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LA METHODE DE WALTHER RITZ

Son application a quelques probléemes élémentaires
de résistance des matériaux

par MAURICE PASCHOUD !

(Suite et fin)?

1ll. Déformée de la poutre a deux appuis simples sollicitée
par des forces transversales et par des forces agissant suivant
son axe

§ 1. Représentation par une série trigonomélrique

Appelons g(z) la charge transversale par unité de longueur
et S les deux forces égales et directement opposées qui agissent
suivant 'axe de la poutre en la comprimant (Fig. 8). L’équa-
tion différentielle de la déformée est

d*y A%y .
EI dat + S T q(z) (1)
avec les conditions aux limites
d?y
yr=i0n et = 0 pour z=0 et xz=1L

Nous partons de I'expression

y(@) = a; X (z) + ... + anXn(2) (2)
e
ou X; = sin ! [L , =4, ...\
On a
; 110 (e S me, b Y l
X{= ( T) X Xim=(T) Xy [XuXpde=0, [Xida=;.
L Professcur honoraire de I’Université de Lausanne.

¢ Voir Bulletin technique du 3 mai 1952, p. 1

d
E G
S % S x
A C o, D B
y
Fig. 8.

La nitme ¢quation G s’éerit ici

o5 L dYy d?y
./ .\"<.I') El (7«1‘4 + S

0

da?

~g)| =0 @

. dry dly : =
En y remplacant da2 O gpa Par leurs expressions tirées

de (2), il vient

\ 4 / \ 2 'l
6l NV A T . . nmw
El <l) ntay 5 — o) (/ ) nlay 5 = L/ q() sin T dx,
e ol o B ) o SE
relation qui s ecrit, en posant oti== Flme?
A 1110 R 5 5 v T
El (1) ) n?[n? —a) = (/ q(2) sm—l da (4)
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Cette relation correspond a la relation (4) du chapitre II.
Au 1¢f membre, n' est remplacée par n%(n2 —a). Pour les
divers modes de charge considérés, les valeurs du 2¢ membre
sont les mémes que celles calculées au paragraphe 2 du
chapitre II

§ 2. La poutre est sollicitée par une charge uniformément
répartie agissant sur toute sa longueur ainsi que par les
forces axiales S

L’équation de la déformée est

4del* o 1 . NIz =
Y= EIms %J ns(n® — ) e ()
n=1,3,5,...

Si a = 0, c’est-a-dire si S est nulle, la relation (5) se réduit
a la relation correspondante (8, II) du chapitre II.

En comparant la relation (5) a la relation (8, II), on voit
que l'action de la compression axiale, comme on pouvait s’y
attendre, est d’augmenter les déformations de la poutre.

=

L’équation (5) peut s’écrire

- TTTE
Sin "l—
4ql* 1 . nma n=1-,';5,...n3(n2—a) (6)
Y= |Emo E n ST N 1 . nmz
n=1,3,5,... .>_J 7? sin T

n=1,3,5,...

Le facteur dans le crochet donne la déformation qui se
produirait si la charge transversale agissait seule. Le second
facteur est un facteur d’amplification qui indique dans quelle
mesure la déformation due a la charge transversale est aug-
mentée par 'effort axial de compression.

Si a croit de 0 a 1, ce facteur d’amplification croit de 1 4 oo |
Quand o tend vers 1, c’est-a-dire quand S se rapproche de

Elw , 3 x .
la valeur B Y devient trés grand, méme si la charge

. . . Elw?
transversale est trés petite. La valeur limite de S, S = O
o S
est la charge critique Sgyy. On a o = .
Scrit

La série (5) converge rapidement, surtout quand o est
petit. On peut, pratiquement, s’en servir en ne conservant

que son premier terme. On a alors
. T
St FD ST
Y=Em1—a’
et la fleche de la poutre peut se calculer en multipliant la
fleche due a la charge transversale seule par le facteur

