te"

m
_Z=5^

Tr=0 (Tr=S'r

(T,
pEA-1

St
Ms \ST

$$

02 OA 0.6 0.8 10

Fig. 3. — Coefficients de tensions Fig. 4. Coefficients de tensions dus à une tension Fig. 5.—Coefficients de tensions dus

dus à la force centrifuge (disque radiale ou tangen tielle unitaire agissant au diamètre à une distribution linéaire de tempé-

d'épaisseur constante). intérieur (disque d'épaisseur constante). rature (disque d'épaisseur constante).
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r=r.

V' ^=Sr frtfi-0

2 ft — 3

«4.

Fig. 6. — Coefficients de tensions dus à
une tension radiale unitaire agissant au
diamètre intérieur d'un élément conique.

r=r.

<Ç-0 q>Sr" ^-0
am-3

o~

/°—
Fig. 7. — Coefficients de tensions dus à une
tension tangentielle unitaire agissant au
diamètre intérieur d'un élément conique.

(W
r=r.

K-0 <£=Sr w-/
or»«1o:=0

<a_

i§^2
3^

P^
Fig. 8. — Coefficients de tension dus à
la force centrifuge (élément conique).

-e.P
1*

ft f̂~^r.r,]pm

7£

V

/»—-

Fig. 9. — Coefficients de tensions dus à

une distribution linéaire de la tempéra¬
ture (élément conique).

les graphiques 6 à 17 correspondant aux trois genres
d'anneaux coniques élémentaires. Ces graphiques
donnent immédiatement les tensions Sr et Si agissant au

rapport de rayon p correspondant à l'un des groupes de

conditions aux limites unitaires agissant au rapport de

rayon p< de l'anneau considéré.
Concernant les tensions thermiques, il est clair que

la valeur de 90 peut être aussi bien positive que négative.

La valeur de ô0 correspondant à la distribution de

température marquée sur les graphiques 5, 9, 13 et 17

est considérée comme positive, c'est-à-dire lorsque la
température augmente avec le rayon.

Emploi du principe de superposition
Il est recommandé lors du calcul des tensions dans

un disque ou en général dans un corps quelconque pour
lequel le principe de superposition est valable, de

déterminer le champ de tensions dû à une seule action
à la fois. Par exemple, pour un disque en rotation et
mis à chaud sur son arbre on calculera le champ de

tensions engendré par une pression radiale unitaire au

trou central, puis par une tension radiale unitaire
agissant à la périphérie du disque, représentant l'action
des aubes par exemple, puis enfin à une vitesse angulaire

unitaire. Si le disque est soumis à un champ de
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<rn-1 <ç-8'r

v° °i'st
m-o

OA Ci ~*~ O.

«C

¦^

^4
0

p—
Fig. 10. — Coefficients de tensions dus à une tension
radiale unitaire agissant au diamètre intérieur d'un

élément conique.

r-r. P—

<rn-o op-s,

<r-t <rts"t
FJÙ2

m ri~"o.

~SSJ

^

0.2

M
m&s

0.2
l° —

Fig. 11. — Coefficients de tensions dus à une tension
tangentielle unitaire agissant au diamètre intérieur

d'un élément conique.

C=£J0

<rr[~o <£-Sr /<='

m ' 'm

0.6

-Si

-as»

p—
Fig. 12. — Coefficients de tension dus à la force

centrifuge (élément conique).

température non linéaire dans uififcrsteme cartésien, on
calculera encore les tensions thermiques séparément.
La connaissance de ces quatre champs de tensions
permettra de calculer n'importe quel cas par simple super-

<%=0 <ç>$;
<rtro q-s,

9-8.fi

r-r.

OA (j—»• o.

p-Eßrt

<*r

km

Fig. 13. — Coefficients de tensions dus à une
distribution linéaire de la température (élément conique).

position des champs de tensions cités plus haut. C'est
la raison pour laquelle nous expliquerons la méthode
de calcul pour ces quatre cas types seulement.
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Tension radiale agissant au trou central d'un disque

Le disque est tout d'abord décomposé en une série

d'anneaux coniques élémentaires. On effectue ensuite

un premier calcul en partant des conditions aux limites

a) au trou central, données dans le tableau précédent.

