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LA MÉTHODE DE WALTHER RITZ

Son application à quelques problèmes élémentaires
de résistance des matériaux

par MAURICE PASCHOUD 1

(Suite et fin) 2

III. Déformée de la poutre à deux appuis simples sollicitée
par des forces transversales et par des forces agissant suivant

son axe

§ 1. Représentation par une série trigonométrique

Appelons q(x) la charge transversale par unité de longueur
et S les deux forces égales et directement opposées qui agissent
suivant l'axe de la poutre en la comprimant (Fig. 8). L'équation

différentielle de la déformée est

El d*y odV
dx* + s -jZ2 q(x)dx* (i)

avec les conditions aux limites
dh S

V 0 et ^ 0

Nous partons de l'expression

y(x) ajX^x) +
VTTX

Xi sin
l

pour x 0 et x l.

+ OnXn(x)

1, Ä#J
(2)

On a

içf)Xh X<""=(y)V fXmXpdx=0, fXidx=t.

Professeur honoraire de l'Université de Lausanne.
* Voir Bulletin technique du 3 mai 1952, p. 12S.

1W

X/TT e
d

Fig. 8.

La nième équation G s'écrit ici

fXn(x) PTd*y d*y
EIdx* + Sdx'>-q{x) dx 0. (3)

d*y d*y
En y remplaçant -j-g et -j—j par leurs expressions tirées

1/r.. ctx ux
e (Z), il vient

El M* l „ M2 l mr*
k | I n4On

2 — S [Jj na* 2 ~ J q(X' Sln ~T~ '

¦ É ¦ SI2
relation qui s écrit, en posant a tt;—sr EItT*

E1 \l) °" 2 n*1"2 — a] — fl(x)sia^J- dx. (4)
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Cette relation correspond à la relation (4) du chapitre II.
Au 1er membre, n* est remplacée par «a(«2 — a). Pour les
divers modes de charge considérés, les valeurs du 2e membre
sont les mêmes que celles calculées au paragraphe 2 du
chapitre II.

§ 2. La poutre est sollicitée par une charge uniformément
répartie agissant sur toute sa longueur ainsi que par les

forces axiales S

L'équation de la déformée est

4ql*
^ ~~ EItt6 *-J n°ln°

»=1,3,6,...

y, i (5)

Si a 0, c'est-à-dire si 5 est nulle, la relation (5) se réduit
à la relation correspondante (8, II) du chapitre II.

En comparant la relation (5) à la réA;ion (8, II), on voit
que l'action de la compression axiale, comme on Pouvai^^^
attendre, est d'augmenter les déformations de la poutre.

L'équation (5) peut s'écrire

y
iql* y,El-n* àj n-

n=1,3,5,...
I

S l

« 1,3,5,.

VI 1 mvx
>i 3sm

(6)

l
»=1,3,5,...

Le facteur dans le crochet donne la déformation qui se

produirait si la charge transversale agissait seule. Le second
facteur est un facteur d'amplification qui indique dans quelle
mesure la déformation due à la charge transversale est
augmentée par l'effort axial de compression.

Si a croît de 0 à 1, ce facteur d'amplification croît de 1 à t»
Quand oc tend vers 8| c'est-à-dire quand S se rapproche de

EItt*
y devient très grand, même si la charge

£/tt2i
transversale est très petite. La valeur limite de S, S

V
est la charge critique Sait. On a a ç—"cri«

La série (5) converge rapidement, surtout quand a est
petit. On peut, pratiquement, s'en servir en ne conservant
que son premier terme. On a alors

y
4qP

sin
ira;
T

ElTT*M — a
et la flèche de la poutre peut se calculer en multipliant la
flèche due à la charge transversale seule par le facteur

1

1—-ce'
En dérivant (5) terme à terme, on trouve l'expression de

la pente de la déformée

dy
dx

iqP
El-n*

cos
3ttx

1«M2 32(32

Pour le moment fléchissant, il vient

M ïql* smT
1(12 — a)

3tt3;

dont le maximum est

M„
4ql? 1

3(32-

1

1

qP 1(1* •

"8

3(32-

1

3(3* —

+

+ f,

_32

ql2
Le facteur %- repalfsente le moment fléchissant maximum

o
dû à la charge q(x) seule.

Le second facteur, facteur d'amplification, mesure
l'influence de la force axiale sur le moment fléchissant maximum.

Les formules qui précèdent se généralisent immédiatement
pour le cas où la charge uniformément répartie ne s'étendrait
que sur une partie de la poutre.

§ 3. La poutre, comprimée par les forces S,

a) porte une charge concentrée P ; l'équation de la déformée
est alors, si c est l'abscisse du point d'application C de la
force P

y

2PP
EItt*

2PP
EItt* 2j n-

»=1,2,3
(ns

mrc rnra:
—; Sin —r— Sin —;—-oc) l l

yl 71TTC

-4 sin—j-si
mxx

1 sm~r
y

nixc niTX
sm—s— sin —j—

»=1,2,3,...
n"(n' a

1 nirc rnrx
—ism—7— sm—r~n* l l

n=l,2,3,...