1
1—a

En dérivant (5) terme a terme, on trouve I'expression de
la pente de la déformée

[ cos ™ g
dy  4gB | T FRNEIIE R
dz — EIm* |31 —a) " 3P —q) '
Pour le moment fléchissant, il vient
[ . Tz . 3w
/1[1l2 S1n ’l sin 41'*'
M= ==l ke e,
s 11(12 — ) + 3(3%2 —a) +
dont le maximum est
4ql? [ q! 1
Mues= s | 1o —a) — 3@ =) T ] >
L
@i —a) 3@ —o T
=T
32

’ 2 . .
Le facteur % représente le moment fléchissant maximum

da a la charge g(z) seule.
Le second facteur, facteur d’amplification, mesure I’in-
b ¥
fluence de la force axiale sur le moment fléchissant maximum.
Les formules qui précédent se généralisent immédiatement
qui p
pour le cas ou la charge uniformément répartie ne s’étendrait
que sur une partie de la poutre.

§ 3. La poutre, comprimée par les forces S,

a) porte une charge concentrée P ; I'équation de la déformée
est alors, si ¢ est 'abscisse du point d’application C de la
force P

2PP Z 1 . nmc . nmz
= =7 7 o ol 3= SiliTmaaa—
Y= EImn* n2(n? — o) l l
n=1,23,...
. nmec . nmT
S S

l l

_[2pB ¥ 1 . nwe . nma),_{5s, .. n*(n* — o) -
— 24 "?SID_I'S]I)‘_ 1 (/)

EI1T4n = l 2 . nIc , nww
=1,23,... —; SIN —— sin——
n* l l

n=1,2,3,...

b) est sollicitée par un couple de moment M, appliqué au
point C, d’abscisse ¢ ; 'équation de la déformée est

2MI2 1 nie . nmx
Y= EIms E Py el e
n=1,2,3,...
nTe . nmx
COS'—l— sm—l—

> :

_|:2Ml2 y 1. e . ”T”?]n:l,e,s,... n(n* —aq)

— — COS——-SIn——
EI1T3" = i [ l V 1 nire . nIw
=1,2,3,.., —5C0S—— SIn——
L4 nd l l

(8

n=1,2,3; ...
On peut répéter, & propos de ces expressions (7) et (8)
les mémes remarques que pour la relation (6). La charge
critique a toujours comme expression

Elw?

Scrit — T

§ 4. Application.
Calcul du moment d’encastrement d’une poutre encastrée @ un
bout, appuyée a Uautre, sollicitée par une charge transversale q
uniformément répartie et par les forces axiales S de compression
(Fig. 9)

Sous I'action de la charge g et des forces S, la poutre a
deux appuis simples obtenue en supprimant I’encastrement
se déforme et la pente de sa déformée sur appui de droite
a pour expression

dgy [ = g 4
dzjemt” Elmt |13 —a)  3(3F—a) |-
Sous I'action d’un couple de moment M appliqué sur son

appui de droite et des forces S, la méme poutre a deux appuis
simples prend, sur cet appui de droite, une pente donnée par

dy\ oML 1 1
dz)S=V T Elm? 12—cx+22—0( bl

-+

AN

1%}

A\ \\\\T

Fig. 9.
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On doit avoir

4gB 1 1 "
Elmt | 1212 —a) 3¥3F—a)
oML 1 1 -
Em|P—a t@—at ] ="
d’ot I'on tire
1 1
Tl —a) T F@—g T
T o 1 1
Bia t =g T
Tl'4
o i 2 96 ¢
Pour o = «=0= "3 2= g
6
On peut écrire
1 1

| —a T T

! i
E—agt2—agt

)

Le moment d’encastrement M s’obtient ainsi en multipliant
le moment d’encastrement qui serait di a la charge g seule
par un facteur d’amplification.

X Stz
5 o= g

=0, c’est-a-dire si S est nulle, ce facteur
d’amplification est égal a 1. Si o tend vers 1, ce facteur tend
16
vers — = 1,621.
s
Son dénominateur a une infinité de zéros, dont le plus

petit est un peu supérieur a 2. On en déduit la valeur de la
charge critique.

