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LES RELATIONS ENTRE LES TENSIONS PRINCIPALES

EN ÉLASTICITÉ TRIDIMENSIONNELLE lQi?ßß
ET LEUR APPLICATION AUX SOLIDES DE RÉVOLUTION

par HENRY FAVRE, Dr h. c, Professeur à l'Ecole polytechnique fédérale, Zurich

§ 1. Introduction.

Lamé a montré, en 1841, qu'en tout point d'un corps
solide, les tensions principales <t\, cr2.o"3, et leurs dérivées
premières suivant les directions qu'elles définissent,
sont liées par trois relations simples 1. Dans ces équations

figurent aussi les rayons de courbure principaux
des trois surfaces isostatiques passant par le point
considéré 2.

Lamé croyait que les relations en question étaient
toujours valables, car il admettait tacitement l'existence
des surfaces isostatiques. Or Boussinesq a remarqué plus
tard que ces surfaces n'existent qu'exceptionnellement 8.

Il ne suffit pas, en effet, qu'il y ait en chaque point
trois directions perpendiculaires deux à deux et que
ces directions varient avec continuité d'un point à un
autre, pour qu'elles définissent nécessairement trois
familles de surfaces formant un système triplement
orthogonal.

Les équations établies par Lamé restent en réalité
valables chaque fois que les surfaces en question
existent. C'est le cas notamment en élasticité bidimen-

sionnelle, où ces relations, qui se réduisent alors à deux
et portent le nom d'équations de Lamé-Maxwell, rendent
d'incontestables services, en photoélasticité en particulier

*.

En dehors de l'élasticité bidimensionnelle, les
relations de Lamé n'ont, à notre connaissance, pour ainsi
dire jamais été appliquées. Elles sont même rarement
citées dans les ouvrages généraux sur la théorie de
l'élasticité5. Cela est probablement dû au fait que,
pour établir ces équations, le mathématicien français

1 G. Lamé, Journ. de Math. (Liouville), t. 6 (1841). Voir aussi,
du même auteur : Leçons sur la théorie mathématique de l'élasticité
des corps solides, Paris, 1852, p. 222 et suiv., et Leçons sur les
coordonnées curvilignes et leurs diverses applications, Paris, 1859, p. 274
et suiv.

2 Par definition, en tout point d'une surface isostatique, la normale
coïncide avec le support d'une des tensions principales. Ces surfaces
forment trois familles orthogonales. On dit aussi qu'elles constituent
un système triplement orthogonal de surfaces.

8 J. Boussinesq, Comptes rendus, t. 74 (1872), p. 243.
* Voir par ex. M. M. Frocht, Photoelasticity, Vol. I, New-York,

1946, Ch. 2, 7 et 9.
5 A. E. H. Love, dans son ouvrage classique A Treatise on the

Mathematical Theory of Elasticity, Cambridge, 1927, les mentionne
incidemment, en petits caractères, à la fin du Ch. II, § 59.
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a utilisé une voie assez indirecte, d'ailleurs peu accessible

aux personnes qui ne sont pas versées dans la
théorie des coordonnées curvilignes.

Les équations de Lamé sont cependant applicables
à toute une classe de problèmes d'élasticité tridimensionnelle.

Ce sont les problèmes relatifs aux solides de

révolution sur lesquels agissent des forces accusant la
même symétrie. Là, en effet, comme en élasticité bidi-
mensionnelle, les surfaces isostatiques existent.

Nous croyons donc utile d'examiner ici ce que
deviennent, pour de tels corps, les relations entre les

tensions principales, et de chercher à illustrer, à l'aide
de quelques exemples, la contribution que ces équations
peuvent apporter à l'étude des problèmes cités.

