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La fermeture de la vanne est réalisée par deux autres
contacts analogues a ceux d’ouverture. Quant a la
marche de Ja vanne par intermittence, elle est obtenue
par des relais a temps.

Avec le réglage sans asservissement, la hauteur du
niveau est absolument indépendante du degré d’ouver-
ture de la vanne. N’étant plus asservi a4 'organe régleur,
un seul appareil peut commander facilement plusieurs
vannes, l'une aprés l'autre ou simultanément. Au
barrage de Lavey, qui comprend trois vannes doubles,
le méme appareill commande les six vantaux selon
dix-huit programmes différents qui peuvent étre
choisis au gré de Iexploitant, figure 6.

Le régulateur automatique que nous venons de
décrire agit par voie électrique et les ordres qu’il donne
peuvent de ce fait étre trés facilement transmis a
distance. Il peut régler non seulement en agissant sur
des vannes mais aussi sur des turbines ou sur tout
organe susceptible d’avoir une influence sur le niveau
a régler, par exemple sur des corps de chauffe alimentés
par un groupe hydro-électrique.

Fig. 6. — Régulateur automatique du niveau d’eau du
barrage de Lavey.

EXTENSION DE LA METHODE DES LIGNES D’INFLUENCE
AU CALCUL DES SYSTEMES ARTICULES DE L’ESPACE

par G. ROUBAKINE, ingénieur E. P. U. L., Lausanne

Le calcul des systémes articulés gauches a fait, au
début de ce siecle, des progrés remarquables grace aux
travaux de B. Mayor, professeur a4 1I’Université et a
I'Ecole polytechnique de Lausanne. Jusque-la, les cher-
cheurs avaient piétiné, se heurtant, sinon & des impos-
sibilités, du moins a des calculs d’une lourdeur et d’une
complication souvent prohibitives.

Le grand mérite de Mayor fut de comprendre que ces
obstacles provenaient essentiellement du manque d’un
mode de représentation adéquat des systémes et des for-
ces de l'espace, et de proposer une représentation nou-
velle, d’une élégance admirable, qui allait aplanir les diffi-
cultés antérieures et ouvrir des perspectives inattendues.

En effet, la méthode habituelle de représentation par
projections orthogonales sur deux plans de référence,
suffisante tant qu’il s’agit d’éléments purement géomé-
triques, ne I'est plus dés que l'on fait intervenir des
forces. On s’en rend compte par exemple, en considé-
rant le cas des systémes articulés gauches dont le calcul
se raméne a celui de I’équilibre de forces concourantes :
les trois équations d’équilibre dans I'espace ne sont pas

équivalentes & I’ensemble des deux groupes de deux
équations, relatives & 1'équilibre des deux projections
sur les deux plans de référence.

La représentation mayorienne permet d’établir entre
les forces de lespace et celles du plan une correspon-
dance telle qu’aux trois conditions d’équilibre d’un
point de I'espace sont liées d’une maniére univoque et
réciproque les trois conditions d’équilibre d’un corps
rigide plan. Elle posséde en outre le grand avantage de
conserver le caractére dualistique de la droite, lieu de
points ou intersection de plans. Il devient alors possible
d’étendre aux systémes articulés gauches toutes les
méthodes analytiques et graphiques de la statique
plane.

Il n’est pas dans notre propos d’exposer ici tous les
aspects du mode de représentation de Mayor, qui est
basé sur la théorie des complexes linéaires. Nous nous
contenterons de rappeler ses formules fondamentales, ce
qui nous permettra d’étendre aux systémes gauches la
méthode des lignes d’influence, si importante dans la
pratique.
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1. Rappel du mode de représentation de Mayor

Antiprojection d’un vecteur

Ce mode de représentation fait correspondre & un
vecteur libre V de l'espace (c’est-a-dire, & un vecteur
donné en intensité et direction, mais non en position),
un vecteur glissant V' du plan de I’épure (c’est-a-dire,
un vecteur dont I'intensité, le sens et la ligne d’action
sont donnés).

Soient X, Y, Z, les composantes de v par rapport a
un systéme d’axes de coordonnées rectangulaires Ozyz
et X', Y', N, les trois coordonnées du vecteur V' dans
le plan Ozy, choisi comme plan de I'épure. X' et Y’ sont
ses projections sur les axes Oz et Oy et N', son moment
par rapport a 'origine O.