La série qui se trouve au dénominateur du facteur d’am-
plification converge lentement. Pour faciliter le calcul numé-
rique, on peut utiliser la remarque suivante.

Dés que n est un peu grand, pour n égal & m par exemple,

1
——— difféere peu du terme — .
le terme - — P 2

A partir de cette valeur m, on aura
=T
=3 - =2 9
Ld n2—q = Ld n?
my,m+1,... my,m+1,...
Ierreur commise étant inférieure a
S
2 —a n2

m, m+1

Comme on a

1 s
;2’;‘@:1,6/15,

s (T

on peut calculer une fois pour toutes les valeurs de

1 1 1 ]
gttt T

pour diverses valeurs de m.

Timosuenko, [3], p. 27, résout le méme probléme par la
méthode classique. Il donne I'expression suivante du moment
d’encastrement M

M— ql* [ 4 tg 2u (tg u —u) _SB
8 | u(tg2u—2u) |’ T 4ELT
Si2 4u?
&K= g = & ¢
E It (i

S w6

m,m-+1,...

On en déduit

c q(x)

yy
Fig. 10.

Dans [4], p. 1-19, il étudie une série de problémes ana-
logues au précédent et donne, en appendice, p. 478-485, des
tables pour le calcul numérique des facteurs d’amplification.
L’emploi des séries trigonométriques permet de résoudre ces
probléemes, en se passant de ces tables.

§ 5. Poutre chargée transversalement et formant hauban (fig. 10)

Soit une poutre a deux appuis simples formant hauban
et soumise a l'action simultanée des forces axiales de trac-
tion S et d’une charge transversale ¢(z) par unité de Jongueur.
L’équation de sa déformée est

dy d?y

avec les conditions aux limites

d?y
y =0, (712:0 pour z=0 et a=1.
En procédant comme au paragraphe 1, et en posant encore
Si2 s .
& = -7-5, on obtient la relation fondamentale
El

4
El<%’>a; 2n? 4 o) = /q sm—da: (10)

Le second membre de (10) est identique au second membre
de (4). Son premier membre s’obtient en remplagant —
par + o dans le premier membre de (4). De chacun des
résultats obtenus dans le cas ou les forces S sont des forces
de compression, on déduit un résultat correspondant pour
le cas ou ces forces sont des tractions, en remplagant —
par + a.

Etudions le cas ou la charge transversale est uniformément
répartie et agit sur toute la longueur de la poutre.

L’é¢quation de la déformée de la poutre est

gl y 1 . NI
Y= EIn’ Bn? +o) o L
n=1,3,5,...
l
La fleche maximum, pour x = 5 est donnée par
Gl 1 5
Ymaz = EI‘TTS .13(12 + q) (3 + ) + oo
Bl ai=10,

uo . Aglt 5w Sqlt
Ymaz = FIms * 1536 — 3B4ET

et 'on peut éerire

Sqlt 1536 1 il
Ymax = 3R4FT [ 5 <1s<1f+“)' T R )] :
Le premier facteur représente la fleche du hauban dans le
cas ou S est nulle. Dans le crochet se trouve un facteur de
réduction di & 'effet des forces de traction. Quand a = 0,
ce facteur de réduction est égal a 1. Il diminue quand « croit ;
a peut ici étre > 1.
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Timosunexxko, [3], p. 37, donne pour ce facteur de réduction
I'expression

1 u?
—14 5

)

chu

ut

24
et, dans un tableau, il indique les valeurs de ce facteur de
réduction pour diverses valeurs de u. On a toujours les rela-
tions

U= L et o= v
T 4EI W, Gk

Calculons encore le moment d’encastrement d’un hauban
encastré aux deux bouts, tendu par les forces S et portant
une charge uniformément répartie sur toute sa longueur.