Les tensions correspondantes Si ct, et SI ct_ au

rayon extérieur p du premier anneau élémentaire sont

immédiatement connues des graphiques 4, 6, 10 ou
14 suivant le cas. Les tensions au rayon extérieur du

second anneau élémentaire engendrées par les tensions

ct, et <rr agissant en son rayon intérieur se calculent

par les relations suivantes puisqu'une tension radiale

et tangentielle agissent simultanément

%= Si"ar1 + St '%
c1 r.11 I¦at

(6)

'2 ' rl r 1

relations dans lesquelles les coefficients St et Sr
correspondent au second anneau élémentaire. Puis, les

tensions ct, et ct_ occupent la place des tensions ct, et

CT_ dans les équations (6) lorsqu'on passe au troisième

anneau élémentaire, tout en utilisant bien entendu les

coefficients S< et Sr relatifs à ce nouvel anneau. On

arrive ainsi de proche en proche à la périphérie du

disque où les tensions ct, et ct, sont finalement déter-
* la "a

minées. Un calcul analogue est effectué en partant des

conditions aux limites b), ce qui fournit les tensions

CT, et cr_ à la périphérie du disque.

Comme la solution cherchée doit correspondre au

champ de tensions engendré par une tension radiale

unitaire agissant au trou central seulement, la tension

radiale à la périphérie du disque doit être annulée. Les

deux solutions précédentes ont donné deux champs de

tensions auxquels correspondent les tensions radiales

ct. et CT- On devra donc combiner ces deux solutions
"a ra

de telle sorte que

c. + m, • ct_ 0 à la périphérie du disque

force centrifuge 3, 8, 12 ou 16 suivant les cas, donnent

immédiatement les tensions tangentielle S, et radiale

-,rn
au rayon extérieur du premier élément conique.

etChacune de ces tensions que nous appellerons CT,

ct. est aussi la tension au rayon intérieur du second

élément conique. Les tensions au rayon extérieur de

cet élément sont donc données par des relations
similaires aux équations (6) auxquelles s'ajoute un terme

correspondant aux forces centrifuges.

si III CW
CTrx + St ' S

<?.„? +s1; ¦ s"1 + s1;1 pr rl ¦ r h r \Ta

Dans ces relations, les coefficients de tension
correspondant à la force centrifuge doivent être multipliés

par le rapport En effet les coefficients S

correspondent à une valeur unitaire de \i.U^, prise au

sommet, P, de l'élément conique, fig. 1. Comme la

position du sommet P varie d'un élément conique à

l'autre et que tous les anneaux doivent nécessairement

tourner avec la même vitesse angulaire, il est utile de

choisir un point de référence commun pour tous les

anneaux élémentaires, soit par exemple la périphérie
du disque de rayon ra animé de la vitesse tangentielle
Ua. Ainsi l'influence de la force centrifuge correspondant

à une valeur unique \i. U* 1 pour tous les

éléments, est introduite par les termes S • I- I •

En appliquant de proche en proche les relations (7)
/// ni ¦ ¦

on obtient les tensions ct„ et ct, a la périphérie du
ra la x .:

disque. Comme seul l'effet de la force centrifuge est

considéré, on doit annuler la tension radiale c. en'a
superposant la solution trouvée précédemment
correspondant uniquement à une tension radiale agissant

au rayon extérieur du disque de telle manière que

ct, + m~ ct, 0.

Il faut donc ajouter à la solution correspondant aux
conditions aux limites a) la solution b) multipliée par
le coefficient m1 défini plus haut. De cette façon, on

aura bien la solution cherchée correspondant aux
conditions ct,. 1 et ct, =0. Un exemple est reproduit

r% ra r r
dans la table I, les nombres encadrés correspondant

aux tensions ct* et alr.

Le champ de tensions final dû à la force centrifuge
seulement, sera donné par le champ de tensions a111

auquel on ajoutera le champ de tensions a11 multiplié
///

CT,

par le coefficient ms
c

est traité dans la table I.

Un exemple de cale

Tension radiale agissant à la périphérie du disque

Dans ce cas le calcul se poursuit comme précédemment

mais en partant des conditions aux limites b).