Les formules de correspondance de Mayor, entre ces
deux vecteurs, sont les suivantes :

() O N B e N g

ou a est une constante quelconque ayant la_;iimension
d’une longueur. On a donné au vecteur V' le nom
d’antiprojection du vecteur i (fig. 1).

Il résulte immédiatement de cette définition, que la
projection _171 d’un vecteur sur le plan de Iépure, et
son antiprojection V' forment un couplfi); si nous dési-
gnons par 6 angle que fait le vecteur V avec le plan
de Pépure, la distance & de V' a Porigine 0 est :

N aZ aZ aVsin 6

2 == = e = = ==
() 5=y V, Vecos® Vecos® © ted
L’intensité de 'antiprojection, égale a celle de la pro-

jection, est :

V
(2) Vi=Vcosf= — —— .
V1t tg?e

Fig. 1. — Antiprojection et image d’un vecteur.

L’antiprojection d’un vecteur horizontal passe par
lorigine. Celle d’un vecteur vertical est & I'infini mais
elle est aussi infiniment petite et peut donc étre repré-
sentée par un couple de moment aZ = aV.

Connaissant I'antiprojection V' d’un vecteur libre de
I'espace, on peut calculer ses trois composantes X YZ
et son intensité V par les formules :

X=—X,Y=—Y

b

i —
Vv VTTEe =1 \/ i o)

Image d’un vecteur
I1 est utile, dans de nombreuses applications, de faire
correspondre au vecteur V' (XYZ), en plus de son

. s G s = = 7 .
antiprojection V', un autre vecteur V", défini par les
coordonnées suivantes :

Moment par rapport a 'axe Oz:L" = —aX
(4) Moment par rapport a 'axe Oy: M" = —aY
Composante selon 'axe 0z :2" = Z

Nous donnerons & V" le nom d’ image » du vecteur V.
Il résulte de cette définition que l'image V" d’un
vecteur ?; est un vecteur vertical, dont I'intensité est
égale a la composante Z de V et dont la trace sur le plan

de I’épure (que I'on peut aussi considérer comme son
point d’application) a pour coordonnées :

Il existe une relation entre I'antiprojection V' et
I'image V" d’un méme vecteur V : celle-ci s’applique a
I'antipole de la ligne d’action de v par rapport a la
circonférence de rayon a, que I'on appelle « circonfé-
rence directrice » (fig. 1).

)
Connaissant I'image V" d’un vecteur, 1l est facile de
calculer les trois composantes X, Y et Z de celui-ci:
s
n r

étant donné par son intensité Z” et les coordonnées §
et n de son point d’application, on a:

(5) X:—ET,Y So -7

T a

Antiprojection d’un systéme articulé de I'espace

La représentation mayorienne d’un systéme articulé S
de l'espace fait correspondre & celui-ci un systéme
articulé S” du plan, défini comme suit :

5 =
A chaque barre l;z de S correspond une barre I}, de S/,

. . . . == a
qui est I'antiprojection du vecteur l; et a laquelle on
attribue un module convenable que nous préciserons
plus loin 1.

! Le module d'une barre cavactérise ses propriétés physiques :

1 l
c'est I'expression =T ou I est la longueur de la barre,

() sa section, E le coeflicient d’élasticité du matériau.
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Les antiprojections des barres issues d’un méme
neeud ne sont en général pas concourantes et nous
sommes en présence d’autant de points :* — arbitraires
sur la ligne d’action de chaque vecteur—?;k — qu’il ya
de barres issues du nceud 7. Il est alors naturel de faire
correspondre au nceud ¢ une plaque infiniment mince,
indéformable, mobile dans le plan de I'épure et a laquelle
on attachera par des articulations les origines i’ de
toutes les barres k" (fig. 2). Cette plaque sera I« anti-
projection » du nceud .

ey =

Fig. 2. — Antiprojection d’'un nceud d’un systéme gauche.

Pour simplifier les épures, on préfére donner a I'an-
tiprojection de chaque barre une longueur arbitraire,
en faisant rentrer la longueur de cette antiprojection
dans le module u;; qu’on lul assigne pour le calcul des
déformations. Le module de la barre ik étant :

Lir

Y= B e

celul de son antiprojection sera :

ZNE
. X

Chaque systeme S posséde donc une infinité d’anti-
projections S’. Mais Mayor a montré que l'une quel-
conque d’entre elles représente parfaitement le systéme
donné du point de vue de la Statique : le caleul d’un
systéme quelconque S” entraine immédiatement celui du
systeme S.