»=1,2,3,...

b) est sollicitée par un couple de moment M, appliqué au
point C, d'abscisse c ; l'équation de la déformée est

_
2MI* v^ 1

y~Ë~h? y
»=1,2,S,...

nue mrx
—r cos —r~ sm•a) Z l

2 MP
Ein3 S

1 nirc ntxx
—~cos—;—sut

71=1,2,3,
l l

Zj
»=1,2,8,

mxc ntxx
cos —i- sm —j—

n(n2 — a)

Zj n»
mec mxx

COS—r- SU!

(8)

l - l
» 1,2,3,

On peut répéter, à propos de ces expressions (7) et (8)
les mêmes remarques que pour la relation (6). La charge
critique a toujours comme expression

i §*£.àcrit — 72 *

§ 4. Application.
Calcul du moment d'encastrement d'une poutre encastrée à un
bout, appuyée à l'autre, sollicitée par une charge transversale q
uniformément répartie et par les forces axiales S de compression

(Fig. 9)

Sous l'action de la charge q et des forces S, la poutre à
deux appuis simples obtenue en supprimant l'encastrement
se déforme et la pente de sa déformée sur l'appui de droite
a pour expression

dy\
dxjx—i

4gP
EItt* 12(12 — a) 3»(32

Sous l'action d'un couple de moment M appliqué sur son
appui de droite et des forces S, la même poutre à deux appuis
simples prend, sur cet appui de droite, une pente donnée par

2MI
EItt*

1 1

ty///////////?)y//////zz&
ff

!_£

Fier. 9.
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On doit avoir

4çP 1 1

EItx* i 2(12 —oc) 32(32 — oc)

2MI
+ £/tt2

1 1 I
0,l2 —a ' 22 —a

' ¦'•

d'où l'on tire
1 1 f12(12 —a)

'

32(32 —a)
1

1

1
1

l2 —a ' 22 —oc
' •

TT4

I 2qP 96 qP
Pour oc U Ma=o —s • —i s- •

TT TT2 8

6
On peut écrire

16

g

1 1 W-.\HÉ l2(l2 — a)
'

32(32 —a)
1 1

l2 —a ' 22 —a '

(9)

Le moment d'encastrement M s'obtient ainsi en multipliant
le moment d'encastrement qui serait dû à la charge q seule

par un facteur d'amplification.
SP

Si a r,T ¦> — 0, c'est-à-dire si S est nulle, ce facteur
Eire2 ' '

¦

d'amplification est égal à 1. Si a tend vers 1, ce facteur tend
16

vers —5 1,621.

Son dénominateur a une infinité de zéros, dont le plus

petit est un peu supérieur à 2. On en déduit la valeur de la
charge critique.

La série qui se trouve au dénominateur du facteur
d'amplification converge lentement. Pour faciliter le calcul numérique,

on peut utiliser la remarque suivante.
Dès que n est un peu grand, pour n égal à m par exemple,

1 1
le terme —« diffère peu du terme ISS

nz — a n*
A partir de cette valeur m, on aura

V — m Y -Zj m2 — a — Zj m '

m,m4-l,.« t»,m-hl,...

l'erreur commise étant inférieure à

a 1

- y ma Zj m
m, m-f 1,...

Comme on a

vi-71!Zjn*~" 6
1,645

on peut calculer une fois pour toutes les valeurs de

1V - - ""¦

Zj n2 " 6 |12

m
2a + (m — l)2

9»,fft-|-l**<.

pour diverses valeurs de m.
TiMosHENKO, [3], p. 27, résout le même problème par la

méthode classique. II donne l'expression suivante du moment
d'encastrement M

SP

«life
4 tg 2« (tg u — u)

u (tg 2u — 2u) t
u2

On en déduit
SP

a ~ Elit2 ~
4ua

TTutuir

QW

'A

1/
Fig. 10.

Dans [4], p. 1-19, il étudie une série de problèmes
analogues au précédent et donne, en appendice, p. 478-485, des

tables pour le calcul numérique des facteurs d'amplification.
L'emploi des séracs trigonométriques permet de résoudre ces

problèmes, en se passant de ces tables.

§ 5. Poutre chargée transversalement et formant hauban (fig. 10)

Soit une poutre à deux appuis simples formant hauban
et soumise à l'action simultanée des forces axiales de traction

S et d'une charge transversale q(x) par unité de longueur.
L'équation de sa déformée est

El dx*

avec les conditions aux limites
13

y 0, dx2
0 pour 0 et x l.

