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La fermeture de la vanne est realisee par deux autres
contacts analogues ä ceux d'ouverture. Quant ä la
marche de la vanne par intermittence, eüe est obtenue

par des relais ä temps.
Avec le reglage sans asservissement, la hauteur du

niveau est absolument independante du degre d'ouverture

de la vanne. N'etant plus asservi ä l'organe regleur,
un seul appareil peut Commander facüement plusieurs
vannes, l'une apres l'autre ou simultanement. Au
barrage de Lavey, qui comprend trois vannes doubles,
le meme appareü commande les six vantaux selon
dix-huit programmes differents qui peuvent etre
choisis au gre de l'exploitant, figure 6.

Le regulateur automatique que nous venons de
decrire agit par voie electrique et les ordres qu'ü donne
peuvent de ce fait etre tres facüement transmis ä
distance. II peut regier non seulement en agissant sur
des vannes mais aussi sur des turbines ou sur tout
organe susceptible d'avoir une influence sur le niveau
ä regier, par exemple sur des corps de chauffe alimentes

par un groupe hydro-electrique.

Fig. 6. — Regulateur automatique du niveau d'eau du
barrage de Lavey.

S
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EXTENSION DE LA METHODE DES LIGNES D'INFLUENCE
AU CALCUL DES SYSTEMES ARTICULES DE L'ESPACE

par G. ROUBAKINE, ingenieur E. P. U. L., Lausanne

Le calcul des systemes articules gauches a fait, au
debut de ce siede, des progres remarquables gräce aux
travaux de B. Mayor, professeur ä l'Universite et ä
l'Ecole polytechnique de Lausanne. Jusque-lä, les
chercheurs avaient pi6tine, se heurtant, sinon ä des impos-
sibüites, du moins ä des calculs d'une lourdeur et d'une
compUcation souvent prohibitives.

Le grand merite de Mayor fut de comprendre que ces
obstacles provenaient essentieüement du manque d'un
mode de representation adequat des systemes et des forces

de l'espace, et de proposer une representation
nouveüe, d'une eiegance admirable, qui allait aplanir les
difficultes anterieures et ouvrir des perspectives inattendues.

En effet, la methode habitueüe de representation par
projectiöns orthogonales sur deux plans de reference,
süffisante tant qu'ü s'agit d'eiements purement geome-
triques, ne l'est plus dös que l'on fait intervenir des
forces. On s'en rend compte par exemple, en conside-
rant le cas des systemes articules gauches dont le calcul
se ramene ä celui de l'equilibre de forces concourantes :

les trois equations d'equilibre dans l'espace ne sont pas

equivalentes ä l'ensemble des deux groupes de deux
equations, relatives ä 1'equüibre des deux projectiöns
sur les deux plans de reference.

La representation mayorienne permet d'etablir entre
les forces de l'espace et ceües du plan une correspon-
dance teüe qu'aux trois conditions d'equilibre d'un
point de l'espace sont liees d'une maniere univoque et
redproque les trois conditions d'equüibre d'un corps
rigide plan. Eüe possede en outre le grand avantage de

conserver le caractere dualistique de la droite, lieu de

points ou intersection de plans. II devient alors possible
d'etendre aux systemes articules gauches toutes les
methodes analytiques et graphiques de la statique
plane.

II n'est pas dans notre propos d'exposer ici tous les

aspects du mode de representation de Mayor, qui est
base sur la theorie des complexes lineaires. Nous nous
contenterons de rappeler ses formules fondamentales, ce

qui nous permettra d'etendre aux systemes gauches la
methode des lignes d'influence, si importante dans la

pratique.
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1. Rappel du mode de representation de Mayor

Antiprofection d'un vecteur

Ce mode de representation fait correspondre ä un
vecteur libre V de l'espace (c'est-ä-dire, ä un vecteur
donne en intensite et direction, mais non en position),
un vecteur glissant V du plan de l'epure (c'est-ä-dire,
un vecteur dont l'intensite, le sens et la ligne d'action
sont donnes).

Soient X, Y, Z, les composantes de V par rapport ä

un Systeme d'axes de coordonnees rectangulaires Oxyz
et X', Y', N', les trois coordonnees du vecteur V dans
le plan Oxy, choisi comme plan de l'epure. X' et Y' sont
ses projectiöns sur les axes Ox et Oy et N', son moment
par rapport ä l'origine 0.

