Zeitschrift: Bulletin technique de la Suisse romande

Band: 80 (1954)

Heft: 8

Artikel: Méthode générale de calcul des tensions mécaniques et thermiques
dans les disques de profil quelconque

Autor: Strub, R.A.

DOl: https://doi.org/10.5169/seals-60702

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-60702
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

80e année 17 avril 1954 Ne 8
Paraissant tous les quinze jours
R bonneinonte: Organe de la Société suisse des ingénieurs et des architectes, des Sociétés vaudoise T

Suisse: 1 an, 24 francs
Etranger: 28 francs
Pour sociétaires:
Suisse: 1 an, 20 francs
Etranger: 25 francs
Prix du numéro: Fr. 1.40
Ch. post. « Bulletin techni-
que de la Suisse romande »
Ne II. 8775, a Lausanne.
Expédition
Imprimerie «La Concorde »
Terreaux 31 — Lausanne.
Rédaction
et éditions de la S. A. du
Bulletin technique (tirés a
part), Case Chauderon 475
Administration générale
Ch. de Roseneck 6 Lausanne

et genevoise des ingénieurs et des architectes, de 1'Association des Anciens éléves
de I'Ecole polytechnique de l'Université de Lausanne et des Groupes romands des
anciens éléves de 1'Ecole polytechnique fédérale.

Comité de patronage — Président: R. Neeser, ingénieur, & Genéve; Vice-président:
G. Epitaux, architecte, & Lausanne; Secrétaire: ]. Calame, ingénieur, & Genéve —
Membres, Fribourg: MM. P. Joye, professeur; f{ E. Lateltin, architecte — Vaud:
MM. F. Chenaux, ingénieur; { H. Matti, ingénieur; E. d'Okolski, architecte; Ch. Thé-
venaz, architecte — Genéve: MM. t L. Archinard, ingénieur; Cl. Grosgurin, archi-

tecte; E. Martin, architecte; V. Rochat, ingénieur — Neuchéitel: MM. J]. Béguin,
architecte; R. Guye, ingénieur — Valais: MM. J. Dubuis, ingénieur; D. Burgener,
architecte.

Rédaction: D. Bonnard, ingénieur. Case postale Chauderon 475, Lausanne.

Conseil d'administration
de la Société anonyme du Bulletin technique: A. Stucky, ingénieur, président;
M. Bridel; G. Epitaux, architecte; R. Neeser, ingénieur.

1/1 page Fr. 264.—

12 » » 134.40
1/4 » » 67.20
1/8 » » 33.60

Annonces Suisses S. A.
(ASSE)

Rue Centrale 5. Té1.22 33 26
Lausanne et succursales

SOMMAIRE : Méthode générale de calcul des tensions mécaniques et thermiques dans les disques de profil quelconque, par R. A.

StrUB, ing. E.P. U.L. — Installations de sécurité et de signalisation de la gare aux marchandises de Lausanne-Sébeillon. —
Les CoNGRrEs : Council on wave research coastal Engineering. — NECROLOGIE : Alphonse Laverriére. — BIBLIOGRAPHIE. —
AVIS A NOS ABONNES. — SERVICE DE PLACEMENT. — DOCUMENTATION GENERALE. — DOCUMENTATION DU BATIMENT. —

NOUVEAUTES, INFORMATIONS D1VERSES.

METHODE GENERALE DE CALCUL DES TENSIONS
MECANIQUES ET THERMIQUES
DANS LES DISQUES DE PROFIL QUELCONQUE

par R. A. STRUB, ing. E.P.U.L.

éléments de réduction [5], méthode qui fut simplifiée
plus tard par Salzmann [6].

La méthode n’était cependant pas générale et ne
s’appliquait qu’aux tensions mécaniques.

L’auteur du présent article a entrepris la généralisa-
tion de la méthode en I'étendant aussi bien aux disques
élémentaires divergents que convergents et en I'adap-
tant au calcul des tensions thermiques 2.

La méthode s’applique aux disques de profil absolu-
ment quelconque et fut utilisée dés 1948 par la Division
des turbines a gaz de la maison Sulzer Fréres, & Win-
terthour (Suisse). Le principe de la méthode fut par
ailleurs exposé dans une discussion de lauteur [7],
se rapportant aux travaux de Leopold [8], concernant
les tensions thermiques dans les disques.

Comme nous l'avons découvert récemment, une
méthode similaire a été proposée plus tard par Salz-
mann et Kissel dans leur publication nouvelle sur les
disques [9]. Les résultats présentés ici sont cependant
plus complets.

Introduction

La détermination du champ de tensions mécaniques
et thermiques dans les disques de turbines a gaz ou a
vapeur ainsi que dans les roues de compresseurs centri-
fuges par exemple est d’une grande importance pratique.