En effet. appliquons a chaque plaque de S” une force,
antiprojection de celle qui agit sur le nceud correspon-
dant de S; il nait alors dans chaque barre ‘A" de S’
une tension 77, et chaque plaque n’ subit un déplace-
ment élastique infiniment petit, dans le plan de I’épure
— déplacement que I'on peut assimiler & une rotation
et représenter par un vecteur 8;, perpendiculaire au
plan de I'épure, de sens convenable, et appliqué au
centre de rotation de la plaque.

Les relations, démontrées par Mayor, entre les ten-
sions et les déformations du systéme S’, d’une part, et
les éléments correspondants du systéme S, d’autre part,
sont les suivantes :

= y. . . D
1. Les vecteurs Ty représentatifs des efforts intérieurs
dans les barres de S’ sont les antiprojections des yec-
teurs correspondants Ty de S.

o

Les vecteurs &, représentatifs des rotations des plaques
de S’ sont les images des vecteurs 8, représentant les
déplacements dans Uespace des nceuds de S.

Le calcul du systéme S” ne représente en général pas
de difficultés. Toutes les méthodes de la statique plane
peuvent étre utilisées : graphiques (Cremona) ou ana-
lytiques (conditions d’équilibre de chaque plaque). Les
déformations peuvent étre calculées par des extensions
de la méthode de Williot ou des antimasses.

Ce calcul est immédiat si le systéme donné est simple.
S’il est polyédrique, la méthode de I’échange des barres
permet de ramener son caleul a celui d’'un ou de plu-
sieurs systémes simples. De méme, le calcul d’un sys-
téme hyperstatique peut étre abordé par les méthodes
classiques.

Mais c’est la méthode cinématique qui se réveéle la
plus avantageuse pour le calcul des antiprojections de
systémes gauches : elle va nous permettre d’aboutir a
une généralisation de la notion de ligne d’influence, de
calculer de la maniére la plus simple les déformations
de tout systéme gauche et, par conséquent, d’aborder
aisément le calcul des systémes hyperstatiques.

2. « Champ d’influence » de l'effort dans une barre
d’'un systéme gauche

Proposons-nous de caleuler I'effort 7'y produit dans
la barre tk d’un systéme articulé gauche simple par une
force quelconque F,, appliquée & un nceud quelconque n.

Construisons un systéme S’, supprimons la barre 'k’
et remplagons son action par deux forces égales et
opposées, appliquées aux points d’attache de la barre
supprimée, et équivalentes & 'effort inconnu 77, pro-
duit dans cette barre par Pantiprojection [}, de F,,
appliquée a la plaque n’ (fig. 3).

Imposons ensuite a la distance séparant les points d’at-
tache de la barre supprimée une augmentation Al
trés petite, que nous prendrons comme unité des défor-
mations. Toutes les plaques de la chaine cinématique a
liaison compléte obtenue par la suppression de la
barre 'k’ subissent de ce fait de petits déplacements
assimilables & des rotations.

Fig. 3. — Application du principe des travaux virtuels.
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La détermination de ces derniéres est du domaine de
la géométrie élémentaire, chapitre des déplacements
instantanés de figures planes. Elle est basée sur les deux
propriétés suivantes :

1. Une plaque 4 est reliée par trois barres 1-4, 2-4
et 3-4 aux trois points 1, 2 et 3 (fig. 4). Les points 2 et 3
restent fixes et les longueurs des barres 2-4 et 3-4 inva-
riables. Le point 1 subit un petit déplacement g)l, et
la barre 1-4 une variation de longueur Al;_4 considérée
comme positive s’il s’agit d’un allongement.

La rotation de la plaque 4, que nous avons a déter-
miner, s’effectue autour du point d’intersection wys; des
droites 2-4 et 3-4. Son intensité résulte de 1’équation :

(6) W4—1 d4_1 = Al1_4 + 81 COS Xy

qui exprime que le déplacement du point A projeté sur
la direction de la barre 1-4 se compose de I'allongement
de cette derniére et de la projection du déplacement du
point 1sur cette mémedirection. Le vecteur 34_1 estdirigé
dans le sens positif si la rotation s’effectue dans le sens
positif également.