Les formules de correspondance de Mayor, entre ces
deux vecteurs, sont les suivantes :

(1) X' — X, Y' — Y et N' =>aZ

oü a est une constante quelconque ayant la dimension
d'une longueur. On a donne au vecteur V le nom

-*•
d antiprojection du vecteur V (fig. 1).

II resulte immediatement de cette definition, que la

projection Vx d'un vecteur sur le plan de l'epure, et
son antiprojection V' forment un couple ; si nous d6si-

gnons par 0 l'angle que fait le vecteur V avec le plan
de l'epure, la distance 6 de V' ä l'origine 0 est :

(2)
N' aZ aZ aFsinö

V7 ~~ V cos0 "" VcosQ$=yT atgö.

L'intensite de l'antiprojection, egale ä ceüe de la
projection, est:

(2') V Fcosö
yT+tg^e

z

-b?

O.90

X

\°>

L'antiprojection d'un vecteur horizontal passe par
l'origine. Ceüe d'un vecteur vertical est ä l'infini mais
eile est aussi infiniment petite et peut donc etre
representee par un couple de moment aZ aV.

Connaissant l'antiprojection V d'un vecteur libre de
l'espace, on peut calculer ses trois composantes XYZ
et son intensite V par les formules :

X — X', Y Y', Z
N' V'S

J

a
(3)

v v \J i + tg2 e v 5a
1+ -,¦

Image d'un vecteur

II est utile, dans de nombreuses appücations, de faire

correspondre au vecteur V (XYZ), en plus de son

antiprojection V, un autre vecteur V", defini par les
coordonnees suivantes :

Moment par rapport ä l'axe Ox : L" — — aX
(4) Moment par rapport ä l'axe Oy : M" — aY

Composante selon l'axe Oz : Z" Z
—*¦

m -$¦
Nous donnerons ä V le nom d'« image » du vecteur V.

II resulte de cette definition que l'image V" d'un

vecteur V est un vecteur vertical, dont l'intensite est

egale ä la composante Z de V et dont la trace sur le plan
de l'epure (que l'on peut aussi considerer comme son
point d'application) a pour coordonnees :

Y
Z

X
.Tl

II existe une relation entre l'antiprojection V' et
—v —>

1 image V d un meme vecteur V : ceüe-ci s applique ä

l'äntipöle de la ligne d'action de V par rapport ä la
circonference de rayon a, que Ton appeüe « circonference

directrice » (fig. 1).

Connaissant l'image V" d'un vecteur, il est facile de
calculer les trois composantes X, Y et Z de celui-ci :

V" etant donne par son intensite Z" et les coordonnees §

et t) de son point d'application, on a :

(5) X — ^ Z"
a

Y
%

Z", Z Z".

Fig. 1. Antiprojection et image d'un vecteur.

Antiprojection d'un Systeme articule de l'espace

La representation mayorienne d'un Systeme articule S
de l'espace fait correspondre ä celui-ci un Systeme
articule 5' du plan, defini comme suit:

A chaque barre Z.« de S correspond une barre l'ih de 5',
—*•

qui est 1 antiprojection du vecteur In, et ä laquelle on
attribue un module convenable que nous predserons
plus loin l.

1 Le module d'une barre caracterise ses proprietes physiques :

c'est l'expression u —— oü l est la longueur de la barre,

60 sa section, E le coefficient d'elasticitc du materiau.
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Les antiprojections des barres issues d'un meme
noeud ne sont en general pas concourantes et nous
sommes en presence d'autant de points i' — arbitraires

sur la hgne d'action de chaque vecteur lilc — qu ü y a

de barres issues du noeud i. II est alors naturel de faire
correspondre au nceud i une plaque infiniment mince,
indeformable, mobile dans le plan de l'epure et ä laquelle
on attachera par des articulations les origines i' de

toutes les barres i'k' (fig. 2). Cette plaque sera 1'«

antiprojection » du nceud i.

V
X

y \b.

Fig. 2. —¦ Antiprojection d'un noeud d'un Systeme gauche.

