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LES RELATIONS ENTRE LES TENSIONS PRINCIPALES
EN ELASTICITE TRIDIMENSIONNELLE
ET LEUR APPLICATION AUX SOLIDES DE REVOLUTION

par HENRY FAVRE, DT h. c., Professeur a I'Ecole polytechnique fédérale, Zurich

§ 1. Introduction.

Lamé a montré, en 1841, qu’en tout point d’un corps
solide, les tensions principales oy, 05,03, et leurs dérivées
premiéres suivant les directions qu’elles définissent,
sont liées par trois relations simples 1. Dans ces équa-
tions figurent aussi les rayons de courbure principaux
des trois surfaces isostatiques passant par le point
considéré 2.

Lamé croyait que les relations en question étaient
toujours valables, car il admettait tacitement I’existence
des surfaces isostatiques. Or Boussinesq a remarqué plus
tard que ces surfaces n’existent qu’exceptionnellement 3,
Il ne suffit pas, en effet, qu’il y ait en chaque point
trois directions perpendiculaires deux a deux et que
ces directions varient avec continuité d’un point & un
autre, pour qu’elles définissent nécessairement trois
familles de surfaces formant un systéme triplement
orthogonal.

Les équations établies par Lamé restent en réalité
ralables chaque fois que les surfaces en question
existent. C’est le cas notamment en élasticité bidimen-

stonnelle, ou ces relations, qui se réduisent alors a deux
et portent le nom d’équations de Lamé-Maawell, rendent
d’incontestables services, en photoélasticité en parti-
culier 4.

En dehors de I'élasticité bidimensionnelle, les rela-
tions de Lamé n’ont, & notre connaissance, pour ainsi
dire jamais été appliquées. Elles sont méme rarement
citées dans les ouvrages généraux sur la théorie de
Iélasticité >, Cela est probablement di au fait que,
pour établir ces équations, le mathématicien francais

! G. Lamg, Journ. de Math. (Liouville), t. 6 (1841). Voir aussi,
du méme auteur: Legons sur la théorie mathématique de Uélasticité
des corps solides, Paris, 1852, p. 222 et suiv., et Legons sur les coor-
données curyilignes et leurs diverses applications, Paris, 1859, p. 274
et suv.

? Par définition, en tout point d’une surface isostatique, la normale
coincide avec le support d'une des tensions principales. Ces surfaces
forment trois familles orthogonales. On dit aussi qu'elles constituent
un systéme triplement orthogonal de surfaces.

8 J. BoussiNesq, Comptes rendus, t. 74 (1872), p. 243.

4 Voir par ex. M. M. Frocnur, Photoelasticity, Vol. I, New-York,
1946, Ch. 2, 7 et 9.

® A. E. H. Love, dans son ouvrage classique A Treatise on the
Mathematical Theory of Elasticity, Cambridge, 1927, les mentionne
incidemment, en petits caractéres, 4 la fin du Ch. II, § 59.
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a utilisé une voie assez indirecte, d’ailleurs peu acces-
sible aux personnes qui ne sont pas versées dans la
théorie des coordonnées curvilignes.

Les équations de Lamé sont cependant applicables
a toute une classe de problemes d’élasticité tridimen-
stonnelle. Ce sont les problemes relatifs aux solides de
révolution sur lesquels agissent des forces accusant la
méme symétrie. La, en eflet, comme en élasticité bidi-
mensionnelle; les surfaces 1sostatiques existent.

Nous croyons donce utile d’examiner 1ci ce que
deviennent, pour de tels corps, les relations entre les
tensions principales, et de chercher & illustrer, & I'aide
de quelques exemples, la contribution que ces équations
peuvent apporter a I’étude des problémes cités.

Afin de familiariser le lecteur avec la question, nous
établirons tout d’abord les relations générales de Lamé
a l'aide de simples considérations géométriques. Nous
nous bornerons en effet & appliquer les conditions
d’équilibre & un élément de volume convenablement
choisi (§ 2). Puis nous déduirons de ces équations
celles relatives aux solides de révolution (§3), et
donnerons enfin cinq applications destinées a montrer
P'utilité, en théorie de I'élasticité et en photoélasticité,
des formules obtenues (§4).