2. Lorsque deux plaques i et k reliées par une barre
indéformable subissent respe_c;civem(glt les rotations

représentées par les vecteurs ow; et oy, ces deux der-
niers sont liés par la relation (fig. 5):

(7) w; di = oy di

ou les distances d; et dz sont a c0n51derer comme étant

de méme signe si les vecteurs ool et ook se trouvent du
méme coté de 'axe de la barre i'k’, et inversement.
Cette relation exprime que les projections sur cet axe
des déplacements respectifs des points A; et Ay sont
égales, la barre étant indéformable.
Le systéme donné étant supposé simple, les deux for-
mules (6) et (7) permettent de déterminer, de proche

en proche, tous les vecteurs co,k, en position, intensité
et sens.

En particulier, la plaque n’ subit une rotation repré-
sentée par le vecteur o, et le point d’application de la
force I, subit un déplacement, dont la projection sur
la direction de cette force est égale au moment statique
du vecteur oo ", par rapport a la ligne d’action de F,

(fig. 3).

Sa valeur est donc le produit :
n n
ki

Le principe des travaux virtuels permet d’écrire 1'éga-
lité :

/ L4 T n n ’
Ty Ay, = oy dy F,.

. . ’ .
Comme nous avons choisi Al =1, le premier

’ . ’ ’ . . . . ~/
membre de I'égalité se réduit a la tension inconnue 7'y, .
Quant au deuxiéme membre, ce n’est autre chose que

= -
le moment relatif [, . F, des deux vecteurs ortho-
> s> 3 e oo
gonaux oy, et f/,. Il est a considérer comme positif
- =
lorsque le vecteur w?, et le moment de la force F, par
rapport a son point d’application sont de méme signe —
et comme négatif dans le cas contraire.

La tension réelle dans la barre correspondante du
systeme gauche sera, en vertu des équations (3):

Too =Ty V1+1tg20; = 7@ \/1—|—tg26,-,,),

Posons :

(8) Vi = &% V 1+ te? 0.
Alors :

(9) Dot =VEIRNG

On peut donc dire que :
Ueffort dans la barre tk du systéme gauche, produtt par

une force fn appliquée au nceud n, est égale au moment
relatif du vecteur 97, et de Uantiprojection 7’,’1 de F,.

A chaque nceud du systéme S correspond un vecteur

# (fig. 6). L’ensemble de ces vecteurs est un champ
discontinu dont la connaissance entraine le calcul
immédiat de l'effort produit dans la barre ik par une
force quelconque appliquée 4 un neud quelconque. Ce
champ des vecteurs ¢ est donc bien une généralisation
de la notion de ligne d’influence d’une tension. On peut
lappeler «champ d’influence» de Teffort dans la
barre tk 1

Il y aura autant de champs d’influence que le sys-
téme donné posseéde de barres — barres réelles ou barres
fictives de liaison.

Un cas particulier important est celui ou la force
donnée est verticale et descendante. Cette force est
représentée dans le plan de I’épure par un couple de
moment — al.

L’effort dans la barre ik est alors donné par Iexpres-
sion :

T,’k = —a Fn V?L"

! Ce champ d’influence est identique (a un facteur constant prés)
4 '« Einflussplan» de W. Prager (thése, Berlin, 1926) qu'il a établi
par une tout autre voie.

W 50

g o
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Si toutes les forces agissant sur les nceuds du systéme
sont verticales, la tension dans la barre ik se réduit a
une somme algébrique :

(10) Ti=—a E Fp 5.
1

L Z

Fig. 6. — Champ d’influence des efforts dans la barre ik
d’'un systeme gauche.

3. Déformation d'un systéme articulé de I'espace

Le calcul du déplacement gm, dans 'espace, d’un nceud
quelconque d’un systéme S sollicité par un groupe de
forces extérieures résulte simplement de la connaissance
des champs d’influence des efforts dans toutes les barres
de ce systéme.

Supposons en effet que nous ayons déterminé au
préalable les efforts 7 dans toutes les barres de S.
Considérons une antiprojection de S et calculons la
rotation de la plaque m’ dans I’hypothése que toutes
les barres de ce systéme sont indéformables a I'excep-
tion de I'une d’entre elles, 7'k par exemple. Cette barre
subit une variation de longueur :

’
Tip Wi
et la plaque m’ une rotation représentée par le vecteur

>n

> ’ ’
(11) O, ik O Tix Wi
" = . 5
puisque le vecteur c;; représente la rotation de cette
plaque lorsque la variation de la longueur i’ k' est
égale a l'unité.