Pour simplifier les epures, on prefere donner ä

l'antiprojection de chaque barre une longueur arbitraire,
en faisant rentrer la longueur de cette antiprojection
dans le module u!« qu'on lui assigne pour le calcul des

deformations. Le module de la barre ik etant:

P EU>ik

celui de son antiprojection sera :

P
P COS20

Chaque Systeme S possede donc une infinite d'anti-
projections S'. Mais Mayor a montre que l'une
quelconque d'entre elles represente parfaitement le Systeme
donne du point de vue de la Statique : le calcul d'un
Systeme quelconque S' entraine immediatement celui du
Systeme S.

En effet. appliquons ä chaque plaque de S' une force,
antiprojection de celle qui agit sur le noeud correspondant

de S ; il nait alors dans chaque barre i'k' de S'
une tension Tite et chaque plaque n' subit un deplacement

eiastique infiniment petit, dans le plan de l'epure
— deplacement que l'on peut assimüer ä une rotation
et representer par un vecteur 6«, perpendiculaire au
plan de l'epure, de sens convenable, et appliqu6 au
centre de rotation de la plaque.

Les relations, demontrees par Mayor, entre les
tensions et les deformations du Systeme S', d'une part, et
les eiements correspondants du Systeme S, d'autre part,
sont les suivantes :

1. Les vecteurs Tu representatifs des efforts interieurs
dans les barres de S' sont les antiprojections des
vecteurs correspondants Tu de S.

2. Les vecteurs 8« representatifs des rotations des plaques
de S' sont les images des vecteurs 8» representant les

deplacements dans l'espace des nceuds de S.

Le calcul du Systeme S' ne represente en gen6ral pas
de difficultes. Toutes les methodes de la statique plane
peuvent ötre utilisees : graphiques (Cremona) ou
analytiques (conditions d'equilibre de chaque plaque). Les
deformations peuvent etre calcuiees par des extensions
de la methode de Wüliot ou des antimasses.

Ce calcul est immediat si le Systeme donne est simple.
S'il est polyedrique, la methode de l'echange des barres
permet de ramener son calcul ä celui d'un ou de
plusieurs systemes simples. De meme, le calcul d'un
Systeme hyperstatique peut etre aborde par les methodes
classiques.

Mais c'est la methode cinematique qui se revele la
plus avantageuse pour le calcul des antiprojections de

systemes gauches : eüe va nous permettre d'aboutir ä

une generalisation de la notion de ligne d'influence, de
calculer de la maniere la plus simple les deformations
de tout Systeme gauche et, par consequent, d'aborder
aisement le calcul des systemes hyperstatiques.

2. « Champ d'influence » de l'effort dans une barre
d'un Systeme gauche

Proposons-nous de calculer l'effort Tu produit dans
la barre ik d'un Systeme articule gauche simple par une
force quelconque Fn appliquee ä un nceud quelconque n.

Construisons un Systeme S', supprimons la barre i'k'
et remplagons son action par deux forces egales et
opposees, appliquees aux points d'attache de la barre
supprimee, et equivalentes ä l'effort inconnu T'ts
produit dans cette barre par l'antiprojection F'n de Fn,
appliquee ä la plaque n' (fig. 3).

Imposons ensuite ä la distance separant les points
d'attache de la barre supprimee une augmentation AZJ«,

tres petite, que nous prendrons comme unite des
deformations. Toutes les plaques de la chaine cinematique ä

liaison complete obtenue par la suppression de la
barre i'k' subissent de ce fait de petits deplacements
assimilables ä des rotations.

X

W.
'k?

V
3w Fe,

-\

\ -*r*

m
a>-ik

y*
Fig. 3. — Application du principe des travaux virtuels.
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La determination de ces dernieres est du domaine de

la geometrie eiementaire, chapitre des deplacements
instantanes de figures planes. Eüe est basee sur les deux
proprietes suivantes :

1. Une plaque 4 est reliee par trois barres 1-4, 2-4
et 3-4 aux trois points 1, 2 et 3 (fig. 4). Les points 2 et 3

restent fixes et les longueurs des barres 2-4 et 3-4
invariables. Le point 1 subit un petit deplacement 81; et
la barre 1-4 une Variation de longueur Ali—4 consideree

comme positive s'ü s'agit d'un allongement.
La rotation de la plaque 4, que nous avons ä

determiner, s'effectue autour du point d'intersection 004—1 des
droites 2-4 et 3-4. Son intensite resulte de l'equation :

(6) C04—1 di—i AZi_4 + 8X cos oc!