§ 2. Les relations entre les tensions principales

en élasticité tridimensionnelle.

Supposons que les directions des tensions principales,
en abrégé les directions principales, définissent trois
familles de surfaces isostatiques formant un systéme
triplement orthogonal. D’aprés un théoreme de géo-
métrie inflinitésimale, di a Dupin, I'intersection de
deux surfaces de familles différentes est une ligne de
courbure pour chacune d’elles ’. Soit maintenant un
élément de volume défini par les trois surfaces iso-
statiques relatives & un point P, et les trois surfaces
analogues passant par un point voisin P’ (fig. 1).
Chacune des douze arétes de cet élément sera une
ligne de courbure pour les deux surfaces isostatiques
qui la définissent. Nous désignerons par dsy, dsy, dsg les
longueurs des arétes partant de P, et par py, pig les
deux rayons de courbure principaux de la surface
passant par ce point et normale & ds;. Le premier
indice précise la surface considérée, et le second, la
direction définissant la courbure. Dans cette notation,
les rayons de courbure principaux, relatifs aux deux
autres surfaces par P, seront respectivement désignés
Par Pog, Par €t Psi, Psso

Tout rayon de courbure principal sera considéré
comme positif si, en décrivant a partir du point P l'arc

1 Rappelons qu’on appelle ligne de courbure d'une surface S, les
lignes de cette surface qui sont tangentes en chacun de leurs points
a I'un des axes d’une courbe appelée indicatrice. Cette derniére peut
étre elle-méme définie comme suit. Considérons 'ensemble des plans
contenant la normale & une surface, en un point P. Chacun de ces
plans coupera la surface selon une courbe, dont nous désignerons le
rayon de courbure en P par R. Si I'on porte, sur les intersections des

plans en question et du plan tangent, une longueur P, égale a v R|,
le point m décrira une courbe qui est précisément I'indicatrice. C’est
une conique située dans le plan tangent. Les valeurs de R corres-
pondant aux plans normaux définis par les deux axes orthogonaux
de Tindicatrice sont les rayons de courbure principauz (voir par ex.
E. Gouwrsar, Cours d’'Analyse mathématique, t. 1, Paris, 1927, §§ 235
et 240. Le lecteur trouvera également, dans cet ouvrage, au § 244,
la démonstration du théoréme de Dupin).
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Fig. 1. N
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ds qui est tangent a ce rayon, on se dirige vers le centre
de courbure. Il sera regardé comme négatif dans le cas
contraire. Ainsi, dans la figure 1, les rayons p;, et pg
sont positifs.
Les tensions normales relatives aux six faces de
I'élément de volume seront respectivement égales a
Jo

Joy 3

sk i X

oy, 07 + 5 ds;, 0, ..., O3 + 3 dsg 1.
J81 S3

51 nous désignons par a ‘aire de la face, par P
5 désig if, 1 ; ,
herpendiculaire & ds ar df; laire de la face opposée
I I 1L 2 ']

ds, ds

et enfin, par g, = =2 et g3 = — les petits angles

formés par les normales a la premiére face, 4 l'origine
et a Dextrémité des arcs dsy et dss, nous aurons, en
négligeant les infiniment petits d’ordre supérieur au
troisiéme : .

dfy, = dsydsg,

df; = (dsy — €15 ds;) (dsg — €13 ds;) =

o~ [1 — (i + L) r‘lsl] dsg dss.
P12 P13
Soit A I'axe dirigé, de méme sens que ds;, défini par
les centres des faces dfy, df;. La somme des projections,
sur cet axe, des forces normales relatives a ces deux
faces sera :

Jo il 1
(0‘1 +- ()Tll (lsl) [ 1 — <@ 4 ﬁ) dsl] dsy dsg —

) 1 1
— 0y dsydsg =~ [% — <£ + pTg> cl] dsy dsg dsg.