Afin de familiariser le lecteur avec la question, nous
établirons tout d'abord les relations générales de Lamé
à l'aide de simples considérations géométriques. Nous
nous bornerons en effet à appliquer les conditions
d'équilibre à un élément de volume convenablement
choisi (§ 2). Puis nous déduirons de ces équations
celles relatives aux solides de révolution (§ 3), et
donnerons enfin cinq applications destinées à montrer
l'utilité, en théorie de l'élasticité et en photoélasticité,
des formules obtenues (§ 4).

§ 2. Les relations entre les tensions principales
en élasticité tridimensionnelle.

Supposons que les directions des tensions principales,
en abrégé les directions principales, définissent trois
familles de surfaces isostatiques formant un système
triplement orthogonal. D'après un théorème de
géométrie infinitésimale, dû à Dupin, l'intersection de
deux surfaces de familles différentes est une ligne de
courbure pour chacune d'elles1. Soit maintenant un
élément de volume défini par les trois surfaces
isostatiques relatives à un point P, et les trois surfaces

analogues passant par un point voisin P' (fig. 1).
Chacune des douze arêtes de cet élément sera une
ligne de courbure pour les deux surfaces isostatiques
qui la définissent. Nous désignerons par dslt ds%, ds3 les

longueurs des arêtes partant de P, et par p12, p13 les
deux rayons de courbure principaux de la surface

passant par ce point et normale à ds,. Le premier
indice précise la surface considérée, et le second, la
direction définissant la courbure. Dans cette notation,
les rayons de courbure principaux, relatifs aux deux
autres surfaces par P, seront respectivement désignés

par P23, P21 et p31, p32.

Tout rayon de courbure principal sera considéré

comme positif si, en décrivant à partir du point P l'arc

1 Rappelons qu'on appelle ligne de courbure d'une surface S, les
lignes de cette surface qui sont tangentes en chacun de leurs points
à l'un des axes d'une courbe appelée indicatrice. Cette dernière peut
être elle-même définie comme suit. Considérons l'ensemble des plans
contenant la normale à une surface, en un point P. Chacun de ces
plans coupera la surface selon une courbe, dont nous désignerons le
rayon de courbure en P par R. Si l'on porte, sur les intersections des

plans en question et du plan tangent, une longueur Pm égale à y | R |,

le point m décrira une courbe qui est précisément l'indicatrice. C'est
une conique située dans le plan tangent. Les valeurs de R
correspondant aux plans normaux définis par les deux axes orthogonaux
de l'indicatrice sont les rayons de courbure principaux (voir par ex.
E. Goursat, Cours d'Analyse mathématique, t. I, Paris, 1927, §§ 235
et 240. Le lecteur trouvera également, dans cet ouvrage, au § 244,
la démonstration du théorème de Dupin).

<V ÙSi

Gi* dû

Ifcßi

dft

Ü71/7 +
d; foi\Gs for dsi

hs

jy ?i

C,i9.r.<,

ta

Fig. 1.
^C,2

ds qui est tangent à ce rayon, on se dirige vers le centre
de courbure. Il sera regardé comme négatif dans le cas
contraire. Ainsi, dans la figure 1, les rayons p1;i et pu
sont positifs.

Les tensions normales relatives aux six faces de
l'élément de volume seront respectivement égales à

2c,
dslt a2, as

d<?i
ds, »~i> -i i

9si ~i> ~s> -» -a dSs

Si nous désignons par df, l'aire de la face, par P,
perpendiculaire à ds,, par df, l'aire de la face opposée,

dsz ds3
et enfin, par e12 — et 61S — les petits angles

Pl2 Pl3
formés par les normales à la première face, à l'origine
et à l'extrémité des arcs ds^ et ds3, nous aurons, en
négligeant les infiniment petits d'ordre supérieur au
troisième :

dfx dsgdss,

dfî (dsz — Eta ds,) {ds3 — e13 ds,) ^
- (— + —) ds, dszdsa.