qui exprime que le deplacement du point A projete sur
la direction de la barre 1-4 se compose de l'aüongement
de cette derniere et de la projection du deplacement du

point lsur cette möme direction. Levecteur 004-1 estdirige
dans le sens positif si la rotation s'effectue dans le sens

positif egalement.
2. Lorsque deux plaques i et k reliees par une barre

indeformable subissent respectivement les rotations
representees par les vecteurs coj et 004, ces deux
derniers sont lies par la relation (fig. 5) :

(7) Co.- di co* dk

oü les distances d{ et dt sont ä considerer comme etant
de meme signe si les vecteurs oo* et oo* se trouvent du
möme cöte de Taxe de la barre i'k', et inversement.

Cette relation exprime que les projectiöns sur cet axe
des deplacements respectifs des points Ai et Ak sont
egales, la barre etant indeformable.

Le Systeme donne etant suppose simple, les deux
formules (6) et (7) permettent de determiner, de proche
en proche, tous les vecteurs cöü, en position, intensite
et sens.

En particulier, la plaque n' subit une rotation
representee par le vecteur co"t et le point d'appücation de la
force Fn subit un deplacement, dont la projection sur
la direction de cette force est egale au moment statique
du vecteur co*^ par rapport ä la ligne d'action de Fn
(fig. 3).

Sa valeur est donc le produit:

»««$•

Le principe des travaux virtuels permet d'ecrire l'ega-
Ute :

Comme nous avons choisi AZ4i 1, le premier
membre de 1'egaJite se reduit ä la tension inconnue Titc.
Quant au deuxieme membre, ce n'est autre chose que
le moment relatif co™4 F'n des deux vecteurs ortho-

gonaux Cefa et F II est ä considerer comme positif
lorsque le vecteur coj. et le moment de la force Fn par
rapport ä son point d'application sont de meme signe —
et comme negatif dans le cas contraire.

Ai*i r^
^3

^0

UÜA-i

Fig. 4.

La tension reeüe dans la barre correspondante du
Systeme gauche sera, en vertu des equations (3):

Tik T'a Vi + tg20i* X (00^ Vi + tg'e«).
Posons:

(8)

Alors:

(9)

rä «?* Vl + tg2^.

Tu — F'A tk A m

On peut donc dire que :

l'effort dans la barre ik du Systeme gauche, produit par
une force Fn appliquee au nceud n, est egale au moment

relatif du vecteur v1^ et de Vantiprojection Fn de Fn.
A chaque nceud du Systeme S correspond un vecteur

v ik (fig. 6). L'ensemble de ces vecteurs est un champ
discontinu dont la connaissance entraine le calcul
immediat de l'effort produit dans la barre ik par une
force quelconque appliquee ä un noeud quelconque. Ce

champ des vecteurs vu est donc bien une generaüsation
de la notion de ligne d'influence d'une tension. On peut
l'appeler «champ d'influence» de l'effort dans la
barre ik 1.

II y aura autant de champs d'influence que le
Systeme donne possede de barres — barres reeües ou barres
fictives de liaison.

Un cas particulier important est celui oü la force
donnee est verticale et descendante. Cette force est
representee dans le plan de l'epure par un couple de

moment — aF.
L'effort dans la barre ik est alors donne par l'expression

:

Ta — a Fn v%.

1 Ce champ d'influence est identique (ä un facteur constant pres)
ä I'« Einflussplan» de W. Prager (thesc, Berlin, 1926) qu'il a etabli
par une tout autre voie.

ujk

w l CV—

-*
\J

~a

o

Fig.
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Si toutes les forces agissant sur les nceuds du Systeme
sont verticales, la tension dans la barre ik se reduit ä

une somme algebrique :

(10) Ta —< £ Fn *.

AZ

V:ik
VFJ

W x

du Fr, T~ik
kU90

et.f: z**
iu.y

Fig. 6. — Champ d'influence des efforts dans la barre ik
d'un syst6me gauche.

3. Deformation d'un Systeme articule de l'espace
->

Le calcul du deplacement 5m, dans l'espace, d'un nceud
quelconque d'un Systeme S sollicite par un groupe de
forces exterieures resulte simplement de la connaissance
des champs d'influence des efforts dans toutes les barres
de ce Systeme.