Arrivé au dernier élément du disque, on obtiendra un

couple de tensions ct, et ct- Si nous imposons une

tension unitaire à la périphérie du disque, le champ de

tensions trouvé sera simplement à multiplier par le
1

coefficient ma ~~f\ ¦

°ra
Tensions dues à la force centrifuge

Un calcul similaire à ceux exposés plus haut est à

effectuer. On part des conditions c) du tableau précédent.

Les graphiques correspondant à l'influence de la

U-Uj =0

Tensio
due

u-l/|
°'i 0

a"*
duc

ar
%

*

0

-0
Indice

r radial

_|j P " 1 : | \ " *%• '" •m noirn©'
1 1 » 1 • 1 1 0 0 1 | 0 0 0 0 S «

i
i

3

2

1.800 i | 0.650 | 0 350 | 0.350 0.650 | —0.980 — 0,670 — 0,0318 — 0,0152 5

I 0.650 | 0.350 | 0.350 0.650 | — 0.0318 — 0,0153 «

il 9 0,809 0,470 1 t.«Si], fo.sâq^' Ö.65Ü ^0.800 | —0.825 — 0,140 [| —0.152 | —0,068 S

1

Il j 3

uni
T

1.183 j ' 0^52 1 J1.4M

0,337"J Ojao-r" 0,637

0.520 |

0,297
1

*!ffij3É — 0,010 | —0,013

— 0.058 | —0,027

1 1.409 0.832 | 1 059 0.817 | — 0J30 " — 0.107 ^ ' j a

1.3 fi5 0.768 "\ U.iH'JHs^ 0.232( "flOea | — 0J98 — 0,168 —0.131 — 0,0616 S

s-/ 1.080 I o^ïej "ïfr$9* *•"!. 1 —0.025 — 0,083

0.193 | 0.639 P* 0,813 * 0.2« f — 0,169 — 0.051 |

¦n
IV

4

S

1.273 | 0.965 1 1.009 0.873 1 -0.315 -0.1« 1 a

1.600 1.310 0.270 | — 0,028"—-0,140-,

0,133 0.655 |

0,145 | —0.133 — 0.0565 S

IV | 5

0.344 | —0.036 ——__Uzi 0-026 *^-0.138

0.13S | 0.723 | 0.271 — 0.088 |
1 —0.085 T~"+ 0.009

0.479 | 0.687 | 0.393 0.627 | — 0,2',4 — 0,186 | c

V 6
s
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Fig. 14. — Coefficients de tensions dus à une tension
radiale unitaire agissant au diamètre intérieur d'un

élément conique.
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Fig. 15. — Coefficients de tensions dus à une tension
tangentielle unitaire agissant au diamètre intérieur

d'un élément conique.
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Fig. 16. — Coefficients de tension dus à la force

centrifuge (élément conique).
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Fig. 17. — Coefficients de tensions dus à une distribution

linéaire de la température (élément conique).
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Tensions thermiques
Les graphiques étant établis

pour une distribution
linéaire de la température
en fonction du rayon, la
courbe définissant la répartition

de la température
est tout d'abord remplacée

par une ligne polygonale,
comme indiqué sur la figure

19.

1) Module d'élasticité et

coefficient linéaire de

dilatation thermique constants

Dans ce cas la marche
du calcul est en tout point
analogue à celle décrite précédemmefll pour la
détermination des tensions dues à la force centrifuge. On se

servira des relations suivantes pour passer du rayon
intérieur au rayon extérieur d'un anneau

a (Tr./"n

W

M
'3.

-I/_2

4

Tensions dues à jutU» « 1

<% =i

Ç ^\lfr
=»i

%

r<rt\!

.M

-2
Tensions

Fig. 18.

'2

IV

S

s °r, + Sr 'U

-fv
h

,IV Q-E-Q„
¦ (8)

Les coefficients S correspondant à une valeur unitaire
de ß-jE-00 sont donc à multiplier par la valeur p-E-Q0.