\Pl2 Pl3/

Soit A l'axe dirigé, de même sens que ds,, défini par
les centres des faces df,, df',. La somme des projections,
sur cet axe, des forces normales relatives à ces deux
faces sera :

3(Ji

ds,

— (T, ds% ds3

ôo, do, ôo.

is, 1- jl_
Pl2

1

ds.

J_
Pis

1

ds.

Pia Pia

ds% dss —

ds, ds2 ds3

ris, Î)S2

suivant les directions principales

désignent ici les dérivées des tensions O,, (7g, CT3
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D autre part, les tensions a2 et cr2 -f- — ds2 étant
às2

approximativement égales et perpendiculaires à A, et

faisant entre elles le petit angle e12
dsr,

P12
> la somme

des projections, sur l'axe A, des deux forces normales
correspondantes, est approximativement :

a2 ds3 ds,
ds2

Pl2

De même la somme des projections, sur le même
d<J3

axe, des deux forces provenant de <j3 et a3 -f- —— ds3
ds3

trajectoires s,, s2 engendrent deux familles orthogonales
de surfaces de révolution. Une troisième famille de
surfaces, orthogonale aux deux premières, est constituée

par les plans axiaux. Les trois familles jouissent
d'ailleurs de cette propriété que la normale en un
point d'une surface quelconque coïncide avec le support
d'une des tensions principales. Il existe donc bien, dans
ce cas, trois familles de surfaces isostatiques, formant
un système triplement orthogonal, et les équations
établies à la fin du § 2 sont applicables.

a3 ds, ds2
ds3

P13

Enfin, si nous désignons par F1; F2, F3 les composantes
d'une force massique éventuelle, évaluée par unité de

volume, sa projection sur A sera égale à

F, ds, ds2 ds3.

La somme de toutes ces projections devant être
nulle, nous obtenons, après division par ds,ds2ds3 et
en groupant les termes convenablement, la première
des trois équations suivantes, les deux autres s'en
déduisant par permutation circulaire :

î)<y,

ds,

d<32

<?*2

¦?g3

às3

P12

P2S

Psi

°i— <*3

Pl3

°2 — Cl
P21

V3-V2
P32

F„

F2,

F*.

(1)

(2)

(3)

Aux notations près, ce sont précisément les équations
que Lamé avait établies par une autre méthode 1.

'21 f

I i
>»L?1

Elevation

I
•S

C <f

s \
\\9,\

\ S

9m * p

Plan

AW
¦T: WJ

>0 y'

Fig. 2.

§ 3. Les relations entre les tensions principales
dans les solides de révolution.

Considérons maintenant un solide de révolution, sur
lequel sont appliquées des forces symétriques par
rapport à son axe z. Il s'agit donc d'un état de tension
qui ne dépend pas de l'azimut 9 (fig. 2).

En un point P, deux des directions principales sont
dans le plan axial a ir passant par ce point, et la troisième
est perpendiculaire à tt. Les deux premières directions
définissent, dans chaque plan axial, deux systèmes
de trajectoires orthogonales s,, s2, indépendantes du
plan copsidéré. Les trajectoires de la troisième direction
principale sont des cercles s3 de rayon r, situés dans
des plans perpendiculaires à l'axe z. Ce sont des

parallèles.
En faisant tourner la figure 2 autour de l'axe z, les

1 Si les surfaces isostatiques n'existent pas, les équations (1),
(2), (3) ne sont plus valables, comme nous l'avons vu. Les quantités
p12 P32 perdent d'ailleurs les significations que nous avons
indiquées. On peut toutefois montrer que, si l'on donne à ces quantités
des significations différentes, convenablement choisies, les équations
(1), (2), (3) restent valables. Ce cas n'interviendra pas dans la présente
étude.