Supposons en effet que nous ayons determine au
prealable les efforts Ta dans toutes les barres de S.
Considerons une antiprojection de S et calculons la
rotation de la plaque m' dans l'hypothese que toutes
les barres de ce Systeme sont indeformables ä l'excep-
tion de l'une d'entre eües, i'k' par exemple. Cette barre
subit une Variation de longueur :

rr' 'Tik V*k

et la plaque m' une rotation representee par le vecteur

m K,<* Sj- T'ik ,4

puisque le vecteur cojj represente la rotation de cette
plaque lorsque la Variation de la longueur i' k' est
egale ä l'unite.

Mais :

en vertu de (8): co£ v% cos 6,

en vertu de (2'): T^ Tu cos 0

,,n •i. ' Wik
et par dennition : u.* »-^ •r ** cos2 0

En portant ces valeurs dans l'expression (11), on constate

que le vecteur 5_ ik est donne par l'expression sui-
vante, oü ne figurent que des eiements relatifs au
Systeme de l'espace :

Si maintenant nous tenons compte des deformations
de toutes les barres de 5' le vecteur representatif de la
rotation de m' sera

(13) E

oü le signe \ represente une somme geometrique de

(«)
tous les vecteurs consideres.

Or, nous savons que 8_ est l'image du vecteur 6m

cherche et le probleme se trouve ainsi resolu.

II est evident, d'autre part, que la notion de champ
d'influence sera d'un emploi tths avantageux chaque
fois qu'il s'agira de ramener le calcul d'un Systeme
donne ä celui d'un Systeme principal dans plusieurs
modes de charge. Ce sera le cas pour les systemes polye-
driques (par 1'echange des barres) et des systemes
hyperstatiques.

Notons pour terminer que le mode de representation
de Mayor peut s'appliquer avec avantage au calcul des
efforts secondaires dans un Systeme articule, ainsi qu'ä
celui des systemes gauches non articules : cadres rigides
gauches, charpentes monolitiques de l'espace. S'il n'est
pas possible de definir une antiprojection de tels
systemes, la transformation mayorienne n'en reste pas
moins precieuse pour l'etude de leurs conditions d'equilibre

et le calcul des efforts.

4. Exemple

Afin de preciser un peu les considerations qui precedent,
nous appliquerons les resultats obtenus ä l'exemple suivant:

Proposons-nous d'etablir les champs d'influence des
efforts dans les barres d'une coupole Schwedler du type le
plus simple representee ä la figure 7.

45
6„7

U4

Fs

3.00 3.00Z.00

(« c" *m rp°m, ik — Va 1 ik Ptt
Fig. 7. — Coupole Sehwedle
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Nous choisissons o 4 m et commencons par dessiner
une antiprojection du Systeme donne (fig. 8).

Les barres 5-6, 6-7, 7-8 et 8-5 etant horizontales, leurs
antiprojections passent par l'origine. Les barres 1-5, 2-6,
3-7 et 4-8 sont inclinees k 45°, leurs antiprojections sont
tangentes k la circonference directrice, car

ö a te 6 a.

la barre 1-6 par deux vecteurs v. „ et v.

1-6

.2.83n r»v

L.
A.

Vi
$£ '

t-6

5.66

Fig. 8. — Antiprojection de la coupole Schwedler.

Pour les barres 1-6, 2-7, 3-8 et 4-5, dont la projection
horizontale mesure 6,70 m, on a, en vertu de l'equation (2):

6 4,00
4,24
6770

2,53

Ces antiprojections tracees, il suffit de choisir les points
d'attache des barres de S' de maniere que le sens d'une
barre i'-k' soit toujours oppose k celui de la projection
horizontale de la barre i-k. L'antiprojection que nous avons
choisie comporte les quatre plaques 5', 6', 7' et 8', les autres
nceuds etant fixes dans le plan horizontal.

Proposons-nous d'etablir le champ d'influence des efforts
dans la barre 1-5. L'antiprojection de cette barre etant
supprimee, nous imposons k la distance l'-5' une petite
augmentation AJj g 1. II est facile de voir que seules les

plaques 5' et 8' subissent de ce fait un deplacement.
La rotation de la plaque 5', reliee par les barres 4'-5' et

5'-6' k deux points fixes, s'effectue, dans le sens positif,
autour du point d'intersection v\ 6 des axes de ces deux
barres. Son intensite resulte de l'application de l'equation (6) :

1

6/ÖÖ
0,167.