Le calcul se poursuit de proche en proche comme
jpdiqué dans la table II reproduisant un exemple,

jusqu'à la périphérie du disque où les tensions ct. et
IV

Tensions mécaniques dans un disque de frein hydraulique.

des propriétés physiques de la matière constituant cet

anneau. Dans le cas d'une variation du module d'élasticité

par exemple on pourra toujours considérer que
la valeur change soudainement d'un anneau à l'autre,
de façon à remplacer la variation continue par une
série de discontinuités. Comme les tensions thermiques
sont proportionnelles au facteur ß-U-oo, on tracera
simplement la courbe discontinue correspondante que
l'on introduira dans les calculs comme précédemment.

Du fait du changement discontinu du facteur B • E en

passant d'un élément à l'autre, la tension tangentielle
subira une discontinuité au rayon de contact de deux

le

sont finalement cal Comme seule l'influence
des tensions thermiques veut être connue, nous
ajouterons à cette solution le champ de tensions <jh

multiplié par le facte
ra
n

bien une tension radiale nulle sur
rieur et extérieur du disque.

Ceci donnera

es diamètres inté-

2) Module d'élasticité et coefficient linéaire de dilata¬
tion thermique variables

La distribution des tensions thermiques dans un
anneau élémentaire correspond à une valeur constante

Tabib It
Tan-loW

dues à

u-l/J 0

due» à

u-(/*-0
duei à

P£e* /IP)

°'< =0

1 E conit&nj.

B-fi-e,

¦<
I i N ' n " ,r IV m-

»•B-0,
["}

I
I

I
II
II

II
III
m

m

1

3

3

3

S

8

3

4

4

0 0 i 0 0 1 0 0 S —c

0,875 0 0,297 0,348 | 0.297 0.348 -f 0.232 | + 0.523 329 + 76.4 + 172 S

0,397 0.348 76.4 | 173 d,

0.297 0.348 76,4 f 172 a,

0,775 0,476 1.630 0,730 / 0.540 0.77S — 0.069 | —0.257 600 — 41,4 — 164 S

m 0,188 0.270 93,0 133

0,484 0.2H | 124,6 55

0.672 0,484 176.2 l 33.8 "*
0.672 0.48; 176.2 j 33.8

* 1 '—
°1

0,960™

1 0.234 oSUT"
14390

1*" *M 33

0.645 0.356 U«9 94

0.B79 06S5 — 66».7"f^-î75iT a,

IV
IV

IV

V

4

9

8

S

0,879 0.685 — 669,7 — 3790 <j,

2,31 2,00 0.657 0.049 0,112 0,866 — 0,019 — 0,300 9070 — 168 — 3730 S

0,077 0.594 — 312,5 — 2430

0,577 0.0-.3 — 440 — 33

0,654 0,637 — 920.5 — 5173 «1

0,

V 6 S

anneaux consécutifs, de la valeur ct, calculée à l'aide

des relations (8) à la valeur ct, qui sera prise pour la

détermination des tensions au rayon extérieur de

l'anneau suivant.
La tension ct, est calculée à partir de l'équation

suivante, dérivée de la loi de compatibilité des
déformations radiales au rayon de contact de deux anneaux
consécutifs

Ei
'tu

Eu
(9)

relation dans laquelle les indices 2 et II correspondent
à des points situés de part et d'autre de la ligne de

séparation de deux anneaux consécutifs et 0 est égal
au niveau de température à cet endroit1.

Les champs de tensions correspondant à une tension
radiale unitaire située à la périphérie ou au rayon
intérieur du disque, et aux tensions centrifuges,
doivent aussi être calculés en introduisant une correction

si l'on veut tenir compte d'une variation de E.

En effet, dans ces cas la tension tangentielle o> donnée

par les relations (6) ou (7) est à corriger au moyen de

la relation générale ci-dessous avant de passer à

l'anneau suivant,
En I Eu\

E,fft// E„% (10)

Comme il sera montré par deux exemples, la variation

du produit B-E est en général relativement faible
et n'influence que très peu la distribution des tensions

1 P// et ß* sont les coefficients moyens de dilatation entre 0° C

et la température de l'anneau correspondant.
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radiales et tangentielles. Dans la majorité des cas, le

calcul peut s'effectuer en considérant une valeur

moyenne constante de E et de ß dans toute l'étendue
du disque.