0y JO, 0y

, )
d8y ISy (S3
suivant les directions principales.

1

désignent ici les dérivées des tensions 0y, 0y, g



. Jo, "
D’autre part, les tensions gy et oy 4+ —— ds, étant
2

s
approximativement égales et perpendiculaires a A, et
. . dsy
faisant entre elles le petit angle €, = P la somme
12

des projections, sur 'axe A, des deux forces normales
correspondantes, est approximativement :

ds,
Oy dsgds; — -
P12

De méme la somme des projections, sur le méme
(70'3

— ds.
(783 S

axe, des deux forces provenant de o5 et o5 +
sera :

dsg

oy dsy dsy :

Enfin, si nous désignons par Iy, Fy, Fyles composantes
d’une force massique éventuelle, évaluée par unité de
volume, sa projection sur A sera égale a

Fydsy dsy dsg.

La somme de toutes ces projections devant étre
nulle, nous obtenons, aprés division par ds; ds, dsy et
en groupant les termes convenablement, la premiére
des trois équations suivantes, les deux autres s’en
déduisant par permutation circulaire :

Jo o;—0. 0, —O. = ;
9, _ %1% | B1=%_ p ()
Jsy P12 P13

%l Oy —O C9— O .

C2 P2 "3 U - - o (2)
Js5 P23 P21

Jog 03— 0; 03— 0y " A
s cho-vecn — F,. (3)
uS3 P31 Pa2

Aux notations prés, ce sont précisément les équations
que Lamé avait établies par une autre méthode *.

§ 3. Les relations entre les tensions principales
dans les solides de révolution.

Considérons maintenant un solide de révolution, sur
lequel sont appliquées des forces symétriques par
rapport a son axe z. Il s’agit done d'un état de tension
qui ne dépend pas de I'azimut ¢ (fig. 2).

En un point P, deux des directions principales sont
dans le plan axial 2w passant par ce point, et la troisiéme
est perpendiculaire 4 Tr. Les deux premiéres directions
définissent, dans chaque plan axial, deux systémes
de trajectoires orthogonales s;, s,, indépendantes du
plan copsidéré. Les trajectoires de la troisieme direction
principale sont des cercles s; de rayon r, situés dans
des plans perpendiculaires a laxe z. Ce sont des
paralléles.

En faisant tourner la figure 2 autour de I'axe z, les

1 Si les surfaces isostatiques n’existent pas, les équations (1),
(2), (3) ne sont plus valables, comme nous I'avons vu. Les quantités
P12seess Pgp perdent d’ailleurs les significations que nous avons indi-
quées. On peut toutefois montrer que, si I'on donne & ces quantités
des significations différentes, convenablement choisies, les équaltions
(1), (2), (3) restent valables. Ce cas n'interviendra pas dans la présente
étude.

* Pour simplifier, nous appellerons plan axial tout plan passant
par l'axe du solide.
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(5]
=]
~1

trajectoires sy, s, engendrent deux familles orthogonales
de surfaces de révolution. Une troisieme famille de
surfaces, orthogonale aux deux premiéres, est consti-
tuée par les plans axiaux. Les trois familles jouissent
d’ailleurs de cette propriété que la normale en un
point d’une surface quelconque coincide avec le support
d’une des tensions principales. Il existe donc bien, dans
ce cas, trois familles de surfaces isostatiques, formant
un systéme triplement orthogonal, et les équations
établies a la fin du § 2 sont applicables.

’rz

i
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\ ’ "

SN Elevation
g6

s NE

S x @2y

\\! %

EI \\\\
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L’équation (3) est d’ailleurs identiquement satisfaite,
car la symétrie impose les conditions :
B, Jog
1’3 = 0, H o —

= 0
¢/)S3 ) p31 )

Psz = 0.