La méthode ancienne de Grammel [1]1 consiste a
décomposer le disque en une série d’éléments d’épais-
seur constante. Afin d’atteindre une exactitude sufli-
sante, on doit avoir recours a4 un grand nombre d’an-
neaux élémentaires, rendant par la méme la méthode
relativement longue.

Le calcul basé sur le choix d’éléments a profil hyper-
bolique [2], quoique s’adaptant souvent mieux aux dis-
ques dont I'épaisseur décroit d’une facon uniforme du
centre vers la périphérie n’est cependant pas général
et ne peut étre appliqué aux disques ayant des sections
divergentes.

Dés que la solution correspondant au champ de
tensions dans les disques coniques convergents fut
connue [3], [4], Keller proposa leur utilisation comme

* Nous remercions ici la Direction du Lloyds Register of Shipping,

a Londres, qui a bien voulu nous donner le temps nécessaire a la

! Les nombres entre crochets [] renvoient a la littérature donnée
présente étude durant notre stage dans cette organisation en 1947.

en fin de cet article.
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Notations
r = rayon.
r, = rayon de référence ; p = rL
1
y = épaisseur du disque.
uw = déplacement radial.
U, = vitesse périphérique en r;.
E = module d’élasticité.
1 w . L.
£ =qy—m o pour les tensions mécaniques.
1 u i . :
E = = m pour les tensions thermiques.
§ = dg/dp
w = vitesse angulaire.
v = coeflicient de Poisson.
u = masse spéeifique.
6 = température.
B = coefficient linéaire de dilatation thermique.
o = tension.
S = coeflicient de tensions pour une valeur unitaire

de u.U?2 ou de B.E.6, ou pour une tension

radiale ou tangentielle unitaire au rayon
intérieur d’un anneau élémentaire.

Les indices r et ¢ signifient radial respectivement tan-

gentiel. Les indices i et @ se référent au diamétre inté-

rieur respectivement au diamétre extérieur du disque.

Hypothéses

a) Le métal composant le disque est supposé étre
isotrope et ¢lastique, obéissant a la loi de Hooke.
Il est possible cependant de tenir compte de la
variation des propriétés physiques du matériau en
fonction du rayon (module d’élasticité, coeflicient
linéaire de dilatation thermique) en les faisant
varier d’un élément conique a l'autre.

b) Les tensions axiales, toujours petites dans le cas
de disques, sont supposées étre négligeables. Ceci
est admissible puisque l'influence de la tension
axiale sur la distribution des tensions radiales et
tangentielles est en effet relativement faible.

¢) Le coeflicient de Poisson v est admis constant et
égal a 0,3.

Equations générales

Nous considérerons comme connue 1’équation diffé-
rentielle générale se rapportant a un disque en rotation
et soumis 4 un champ de température & = f(r), [10]

. dLy 1] . vdLy 1 1—v? "
“*hﬁ—ﬂ“+k77—éh——“*"“@f+
dLy  d®
?7+$] @
dans laquelle le premier terme au second membre repré-
sente I'influence de la force centrifuge et le second terme
I'influence d’un champ de température.

Pour un disque conique (fig. 1), I'épaisseur y varie
Jinéairement avec le rayon selon les lois suivantes :

B+ o

r -
y=1— o disque convergent
r

y = g 1 disque divergent (2)

r . ~ .
y=1+ .- disque de profil divergent dont le
sommet est situé de Pautre coté de 'axe
de rotation.

Supposons d’autre part qu'un anneau élémentaire
conique soit soumis & un champ de température variant
linéairement, comme indiqué sur la figure 1.

=8 (1 = :;1) (3)

Le terme correspondant aux tensions thermiques
dans I'équation (1) devient alors analogue au terme da
a la force centrifuge dans un disque dont la masse spé-
cifique serait inversement proportionnelle au rayon.

Introduisant des valeurs sans dimensions, ainsi que
les relations (2) et (3) dans I'équation différentielle (1)
on obtient :

" 1. 17 : 1 4
-+ [ 25 S e e S
U3 2
=—pgPpFi—P% (4)

équation dans laquelle le signe supérieur correspond au
cas ou le sommet du disque élémentaire est situé du
cdté opposé par rapport a l'axe de rotation.