Le vecteur c, « correspondant sera:

v *_6 + 0,167 X V 1 + tga 6i_5

+ 0,167 X 1,41 + 0,236.

La plaque 8' tourne autour de l'intersection des deux
barres 3'-8' et 4'-8' qui est par consequent le point d'application

du vecteur v.
Son intensite resulte de l'equation (7) :

«-?-. °'236 MS
5,66

0,118.

Le champ d'influence des efforts dans la barre 1-5 est
ainsi calcule. Celui des barres 5'-6' et l'-6's'obtient tout aussi
facüement: le champ relatif ä la barre 5-6 est constitue par
un seul vecteur v\ d'intensite + 0,177 et le champ relatif

d'intensite
-f-0,156 et —0,156. Les points d'application de tous ses
vecteurs sont indiques sur la figure 8.

Par suite de la symetrie centrale du Systeme donne, ces
trois champs d'influence permettent d'etablir immediatement
ceux de toutes les autres barres. L'ensemble des champs
d'influence des efforts dans toutes les barres de la coupole
est represente k la figure 9.

Nous pouvons maintenant calculer la coupole dans tous
les cas de charge et determiner rapidement ses deformations.

Considerons, par exemple, une force oblique .Fb. de 1 t,
teile qu'elle est representee k la figure 7.

En vertu de regle etablie plus haut, les efforts produits
par cette force dans les barres de la coupole ne sont autre
chose que les moments relatifs de l'antiprojection de F§ et
des vecteurs Vn correspondants. Nous avons donc, comme
F'6 0,707 t.,:

Ti—5 — 0,707 X 0,236 X 4,00 — 0,67 t
Ts-e .— 0,707 X 0,177 X 9,66 —1,21 t
7V-« —0,707 X 0,156 X 4,00 —0,44 t
Ti-6 + 0,707 X 0,156 X 9,66 + 1,06 t
Tü-e —0,707 X 0,118 X 9,66 —0,81 t

Dans le cas de quatre forces verticales descendantes de 1 t
appliquees aux nceuds 5, 6, 7 et 8 nous trouverons immediatement,

en vertu de l'equation (10) :

Ti-5 — 1' X 4,00 X (0,236 + 0,118) —1,42 t
T4—5 — 1' X 4,00 X (0,156 — 0,156) 0
7V-6 — 1« X 4,00 x 0,177 —0,71 t

Calculons maintenant la deformation de la coupole sous
l'action de la force F&.

de

Nceud 5
-*"5 »

Le calcul des expressions v^ Tik \Mk 6= -t
l'equation (13) est resume dans le tableau ci-dessous, et les

vecteurs E b5 «. sont representes sur la figure 10.

Barres
i — k lik Qik

cma

E.Uik 4 Tik *-*U
cm

1-5 600 30 20 + 0,236 — 0,67 — 3,16
5-6 300 20 15 + 0,177 — 1,21 — 3,21
4-5 794 15 53 + 0,156 — 0,44 — 3,64
1-6 794 15 53 -0,156 + 1,06 — 8,76
2-6 600 30 20 + 0,118 — 0,81 — 1,91

1 20,68.

lT,fs » + O.tSB

Vis - + 0.118

Vit ¦ * o.m

% -0.156

Fs''0.707

U/j +0.166 V'?¦?

Vß U3-7°+0S3l

-o
2310.1163-7

—C

Vlj+0.177
r/_*. 0.1S6t-7

6 VZ6 +o.ts6

" * O.tSB

o,*s »+om

i * 0.177

V£s '-0JSS

Fig. 9.

(Jf-g - + 0.IS6

+,Ult * + 0M

lült ' +o.m
0& - -0.1SS

Champs d'influence des efforts dans toutes les
barres de la coupole.
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Fig. 10. — Deplacement des nceuds 5, 6 et 8.

Le vecteur 6., somme geometrique des vecteurs ö, ,j, a
20,68 cm

pour intensite E et comme coordonnees du point

d'application (fig. 10) :

3,16 X 2,83 + 3,64 x 5,66
E

— 20;

— 13,88 X 5,66

— 20,68

11,68
"20,68

¦ 0,565 m

3,80 m.