Exemples numériques

1) Tensions mécaniques
Calculons les tensions radiales et tangentielles dans

un disque soumis à une tension radiale unitaire au

trou central, à une tension radiale unitaire située à la

périphérie du disque et à une vitesse de rotation
correspondant à une valeur p.-E/j,= 1. Le disque a la
forme représentée dans la figure 18. La décomposition
en 4 anneaux élémentaires donne déjà une approximation

suffisante.
Le procédé de calcul est donné dans la table I et

suit exactement celui expliqué précédemment. La
table est à double entrée et un chiffre situé dans une
case donnée correspond soit à un coefficient de
tension S ou à une tension inscrits dans la colonne de

droite, auxquels s'appliquent les indices situés dans la
ligne supérieure horizontale. Les multiplications
indiquées dans les relations (6) ou (7) sont marquées au

moyen d'une ligne brisée. On obtient immédiatement
des graphiques les coefficients de tensions S. Le calcul
se poursuit jusqu'au rayon extérieur, point 5, du dernier

anneau IV où les tensions marginales sont alors calculées-

En utilisant les relations déterminant les coefficients

mlt mz et ms on trouve les valeurs suivantes :

0.479 _v 1

mj ~ Ô7393 ~ 1'218 ; m*=Ô7393==2'545;
—0.244

ms~ Ö7393-

La superposition linéaire u1 -(- m^a11 ct donne
tensions dues à une tension de frettage unitaire.

Les valeurs m2 • a11 — a
donneront les tensions dues

à une tension unitaire agissant

à la périphérie du
disque.

Enfin, la superposition
linéaire aln -f- »13 • a11 ct

fournira les tensions dues à

la force centrifuge seule.
Les résultats de ces

superpositions, non reproduites

ici, sont reportés sur la
figure 18. La combinaison
linéaire de ces champs de

tensions fournira ensuite la
solution correspondant à

n'importe quelles conditions

aux limites.

2yTensions thermiques //
Choisissons, par exemple

le profil d'un disque de la
turbine d'un turbo-réacteur
et déterminons les tensions

thermiques relatives à la
répartition de température
donnée sur la figure 19. La
variation du module d'élas-

0.620.

ticité E et du coefficient de dilatation thermique ß est

connue et est aussi reportée sur la figure 19. L'acier
utilisé est par exemple un acier austénitique.

Tout d'abord le disque est décomposé en un certain
nombre d'éléments coniques et la courbe de température

est remplacée par une ligne polygonale.
La marche du calcul, qui est en tout point la même

que dans le cas de la force centrifuge, est reproduite
dans la table II pour une valeur constante du
produit ß£.

A la périphérie du disque la tension radiale doit être
nulle puisque seules les tensions thermiques sont
considérées. Cette condition définit le coefficient m4 qui
conduira au calcul des tensions radiales et tangentielles

en utilisant la relation générale

Comme le disque n'a pas de trou central, la tension
radiale est égale à la tension tangentielle en ce point.

Considérons maintenant que le module d'élasticité et
le coefficient linéaire de dilatation thermique varient
en fonction du rayon. Les calculs sont reproduits dans

la table III. Dans «e cas il suffit de calculer, au moyen
des relations (9) ou (10), la nouvelle tension tangentielle

située immédiatement au-delà de la ligne séparant

deux anneaux consécutifs, lorsqu'on passe d'un
élément de disque à l'autre. A part cette opération, les

calculs se poursuivent comme dans le cas correspondant
à ß-iS constant.

Les tensions correspondant à ces deux derniers

exemples sont données dans la table IV. On remarque
la faible influence due à la variation de ß-£.