L’équation différentielle (4) est linéaire, du second
ordre et a coeflicients variables. La solution de I'équa-
tion homogéne, sous la forme de séries hypergéomé-
triques, a déja été donnée pour les disques convergents
[3], [4] et différentes méthodes ont été proposées pour
en calculer les valeurs limites dans les cas de conver-
gence trés lente [11]. Pour les deux disques divergents
par contre, les séries deviennent en général divergentes
et un autre mode de résolution doit étre trouvé. Nous
avons utilisé la méthode d’intégration graphique due
au professeur Meissner [12]. Le degré d’exactitude de
la méthode dépend essentiellement de la grandeur des
sauts d’intégration et de l'échelle & laquelle le calcul
graphique est conduit.

b
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Fig. 1. — Disque convergent
ou divergent.
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Les solutions particuliéres de I'équation (4) ont la
forme d’un polyndme du troisieme degré lorsque le
terme correspondant a la force centrifuge est seul consi-
déré et d’un polynome du second degré dans le cas se
référant aux tensions thermiques seulement. Les rela-
tions donnant les tensions correspondant aux solutions
particuliéres sont reproduites dans un appendice placé
en fin de cet article.

L’intégration de I'équation différentielle (4) conduit
4 la connaissance des déformations radiales qui a leur
tour sont liées par la loi de Hooke aux tensions tangen-
tielles et radiales. En introduisant les notations sans
dimensions, on obtient :

_oE i 1
Sr—VB‘I‘E_‘fli\}(i:tP)

P
relations dans lesquelles le dernier terme correspond a
une distribution linéaire de la température.

(5)

- 1
Ss=2+vf——, (1+£p)

Représentation graphique des résultats d’intégration

Comme Iéquation différentielle (4) est linéaire, le
principe de superposition est applicable. La combinai-
son linéaire de plusieurs solutions correspondant & des
conditions aux limites données est donc une nouvelle
solution. Il est avantageux de faire usage de cette pro-
priété puisque nous avons recours a l'intégration gra-
phique qui donnera nécessairement un type de solu-
tions correspondant chaque fois 4 des conditions aux
limites choisies d’avance.

Nous avons imposé des conditions aux limites bien
définies au rayon intérieur p; de 'anneau conique élé-
mentaire considéré et les tensions sans dimensions S,
et S; au rayon extérieur de 'anneau ont été calculées au
moyen de I'intégration graphique, des solutions parti-
culiéres de I'équation différentielle (4) et des relations (5).
Les conditions aux limites au rayon intérieur et le
symbole des coelficients de tensions correspondant au
rayon extérieur sont donnés dans le tableau suivant.

Tensions corres-
Conditions aux limites au rayon intérieur pondant au rayon
d’un anneau conique extérieur
de 'anneau
a) oy =03 op =1 u-Ug =0 N s/
(sans rotation) t "
b) o =15 0p = 0; pwUi=0 s g”
(sans rotation) l =r
¢) o =03 0p; =05 Ui =1 sHI . q’”
(rotation) t 7 or
d) o, =0; o0, =0; “E-9y =1
) 9 ri B 9 gIv . v
(gradient de 9, 8
température)

Les résultats d’intégration sont présentés sous forme
de graphiques 3 a 5 pour les disques d’épaisseur cons-
tante dont la solution est bien connue et peut étre
trouvée purement par voie mathématique [13] et dans

|
!
|
| 7=
! r=r-
L \\ }———f—ﬁv
7=
r=s; Rl GO gg(-S))
=0 0= =
(3
n
0;i=o O;=Sr ,U2-1 0.=0 0= 2
G=0 q=s' (T (I 2Y=0
b e =St OG-t 0=
-0.5 05
| '\
Sll" \ \
-04— ~5 N
I~ P
N N ~
-03 N 1 03 N "
N ~
— N I v
-02 \\S"N A ? \\ - 04 [-SP—
pod ™~ ~ o N s 17
P \ @ ™ r N
-o1 o1 =0.2 /P 3
\\\
0 02 04 ; 0.6 08 1.0 0 0.2 04 0.6 0.8 70 0 0.2 0.47 06 0.8 1.0
=l —f
P — P
Fig. 8. — Coefficients de tensions  Yig. 4. — Coeflicients de tensions dus a une tension  Fig. 5. — Coeflicients de tensions dus

dus a la force centrifuge (disque radiale ou tangentielle unitaire agissant au diameétre 4 une distribution linéaire de tempé-
d’épaisseur constante). intérieur (disque d’épaisseur constante). rature (disque d’épaisseur constante).
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Fig. 6. — Coefficients de tensions dus a
une tension radiale unitaire agissant au
diameétre intérieur d'un élément conique.
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Fig. 8. — Coefficients de tension dus &
la force centrifuge (élément conique).

les graphiques 6 a 17 correspondant aux trois genres
d’anneaux coniques élémentaires. Ces graphiques don-
nent immédiatement les tensions S, et .S, agissant au
rapport de rayon p correspondant & I'un des groupes de
conditions aux limites unitaires agissant au rapport de
rayon p; de ’'anneau considéré.