En procédant comme au paragraphe 1, et en posant encore
SI2

a ,jr 9 1 on obtient la relation fondamentale
EIlT2'

Elmfj a» 2 n*(n* + a)=fq (x)
nirx

sin —j— dx. (10)

Le second membre de (10) est identique au second membre
de (4). Son premier membre s'obtient en remplaçant — a
par -(- a dans le premier membre de (4). De chacun des

résultats obtenus dans le cas où les forces S sont des forces
de compression, on déduit un résultat correspondant pour
le cas où ces forces sont des tractions, en remplaçant —a
par + a.

Etudions le cas où la charge transversale est uniformément
répartie et agit sur toute la longueur de la poutre.

L'équation de la déformée de la poutre est

iql* y* 1 mrra;
y

»=1,3,5,...

La flèche maximum, pour

1

n*(n% -\- a)

l

l

ymax —

Si a 0,

iql*
£/tt5 ls(l2 + a]

iql*

n est donnée par

1

3S(32 + a) + '•

ymax — E
a_o El-n*

OTT"

1536
5gft

384E/

et l'on peut écrire

y«
5qP

3SiEI
1536
5-rr5 \ls(l2 + ce)

— 38(3* + a] +

Le premier facteur représente la flèche du hauban dans le

cas où S est nulle. Dans le crochet se trouve un facteur de

réduction dû à l'effet des forces de traction. Quand a 0,
ce facteur de réduction est égal à 1. II diminue quand a croît ;
a peut ici être > 1,
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TiMosHENKO, [3], p. 37, donne pour ce facteur de réduction
l'expression

1i_
chu

w
2"

24

et, dans un tableau, il indique les valeurs de ce facteur de

réduction pour diverses valeu»|de u. On a toujours les
relations

SP 4u2
w liEl et a TT"

Calculons encore le moment d'encastrement d'un hauban
encastré aux deux bouts, tendu par les forces S et portant
une charge uniformément répartie sur toute sa longueur.

Pour la pente de la déformée d'une poutre à deux appuis
simples tendue par les forces axiales 5 et portant une charge
uniformément répartie sur toute sa longueur, on a l'expression

dy
_ iqP v-i 1

dx y,Elu* Zj n2ln2 + a) l
»=1,3,5,...

v '

Sur l'appui de gauche de cette poutre, la pente est

"
1^ 1

12(12 -dx)x=o
iql3
Elu* + 32(32

D'autre part, si la poutre à deux appuis simples, tendue

par les forces S, est sollicitée par un couple de moment M,
appliqué au point C d'abscisse c, la pente de sa déformée est

TTC ux lue lux _

dy 2MI
COS —j- C(

L ia+
)S -y COS —j— cos —j-

+-
dx ~ Elu2 oc 22 + a

et l'on a

(dy)
n

2MI
1 Elu2

r 1 1

wm l2 + oc
•" 22 + a

'

et

(dy) t
2MI 1 1

\aX/x=0 | Elu2 l2 + cc
' 22 + cc

"

La poutre est encastrée à ses deux bouts. Si MA est le
moment d'encastrement à gauche et MB le moment
d'encastrement à droite, on aura, sur l'appui de gauche, la relation

iqP 1 1

+

Elu*

2MJ

1 + a "" 32(32 + oc)
'

' 1 1

Elu2

2MBl
Elu2

1 + cc
' 22 + a

' "'_
1 1

1 + a
'

22 + oc
0.

Par raison de symétrie, si MA M, MB sera :

l'on tirera de la relation précédente l'expression

1 1

¦M et

M qp 1 + «
MB

+ 32(3a ce

faT38 + a
Si cc 0

Ma. qPl
1

3*

w - + - +32 "t- 52 "f ¦ • •7 +

TT

qP9Q
U2 TT2

~8

qP
12

Et l'on peut écrire

M qP
12

12 1 + oc t 32(32 + q)
^¦2 A \

1 -fa
Le facteus dans le crochet est le facteur de réduction.
Pour ce facteur de réduction R, Timoshenko donne

l'expression

R
thu

i2thu

At" 2
SP T*2«

Un a toujours u „. —j—.J 4EI 4

IV. Déformée de la poutre à deux appuis simples reposant
sur une fondation élastique

§ 1. Représentation par une série trigonométrique

Soient l la longueur de la poutre et El sa rigidité, supposée
constante. L'équation à intégrer est ici

El d*y
dx* + ky= q{x). (1)

La constante k est le module de fondation ; ky est égale
à la réaction de la poutre par unité de longueur.

Les conditions aux limites sont toujours

d'y
y 0 et -j-jj 0, pour x 0 et x l,

et nous écrivons, ici encore

yn(x) a^X-^x) + + a„Xn(x)

où XAx)

(2)

IUX
l

Comme nleme équation G, on a alors, q(x) étant la charge

par unité de longueur
2

0

XJx) EIo% + ky-tix) dx=0 (3)

,rr\4 l
El | y

1 On K
l*k

Elu*
A(a nux

—j— dx.

kEI
4 / k

En posant ^ V 4£
cette équation devient

'pi"*FT —9/3 ^* n4 + 4 M(<
nux

sm —j— dx (4)

Cette relation (4) correspond aux relations fondamentales

ISP et (4), III.