Pour donner aux équations (1), (2) une forme com-
mode, désignons par 6 'angle de ds; avec la direction
r, et par p;, p, les rayons de courbure des trajectoires
s1, Sa. Nous considérerons py, p, comme positifs si les
centres de courbure sont respectivement situés a
gauche des éléments d’arc dsy, ds,, lorsqu’on déerit
ces éléments & partir du point P 1

Les deux rayons de courbure principaux de la surface
de révolution s; sont ici:

Par = CnP = py, P2z = Cosl’ = AT
et ceux de la surface s, :
=5 5 r
P =—CpP =—p,, 913:*(131):—(_059‘

! Cette convention est donc différente de celle faite pour les rayons
de courbure principaux définis au § 2. Grace a cette nouvelle con-
vention nous obtiendrons, comme nous le verrons plus loin, des
équations qui, dans le cas particulier de 1'élasticité bidimensionnelle,
coincideront exactement avec celles utilisées aujourd’hui en photo-
élasticité.
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En introduisant ces valeurs dans les équations (1),
(2), on obtient le systéme :

)o O,—O O03—O .
=172 14 28 T1gsf— Fp (4)
481 P2 r

)o O9—O Oy— O3 . ) -
=22 1 L 2 _Sging— Fy (5)
I8y P1 L4

Ce sont les relations cherchées, entre les tensions
principales dans les solides de révolution .

En posant F; = Iy =0 dans ces formules, et en
faisant tendre r vers l'infini, on retrouve les équations
de Lamé-Maazswell utilisées en photoélasticité bidimen-
sionnelle % :

e (@)

I8 P2
Joy  O1—0y
I8y ' P1

§ 4. Applications diverses.

Dans ce paragraphe, nous supposons essentiellement
que les forces appliquées aux corps de révolution
considérés satisfassent aux conditions précisées au début
du § 3, c’est-a-dire que les tensions qu’elles provoquent
ne dépendent pas de I'azimut o.

: .., dog .
10 Signe de la dérivée —= de la tension oy normale
Jsy
a la surface limitant un céne ou un cylindre de révolution,
en un point de cette surface o n’agit aucune force
extérieure et ol la force massique est nulle.

Soit s; un méridien de la surface de révolution
limitant un corps, et soit s, la trajectoire normale a
ce méridien, contenue dans son plan et passant par un
point P (fig. 3). La formule (5) montre que :

% o O3 .
b 2 73 sin 6, (6)

I8y P1
carog =0 et Fy=0.
Cette derniére relation devient, si nous supposons
en outre que la courbure du méridien soit nulle au
point P (py=0):

Jo O3 . -
kel - (7)
(}32 r
$Z
i.
R
ighe %
PP
i
Fig. 3.

! Dans ces équations, r désigne une quantité essentiellement posi-
tive. L’angle 8, par contre, qui est compté positivement dans le sens
contraire a celui des aiguilles d’une montre, peut avoir une valeur
quelconque, positive ou négative.

2 Voir M. M. Frocur, loc. cit., p. 59.

Ainst, dans le cas d'un céne ou d'un cylindre de

, : ; . . . JO .
révolution, le signe de la dérivée ()?ﬂ’ en un point P de la
2

surface, est contraire a celut de la tension og, s1 0 < & <1r
(fig. 4), et le méme que celur de celte tension, st
T™<0<2m (fig. 5). Enfin si 8 =0 ou T, la dérivée
Joy " .

B est nulle (cas d’un corps limité par un plan).

Ces conclusions s’appliquent également au signe de
la tension o, elle-méme, pour les points voisins de P
sttués a Uintérieur du corps, car cette tension s’annule
a la surface.

Le lecteur vérifiera que ces régles sont confirmées
par les formules de la théorie de D'élasticité relatives
aux cas en question.

20 Conditions pour que, le long de Uaze d’un solide
de révolution, la tension normale paralléle a cet axve passe
par une valeur extréme.