Concernant les tensions thermiques, il est clair que
la valeur de 6, peut étre aussi bien positive que néga-
tive. La valeur de 6, correspondant a la distribution de
température marquée sur les graphiques 5, 9, 13 et 17
est considérée comme positive, c’est-a-dire lorsque la
température augmente avec le rayon.

A
0;=0 0;=S&' LY=o
02?’ G=S;
1 A== 3 4

,,*
KI,
0

2 S 2
S -
/ ))f/“ g
% T
1
1 2 E— 7
Fig. 7. — Coeflicients de tensions dus & une

tension tangentielle unitaire agissant au
diamétre intérieur d’un élément conique.

| easy
AT

1 2 p o 4

Fig. 9. — Coefficients de tensions dus a
une distribution linéaire de la tempéra-
ture (élément conique).

Emploi du principe de superposition

Il est recommandé lors du calcul des tensions dans
un disque ou en général dans un corps quelconque pour
lequel le principe de superposition est valable, de
déterminer le champ de tensions dt & une seule action
a la fois. Par exemple, pour un disque en rotation et
mis & chaud sur son arbre on calculera le champ de
tensions engendré par une pression radiale unitaire au
trou central, puis par une tension radiale unitaire
agissant a la périphérie du disque, représentant I'action
des aubes par exemple, puis enfin a une vitesse angu-
laire unitaire. Si le disque est soumis a un champ de
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Fig. 10. — Coeflicients de tensions dus & une tension
radiale unitaire agissant au diamétre intérieur d’un
élément conique.
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Fig. 12. — Coeflicients de tension dus a la force

centrifuge (élément conique).

température non linéaire dans un systéme cartésien, on
calculera encore les tensions thermiques séparément.
La connaissance de ces quatre champs de tensions per-
mettra de calculer n’importe quel cas par simple super-

1 4
= per
"
- = 2
g=1 =5
0 0.2 0s o6 0.8 1.0

%%/4/ &’%[

:

s L,

| - i
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7 =Yy
Ndy AR
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4 il

] 0.2 04 F . 06
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\
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Fig. 11. — Coefficients de tensions dus a une tension
tangentielle unitaire agissant au diamétre intérieur
d’un élément conique.
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Fig. 13. — Coefficients de tensions dus & une distri-
bution linéaire de la température (élément conique).

position des champs de tensions cités plus haut. Cest
la raison pour laquelle nous expliquerons la méthode
de calcul pour ces quatre cas types seulement.
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Tension radiale agissant aw trou central d’'un disque
Le disque est tout d’abord décomposé en une série
d’anneaux coniques élémentaires. On effectue ensuite
un premier calcul en partant des conditions aux limites
a) au trou central, données dans le tableau précédent.
Les tensions correspondantes S; = c{l et Slr = o, au
rayon extérieur p du premier anneau élémentaire sont
immeédiatement connues des graphiques 4, 6, 10 ou
14 suivant le cas. Les tensions au rayon extérieur du
second anneau élémentaire engendrées par les tensions
O't et 0'1 agissant en son rayon intérieur se calculent
par les relations suivantes puisqu’une tension radiale
et tangentielle agissent simultanément

I

ot = Sl + 5]

7
Ty

(6)

/

I I 17
T — Sr'crl + S, »ot

relations dans lesquelles les coeflicients St et Sy corres-
pondent au secon(l anneau élémentaire. Puis, les ten-
sions 0; et 0' occupent la place des tensions O‘t et
0[ dans les équations (6) lorsqu’on passe au lromeme
anneau élémentaire, tout en utilisant bien entendu les
coeflicients S, et S, relatifs a ce nouvel anneau. On
arrive ainsi de proche en proche a la périphérie du
disque ou les tensions cria et cyiu sont finalement déter-
minées. Un calcul analogue est effectué en partant des
conditions aux limites b), ce qui fournit les tensions
la et 0' a la périphérie du disque.

Comme la solution cherchée doit correspondre au
champ de tensions engendré par une tension radiale
unitaire agissant au trou central seulement, la tension
radiale & la périphérie du disque doit étre annulée. Les
deux solutions précédentes ont donné deux champs de
tensions auxquels correspondent les tensions radiales

I
o, et c ~ On devra donc combiner ces deux solutions

de telle sorte que

I 7 . N :

o, T Mo, = 0 a la périphérie du disque
ou My = — c,.a/cra

Il faut donc ajouter a la solution correspondant aux
conditions aux limites a) la solution b) multipliée par
le coefficient m, défini plus haut. De cette facon, on
aura bien la solution cherchée correspondant aux con-
ditions o, = 1 et 0, = 0. Un exemple est reproduit
dans la table I, les nombres encadrés correspondant
aux tensions o’ et ofl.

Tension radiale agissant @ la périphérie du disque
Dans ce cas le calcul se poursuit comme précédem-

ment mais en partant des conditions aux limites b).