§ 2. Déformée de la poutre portant sur toute sa longueur
une charge uniformément répartie q par unité de longueur

Pour n impair, on a

2P 2ql
Elu* nu 1 I69 \u

V

ßMn* + 4

Pour n pair, an est nul.

B /nT»4 + 4(|'
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L'équation de la déformée est

ux
q 16 /ßZ
k' u

1 smT
1

l*+4 $l\* ^

3ira;

sm~r
34+4

W

_q i6/pzy
y™*~k~ u[u

Le moment fléchissant M est ici

Tra;

1 i
M!)' 3 i^m

(6)

M PV
sm l

3-rra;

+ «,?)• T3. + 4(»*

'our a;

M„

i
2 '

4<z(PQ2

pV»
1

:(^)4 3* +4^p?\4 ^4 + (7)

Timoshenko, [3], p. 19, prend l'origine des coordonnées

au milieu de la poutre et il trouve les relations suivan^^^
(5 bis)

9 • P* fcß*
2 sm 7) sh-n-

cos pZ+ cApZ

9
P* ,P*2 cos lyCh-K

sin ß.rsAßx „. ...cos pxchßx

ymax — \y)x=0 — t.

cosp|-cÄpZ

9 P* Ï.PfZ COS tj- Cft H|

cosßZ + cApZ.

M„
,Pi. pz

sn ~n sm -k-
g 2 2

P2 cos pZ + cÄpZ '

(6 bis)

(7 bis)

Dans sa Theory of Plates and Shells, p. 30 et suivantes, il
résout l'équation (1), mais en posant

Z

kEl

Pour le calcul numérique, il introduit diverses fonctions
dont les valeurs sont données par des tables.

Les expressions (5), (6) et (7) permettent de faire ces
calculs numériques sans se servir de tables.

L'exemple suivant, donné [3] p. 17, montre comment il
faut procéder pour trouver la déformée d'uneEj&outre qui,
au lieu de reposer sur une fondation élastique continue,
repose sur un grand nombre d'appuis équidistants.

Soit (Fig. 11) une poutre horizontale AB, à deux appuis
simples, de longueur Z et de rigidité El, sur laquelle reposent
des poutres identiques, parallèles, horizontales et équidis-
tantes blt b.it de longueur Zj et de rigidité EI}. Ces poutres
bi portent chacune une charge p uniformément répartie, par
unité de longueur.

Les poutres bi, supposées à deux appuis simples, prennent
sous l'action de la charge p une flèche dont l'expression
(approchée) est

E^u*
'

n"0

b, bz i et i u

1
b ;;

C D

mjj 1

' ^^ '!

3^
e

Fig. 11.

Sous l'effet de la réaction R de AR, les poutres bi, toujours
supposées appuyées aux deux bouts, prennent, vers le haut,
une flèche dont l'expression (approchée) est

2R%

EI±u*

La flèche des poutres bi due à la superposition des charges p
et R est

y
ipl* 2BZ?

E/i-rr5 EIj^u*

Il en résulte
21^ EIxu*

R~^u~ W"y-
Appelons a la distancwasupposée petite par rapport à Z)

des poutres bi les unes aux autres. Remplaçons sur chaque
tronçon CD de la poutre AB la charge concentrée R par
une charge uniformément répartie

R_ 2Lj> EI^u*
a ira 2l\a y-

Cette charge variera d'un tronçon CD à l'autre et la poutre
AB sera sollicitée par une charge en escalier.

On peut, sans erreur sensible, remplacer cette charge en
escalier par une charge continue

¦ ky où q
2pl1

ît k EIxu*
2Ça

(8)

L'équation différentielle de la déformée de AB sera

El^ + ky^q,
où q et k auront les valeurs (8).

§ 3. La poutre est sollicitée par une charge P appliquée
au point C d'abscisse c

La relation (4) donne ici

TTEI 2F "*

En posant B
tion

n* + 4

PM

Psin-r-

on obtient pour la déformée l'équa-

y

et l'on a

ymax

2P
~kl B

TTC ira)
s,n y sin -y

2tto 2-rra;
sm —j— sin —j-

1* + B

2P1 G»).-' — •
kl

1

1(+BT3*

2* + B

+

+ ¦••

B +
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Timoshenko donne pour ymax l'expression

_ Pp shBl — sin pZ
ymax- 2k cÂpZ + COS PZ

'

Le moment fléchissant

dh _2Pl
2M=—EI

Mmaxet

dx2 Tt"

2PI
u2

TTC UX
sin -j-sin—7-

i* + B

1

2-rrc 2ttx
sm —j- sin —.—

t t^
2* + B

l* B 3* + B

Pour ce moment fléchissant, maximum, Timoshenko donne
'expression

Jylmax
P shBl + sin pZ

,j$ çfepZ+ cospZ

§ 4. La poutre est fléchie par un couple de moment M appliqué
au point C d'abscisse c