Dans un plan axial, par raison de symétrie, une des
trajectoires, s, par exemple, coincide avec I'axe z du
solide, tandis que les trajectoires de I'autre systéme
coupent orthogonalement cet axe. Soit s; 'une de ces
derniéres trajectoires (fig. 6). On a, en un point A de
s; voisin de l'axe, et en remplacant la trajectoire par
la parabole osculatrice :

rP=2p; 3, d’ou 2rdr = 2 p; dz,
dz r sin®  © 4
= tgb=5 = —>» — - =
dr p; r ro P
D’autre part, en tout point P de I'axe, py = o,
o3 = 0y (par raison de symétrie), et I’équation (5)
montre que :
Jo Oy—0O "
228 o8 "1 .y S (8)
I8y P1
AZ
I Si Fy =0, cette derniére
[21:(2’3 formule devient :
\
I P
i o 0y—0
et (R ot et 8 9)
ISy P1

Aunsi, le long de Uaze d’un
solide de révolution ou la
force massique est nulle, la
tenston Gy paralléle a cet axe
passe par une valeur extréme
lorsque la courbure 1/p; des
trajectotres perpendiculaires
a Uaze s’annule avec changement de signe en un point
o Oy # O,

En un point de I'axe ou o; = 0y, les trois tensions
principales sont égales, car o; = o3, comme nous
I'avons remarqué. C’est un point singulier, dont les
propriétés peuvent s’étudier par des méthodes ana-
logues a celles utilisées en élasticité bidimensionnelle.

\

39 Voiles minces soumis @ une pression normale
-
dans le cas ot la flexion est négligeable.
Soit s; un méridien de la surface moyenne (fig. 7).
Ce méridien est une trajectoire. Désignons par e I'épais-
] g
seur du voile, en un point P de cette courbe. La tra-
jectoire sy, orthogonale & s; en ce point, a une courbure
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nulle. En effet, les tensions o; sont, aux différents
points de la normale en P 4 la surface moyenne, paral-
leles et uniformément réparties dans ’épaisseur. On
a donc py,=o. Comme la tension o, est ici petite
par rapport 4 oy et o, I'équation (5) devient, approxi-
mativement :

%ol (o} O3 .
2 1 _Ignb—F,
sy P1 r
Cette relation mon-
z

., JOy
tre que la dérivée —
8y

a une valeur senstble-
ment constante dans
Uépaisseur e du voile,
car toutes les gran-
deurs figurant au se-
cond membre subis-
sent des variations
négligeables si I'on se
déplace le long de la
normale en P a la sur-
face moyenne. Comme
la tension o, est nulle
sur la face libre, et égale & — p sur la face ol agit la
pression, on en déduit que

Jdoy 2
ISy e

Les équations (4), (5) deviennent alors :

Joy 03—0y

751 cos 6 — F, (10)
~£:~gl—gssine_172. (11)
e P1 T

On retrouve, sous une autre forme que celle utilisée
habituellement, les formules classiques pour le calcul
des voiles minces répondant aux conditions admises 1,

Le systeme (10), (11), joint aux conditions aux
limites, permet en général de calculer les tensions o,
et o3 en un point quelconque d’un voile, comme nous
le montrerons plus loin & aide d’un exemple. Quant a
la petite tension oy, elle varie linéairement dans1’épais-
seur, de la valeur — p a 0, comme nous I'avons vu.

Ainsi, dans le cas traité, 'application des formules
(4), (5) permet de résoudre entiérement le probléme
des tepsions. C’est la un fait exceptionnel car, en
général, dans la théorie de I’élasticité, il est nécessaire
de faire intervenir, en plus de conditions d’équilibre
telles que (4), (5), des équations exprimanl certaines
propriétés des déformations.