2 Pour simplifier, nous appellerons plan axial tout plan passant
par l'axe du solide.

L'équation (3) est d'ailleurs identiquement satisfaite,
car la symétrie impose les conditions :

F. 0,
3as
ds.

0, Psi °° : PS2

Pour donner aux équations (1), (2) une forme
commode, désignons par 8 l'angle de ds, avec la direction
r, et par p1} p2 les rayons de courbure des trajectoires
s,, s2- Nous considérerons p1( p2 comme positifs si les
centres de courbure sont respectivement situés à

gauche des éléments d'arc ds,, ds2, lorsqu'on décrit
ces éléments à partir du point P

Les deux rayons de courbure principaux de la surface
de révolution s, sont ici :

P21 cnp Pi,

et ceux de la surface *2

Pia — ci2^ ~ P„

P23

Pis:

C^P

1 Cette convention est donc différente de celle faite pour les rayons
de courbure principaux définis au § 2. Grâce à cette nouvelle
convention nous obtiendrons, comme nous le verrons plus loin, des
équations qui, dans le cas particulier de l'élasticité bidimensionnelle,
coïncideront exactement avec celles utilisées aujourd'hui en
photoélasticité.
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En introduisant ces valeurs dans les équations (1),
(2), on obtient le système :

(4)
des, CT2 — CTj C73— a,
ds,

COS 8 —
Pa r F,,

do2 CTa — °i CTa—a8 • r,

ds2
— H sm 9 —

Pi r
F2-

Ce sont les relations cherchées, entre les tensions

principales dans les solides de révolution 1.

En posant F, F2 0 dans ces formules, et en
faisant tendre r vers l'infini, on retrouve les équations
de Lamé-Maxwell utilisées en photoélasticité bidimen-
sionnelle 2

:

du, a,—<s%

ds, p2
0,

d°2 °m^2 _ q
3s2 p,

(5')

§ 4. Applications diverses.

Dans ce paragraphe, nous supposons essentiellement

que les forces appliquées aux corps de révolution
considérés satisfassent aux conditions précisées au début
du § 3, c'est-à-dire que les tensions qu'elles provoquent
ne dépendent pas de l'azimut <p.

3u2
1° Signe de la dérivée -— de la tension ct2 normale

às^

à la surface limitant un cône ou un cylindre de révolution,
en un point de cette surface où n'agit aucune force
extérieure et où la force massique est nulle.

Soit s, un méridien de la surface de révolution
limitant un corps, et soit s2 la trajectoire normale à

ce méridien, contenue dans son plan et passant par un
point P (fig. 3). La formule (5) montre que :

3o2

ds.
ÎLi
Pi

sin 9, (6)

car o"2 0 et F2 0.

Cette dernière relation devient, si nous supposons
en outre que la courbure du méridien soit nulle au
point P (p, <x> :

der.

as2

<*3 ¦
— sm
r

ki

o<e<fr

Fis. 4.

PA

ir<d<2ir

Fie. 5.Fig._3.

1 Dans ces équations, r désigne une quantité essentiellement positive.

L'angle 6, par contre, qui est compté positivement dans le sens
contraire à celui des aiguilles d'une montre, peut avoir une valeur
quelconque, positive ou négative.

2 Voir M. M. Frocht, toc. cit., p. 59.

Ainsi, dans le cas d'un cône ou d'un cylindre de

révolution, le signe de la dérivée ——, en un point P de la
3s2

surface, est contraire à celui de la tension o3, si 0 < 8 < TT

(fig. i), et le même que celui de cette tension, si
u < 8 < 2 TT (fig. 5). Enfin si 8 0 ou tr, la dérivée

d°~î
-— est nulle (cas d un corps limité par un plan).
ds2

Ces conclusions s'appliquent également au signe de

la tension ct2 elle-même, pour les points voisins de P
situés à l'intérieur du corps, car cette tension s'annule
à la surface.

Le lecteur vérifiera que ces règles sont confirmées

par les formules de la théorie de l'élasticité relatives
aux cas en question.