La relation (4) donne

^¦4
El ^ an [n* + B]

et l'on a pour la déformée l'équation

n'ii retrc
TMcos~T

y
2MP
Elu3

uc ux
cos —y sm -y-

2 •

2irc
cos —y- sin

2-rra;

HT
l* + B ' " "

2* + B ^ " '

Si le couple est appliqué sur l'extrémité gauche de la poutre,

Ve-o
2MZ2

Ehr3

ux

Ll4 + 5
2 •

2-rra;

2* + B

Dans ce cas, la flèche au milieu de la poutre est donnée par

(y) e=0
2MZ2

Elu3 B B

Timoshenko trouve les expressions suivantes :

x) — cos pZ shBx sin p (Z—x)2MB2chBlsinBxskB(l
W)«_o I —fr¬

et (y)c=o

ch2Bl — cos2pZ

BI BI BI BI
njirai C"P' sm tt sh -r cos Blsh IS sm Ss

~k~~ cÄ*pp- cos2 pZ

On voit que, dans ce cas encore, les résultats obtenus sous
forme de séries trigonométriques sont plus simples que ceux
que l'on obtient par la méthode d'intégration classique. En
outre, ils dispensent de l'emploi de tables de fonctions
hyperboliques.

V. Indications sur l'application de la méthode de Ritz à
quelques autres problèmes de résistance des matériaux

§ 1. Déformée d'une poutre dont l'un des bouts est encastré
et dont l'autre est soit encastré, soit appuyé

La méthode de Ritz, nous venons de le voir, permet d'écrire,
avec une grande facilité, sous forme de série trigonométrique,
l'équation de la déformée d une poutre appuyée aux deux
bouts.

Cette simplicité dans l'applicatifs est due au fait que les

l ¦ ir ^X •,- ,,ifonctions X, sm utilisées pour nos développements en

série satisfont aux deux bouts de la poutre :

d*Xi
1° aux conditions Xi 0 et ,» 0, qui doivent être

vérifiées à l'extrémité d'une poutre quand cette extrémité
est appuyée ;

2° aux conditions d'orthogonalité
i i

j XmXT dx I Xp Xmdx ¦ 0, m =£ p
o o

qui ont permis de déterminer individuellement les coefficients a,-.

Si donc, dans le cas où la poutre est encastrée aux deux
bouts, nous voulons obtenir des développements présentant
le même caractère de simplicité que ceux du chapitre II, il
faudra chercher des fonctions £/, satisfaisant aux deux bouts
de la poutre :

r dd1° aux conditions Ut 0 et -j— 0 qui doivent être

vérifiées à l'extrémité d'une poutre quand cette extrémité est
encastrée ;

2° aux conditions d'orthogonalité
i

fuzu,dx= fu? Umdx 0, m ^ p
o o

qui permettront de déterminer individuellement les coefficients

Oj.
Si la poutre est encastrée à un bout et appuyée à l'autre,

les fonctions Ui devront satisfaire aux conditions
d'orthogonalité indiquées ci-dessus et l'on devra avoir Ï7,- 0 et

dd 0 bout encastré et [/,¦ 0 et
dHh
dx2

0
dx
bout appuyé.

Les fonctions î/,- possédant ces propriétés existent. Elles
ont été étudiées par lord Ra.yi.eigh 1. Ce sont les fonctions

propres d'une équation que l'on rencontre dans la théorie
du mouvement vibratoire des tiges élastiques. Ritz 2 a
utilisé celles de ces fonctions Ui qui satisfont aux conditions
de la poutre encastrée aux deux bouts, pour résoudre le

Z
problème de la plaque encastrée. Les fonctions A, sin

sont celles de ces fonctions propres Ui qui satisfont aux
conditions de la poutre appuyée aux deux bouts.

Nous nous bornons à signaler ici ces développements en
séries de fonctions propres. Pour pouvoir les utiliser dans
la pratique, il faudrait posséder des tables des fonctions Ui
analogues aux tables de fonctions trigonométriques.
âïppici cependant deux développements en séries

trigonométriques que l'on peut utiliser pour le cas d'une poutre
encastrée aux deux bouts et qui porte une charge symétrique

par rapport à son milieu.
Si la charge est une charge uniformément répartie q, la

déformée a pour équation

?>EIu*

2ira
1

1
+ 24 l

1 +

3* C08___l

Si la charge est une charge P concentrée sur le milieu de
la poutre, l'équation est

y ~
PP

ŒIu*

j / 2Tra;

^cos-y- -K f Guxm1

+ 5«
/ lOrra:
^cos z -) +

1 Theory of Sound, Vol. I, p. 260 et suivantes.
8 Œuvres, p. 22S et suivantes.
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§ 2. Déformée d'une poutre à deux appuis simples,
de moment d'inertie variable

L'équation différentielle de la déformée est

d*yEl dx* q[x) (1)

Elle est la même qu'au paragraphe 1, II, mais / est fonction

d'x.
Les conditions aux limites sont encore

dh
y 0 et -j-jj 0, pour x 0 et x l

et nous pourrons prendre pour y «^expression

yn{x) Oj sm —j—|- a% sm
2-rra;

r l (2)

Les équations G sont alors

i
Tra;Io

J

l */g-«(*) dx 0

sin
raira; *'2-*o dx 0.