Pour la pente de la déformée d’une poutre a deux appuis
simples tendue par Jes forces axiales S et portant une charge
uniformément répartie sur toute sa longueur, on a I'expression

dy  4qP S} dl nta
dx £

= T B o) 08 T
z  Elm il R (n®* + «) l

Sur l'appui de gauche de cette poutre, la pente est

dy 4gl? 1 1
<£’>x o Elmt [12(12 + a) + 32(32 + o) = ] :

D’autre part, si Ja poutre a deux appuis simples, tendue
par les forces S, est sollicitée par un couple de moment M,
appliqué au point C d’abscisse ¢, la pente de sa déformée est

R B s 20
Ll7y B 2Ml [COS l cos l cos l coSs l_ + :l
v Elm? 12 4+ « 22+«
et 'on a
dy\ ML 1 1
L= B | e T E L !
et
dy _2Mml 1 1
dJ:‘Ehﬂ“P+a+%+a““"

La poutre est encastrée a ses deux bouts. Si M, est le
moment d’encastrement & gauche et My le moment d’en-
castrement & droite, on aura, sur 'appui de gauche, la relation

4 [ 1 1
B |[Tra T3 xa T | T

oMJA[ 1, 1
TEm |[Trat2rat )T
IM 41 1 1
+Eh4}1+a+%46““}*0
Par raison de symétrie, si M, = M, My sera = — M et
I'on tirera de la relation précédente I'expression
1 1
v @it T P@Era T
T 1 e
Ttat@ra™
Siya =0
rd
w1+w+”+'“ gl 96 g
Ma-o = w1 ' IR Rt
1 + Jz + + O 8

Et I'on peut écrire

1 1
gleTrs g T
M=_2 =
2= 1 i
Tda ! Bra. o

Le facteur dans le crochet est le facteur de réduction.
Pour ce facteur de réduction R, Timosaenko donne I'ex-
pression

R w— thu
3 u’thu
S Tix
: 5oyt g o B0
On a toujours e A

IV. Déformée de la poutre a deux appuis simples reposant
sur une fondation élastique

§ 1. Représentation par une série trigonométrique

Soient [ la longueur de la poutre et E[ sa rigidité, supposée
constante. L’équation & intégrer est ici

d4
EI T + ky = gla). )

La constante k est le module de fondation ; ky est égale
a la réaction de la poutre par unité de longueur.
Les conditions aux limites sont toujours

a2y
y=0 et T_O pour =10 et @=24

et nous écrivons, ici encore
Ya(2) = an Xy(2) + ... + @ Xn(2) )

T
ou Xilz) = sin —= ¢

l

Comme nieme équation G, on a alors, ¢(z) étant la charge
par unité de longueur

o

0 4 .
5T l Ak & . nmx
ou bl<f>a 2[4+E1'n'4] :‘/q(:c)smT dx.

En posant

/&mgh1-~+w—qu]M=0 (3)

cette équation devient

nw4f+4(>] /q L

Cette velation (4) correspond aux relations fondamentales

(4), 11 et (4), 1IL

§ 2. Déformée de la poutre portant sur toute sa longueur
une charge uniformément répartie q par unité de longueur
28 24l

pl\'
LI"n' n'n-'" 1 ; 1()q . _(T?)
nt - 4 <‘3[>4 n kw nt 4 4 (B,l)

/

Pour n impair, on a

an =

Pour n pair, a, est nul.
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L’équation de la déformée est

sin'E sin 31&
q 16 <[31>4 1 v il l
y=L B —m st |
koo \m 114+4 <E?l>4 334+4<1[3;l>
Pour =5, on a
q 16 <Bl>4 1 1
Yvaz=—7.° — |\ = ; - +(6)
4 kom\mw Bl\* /BI\* ]
]
. Le moment fléchissant M est ici |
sin ped 3 sin o
4q(pL)2 T st
M= égig : gt ara T
SO
Pour z = i), on a
4q(Bl)? 1 3 _
Mipaz = ég'rﬁr‘"’) |:4 [3[4_ . ﬂl\4+"'j|' (7)
14 4 4 <;) 3044 <;)

Timosuenko, [3], p. 19, prend lorigine des coordonnées
au milieu de la poutre et il trouve les relations suivantes :
(5 bis)