2° Conditions pour que, le long de l'axe d'un solide
de révolution, la tension normale parallèle à cet axe passe

par une valeur extrême.
Dans un plan axial, par raison de symétrie, une des

trajectoires, s2 Par exemple, coïncide avec l'axe z du

solide, tandis que les trajectoires de l'autre système
coupent orthogonalement cet axe. Soit s, l'une de ces

dernières trajectoires (fig. 6). On a, en un point A de

s, voisin de l'axe, et en remplaçant la trajectoire par
la parabole osculatrice :

r2 2 Pl z,

dz

drtel

d'où

r
Pi'

2rdr 2 p, dz,

sin 8 8 1

r r ~~
Pi

D'autre part, en tout point P de l'axe, p2 oo,

i <y, (par raison de symétrie), et l'équation (5)

montre que
3a«

F« (8)

*z

C,7<

S,i\

ti6

Si F2 0, cette dernière
formule devient :

3o2
_ n^a-gi

3s2 p,
(9)

Fig. 6.

Ainsi, le long de l'axe d'un
solide de révolution où la
force massique est nulle, la
tension ct2 parallèle à cet axe

passe par une valeur extrême

lorsque la courbure 1/px des

trajectoires perpendiculaires
à l'axe s'annule avec changement de signe en un point
OÙ G, ^ CTjj.

En un point de l'axe où o, ct2, les trois tensions
principales sont égales, car u, o"s, comme nous
l'avons remarqué. C'est un point singulier, dont les

propriétés peuvent s'étudier par des méthodes
analogues à celles utilisées en élasticité bidimensionnelle.

3° Voiles minces soumis à une pression normale p,
dans le cas où la flexion est négligeable.

Soit s, un méridien de la surface moyenne (fig. 7).
Ce méridien est une trajectoire. Désignons par e l'épaisseur

du voile, en un point P de cette courbe. La
trajectoire s2, orthogonale à s, en ce point, a une courbure
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nulle. En effet, les tensions a, sont, aux différents
points de la normale en P à la surface moyenne, parallèles

et uniformément réparties dans l'épaisseur. On
a donc p2 oo Comme la tension ct2 est ici petite
par rapport à a, et as, l'équation (5) devient,
approximativement :

3a2
ds«

¦ — sin 8
Pi r

•.Fi.

<v

i

¦& t/

Fie. 7.

3a, CT3~ aicos Q p
3s,

e

<*i °3 • a— sin 9 -Pi '•
-F2.

Cette relation mon-
A z j. 3a%

tre crue la dérivée -—
I a une valeur sensible¬

ment constante dans

l'épaisseur e du voile,
car toutes les
grandeurs figurant au
second membre subissent

des variations
négligeables si l'on se

déplace le long de la
normale en P à la
surface moyenne. Comme
la tension a2 est nulle

sur la face libre, et égale à — p sur la face où agit la
pression, on en déduit que

3a2
_ _|t.

3s2 e

Les équations (4), (5) deviennent alors :

(10)

(11)

On retrouve, sous une autre forme que celle utilisée
habituellement, les formules classiques pour le calcul
des voiles minces répondant aux conditions admises 1.

Le système (10), (11), joint aux conditions aux
limites, permet en général de calculer les tensions a,
et a3 en un point quelconque d'un voile, comme nous
le montrerons plus loin à l'aide d'un exemple. Quant à
la petite tension ct2, elle varie-linéairement dans l'épaisseur,

de la valeur — p à 0, comme nous l'avons vu.
Ainsi, dans le cas traité, l'application des formules

(4), (5) permet de résoudre entièrement le problème
des tensions. C'est là un fait exceptionnel car, en
général, dans la théorie de l'élasticité, il est nécessaire
de faire intervenir, en plus de conditions d'équilibre
telles que (4), (5), des équations exprimant certaines
propriétés des déformations.