Arrivé au dernier élément du disque, on obtiendra un

s I I :
couple de tensions g; el o S1 nous 1mposons une
tg Ta

tension unitaire a la périphérie du disque, le champ de
tensions trouvé sera simplement & multiplier par le

1

coeflicient my, = 77 -
Ta
Tensions dues a la force centrifuge
Un calcul similaire a ceux exposés plus haut est a
effectuer. On part des conditions ¢) du tableau précé-
dent. Les graphiques correspondant a I'influence de la

force centrifuge 3, 8, 12 ou 16 suivant les cas donnent

immeédiatement les tensions tangentielle St et radiale
111
S

» au rayon extérieur du premier élément conique.
3 : 111
Chacune de ces tensions que nous appellerons oy, et

I . . I
o) est aussi la tension au rayon interieur du second

”
1
élément conique. Les tensions au rayon extérieur de
cet élément sont donc données par des relations simi-
laires aux équations (6) auxquelles s’ajoute un terme

correspondant aux forces centrifuges.

111 I i, 1 117
oy, = §; 0, + S; - oy +S <ra)

_|_ Sm ( a>2

Dans ces relations, les coef'ficients de tension corres-
pondant a la force centrifuge doivent étre multipliés

111 I Il 17
g, = Sr Oy, + 8, o

Ty

2
T; .

par le rapport <r—1) . En effet les coeflicients S cor-
a)

respondent & une valeur unitaire de p. U3, prise au
sommet, P, de I'élément conique, fig. 1. Comme la
position du sommet P varie d’un élément conique a
autre et que tous les anneaux doivent nécessairement
tourner avec la méme vitesse angulaire, 1l est utile de
choisir un point de référence commun pour tous les
anneaux élémentaires, soit par exemple la périphérie
du disque de rayon r, animé de la vitesse tangentielle
U,. Ainsi I'influence de la force centrifuge correspon-
dant a une valeur unique p.U? =1 pour tous les

Ta
En appliquant de proche en proche les relations (7)
I
on obtient les tensions o, et O‘t a la périphérie du
a
disque. Comme seul effet de la force centrifuge est

535 % . ; : I
considéré, on doit annuler la tension radiale o, en

- ' r
éléments, est introduite par les termes S <1> .

superposant la solution trouvée précédemment corres-
pondant uniquement & une tension radiale agissant
au rayon extérieur du disque de telle maniére que

—|—m3. ,.u—()

Le champ de tensions final dit & la force centrifuge
seulement, sera donné par le champ de tensions o//f
auquel on ajoutera le champ de tensions o/ multiplié

e 4 1365 | 1 o,7asw\ 0,768 | — 0,998 | — 0,168 | —oan
31/ 1,080 189! .

117
(e}
S Ta
par le coefficient my; = — 7+ Un exemple de calcul
O'ra
est traité dans la table I.
Taste 1
| Tensions o | Tensions o'/ | Tensions o’/
| dues s | dues dues &
Op =1 ‘ %% =0 | Op =0 (= nn;muel
O =0 o =1 | o =0 L r = radial
: 7 " " | [ (e [0
I e )
1 o o | 1 o | o | o | o [s=d
7’1 0,650 0.350 | 0,350 0,650 | — 0,980 — 0,470 :ioﬂ — 0,0152 N
1 '." 4 0,650 0,350 0,350 0,650 | —0,0318 | — 0.015’.’] v‘ o
J 3 770,5(]97 70,’:70 _ & 2 s |
N - _ L : ) —opes j=oaw
LI l 1,409 0,832 1,059 0.817 | — 0220 "“M"T‘——J | a

0,32
0,193 nm‘\nm\\

— 0,036

| 0,135 | 0,723

s | I 0,479 0,687 0,393 0,627 | — 0,244 | — 0,185 l | o
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élément conique.
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tion linéaire de la température (élément conique).



104 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE
o \ 2_
Tensions thermiques 5 Tenls'lons dﬁes 4 /2‘_{3 :;
Les graphiques étant éta- S ” (;7: =
blis pour une distribution Ua\ sl 9% £
linéaire de la température I I J .' ~| N\
en fonction du rayon, la 1 } 1 A\ \\\\g;
courbe définissant la répar- 4 | ’ % NS
tition de la température S —IT ; \ \\ ; / \\
est tout d’abord remplacée 23 [} )] fa; \
par une ligne polygonale, 8 l | Al | /"//
comme indiqué sur la figu- s . g ! |\ F g
2 \ 5 L1,
re 19 } 7 Y= \\
1% 7 i % T~
1) Module délasticité et o ! ?
coeffictent linéaire de di- |
latation thermique cons- \ -2 - 0 L 2 3
Tensions —=—
tants
Fig. 18. — Tensions mécaniques dans un disque de frein hydraulique.