[ 2 sin %l sh%l 2 cos%lch%l ]
y—E 1—mlsin ﬁxshﬁxﬁmcos BachPa |-

. 2 cos %l ch %l
Ymaz = (Y)z=0 = A il m ? (6 bis)
pl pl

sh D) sin D)
B2 cos Bl + chPl "

Dans sa Theory of Plates and Shells, p. 30 et suivantes, il
résout I’équation (1), mais en posant

14
BZQVCﬂ'

Pour le calcul numérique, il introduit diverses fonctions
dont les valeurs sont données par des tables.

Les expressions (5), (6) et (7) permettent de faire ces
calculs numériques sans se servir de tables.

Mipnaz = (7 bis)

L’exemple suivant, donné [3] p. 17, montre comment il
faut procéder pour trouver la déformée d’une poutre qui,
au lien de reposer sur une fondation élastique continue,
repose sur un grand nombre d’appuis équidistants.

Soit (Fig. 11) une poutre horizontale AB, 4 deux appuis
simples, de longueur [ et de rigidité E1, sur laquelle reposent
des poutres identiques, paralléles, horizontales et équidis-
tantes by, b,, ... de longueur [; et de rigidité [£1;. Ces poutres
bi portent chacune une charge p uniformément répartie, par
unité de longueur.

Les poutres b;, supposées a deux appuis simples, prennent
sous l'action de la charge p une fleche dont Pexpression
(approchée) est

4pl} h
El b

N
\
NI by |bz |bg A t
© 2
\ \
) H = A c o 8
N &
A 2
J%)
e
Fig. 11.

Sous 'effet de la réaction R de AB, les poutres b;, toujours
supposées appuyées aux deux bouts, prennent, vers le haut,
une fleche dont I'expression (approchée) est

2RB
EI,nt ’

La fleche des poutres b; due a la superposition des charges p
et ¥ est
_ 4plt 2RE
Y= ELm  ELnt

Il en résulte
2L,p EILw*
b w228 ¥

Appelons a la distance (supposée petite par rapport a [)
des poutres b; les unes aux autres. Remplagons sur chaque
troncon CD de la poutre AB la charge concentrée R par
une charge uniformément répartie

R _2Lp ELm

@ Ta Wa Y-

Cette charge variera d’un trongon CD a 'autre et la poutre
AB sera sollicitée par une charge en escalier.

On peut, sans erreur sensible, remplacer cette charge en
escalier par une charge continue

y 2pl EL
g—hky ou g¢= -T% et k= —2—;?“— ; (8)

L’équation différentielle de la déformée de AB sera
d*y
EI Jat + ky=gq,
ou ¢ et k auront les valeurs (8).

§ 3. La poutre est sollicitée par une charge P appliquée
aw point C d’abscisse c¢

La relation (4) donne ici
7 I\ 4 ‘
51 g o [+ 4 (5) | = Pain 2. |

I\ 4
En posant B = 4 <%> , on obtient pour la déformée I'équa-
tion

Lome . X . 2we ., 2w ’
! 21) ]; lh]n Z" sin ’l" + sin — l sin *l'* + l
Y= T3 B " #FB "

et 'on a

2p 1 1
Ymaz = W)amy = 3y - B [1“'?1} R ]

c=

(IR 1™
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TimosaENKO donne pour ¥, I’expression
PB shPpl — sin Bl
2% ;hBl —+ cos Bl '

Ymaz =

Le moment fléchissant

o TG, | TR . 2we . 2mz
2 SIn ——SIn—— SIn —5— Sl —;—
TR, 0 2 M Bt I ol S, S S
d? m*l 1"+ B 2+ B
2P 1 1
— %« .
et M,,m—_n_2 |:14—{—B+3 34+B+"']

Pour ce moment fléchissant maximum, Timosaenko donne
I'expression
i P shBl + sin Bl
"% 4B chPl + cos Bl
§ 4. La poutre est fléchie par un couple de moment M appliqué
au point C d’abscisse ¢