Les composantes du vecteur ög, representant le deplacement

du nceud 5 dans l'espace, sont, en vertu des equations

(5), et pour E 2000 t/cm2 :

0,565 20,68
4,00 + 2,93 + 0,0015 cmE E

be
20,68
—E~ 0,0103 cm.

Nceud 6

Le calcul du deplacement du noeud 6 est plus simple
encore :

Barres
i — k Mi* 4 Tik E.b"R ,t6, ik

1-6
2-6

53
20

+ 0,156
+ 0,236

+ 1,06
— 0,81

+ 8,76
— 3,82

£ 0

n

d'oü

S,76 X 5,66 — 3,82 X 2,83

+ 4,94

Z + 4,94.

12,22 m

12,22 4,94 15,1 „ nft__&*= + mo x T- + W +0'0075 cm

by 0

4 94
bz + —¦ + 0,0025 cm.

Nceud 8

Le noeud 8 est relie au nceud 5 par la barre 5-8 qui ne
subit pas d'efforts. Le vecteur &8 est applique au meme

point que les vecteurs c, 6 et v. B et son moment par rap-

port ä la droite 5'-8' est egal ä celui du vecteur &5.

On a donc immediatement :

„' _ 6" °'^ - 0,0997 &: + ^6 cm° 5,66 ° E
d'oü

bx 0

5,66 2,06
4700

' E~

2,06
~E~

0,0015 cm

+ 0,0010 cm.

Le nceud 7 ne subit pas de deplacement.

NOTICE BIBLIOGRAPHIQUE

Mayor a expose sa methode de representation et de calcul
des syst6mes de l'espace dans les articles et les ouvrages
suivants :

1. Comptes rendus de l'Academie des sciences, 1902, 1903
et 1915.

2. Bulletin technique de la Suisse romande, 1903, 1904, 1905,
1908, 1909.

3. Statique graphique des syslmees de l'espace. Rouge et
Gauthier-Villars, Lausanne et Paris, 1910.

4. Bulletin de la Societe vaudoise des sciences naturelles,
1914 et 1918.

5. Introduction ä la statique graphique des systemes de

l'espace. Payot, Lausanne, 1926.

Les ingenieurs liront avec fruit l'excellente presentalion
de ce dernier ouvrage faite par M. Maurice Paschoud dans
le Bulletin technique du 4 decembre 1926.

H. C. Yung, dans sa thfese : Calcul dt la coupole du Reichstag,

ä Berlin, par la methode dualistique de M. B. Mayor
(Payot, Lausanne, 1926), a determine les efforts dans les
barres de cette coupole k l'aide d'une antiprojection de ce
Systeme.

La repr6sentation mayorienne a ete mentionnee par
M. F. Stüssi, professeur k l'Ecole polytechnique federale,
dans son cours de Statique (Baustatik, I, Birkhäuser, Bäle,
1946, p. 49 ä 51).

M. El-Sayed El-Shasly, dans son etude des efforts
secondaires dans les barres d'une coupole Schwedler
(Biegungsspannungen und Stabkräfte in Schwedlerkuppeln nach
Theorie und Modellversuch. Mitteilungen aus dem Institut
für Baustatik an der E. T. H., Leemann & Cle, Zürich, 1943)
utilise la m6thode dualistique de Mayor pour la determination

des efforts prineipaux. Si l'auteur avait utilise cette
meme methode pour le calcul des deformations, son travail
en aurait ete considerablement simplifie.

En Italie, les recherches de Mayor ont ete presentees par
O. Lazzeri (Periodico di matematica, janvier-fevrier 1912),
et aux Etats-Unis par F. H. Constant (Stresses in space
structures. Proceedings of the American Society of Civil
Engineers, vol. 60, 1934, p. 633-639). En France, Maurice
d'Ocagne a consacr6 k la representation mayorienne un
chapitre du tome II de son cours de geometrie professe k
l'Ecole polytechnique.

En Allemagne, R. von Mises a propose un mode de
representation qui ne differe de celui de Mayor que par un chan-
gement de signe dans les formules de transformation
(Graphische Statik räumlicher Kräftesystemt. Zeitschrift für
Mathematik und Physik. Berlin, 1917, p. 209-232). Tous les
auteurs allemands, qui ont donne d'aüleurs k la representation

mayorienne un developpement remarquable, utilisent
la Variante de von Mises.