Dans ce cas la marche
du calcul est en tout point
analogue a celle décrite précédemment pour la déter-
mination des tensions dues a la force centrifuge. On se
servira des relations suivantes pour passer du rayon
intérieur au rayon extérieur d’'un anneau

IV ol v 17 v IV ;

o, = S; - o =8 o, + S, - Bp-E-6

v _ ol v gl v §'v E " (8)
cr2 — Vp - crl + r O-ll + r B 4’60

Les coefficients S’” correspondant & une valeur unitaire
de B-E-6, sont donc & multiplier par la valeur B-E- 6,

Le calcul se poursuit de proche en proche comme
indiqué dans la table II reproduisant un exemple,
jusqu’a la périphérie du disque ou les tensions cr;: et
0';: sont finalement calculées. Comme seule I'influence

des tensions thermiques veut étre connue, nous ajou-

terons & cette solution le champ de tensions o// mul-

I'v

%,

tiphié par le facteur my = — —; - Cecit donnera
Ta
bien une tension radiale nulle sur les diameétres inté-

rieur et extérieur du disque.

2) Module d’élasticité et coefficient linéaire de dilata-
tion thermique variables

La distribution des tensions thermiques dans un

anneau élémentaire correspond a une valeur constante

Tavee 11

Tensions o’ Tensions o’ Temli‘:r'u:" B-E = constant
wUi=0 wUi=o0 B-E-8, = {(p)
O = O, = o, =
o,.‘c.’, u:“ _‘: w;‘_: B-E-0,
.3. 2 1 1 " n w w ["], ["_
gls * b r ' - t r t p :
< B-E-8, | B-E-8,
11| o 0 1 0 0 1 0 0 S=d
1|2 0875 | o0 |[0207{o038| 0209 | 038 | +0232]+0523| 329 |+ 64|+ 172] §
1]2 0,297 | 0348 76,4 172 A
mj2 0,297 0,348 76,4 172 %
1|3 0775 | 0,476 | 1,630 | 0,720 [, 0,560 | 0775 | —0,069 | —0,257 600 [— 14| — 154 | s
su/|_os8 | oam 93,0 133
0486 | 0214 124,6 55
(1|3 0672 | 0484 176,2 33,8 o
|3 0672 | 0484 176,2 33,8 9
111 [ 4 | 0517 | 0,268 | 0,960 T-0:530_0.483 [ oN0——00R0 | 0.204 | 14250 |(—855 | —2007 | 5
_+ 023 | 038 T—| T w
0645 | 0356 169 | %
me 0879 | 0685 | —669,7T"= 9
wis 0879 | 0,685 | —669,7 | — 2790 | o
1V [5] 231 | 200 | 0657 | 0049 [ 0112 | 0,866 | —0019|—0300| 970 |—168 | —2720 | §
0,077 | 05% —312,5 [ — 2420
0,577 { 0043 —wo | — sa| |
IV |5 0,654 0,637 | —920,5 | —5173 ay
v|s 9
V)6 s

des propriétés physiques de la matiére constituant cet
anneau. Dans le cas d’une variation du module d’élas-
ticité par exemple on pourra toujours considérer que
la valeur change soudainement d’'un anneau a I'autre,
de fagon a remplacer la variation continue par une
série de discontinuités. Comme les tensions thermiques
sont proportionnelles au facteur B-E-6,, on tracera
simplement la courbe discontinue correspondante que
I'on introduira dans les calculs comme précédemment.

Du fait du changement discontinu du facteur p-E en
passant d’un élément a l'autre, la tension tangentielle
subira une discontinuité au rayon de contact de deux

. . v 2 "3 -
anneaux consécutifs, de la valeur o1, calculée a I'aide

des relations (8) a la valeur GLI; qui sera prise pour la
détermination des tensions au rayon extérieur de
'anneau suivant.

La tension O';II; est calculée a partir de 1'équation
suivante, dérivée de la loi de compatibilité des défor-
mations radiales au rayon de contact de deux anneaux

consécutifs
' N 9)
v i1 1v 1\ Iv
Yt = E, °t, g (1 r ) Ory (B —B.) - Eur- @

Ey
relation dans laquelle les indices 2 et II correspondent
a des points situés de part et d’autre de la ligne de
séparation de deux anneaux consécutifs et 6 est égal
au niveau de température a cet endroit?,

Les champs de tensions correspondant a une tension
radiale unitaire située & la périphérie ou au rayon
intérieur du disque, et aux tensions centrifuges, doi-
vent aussi étre calculés en introduisant une correc-
tion si I'on veut tenir compte d’une variation de L.