La relation (4) donne

| 4 .
| EI 55 a [n* + B] = "1 M cos "1
\
et 'on a pour lJa déformée I'équation
T, TX 2me . 2mzx
B IMI2 cos T sin T y cos _l_ Sin T
Y=Emsl"TFB T4 T FFE T

Sile couple est appliqué sur I'extrémité gauche de la poutre,

. T . 2wz
ame [T SR
— - Pz
Yo T Eme s BT oy B T

Dans ce cas, la fleche au milieu de la poutre est donnée par

| 2Me 1 3
[m—m+~--]'

TimosaENKO trouve les expressions suivantes :

_ 2MB? chPlsin PaskP (I — x) — cos plshPxsin B (I—a)

(y)“=° k ch*Bl — cos?Pl
l l l l
2 Mp? chBl sin % sh % — cos Plsh g sin %
et (y)°=(; =g ch®Bl — cos? Pl
=

On voit que, dans ce cas encore, les résultats obtenus sous
forme de séries trigonométriques sont plus simples que ceux
‘ que 'on obtient par la méthode d’intégration classique. En
outre, ils dispensent de I'emploi de tables de fonctions hyper-
boliques.

V. Indications sur l'application de la méthode de Ritz a
quelques autres problémes de résistance des matériaux

§ 1. Déformée d’une poutre dont U'un des bouts est encastré
et dont Uautre est soil encastré, soil appuyé

La méthode de Ritz, nous venons de le voir, permet d’écrire,
avec une grande facilité, sous forme de série trigonométrique,
I'équation de la déformée d’une poutre appuyée aux deux
bouts.

Cette simplicité dans P'application est due au fait que les
fonctions X; = sin }T;x

série satisfont aux deux bouts de la poutre :

utilisées pour nos développements en

o d2X; 5
10 aux conditions X; = 0 et Eﬂl =0, qui doivent étre

vérifiées A l'extrémité d’une poutre quand cette extrémité
est appuyée ;
20 aux conditions d’orthogonalité
! 1

/ XX, do = f Xy Xpdo =0, mw#p
0

0

quiont permis de déterminer individuellement les coefficients ;.

Si donc, dans le cas ou la poutre est encastrée aux deux

bouts, nous voulons obteniv des développements présentant

le méme caractére de simplicité que ceux du chapitre II, il

faudra chercher des fonctions U; satisfaisant aux deux bouts
de la poutre :

o dU; o W

1° aux conditions U; = 0 et dti = 0 qui doivent étre
vérifiées a 'extrémité d’une poutre quand cette extrémité est
encastrée ;

20 aux conditions d’orthogonalité
1

-

/U;’;Updxz / UsUnds =0, . sk
b 0
qui permettront de déterminer individuellement les coefli-
cients aj.

Si la poutre est encastrée & un bout et appuyée a I'autre,
les fonctions U; devront satisfaire aux conditions d’ortho-
gonalité indiquées ci-dessus et I'on devra avoir U; =0 et

dU; d2U;
‘T[v_‘C[‘:O au bout encastré et U; =0 et dag'

=0 au

bout appuyé.

Les fonctions U; possédant ces propriétés existent. Elles
ont été étudiées par lord Ravreicu . Ce sont les fonctions
propres d’'une équation que l'on rencontre dans la théorie
du mouvement vibratoire des tiges élastiques. Rirz? a
utilisé celles de ces fonctions U; qui satisfont aux conditions
de la poutre encastrée aux deux bouts, pour résoudre le
) &
T
sont celles de ces fonctions propres U; qui satisfont aux
conditions de la poutre appuyée aux deux bouts.

Nous nous bornons a signaler ict ces développements en 1
séries de fonctions propres. Pour pouvoir les utiliser dans ‘
la pratique, il faudrait posséder des tables des fonctions Uj; \
analogues aux tables de fonctions trigonométriques.

Voici cependant deux développements en séries trigono-
métriques que l'on peut utiliser pour le cas d’une poutre
encastrée aux deux bouts et qui porte une charge symétrique
par rapport a son milieu.