Ecrivons explicitement la dernière de ces équations

TT / nux ux
a-, I 1 sm —r- sm —=- dx

14 7 ¦ 2nlVXJ
-\-n'an I i sin —r- dx

l l
l
i nux

— I q (aSin —y~ dx.

Les coefficients a,- ne peuvent plus être déterminés
individuellement. Il faudra calculer n2 intégrales de la forme

i

/. pux muxI sin —se sin —j— dx j>—1,2,... »
* t m=l,2,...n

0

dont certaines seront égales entre elles puisque
1 1

pux muxI sm —as sm —j— dx
mux pux1 sin —j— sin —y~ dx

Tout calcul fait, les équations G formeront un système de

n équations à n inconnues. Les deuxièmes membres de ces

équations se calculeront comme au paragraphe 2, II.
Ces équations donneront les valeurs des coefficients 04 et

l'expression (2) sera, en neme approximation, l'équation de

la déformée.
Sans insister sur ce cas, examinons celui où le moment

d'inertie varie brusquement.
Prenons l'exemple suivant (fig. 12) donné par M. Hétényi,

dans un article intitulé « Deflection of Beams of Varying
Cross Section » paru au Journal of Applied Mechanics, 1937,
Vol. 59.

\, 22.5 ft 1 q Q3t/ft

^x
'TTîîhn^ M

1,-151,

15 15 ft J5JL

»/
Fig. 12.

Généralement, pour trouver la déformée d'une poutre du

type de la figure 12, on se sert de la méthode graphique, qui
donne la déformée sous forme de courbe funiculaire.

Si l'on veut avoir l'équation de la déformée, on appliquera
la méthode classique. Pour utiliser la symétrie de la poutre
et celle de la charge, on ne considérera qu'une moitié de la

poutre, par exemple la moitié de gauche. On aura deux
branches de déformée, la branche AC pour laquelle le moment
d'inertie est I0 et la branche CM' pour laquelle le moment
d'inertie est It cc/0 l,5/0.

Les constantes d'intégration se déterminent en écrivant

que pour CM', la pente de la déformée est nulle en M',

que pour AC, y 0 pour x 0 et enfin que pour x 5,
l'ordonnée et la pente de la déformée sont les mêmes pour
les deux branches. On trouve les équations suivantes :

pour la branche AC

Ei0y —
qlx3
I2~

qlx3

pour CM'

Ei0y=i-[-
La flèche en M est

qx*
24

qxr
24

ql x
Î944

qPx
24~" IqP

213
1ll
216

108
f 12,58 JyHin (ft).

(ft pied g 0,3048 m).

On obtient ainsi deux équations pour la déformée et ces

équations, polynômes du 4e degré, se prêtent mal au calcul

numérique.
M. Hétényi remplace l'effet de la variation du moment

d'inertie de la poutre sur la déformée par l'application d'un

système de forces convenablement choisi, qui s'ajoute aux
forces données, ap fait agir ces deux systèmes de forces sur
une poutre de même portée que la poutre donnée, mais dont
le moment ilsihertie est constant et I0.

M. Hétényi calcule alors cette poutre à moment d'inertie
constant et, en utilisant la méthode de M. Timoshenko, met

l'équation de la déformée sous forme de série trigonométrique.
Il trouve pour cette déformée, en s'arrêtant aux termes en

3-rra;

Z
l'équation

EI0y 10s 12,891 sin I 0,305 sin
3rra:"

~T

La flèche en M a la même valeur que ci-dessus.

Appliquons la méthode de Ritz, en première approximation.

Si y % sin -y l'équation G s'écrit

EIf)a1 7 / sin2 -y- dx -\- a / sin2 -y dx -f- / sin8 -y dx I

0 i/s 21/3

t

q I sm -r- dx.
0

Les quadratures effectuées, il vient

iql*
*~ EI0u* s/3 lu

WÈ,' 6

10s ira;
ït y 12,o -jjrï- sm -j-

L'erreur sur la flèche est de 3 %.
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ira; 2-rra;
En prenant y o\ sm —r -f- a^ sin

Z Z

3-rra;

on calculerait, mais c'est assesèlong, une troisième approximation,

comparable à celle de M. Hétényi.
On peut généraliser l'expression obtenue en première

approximation.