Pour illustrer la forme (10), (11) des équations des
voiles minces, appliquons ces relations au calcul des
tensions sollicitant les parois d’'un bassin conique,
rempli d’eau, en supposant I'épaisseur e constante
(fig. 8). Si nous désignons par k la hauteur du cone,
par Yo et y le poids spécifique des parois et celui de
I'eau, et si nous placons I'origine 0 de 'axe vertical z
au sommet du cone, nous avons :

! Comparer par exemple aux formules données par S. TivosneExKo

dans son ouvrage Theory of Plates and Shells, New-York and London,
1940, p. 358.
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p1=®, p=y (h—3z), F;=—7y,sin 6, Fy=—y,cosf;

z z
L) 81:

.

sin 6

Les équations (10), (11), deviennent, aprés simplifi-
cations :

do ;

Zgz—l+°1—°'3—Y03= ) (107)
Y (h—z) + Yo cos 6

e ’

Oy — z. (].]. )

tg 9 sin 6

En substituant expression (11°) de o3 dans la relation
(10"), on obtient une équation différentielle linéaire, du
premier ordre, a coeflicients variables :

iy —g(hﬁz) cos § 4 v,
v Sn? 8 ==0,
dont la solution générale est!:
Yh cos N
& 16 Ycosb e = Yo .
O1T T Zesin?6 ¢ T 2l ©

ou C désigne une constante.

LLa tension oy devant avoir une valeur finie au sommet
0 du cone, ot z =0, on a nécessairement C = 0, d’ou
pour o et og les valeurs :

yg(/zfycose 3% _y.«, h + y )
%1= 2etgBsing O etg 6 sin @

40 Procédé graphique pour séparer les tensions, en
photoélasticité tridimensionnelle (cas des solides de répo-
lution).

On peut aujourd’hui, en appliquant la méthode du

p ] ) PP
figeage des contraintes, déterminer a 1'aide de la lumiére
polarisée : 1° les directions des tensions principales,
20 les différences oy — 0y, 0, — 03, 03 — 0y de ces
tensions, en un point quelconque d’un modéle trans-
i . q q .
parent tridimensionnel 2. Pour séparer les tensions

do
! L’équation homogéne z d—_l + 0, = 0 est une équation d’Euler,
-~
qu’on intégre en séparant les variables. Il est facile de trouver une
solution particuliére de I’équation compléte.
? Voir par ex. M. Herénvi, Handbook of Experimental Stress
Analysis, New-York and London, 1950, p. 940 et suiv.
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principales, c’est-a-dire pour déterminer séparément
04, Oy, Oy, il est nécessaire de compléter ces résultats.
Frocht et Guernsey ont récemment montré que cect est
possible, dans le cas général, au moyen d’intégrations
graphiques le long d’axes rectilignes 1.

Dans le cas particulier des solides de révolution
envisagé ici, ces intégrations pourraient aussi se faire
dans un plan axial, le long des trajectoires s; ou s,
selon un procédé analogue a celui utilisé en photo-
élasticité bidimensionnelle. Intégrons en effet la relation
(4) le long de sy, et la relation (5) le long de s,, a partir
d’une origine 0, située & la surface du solide, ou la
détermination des tensions (o), (0s) par la photo-
élasticité n’offre en principe pas de difficulté.

Nous obtenons, en supposant 'y = Iy = 0:

51 5
oy = (cl>0+f°ip_2i‘dsl +f°3%0‘ cosBds,, (12)
o 0

cz:(02)0+f‘ﬁ;1°1dsg+f9%"—%inedsz. (13)

Les premiéres inté-
grales des seconds
membres peuvent
avantageusement
étre transformées
en introduisant les
g angles @, ' que
XQ forment respecti-
X 0/_[|0—/;€__J_é z vement, en  un

A point P, les deux

trajectoires sy, s

\' . . 2
X Redire avee I'isocline 2
passant par ce

Fig. 9. point (fig. 9), ce

qui donne 3 :

Sy [¢]
0y—0
fz——l ds, = [(01 -0,) cotg p d 6,
P2 ;
o 9
Sy [*]
0y—0 ;
f—z—l dsy = — f(c71~0'2) cotg g’ d 6,
P1
0 [

et les formules (12), (13) deviennent :
6 31 Ku’)
oy=(0)0+ f(ol—on_,) cotgywd® + f@ cos 0 dsy,
0 0