Pour illustrer la forme (10), (11) des équations des
voiles minces, appliquons ces relations au calcul des
tensions sollicitant les parois d'un bassin conique,
rempli d'eau, en supposant l'épaisseur e constante
(fig. 8). Si nous désignons par h la hauteur du cône,
par y0 et y le poids spécifique des parois et celui de
l'eau, et si nous plaçons l'origine 0 de l'axe vertical z
au sommet du cône, nous avons :

1 Comparer par exemple aux formules données par S. Timoshenko
dans son ouvrage Theory of Plates and Shells, New-York and London,
1940, p. 358.

p1 co, p=y(Ä—z), F^—y„sin9, F2=—y0cos8;

r_tg8' *1_sinl

m.»*
*'

ti^-
0 r J/

^
Fig. 8.

Les équations (10), (11), deviennent, après simplifications

:

da,
-^ + a, — a3 — YqZ 0,

y {h — z) + y0 cos

tg 9 sin 9

(10')

(11')

En substituant l'expression (11') de cr8 dans la relation
(10'), on obtient une équation différentielle linéaire, du
premier ordre, à coefficients variables :

y
da,

z~dz-+^
{h — z) cos 6 -f- y0

sin2 6

dont la solution générale est1

yh cos I

C y cos l yo

3e sin2 8 + 1 sin2

où C désigne une constante.
La tension a, devant avoir une valeur finie au sommet

0 du cône, où z 0, on a nécessairement C 0, d'où
pour a, et a3 les valeurs :

/, ey0 2 \ / ey0cos8
H^+y-^ë-S2) __{h

~3—
y cos 9 3/ct, —„ .m .—s— > o-

y
1 2e tg 9 sin 9 e tg 8 sin

4° Procédé graphique pour séparer les tensions, en
photoélasticité tridimensionnelle (cas des solides de

révolution)

On peut aujourd'hui, en appliquant la méthode du
figeage des contraintes, déterminer à l'aide de la lumière
polarisée : 1° les directions des tensions principales,
2° les différences a, a3 — a, de ces

tensions, en un point quelconque d'un modèle
transparent tridimensionnel2. Pour séparer les tensions

1 L'équation homogène z
do.

0 est une équation d'Euler,

qu'on intègre en séparant les variables. Il est facile de trouver une
solution particulière de l'équation complète.

* Voir par ex. M. Hktényi, Handbook of Expérimental Stress
Analysis, New-York and London, 1950, p. 940 et suiv.
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principales, c'est-à-dire pour déterminer séparément

°i> °a> °s> u est nécessaire de compléter ces résultats.
Frocht et Guernsey ont récemment montré que ceci est
possible, dans le cas général, au moyen d'intégrations
graphiques le long d'axes rectilignes 1.

Dans le cas particulier des solides de révolution
envisagé ici, ces intégrations pourraient aussi se faire
dans un plan axial, le long des trajectoires s, ou s2,

selon un procédé analogue à celui utilisé en
photoélasticité bidimensionnelle. Intégrons en effet la relation
(4) le long de s,, et la relation (5) le long de s2, à partir
d'une origine 0, située à la surface du solide, où la
détermination des tensions (a^)0, (a2)0 par la
photoélasticité n'offre en principe pas de difficulté.

Nous obtenons, en supposant F, F2 0 :

(aa)o '

't-Çi I a„

ds.
Pi

: sin 6 ds2. (13)

Les premières
intégrales des seconds
membres peuvent
avantageusement

être transformées
en introduisant les

angles y, v|/ que
forment respecti-

^droite Xà z vement, en un
point P, les deux

,- isocline

\
Fig. 9.

traj ectoires s,, s2

avec l'isocline 2

passant par ce

point (fig. 9), ce

qui donne 3
:

- ds, I (a, a2) cotg iy d
P2

CT2 — a, fds2 — (a,—a2) cotg y d 6,
Pi y

et les formules (12), (13) deviennent :

(12'

/fa3—c,{a, — a2) cotgvj;(i6+ cos Qds,,

a2= {a2)° — I (ffi — c2) cotg^i'di

(13')

sin 6 ds»,

60 désignant la valeur de l'angle 0 au point initial 0.