Supposons AC DE j§= — p et n entiers, p si tj On

a toujours It al0.
On obtient pour équation de la déformée

y
kql*

£Vr? 2-rrp a —1
1

2p- + oc+-^(l-cc)
ux

Si, au lieu d'une charge uniformément répartie, la poutre
porte une charge concentrée P appliquée au point d'abscisffjlp;
l'équation de la déformée devient

2PZ3
Trc ira;

sin ~y sin -y-

£70tt4 2-rrp
sm

n tt n v -ce)

Le facteur
1

2-rrp ex — 1 iHI
facteur de réduction de la flèche, mesure l'effet du renforcement

de la poutre sur cette flèche.
Ce facteur est égal à 1 quand oc 1. Il diminue quand

a augmente. Il est égal à 1 quand p -s et à — quand p 0.
2i OC

§ 3. Calcul de la plaque rectangulaire
Soit une plaque élastique plane, mince, d'épaisseur h

dont le feuillet moyen est situé dans le plan, xy supposé
horizontal.

Quand la plaque est sollicitée par une charge transversale
q{x, y) par unité de surface, l'équation qui donne le petit
déplacement transversal w d'un point [x, y) de son feuillet
moyen est de la forme

3*w i

„ d*w \ d*w
Aw d* +2**Jy-2 + d¥ Aq{XlV) ¦

_ 12(1 —y2) _ 10,92 _ jL_ j$;
Eha

~~

Eh3 ' S1
m ~ 10

'

Supposons la plaque rectangulaire et prenons pour axes
ses côtés OM, de longueur l et ON, de longueur Zj (fig. 13).

I y p
1

v

H*S
X

0
^ — ¦ -m

M

Fig. 13.

Suivant qu'un des bords de la plaque, parallèle à l'axe des x,
est appuyé ou encastré, le déplacement w satisfait, sur ce

bord, aux conditions

0,
d2w

dj2
0 0,

dw

dy
0.

Si le bord considéré est parallèle à l'axe des y, on aura,
sur ce bord, suivant qu'il est appuyé ou encastré

dw
dx

d2w
0, 0.

Pour appliquer la méthode de Ritz, prenons

w a11X1Y1 + j|SS + «21*2*1 + OuXtY, + ¦¦¦
où Xi(x) et Yh{y) sont respectivement des fonctions d'à; et
d'y seulement, qui satisfont aux conditions aux limites
imposées à la plaque.

Le procédé de Galerkine donne les équations G suivantes :

i t,

XlY1 [ù*w — Aq] dx dy 0,

*i*2 [A4w — Aq] dxdy 0,

o o

0 0

Supposons le plaque encastrée sur tout son pourtour. Nous
allons calculer w en première approximation, en prenant

fv anX1Y1.

L'équation G s écrit

«hi*iYi [XïTi + 2*ÏYÏ + X1Y7\ dxdy
o o

2 k (3)

AjJq(x,y)X1Y1<Ixdy.
0 0

Prenons (voir paragraphe 1)

*i COS
2-rra;

1 1 COS
'Try

Z,
1

Les conditions aux limites seront satisfaites sur le contour
de la plaque.

En utilisant ces expressions de X1 et de Y1 ainsi que celles
de leurs dérivées deuxièmes et quatrièmes, le 1er membre de

(3), les quadratures effectuées, devient

2%* [3 Zj Z 3 PI
°n ~P~ [2 J + 1 + 2 Z|J

Si Zj Z (plaque carrée), le crochet prend la valeur 4.
121 59

Si Zj 1,5 Z, il vaut -^ ; si Zj 2Z, il vaut 5^.
Supposons maintenant que la charge de la plaque est

uniformément répartie, q constante ; le second membre de

(3) est
AqUy.

On aura donc la relation

23-rr4 f3 Zj Z 3 P
2 Z + ly + 2 Z?

23Tr4f;
«11-jT AqU,

et W Aq Pl^Y,

^ L2 1 + h + 2 Z?J
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Au centre de la plaque, X± — 2 et Yx — 2 et

4Z3Z1

f Aq
/™r [_2 l + h 2 ZfJ

Alors

/^=î 0,00129 Aql*, fh=hoi 0,00230 Aql*,

^=21 0,00285^*.

Répétons ce calcul de première approximation en
choisissant pour Xx et Yj des polynômes, en a; et en y respectivement.

Appelons 2Z et 2lx les longueurs des côtés de la plaque et

prenons des axes de coordonnées parallèles à ces côtés,
l'origine étant au centre de celle-ci.

Avec Xx 1 x* — 2Z2a;2 + l* et Yx y* — 2Z2i/2 + l*, les

conditions au contour de la plaque seront vérifiées.
Un calcul analogue à celui que nous venons de faire donne

Aq.4:9.X^
128[7Zf+4Z2Zf+7Z4]

Au centre de la plaque, pour x 0 et y 0

*i(0) P,yi(0) Z14 et f- 128[7Z4+4Z2Z2 + 7Z4]

Si Zj Z (plaque carrée), le crochet 18Z4 ; si Zj 1,5Z, il
vaut 51,4Z4; si Zj 2Z, il est égaffk 135Z4. Alors

fh=i 0,0213 Aql*, fh=iMr= 0,0375 Aql*,

§§§ 0,0450 Aql*.