Mais :
en vertu de (8): @ = 97 cos 6,
en vertu de (2): T, = Ty cos &
et par définition: p;, = Coi;—e-

En portant ces valeurs dans I’expression (11), on cons-
"

=
tate que le vecteur 3,
vante, ou ne figurent que des éléments relatifs au sys-
téme de I'espace :

i ; - : :
iz est donné par I'expression sui-

-

(1'2) 8m, ik = 3?]: T”"' Wik -

Si maintenant nous tenons compte des déformations
de toutes les barres de S le vecteur représentatif de la
rotation de m’ sera

=" >, ot
(13) 5. = Y 7% T

" Ld
(ik)

ou le signe E représente une somme géométrique de
(k)
tous les vecteurs considérés.
<" : xR
Or, nous savons que §,, est 'image du vecteur &,

cherché et le probléme se trouve ainsi résolu.

Il est évident, d’autre part, que la notion de champ
d’influence sera d’un emploi trés avantageux chaque
fois qu’il s’agira de ramener le calcul d’'un systéme
donné a celui d’un systéme principal dans plusieurs
modes de charge. Ce sera le cas pour les systémes polyé-
driques (par I'’échange des barres) et des systémes hyper-
statiques.

Notons pour terminer que le mode de représentation
de Mayor peut s’appliquer avec avantage au calcul des
efforts secondaires dans un systéme articulé, ainsi qu’a
celui des systémes gauches non articulés : cadres rigides
gauches, charpentes monolitiques de 'espace. S’il n’est
pas possible de définir une antiprojection de tels sys-
témes, la transformation mayorienne n’en reste pas
moins précieuse pour I’étude de leurs conditions d’équi-
libre et le calcul des efforts.

4. Exemple

Afin de préciser un peu les considérations qui précédent,
nous appliquerons les résultats obtenus a I’exemple suivant :

Proposons-nous d’établir les champs d’influence des
efforts dans les barres d’une coupole Schwedler du type le
plus simple représentée a la figure 7.

4.24

Fig. 7. — Coupole Schwedler.
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Nous choisissons @ = 4 m et commencons par dessiner
une antiprojection du systéeme donné (fig. 8).

Les barres 5-6, 6-7, 7-8 et 8-5 étant horizontales, leurs
antiprojections passent par l'origine. Les barres 1-5, 2-6,
3-7 et 4-8 sont inclinées a 45°, leurs antiprojections sont
tangentes a la circonférence directrice, car

d=atgd=a.

Y1’

Fig. 8. — Antiprojection de la coupole Schwedler.

Pour les barres 1-6, 2-7, 3-8 et 4-5, dont la projection
horizontale mesure 6,70 m, on a, en vertu de I’équation (2):
4,26

o = 4,00 6.70

2,93 m

Ces antiprojections tracées, il suffit de choisir les points
d’atltache des barres de S’ de maniére que le sens d’une
barre i’-k’ soit toujours opposé a celui de la projection hori-
zontale de la barre i-k. L’antiprojection que nous avons
choisie comporte les quatre plaques 5%, 67, 7" et 8/, les autres
nceuds étant fixes dans le plan horizontal.

Proposons-nous d’établir le champ d’influence des efforts
dans la barre 1-5. L’antiprojection de cette barre étant
supprimée, nous imposons a la distance 1-5’ une petite

. ’ - .
augmentation Al;_; =1. Il est facile de voir que seules les
plaques 5 et 8’ subissent de ce fait un déplacement.

La rotation de la plaque 5, reliéce par les barres 4-5 et
5’-6” a deux points fixes, s’effectue, dans le sens positil,

autour du point d’intersection ¢] . des axes de ces deux

1—
barres. Son intensité résulte de 'application de I’équation (6) :

1

6.00 —+0,167.

b}
Wy gl =t

Le vecteur ¢] - correspondant sera:

03 = +0167 x V 1+ tg? 015 =
= 4 0,167 X 1,41 = -+ 0,236.
La plaque 8 tourne autour de l'intersection des deux

barres 3’-8” et 4’-8” qui est par conséquent le point d’appli-

cation du vecteur ¢

1—5°
Son intensité résulte de 1'équation (7):
2,83
8 )
v; 5 = + 0,236 5.66 — + 0,118.