Comme sous les signes d'intégration ne figurent que
des angles et des différences de tensions donnés par

1 M. M. Frocht and R. Guernsey, National Advisory Committee
for Aeronautics, Technical Note 2822, Washington, Dec. 1952.

8 Rappelons qu'une ligne isocline est le lieu des points où les
directions des tensions principales sont constantes. Ces lignes se

déterminent à l'aide de la lumière polarisée, en plaçant une lame
mince entre deux niçois ou deux filtres croisés.

8 Voir p. ex. M. M. Frocht, Pkotoelasticily, Vol. I, New-York,
1946, p. 287 à 289.

A

-^coserf*!, (12)

£

la méthode du figeage des contraintes, l'intégration par
un procédé graphique donnera a, et a21. On déduira
ensuite ct3 de la différence ct3 — a,.

Remarquons enfin que si l'on fait tendre r vers
l'infini dans les relations (12'), (13'), on retrouve les

formules correspondantes utilisées en photoélasticité
bidimensionnelle.

5° Généralisation du théorème de Mesnager.
Supposons qu'en un point P d'un solide de révolution,

l'une des deux trajectoires situées dans le plan axial,
s, par exemple, soit tangente à la ligne isocline pas¬

sant par ce point
(fig. 10). Soit P,
un point infiniment

voisin de

P, situé sur s,.

^ P, sera égale-
*>isocline ment sur l'iso¬

cline et les normales

à s, aux deux

points considérés

seront parallèles.
En effet, en chacun

d'eux, la
normale coïncide
avec la direction

d'une des tensions principales, et cette direction est la
même en P, qu'en P, puisque les deux points sont
sur une isocline.

1
La courbure — de la trajectoire Si est alors nulle, et

Pi
J

l'équation (5) devient :

Fig. 10.

3a2
3s«

Si r oo (cas de l'élasticité plane), on a ——
ds«

(14)

0,

et si cette dérivée s'annule en changeant de signe, la
tension a2 passera par une valeur extrême en P,
lorsqu'on se déplace sur s2. On a donné à cette proposition,

utilisée en photoélasticité bidimensionnelle, le

nom de théorème des Mesnager
Ainsi, la formule (14), applicable aux solides de

révolution, constitue une généralisation du théorème de

Mesnager. Elle montre que, lorsque r est fini, la dérivée

3a2
3s«

n'est en général pas nulle si la trajectoire s, est

tangente à l'isocline par P. C'est seulement lorsque 9

est nul ou égal à tt, ou encore lorsque a2 a3, que cette

dérivée est égale à zéro et qu'il peut y avoir un extrémum.

Zurich, 10

1 Les formules (12'), (13') sont applicables sous cette forme à

tout le domaine du solide, sauf si l'on s'approche de Taxe z, car r
tend alors vers zéro et les fonctions sous les signes sommes des secondes

intégrales prennent la forme indéterminée -. On démontre facilement

que si l'on intègre le long d'une trajectoire sx coupant orthogonalement
l'axe z, la vraie valeur de la fonction sous le deuxième signe d'intégration
de (12') est zéro. Si l'on intègre le long de l'axe z s2 lui-même, les
deux intégrales de (13') se présentent sous des formes indéterminées.
Il est alors préférable d'utiliser plutôt l'équation (13), en remarquant
que, d'après ce que nous avons dît à propos du second exemple, la
seconde intégrale de cette équation devient égale à la première.

2 Voir A. Mesnager, La Technique moderne, t. XVI, n° 6, 15 mars
1924, p. 168 et 169. Consulter aussi M. M. Frocht, Photoelasticity t
t. I, p. 215 et suiv.


	Les relations entre les tensions principales en élasticité tridimensionnelle et leur application aux solides de révolution