En effet, dans ces cas la tension tangentielle o1, donnée
par les relations (6) ou (7) est a corriger au moyen de
la relation générale ci-dessous avant de passer a I'an-
neau suivant,

En Erp
Sy = g, T TV (_1 *‘E;,) O, (10)

Comme il sera montré par deux exemples, la varia-
tion du produit B:E est en général relativement faible
et n’influence que trés peu la distribution des tensions

1 et B, sont les coeflicients moyens de dilatation entre 0°C
17 2 Y
et la température de I’anneau correspondant.
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radiales et tangentielles. Dans la majorité des cas, le
caleul peut s’effectuer en considérant une
moyenne constante de E et de B dans toute I'étendue

valeur

du disque.
Exemples numériques

1) Tenstons mécaniques

Calculons les tensions radiales et tangentielles dans
un disque soumis a une tension radiale unitaire au
trou central, 4 une tension radiale unitaire située a la
périphérie du disque et a une vitesse de rotation cor-
respondant a une valeur p-U; = 1. Le disque a la
forme représentée dans la figure 18. La décomposition
en 4 anneaux élémentaires donne déja une approxi-
mation suffisante.

Le procédé de calcul est donné dans la table I et
suit exactement celui expliqué précédemment. La
table est a double entrée et un chiffre situé dans une
case donnée correspond soit a un coeflicient de ten-
sion S ou a une tension inscrits dans la colonne de
droite, auxquels s’appliquent les indices situés dans la
ligne supérieure horizontale. Les multiplications indi-
quées dans les relations (6) ou (7) sont marquées au
moyen d’une ligne brisée. On obtient immédiatement
des graphiques les coellicients de tensions S. Le calcul
se poursuit jusqu’au rayon extérieur, point 5, du dernier
anneau IV ot les tensions marginales sont alors calculées.

En utilisant les relations déterminant les coeflicients
my, m, et my on trouve les valeurs suivantes :

0.479 1
m; = — (ﬁiﬁ = —1218; m, = 0303 = 2,545 ;
—0.244
= — — (}.62
my 0.393 .62

La superposition linéaire of 4 myc!/ = ¢ donne les

tensions dues 4 une tension de frettage unitaire.
Les valeurs my-ol/ =0

donneront les tensions dues

A une tension unitaire agis- ’ 2

ticité E et du coeflicient de dilatation thermique B est
connue et est aussi reportée sur la figure 19. L’acier
utilisé est par exemple un acier austénitique.

Tout d’abord le disque est décomposé en un certain
nombre d’éléments coniques et la courbe de tempéra-
ture est remplacée par une ligne polygonale.

La marche du calcul, qui est en tout point la méme
que dans le cas de la force centrifuge, est reproduite
dans la table II pour une valeur constante du pro-
duit B-E.

A la périphérie du disque la tension radiale doit étre
nulle puisque seules les tensions thermiques sont con-
sidérées. Cette condition définit le coeflicient m, qui
conduira au calcul des tensions radiales et tangen-
tielles en utilisant la relation générale

0:01V+7n4-011.

Comme le disque n’a pas de trou central, la tension
radiale est égale 4 la tension tangentielle en ce point.

Considérons maintenant que le module d’élasticité et
le coefficient linéaire de dilatation thermique varient
en fonction du rayon. Les calculs sont reproduits dans
la table III. Dans ce cas il suffit de calculer, au moyen
des relations (9) ou (10), la nouvelle tension tangen-
tielle située immédiatement au-dela de la ligne sépa-
rant deux anneaux consécutifs, lorsqu’on passe d'un
élément de disque a autre. A part cette opération, les
calculs se poursuivent comme dans le cas correspondant
a B-E = constant.

Les tensions correspondant & ces deux derniers
exemples sont données dans la table IV. On remarque
la faible influence due a la variation de B-E.

L’influence des quelques trous de fixation percés dans
le disque se traduit par une augmentation locale des
tensions dans le voisinage immédiat des trous sans

E107¢ kg/em®

sant a la périphérie du

— /

—73-10° °C”

disque.

aubes

Enfin, la superposition

200 300 400

500 °C

lindaire o/l 4 my'oll =0

A

fournira les tensions dues a
la force centrifuge seule.
Les résultats de ces su-

4 \

/

perpositions, non reprodui-
tes ici, sont reportés sur la
figure 18. La combinaison
linéaive de ces champs de
tensions fournira ensuite la

solution  correspondant a

N—

n’importe quelles condi-

tions aux limites.