Le champ d’influence des efforts dans la barre 1-5 est
ainsi calculé. Celui des barres 5’-6” et. 1’-6” s’obtient tout aussi
facilement : le champ relatif a la barre 5-6 est constitué par

un seul vecteur vgvﬁ d’intensité + 0,177 et le champ relatif

a la barre 1-6 par deux vecteurs V?_G et vil’_s d’intensité
+ 0,156 et — 0,156. Les points d’application de tous ses
vecteurs sont indiqués sur la figure 8.

Par suite de la symétrie centrale du systéme donné, ces
trois champs d’influence permettent d’établir immédiatement
ceux de toutes les autres barres. L’ensemble des champs
d’influence des efforts dans toutes les barres de la coupole
est représenté a la figure 9.

Nous pouvons maintenant calculer la coupole dans tous
les cas de charge et déterminer rapidement ses déforma-
Lions.

Considérons, par exemple, une force oblique F5.de 1 t,
telle qu’elle est représentée a la figure 7.

En vertu de régle établie plus haut, les efforts produits
par cette force dans les barres de la coupole ne sont autre
chose que les moments relatifs de I’antiprojection de F5 et

>5
des vecteurs v, correspondants. Nous avons done, comme
i

Fo = 0,707 t.,:

T1—s = — 0,707 x 0,236 X 4,00 = — 0,67 t
Ts s = — 0,707 x 0,477 X 9,66 = — 1,21 ¢
Tes5 = — 0,707 X 0,156 X 4,00 = — 0,44 t
Ti—6 = + 0,707 x 0,156 X 9,66 = 1,06 t
T3¢ = — 0,707 X 0,118 X 9,66 = — 0,81 t

Dans le cas de quatre forces verticales descendantes de 1 1
appliquées aux nceuds 5, 6, 7 et 8 nous trouverons immeédia-
tement, en vertu de ’équation (10) :

Ti—5 = —1t X 4,00 x (0,236 + 0,118) = —1,42 ¢
Ty 5 = —1t X 4,00 x (0,456 — 0,156) = 0
Ts—s = ~—15 X 4,00 X 0,'177 — —0)71 t

Calculons maintenant la déformation de la coupole sous
I’action de la force Is.

Neeud 5
b‘: w de

I’équation (13) est résumé dans le tableau ci-dessous, et les
”
vecteurs E d; . sont représentés sur la figure 10.

. =5 m
Le calcul des expressions ¢ Tik Wik

?irzs" Lix Qi E.uik "?k Tik E.b;', ik
T [ em | ok i ‘ ]
1-5 | 600 @ 30 200 | - 0,236 —O,G7i — 13,16
56 | 300 20 A5 A0 Al =R R S o
45 | 79 | 15 53 | + 0156 | — 0,44 | — 3,64
16 | 79 | 15 53 | — 0456 | 1-1,06( — 876
26 | 600 30 90| S 0144 N ==0s 31 [FEEE 4
‘ Y = — 20,68.
Uls = +015
U/ = +0.118

Uyzs = +0.177
UIZ‘ = ~0.156

Fs':0.707

0 U8 .

4.00

0
0 /AS
Uls +023 U8

+ 0.156
+0.118

SiL
Up g *0.156
6 =
Up s *0.118
—O-

U7 =+
5 ¢ '
VEg+o.177 2.83 UBs = tourr

6 .. -
Vg - 015 Us, 0.15%

o V2€6 +0.23,

5.66

Uy = +oms
? Uls =+ 0.8
Use = 0177
Ufs = -0.15

Fig. 9. — Champs d’'influence des efforts dans toutes les
barres de la coupole.
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____4) CS,, Neeud 8
¥ 6 Le nceud 8 est reli¢ au nceud 5 par la barre 5-8 qui ne

f——-+<¥'~,: 6t 876
i

X
C—
"o
5 | " } o
1 "Ss,z-s,;-f'l?’
\—«%6;1-;.’5 = -3
y
y"ss,f-s - -87%
—13.88
Fig. 10. — Déplacement des nceuds 5, 6 et 8.
> : >
Le vecteur 0;, somme géométlrique des vecteurs 05 ik @
20,68 c¢cm

pour intensité — et comme coordonnées du point

E
d’application (lig. 10) :

g —316 X 2,83 + 3,66 X 5,66 _ 11,68 _ ..
= —20,68 = o9pes . T
o 13,88 X 5,66 ok

—20,68

>

Les composantes du vecteur dj, représentant le déplace-
ment du nceud 5 dans I'espace, sont, en vertu des équa-
tions (5), et pour £ = 2000 t/cm?:

3,80 20,68 I
o = + Z,O—O e +19,6E = + 0,0098 cm
o 9[;?060’? ) 20};& — 42,93 }? = + 0,0015 cm
f)
5 — . £I;§§ _ —0,0103 cm.
Neeud 6

Le calcul du déplacement du nceud 6 est plus simple
encore :

I?a:‘“}: T o5 ’ T | E.b 4
— | e
1-6 53 -+ 0,156 -+ 1,06 + 8,76
2-6 | 20 —+ 0,236 l = (5B — 3,82

2=
E=0

— 8,76 X 5,66 — 3,82 X 2,83

e e —— 1322 m
d’ou
it +1422)202 x [*'13/" =i 12:'1 — + 0,0075 em
o P 0
5 — + 424 - 40,0025 cm.

< ) o 2 . » A
subit pas d’efforts. Le vecteur d; est appliqué au méme

: 8 28
pomnt que les vecteurs V15 et vy s el son momentl par rap-
- - ’ 3 . X
port a la droite 5-8” est égal a celui du vecteur o;.

On a done immédiatement :

” » 0,565 ” 2,06
et} e en SR LI 9 s Ny
dg o5 5.66 0,0997 o - i cm
d’on
0r =0
5,66 2,06 e
by + ’1?()6 3 E7 = + 0,0013 cm
9 v
o, = :%‘)9 = - 0,0010 cm.

Lle nceud 7 ne subit pas de déplacement.

NOTICE BIBLIOGRAPHIQUE

Mayor a exposé sa méthode de représentation et de caleul
des systemes de I'espace dans les articles et les ouvrages
suivants :

1. Comptes rendus de U'Académie des sciences, 1902, 1903
et 1915,

2. Bulletin technique de la Suisse romande, 1903, 1904, 1905,
1908, 1909.

3. Statique graphique des systmeées de Uespace. Rouge et
Gauthier-Villars, Lausanne et Paris, 1910.

4. Bulletin de la Société vaudoise des sciences naturelles,
1914 et 1918.

5. Introduction a la statique graphique des systéemes de
Uespace. Payol, Lausanne, 1926.

Les ingénieurs liront avec fruit 'excellente présentation
de ce dernier ouvrage faite par M. Maurice Paschoud dans
le Bulletin technique du 4 décembre 1926.

H. C. Yux~g, dans sa theése : Caleul de la coupole du Reich-
stag, a Berlin, par la méthode dualistique de M. B. Mayor
(Payot, Lausanne, 1926), a déterminé les efforts dans les
barres de cette coupole a I'aide d’une antiprojection de ce
systeme.

La représentation mayorienne a été mentionnée par
M. F. Srissi, professeur a 1’Ecole polytechnique fédérale,
dans son cours de Statique (Baustatik, I, Birkhéduser, Bile,
1946, p. 49 a 51).

M. Er-Savep Er-Smasvty, dans son étude des efforts
secondaires dans les barres d'une coupole Schwedler (Bie-
gungsspannungen und Stabkrifte in Schwedlerkuppeln nach
Theorte und Modellversuch. Mitteilungen aus dem Institut
fiir Baustatik an der E. T. H., Leemann & Cie, Zurich, 1943)
utilise la méthode dualistique de Mayor pour la détermina-
tion des efforts principaux. Si l'auteur avait utilisé cette
méme méthode pour le calcul des déformations, son travail
en aurait été considérablement simplifié.

En Italie, les recherches de Mayor ont été présentées par
O. Lazzer:t (Pertodico di matemalica, janvier-février 1912),
et aux Etats-Unis par F. H. Conxsrant (Stresses in space
structures. Proceedings of the American Society of Civil
Engineers, vol. 60, 1934, p. 633-639). En France, Maurice
p’OcacNeE a consacré a la représentation mayorienne un
chapitre du tome II de son cours de géométrie professé a
I’Ecole polytechnique.

En Allemagne, R. vox Mises a proposé un mode de repré-
sentation qui ne différe de celui de Mayor que par un chan-
gement de signe dans les formules de transformation (Gra-
phische Statik rdumlicher Kriftesysteme. Zeitschrift fir
Mathematik und Physik. Berlin, 1917, p. 209-232). Tous les
auteurs allemands, qui ont donné d’ailleurs a la représenta-
tion mayorienne un développement remarquable, utilisent
la variante de von Mises.