[¢] Sy (13’)

; 0, —03 .
Oy = (cz)o—f(cl -0,) cotgy d 6+ fg—lj sin § ds,,
-8 0

8, désignant la valeur de I'angle & au point initial 0.
Comme sous les signes d’intégration ne figurent que
des angles et des différences de tensions donnés par

1 M. M. Frocur and R. Guernsey, National Advisory Commiltee
for Aeronautics, Technical Note 2822, Washington, Dec. 1952,

2 Rappelons qu'une ligne isocline est le lieu des points ou les
directions des tensions principales sont constantes. Ces lignes se
déterminent a l'aide de la lumiére polarisée, en placant une lame
mince entre deux nicols ou deux filtres croisés.

3 Voir p. ex. M. M. Frocur, Photoelasticity, Vol. I, New-York,
1946, p. 287 a 289.
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la méthode du figeage des contraintes, 'intégration par
un procédé graphique donnera o et gy, On déduira
ensuite oy de la différence o3 — o;.

Remarquons enfin que si 'on fait tendre r vers
'infini dans les relations (127), (13"), on retrouve les
formules correspondantes utilisées en photoélasticité
bidimensionnelle.

50 Généralisation du théoréme de Mesnager.

Supposons qu’en un point P d’un solide de révolution,
I'une des deux trajectoires situées dans le plan axial,
s, par exemple, soit tangente & la ligne isocline pas-
sant par ce point
(fig. 10). Soit Py
un point infini-
ment voisin  de

i P, situé sur s;.
= P; sera égale-

-A/socline ment  sur Diso-
cline et les norma-
les a s; auxr deux
points considérés
seront  paralléles.
En effet, en cha-
cun d'eux, la
normale coincide
avec la direction
d’une des tensions principales, et cette direction est la
méme en P; qu'en P, puisque les deux points sont
sur une isocline.

1 " .
La courbure o de la trajectoire s; est alors nulle, et
1

I'équation (5) devient :

JOy Oy— Oy

= sin 8. (14)

48y

Si r = (cas de I’élasticité plane), on a -([:—2 = 0,
2
et si cette dérivée s’annule en changeant de signe, la
tension o, passera par une valeur extréme en P, lors-
quon se déplace sur s, On a donné a cette propo-
sition, utilisée en photoélasticité bidimensionnelle, le
nom de théoréme des Mesnager *.

Ainsi, la formule (14), applicable aux solides de
révolution, constitue une généralisation du théoréeme de
Mesnager. Elle montre que, lorsque r est fini, la dérivée
Joy L, . . .

%, est en général pas nulle si la trajectoire s; est
tangente & l'isocline par P. Cest seulement lorsque 9
est nul ou égal a T, ou encore lorsque Gy = T3, que celte

dérivée est égale a zéro el qu’il peut y avoir un extrémum.

Zurich, le 10 avril 1954,

! Les formules (127), (13’) sont applicables sous cette forme a
tout le domaine du solide, sauf si I'on s’approche de l'axe z, car r
tend alors vers zéro et les fonctions sous les signes sommes des secondes

. . . 0 X &
intégrales prennent la forme indéterminée o On démontre facilement

que si I'on intégre le long d’'une trajectoire s, coupant orthogonalement
'axe z, la vraie valeur de la fonction sous le deuxiéme signe d'intégration
de (12) est zéro. Si I'on intégre le long de I'axe z = s, lui-méme, les
deux intégrales de (13’) se présentent sous des formes indéterminées.
Il est alors préférable d'utiliser plutdt I'équation (13), en remarquant
que, d’aprés ce que nous avons dit a propos du second exemple, la
seconde intégrale de cette équation devient égale a la premiere.

2 Voir A. MesNaGER, La Technique moderne, t. XVI, n® 6, 15 mars
1924, p. 168 et 169. Consulter aussi M. M. Frocur, Photoelasticity,
t. I, p. 215 et suiv.
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