L'influence des quelques trous de fixation percés dans

le disque se traduit par une augmentation locale des

tensions dans le voisinage immédiat des trous sans

aubes

y/y£¦10

¦/3.10s °C~'

v. «70 200 300 400 SOO °C

5
mm,

w

o: ^m r
K

hum

3000 -1000 O +7000

Tensions Ag/cn»—»-

Fig. 19. — Tensions thermiques dans un disque de turbine d'un turbo-réacteur.
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Tend
doi
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¦ i
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Ttniioiu a"
due« »

M-t/J-O

Trn.Km. a"
due. t
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kg/cm'

art — t
•il -0 "t, ~0 Oti-0

B-e^o-
Bu 10*

»w-W
ÎOT«
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1 J P ft r j
U " IV IV

a-e-o.
1 1 0 0 i 0 0 |l 0 0 340 0 u S c

I
1

2

2

0,875 0 0,297 0,348 j 0,297 | 0,348 0,232 0.523 340 79 178 S

0,297 ; 0.348 79 | 178 i 0 2,05 79 178 o.

II 2 0.297 0.348 79 | 178 o»

II 3 0,775 0,476 1.630 0.720 0,540 0,775 — 0.069 — 0,257 620 — 42,8 — 159,5 s

0,188 0.270 + 96,1 + 138,0

0.484 0,214 + 129,0 + 56.9

11 3 0,673 0,484 + 182.3 + 35,4 0.936 0,4 1,92 «.

111 3 0.672 [ 0,465 + 182,3 | — 93,9 On

m 4 0,517 0,268 0.960 0,530 | 0,483 0,680

0,316

— 0.060 — 0,204 14250 — 895 — 2907 S

<" 0,339 — 45,3 — 64

0,649 | 0,356 + 175 + »
m 4 0,870 | 0,672 — 725,3 ' —2874 0.860 0,5 1.65 «i

IV 4 0,870 | 0,615 — 725,3 | —2737 "n
IV 5 2.31 2,00 0,657 0.049 0.112 | 0,866 — 0.0185 —0.300 8150 — 150,8 — 2445 S

0.069 0,533

0,572 j 0.043

— 306,5 — 2370

+ 477.0 — 36

IV 5 0,641 | 0,576 — 934.3 i —4841 «>

V 5 0,641 [ 0,576 — 934,3 | — 484t "il
V E

1

S

relations dans lesquelles, pour des raisons de simplicité, le

rayon p est considéré comme négatif dans le cas où l'élément
de disque a son sommet du côté opposé à l'axe de rotation.

Ces solutions sont ensuite à combiner linéairement avec
la solution des équations homogènes trouvées par intégration

graphique de façon à satisfaire aux conditions aux limites

imposées dans l'établissement des graphiques relatifs aux
coefficients de tensions.

2. Elément d'épaisseur constante :
Dans ce cas, la solution totale peut être trouvée complètement

par voie mathématique [13]. Elle s'écrit

ti
cependant changer d'une façon appréciable la
distribution générale des tensions.

Tabi IV

Point
variable

ß-£
23.4 constant

Or at
moyenne

dr dt

1
2
3
4
5

+ 727
+ 511

+ 1162
+ 543

0

+ 727

+ 684
+ 662
-1869
-4000

1

+ 705 + 705
+ 495 + 662

+ 1122 + 716
+ 568 —1826

0 — 4276

En appliquant la méthode de calcul décrite
précédemment, il est aisé de déterminer des points intermédiaires

si la distribution des tensions doit être connue
avec plus d'exactitude.

APPENDICE
Tensions mécaniques

La solution particulière de l'équation (4) correspondant à

la force centrifuge seule est connue de travaux précédents

[4]. Elle a la forme d'un polynôme du troisième degré
en p. Après introduction de cette solution dans les relations
de Hooke (5) nous obtenons les coefficients de tensions
correspondant à la solution particulière

„in _bt —
l+3v
11+v

3+v
11-

l+2vr. 8 1

5+v L 11+vj

lU L_|
vL 11+vj

2 +
5 +

5 +v
3

5 + v
1-

8

11+v
8

~11+v

relations dans lesquelles, pour des raisons de simplicité, le

rayon p est considéré comme négatif dans le cas où l'élément
de disque a son sommet du côté opposé à l'axe de rotation.

Tensions thermiques
1. Elément conique :
La solution particulière de l'équation (4) correspondant

aux tensions thermiques seules a la forme d'un polynôme du
second degré. Après introduction dans les relations (5), on
obtient les coefficients de tensions correspondant à cette
solution particulière

slr
5+v

5+v

5+v
1

5+v
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