Citons en premier lieu :

W. Pracer: Beitrag zur Kinematik des Raumfachwerks
(these). Zeitschrift fiir angewandte Mathematik und Mecha-
nik. Vol. 6, 1926, p. 341-355, ou 'auteur, partant de la cons-
tatation que, dans la représentation mayorienne, le produit
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intérieur de deux vecteurs de ’espace est proportionnel au
moment relatif de ’antiprojection de I'un et de I'image de
l'autre, définit la notion de « champ d’influence » (Einfluss-
plan) et donne une méthode générale pour le calcul des
déplacements des nceuds d’un systeme articulé gauche.

Citons ensuile toute une série d’articles de Pracer, FEDER-
HOFER, BEYER, Kruprpra, Sotorr, Sauer, Dierz dans la
Zettschrift fiir angewandte Mathematik und Mechanik, de
1924 a 1950, ainsi que 'ouvrage de K. FEperuorEer : Gra-
phische Kinematik und Kinelostatik des starren rdumlichen
Systems (Springer, Wien, 1928) ou l'auteur applique la repré-
sentation mayorienne a l'étude de la cinématique dans
I’espace, de corps rigides.

Cette représentation figure également dans les derniéres
éditions (1939 et 1946) du traité de Scurink : Technische
Statik (Springer, Berlin).

Enfin dans son article Die Losung des Sechsstabanschlusses
mit der Methode der dualen Abbildung (Ingénieur-Archiv,
XVI, 1947-1948, p. 14 a 38), H. Dierz applique la représen-
tation de Mayor au calcul des réactions d’appui d'un corps
rigide de l'espace.

Trop d’ingénieurs ignorent encore la méthode de Mayor.
C’est ainsi que dans une étude, d’ailleurs fort intéressante
(Three-dimensional displacement diagrams for space frame
structures. Proceedings of the American Society of Civil
Engineers, 13 juin 1950), W. W. Ewerr s’efforce d’étendre
a l'espace, en utilisant les deux projections orthogonales
d’'un systéme gauche, la méthode graphique de Williot,
alors que Mayor a montré vingt-quatre ans plus tét que
cette extension est trés simplifiée par son mode de repré-
sentation.

Tous les auteurs mentionnés ci-dessus n'utilisent que la
représentation mayorienne des vecteurs et des éléments pure-
ment géométriques (droites, plans, points). Nous n’avons pas
rencontré dans la littérature (a I'exception de la thése de
H. C. Yu~c) une seule application de la notion, si féconde,
d’antiprojection d’un systéme articulé de ’espace. Et pour-
tant, cette notion, qui permet de concrétiser dans le plan
les efforts et les déformations des systémes gauches, est d'une
importance primordiale pour l'ingénieur appelé a calculer
de tels systemes.

ESSAIS SUR MODELES REDUITS D’OUVRAGES EN BETON ARME

par A. VILLARD, ingénieur E. P.U. L., a Lausanne

Autrefois, les routes et les chemins de fer enjam-
baient les riviéres par des ponts que l'on essayait de
construire normaux aux cours d’eau, ceci afin de les
raccourcir et de simplifier leur exécution.

On cherchait d’autre part a réaliser les ouvrages du
génie civil de facon symétrique afin de mieux saisir
leur comportement dans le calcul et dans la construc-
tion proprement dite.

Nombreux sont les exemples de constructions de tous
les types congus selon ces principes, dans notre Europe
et dans le Nouveau-Monde.

Le développement rapide de la technique d’une
maniére générale, celul des chemins de fer et de I'auto-
mobile en particulier, ainsi que I'adaptation de moyens

toujours plus perfectionnés & nos nécessités modernes,
conduisent de plus en plus le constructeur et 'architecte
4 s’affranchir de toute routine et & donner aux ouvrages
de la construction civile et de I’architecture des formes
quasi quelconques.

L’apparition du béton armé et du béton précontraint
a apporté aux constructeurs des possibilités nouvelles
pratiquement illimitées dans I'exécution des formes, ce
qui implique comme conséquence des choses insaisis-
sables, voire insolubles, dans le domaine du calcul.

De nombreux ouvrages biais, en particulier des
ponts-routes et ponts de chemin de fer ont été réalisés
pendant ces derniéres décades au moyen de poutrelles
métalliques enrobées de béton afin que leur caleul se

Fig. 1. — P. S. de Villeneuve. Plan général.



	Extension de la méthode des lignes d'influence au calcul des systèmes articulés de l'espace