Pour comparer ces résultats aux précédents, il faut les
diviser par 24. La concordance est satisfaisante et l'on peut

/jp^flgumer que nos premières approximations de w donnent
des valeurs acceptables pour les flèches.

II en est tout autrement pour les moments Mx, My, M^
qui dépendent des dérivées deuxièmes de w.

Biezeno et Grammel, dans leur Technische Dynamik
(Berlin, Springer, 1939), p. 139-142, font le calcul en prenant
pour w l'expression

w anX{Yx + a^XjY^ + a^X^Yy + a.i2X2Y2

avec quatre coefficients.

i^s polynômes Xx et Yj sont ceux que nous venons d'utiliser

et e'i-Äi

X2 x2X1 x6—2Px* + l*x2, Y^y^ ¦y° -2lh*+%y2

En prenant Zj 1,5Z, ces auteurs trouvent pour les moments
des valeurs qui concordent à 1 % près avec les valeurs exactes
(dont le calcul est beaucoup plus compliqué) et la flèche au
centre

h^ifii 0,0350 Aql*,

est exacte à 0,4 % près.
NousteAnons de faire le calcul de la plaque pour une charge

uniformément répartie. Il se ferait d'une manière analogue
si la plaque était sollicitée par une force P appliquée en son
centre.

En se servant des polynômes convenables, on calculerait

par la même méthode une plaque dont les côtés sont les

uns appuyés, les autres encastrés.

gafiltz, pour son calcul de la plaque carrée encastrée, avait
utilisé, au lieu de polynômes, les fonctions propres Ui dont
nous avons parlé au paragraphe 1.

LES CONDITIONS D'UN BON ÉCLAIRAGE '

par Madame C. ROY-POCHON, ingénieur Ej|fu.L.,
Présidente de la 2"" Section de la Société Française des Electriciens

On peut juger un éclairage de différents points de vue ;

les plus importants sont l'utilité, iSïygiène et l'esthétique.
Nous ne parlerons pas ici oagsthétique. Non pas que nous

la considérions comme négligeable ; mais elle est essentiellement

affaire de goût et de sens artistique. Ce n'est pas un
ingénieur qui peut trancher en une telle matière. D'autre
part, l'esthétique conduit parfois à s'écarter des règles
établies par les éclairagistes ; on peut le faire, il va de soi, avec
moins d'inconvénients dans le cas d'un salon que dans celui
d'un bureau ou d'un atelier.

Du point de vue de l'hygiène, nous devons considérer les

effets de l'éclairage (ou du manque d'éclairage) sur la vue
et, d'une façon générale, sur la santé et le bien-être des

occupants du local. A ce genre de préoccupations, nous rattachons,
un peu arbitrairement, celle de la sécurité du travail.

Le point de vue utilitaire fait intervenir la rapidité
d'exécution d'une tâche donnée, le rendement dans le travail, et
nous incite à rechercher la plus grande efficacité de la lumière
distribuée dans le local.

La technique de l'éclairage comporte un certain nombre de

règles qui répondent à deux ordres de préoccupations :

a) assurer un niveau d'éclairement suffisant pour l'exécu¬
tion d'une tâche donnée ;

b) ne pas éblouir.

1 Causerie faîte le 4 mari 1952 à l'A9 E1 P. L.t section de Paris.

Rappel de définitions
Avant de parler de niveaux d'éclairement, il n'est pas

inutile de rappeler quelques définitions.
Qu'est-ce qu'un éclairement C'est une densité de flux

lumineux, un flux par unité de surface éclairée. Qu'est-ce
qu'un flux lumineux C'est un débit d'énergie rayonnée sous
forme de lumière visible. On pourrait le mesurer en watts ;

on préfère utiliser le lumen, unité subjective, qui tient compte
de la sensibilité variable de l'œil suivant la longueur d'ondes.
Le maximum de sensibilité correspond à 5500 angstroëms,
efest-à-dire à une lumière jaune verdâtre. Pour cette longueur
d'ondes, on peut définir un « équivalent mécanique de la

lumière»: 0,0016 watt (^ö?) pour un lumen. Autrement

^pîlg un watt équivaut à 625 lumens. Mais ce n'est pas le cas
des lampes usuelles qui sont des sources de lumière blanche.

En lumière du jour, par exemple, le lumen correspond
1 1

environ a ^ft, watt : en lumière artificielle,
2Ô0 100 watt. Ce

veut dire que si l'on compare deux surfaces identiques,
éclairées l'une par la lumière du jour, l'autre par une lampe
à incandescence, l'égalité d'éclairement sera obtenue avec des

énergies reçues dans le rapport de 1 (lumière naturelle) à

2,5 (lumière artificielle).
Nous croyons utile d'insister sur ce caractère essentiellement

subjectif de l'unité de flux lumineux : le lumen « rouge » ne
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