2) Tenstons thermiques

Choisissons, par exemple
le profil d’un disque de la
turbine d’un turbo-réacteur

et déterminons les tensions

P .3

thermiques relatives a la
répartition de température

donnée sur la figure 19. La
variation du module d’élas-

-3000 -1000 0 +1000

Tensions  kg/cm?* —=

Fig. 19. — Tensions thermiques dans un disque de turbine d’un turbo-réacteur.
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Taste 11
Tensions o’ | Tensions a’/ | Tensions o' B-E = variable
dues & dues & |
wUi=0 | ptji=o0 B-E-8, = [ir) ‘—“HM‘
Op =1 Org=1 O =0 5£e,| BN 108|107
9 =0 | =0 % =0 | lpunty| En
3|z || u|n " ' w ["], ‘ ["],
El | BE0, | BEO,
TT 0 0 1 0 o |1 |0 K 340 | 0 L] S=d
v |2 [oss (0 0207|048 [027 038 0232 osm | w0 D s |s
1]2 0,297 | 0,348 79 | 178 | [1 o (205 79 178 | o,
2 I 0207038 w0 | s | | | | | o
11 [ 30775 | 0476 | 1,630 | 0.720 | 0560 | 0,775 | — 0,069 | 0257 | 620 | | — k28| —1595 | S
O O oass (0270 7" ¥ eea | s
b.&? ;,21; I - 1290 | + 56.9
s = 0672|0484 | + 1823 | + 354 0,936 | 04 [1,92] o
mis 0,672 | 0,465 + 1823 | — 939 ] _‘ 9
1t |« 0517 {0268 0,950 | 0590 | 0483 [ 0680 | — 00 | —oa08 jvezs0 | | | | —sss | a7 |5
s/ 022 | 0316 | | | | —esa— e |
0,645 | 0,356 | | +115 |+ 97 | |
n 4 0,870 | 0,672 | —725,3 | — 2874 0860 05 |1.65] oy
w4 T [oswloes | —msa | —mer | | ar
IV | 5231 (200 O.T:'wz 0,049 M(PL“ ‘: 0,0185 — 0,300 | 8150 \;t _; _ — 1508 | — 2645 Sv
0,069 | 0,533 | ‘ — 3065 | — 2370
0,572 | 0,043 | I = +4770 | — 36
Iv|s 0,641 | 0576 | — 934,3 | — 4841 = [ ay
T 5 e 0,641 | 0,576 | — 934,3 | — 4841 }A i e 9
vie [ [ 1 | | s

cependant changer d’une fagon appréciable la distri-
bution générale des tensions.

TasrLe IV
B-E = B-E =
. variable 23.4 = constant
Point —
or | ot or | ot
‘ moyenne
\ ]
1 + 727 | + 727 + 705 | + 705
2 + 511 | + 684 + 495 | + 662
: +1162 | + 662 11122 + 716
4 4 543 | —1869 + 568 — 1826
5 0 ‘ — 4000 0 — 4276

En appliquant la méthode de calcul décrite précé-
demment, 1l est aisé de déterminer des points intermé-
diaires si la distribution des tensions doit étre connue
avec plus d’exactitude.

APPENDICE

Tensions mécaniques

La solution particuliere de I'équation (4) correspondant a
la force centrifuge seule est connue de travaux précé-
dents [4]. Elle a la forme d’un polynéme du troisieme degré
en p. Apres introduction de cette solution dans les relations
de Hooke (5) nous obtenons les coeflicients de tensions cor-
respondant & la solution particuliére

i A43v , d4n[, 8 1, 3 [, 8
5% =@ T 5D [1 11+v:|p+5+v|:1 '11+v]
nr . 34v o, 24v[, 8 L3 r_ 8

Sr, = " iiitw T5+v[1 11+va' g e T

relations dans lesquelles, pour des raisons de simplicité, le
rayon p est considéré comme négatif dans le cas ou I'élément
de disque a son sommet du c6té opposé a I'axe de rotation.

Tensions thermiques

1. Elément conique :

La solution particuliere de I'équation (4) correspondant
aux tensions thermiques seules a la forme d’un polynéome du
second degré. Apres introduction dans les relations (5), on
obtient les coefficients de tensions correspondant a cette

solution particuliére

v 3 1
S% =t 5P T FFv
. 1
L TR

To 5+ v 54 v

relations dans lesquelles, pour des raisons de simplicité, Ie
rayon p est considéré comme négatif dans le cas on I'élément
de disque a son sommet du coté opposé a 'axe de rotation.

Ces solutions sont ensuite a combiner linéairement avec
la solution des équations homogénes trouvées par intégra-
tion graphique de fagon a satisfaire aux conditions aux limi-
tes imposées dans I'établissement des graphiques relatifs aux
coeflicients de tensions.

2. Elément d’épaisseur constante :
Dans ce cas, la solution totale peut étre trouvée comple-
tement par voie mathématique [13]. Elle s’écrit

qIV

RN 0

p 6 \p 2 p 3

IV

i_~_1(1)3+1_@_!.

p 6 \p % @ 8
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