Citons en premier heu :

W. Prager : Beilrag zur Kinematik des Raumfachwerks
(these). Zeitschrift für angewandte Mathematik und Mechanik.

Vol. 6, 1926, p. 341-355, oü l'auteur, partant de la cons-
tatation que, dans la representation mayorienne, le produit
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interieur de deux vecteurs de l'espace est proportionnel au
moment relatif de l'antiprojection de l'un et de l'image de
l'autre, definit la notion de « champ d'influence » (Einflussplan)

et donne une methode generale pour le calcul des

deplacements des nceuds d'un Systeme articule gauche.
Citons ensuite toute une serie d'articles de Prager, Feder-

hofer, Beyer, Kruppa, Sotopf, Sauer, Dietz dans la
Zeitschrift für angewandte Mathematik und Mechanik, de
1924 k 195Ö, ainsi que l'ouvrage de K. Federhofer :

Graphische Kinematik und Kinetostatik des starren räumlichen
Systems (Springer, Wien, 1928) oü l'auteur applique la
representation mayorienne ä l'etude de la cinematique dans
l'espace, de corps rigides.

Cette representation figure egalement dans les dernieres
editions (1939 et 1946) du traite de Schunk : Technische
Statik (Springer, Berlin).

Enfin dans son article Die Lösung des Sechsstabanschlusses
mit der Methode der dualen Abbildung (Ingenieur-Archiv,
XVI, 1947-1948, p. 14 k 38), H. Dietz applique la representation

de Mayor au calcul des reactions d'appui d'un corps
rigide de l'espace.

Trop d'ingenieurs ignorent encore la m6thode de Mayor.
C'est ainsi que dans une etude, d'aüleurs fort interessante
(Three-dimensional displacement diagrams for space frame
structures. Proceedings of the American Society of Civil
Engineers, 13 juin 1950), W. W. Eweli s'efforce d'etendre
ä l'espace, en utilisant les deux projectiöns orthogonales
d'un Systeme gauche, la methode graphique de Williot,
alors que Mayor a montre vingt-quatre ans plus tot que
cette extension est tres simplifiee par son mode de
representation.

Tous les auteurs mentionnes ci-dessus n'utilisent que la
representation mayorienne des vecteurs et des eiements pure-
ment geometriques (droites, plans, points). Nous n'avons pas
rencontre dans la lilterature (ä l'exception de la these de
H. C. Yung) une seule application de la notion, si feconde,
d'antiprojection d'un Systeme articule de l'espace. Et pour-
tant, cette notion, qui permet de concretiser dans le plan
les efforts et les deformations des systemes gauches, est d'une
importance primordiale pour l'ingenieur appele k calculer
de tels systemes.

ESSAIS SUR MODELES REDUITS D'OUVRÄGES EN BETON ARME

par A. VILLARD, ingenieur E. P. U. L, ä Lausanne

Autrefois, les routes et les chemins de fer enjam-
baient les rivieres par des ponts que l'on essayait de

construire normaux aux cours d'eau, ceci afin de les

raccourcir et de simplifier leur execution.
On cherchait d'autre part ä realiser les ouvrages du

genie civil de facon symetrique afin de mieux saisir
leur comportement dans le calcul et dans la construction

proprement dite.
Nombreux sont les exemples de constructions de tous

les types concus selon ces principes, dans notre Europe
et dans le Nouveau-Monde.

Le developpement rapide de la technique d'une
maniere generale, celui des chemins de fer et de l'auto-
mobüe en particulier, ainsi que l'adaptation de moyens

toujours plus perfectionnes ä nos necessites modernes,
conduisent de plus en plus le constructeur et l'architecte
ä s'affranchir de toute routine et ä donner aux ouvrages
de la construction civile et de l'architecture des formes
quasi quelconques.

L'apparition du beton arme et du beton precontraint
a apporte aux construeteurs des possibilites nouveües

pratiquement illimitees dans l'execution des formes, ce

qui implique comme consequence des choses insaisis-
sables, voire insolubles, dans le domaine du calcul.

De nombreux ouvrages biais, en particulier des

ponts-routes et ponts de chemin de fer ont ete reaUses

pendant ces dernieres decades au moyen de poutreües
metaüiques enrobees de beton afin que leur calcul se

de Situation
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Fig. 1. — P. S. de Villeneuve. Plan general.
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