Si la charge est une charge uniformément répartie g, la

déformée a pour équation
b
<cos AL 1) BS
brra

3 1
+3_4<COS'—Z-—- >+

Si la charge est une charge P concentrée sur le milieu de
la poutre, I'équation est

probléme de la plaque encastrée. Les fonctions X; = sin

2mx

<COS l_ "
_qf
Y= " 8Em

1
ik

/ 2tz 1 G i
o (cos - 1) - 3 ((‘os FubeT 1) +
Y= " 4EIm ' 10 |
N ;;(cos Ole—-1>+...

Y Theory of Sound, Vol. I, p. 260 et suivantes.
2 (Lupres, p. 223 ct suivantes.

———
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§ 2. Déformée d’une poutre d deux appuis simples,
de moment d’inertie variable

L’équation différentielle de la déformée est
dy
EI Tt q(z) . (1)
Elle est la méme qu’au paragraphe 1, II, mais I est fonc-
toon d’x.
Les conditions aux limites sont encore

2
y=0 ‘et dTg=0, pour =0" et z=1;

et nous pourrons prendre pour y l'expression

o T ' 2 .
y,,(z)———alsmTTTt—}—azsm?—f— +ansmllllf. (2)

Les équations G sont alors

1
d4
fsin“—l”[md—;{—q(x)] dz=0...
0

1

7. nmz dhy
/san [Eld;‘f:—— (x)] dz=10.
0

Ecrivons explicitement la derniére de ces équations
1

4
E<Tl—r> [alflsin%?sinil:fd:c—i—,..
0

F 1
e I B ISinziTlEd“’] qu(x) sin "7 da.
o )

Les coefficients a; ne peuvent plus étre déterminés indi-
viduellement. Il faudra calculer n? intégrales de la forme
!

. pmz . mmz
I sin —— sin —— dz p=12,..n
l l m=13,..n
0
dont certaines seront égales entre elles puisque
1 i

Isinmsinm—mdxz Isinmsinmdap.
l l l l
0

Tout calcul fait, les équations G formeront un systéme de
n équations & n inconnues. Les deuxiémes membres de ces
équations se calculeront comme au paragraphe 2, II.

Ces équations donneront les valeurs des coeflicients a; et
I'expression (2) sera, en n®Me approximation, I'équation de
la déformée.

Sans insister sur ce cas, examinons celui ot le moment
d’inertie varie brusquement.

Prenons I'exemple suivant (fig. 12) donné par M. Hétényi,
dans un article intitulé « Deflection of Beams of Varying
Cross Section » paru au Journal of Applied Mechanics, 1937,
Vol.. 59.

225 ft q =03t/

7 TI7I7777. X
/ey

L I | L=151,

154t | 154t 154t )

y

Généralement, pour trouver la déformée d’une poutre du
type de la figure 12, on se sert de la méthode graphique, qui
donne la déformée sous forme de courbe funiculaire.

Si I'on veut avoir I'équation de la déformée, on appliquera
la méthode classique. Pour utiliser la symétrie de la poutre
et celle de la charge, on ne considérera qu’une moitié de Ja
poutre, par exemple la moitié de gauche. On aura deux
branches de déformée, la branche AC’ pour laquelle le moment
d’inertie est I et la branche C'M’ pour laquelle le moment
d’inertie est I; = aly = 1,51.

Les constantes d’intégration se déterminent en écrivant

que pour C'M’, la pente de la déformée est nulle en M,
, l
que pour AC’, y =0 pour =0 et enfin que pour z = 3
I'ordonnée et la pente de la déformée sont les mémes pour
les deux branches. On trouve les équations suivantes :
pour la branche AC’

qla?

Ely=—"&

gzt | qlPz 13
txt im[““rz]’
pour C'M’

26— 213

Hi qla® gzt qPx gl ql*
Ehy= |~ + % |+ 2

La ﬂe‘che en M est
’ Elo ] ( ).
(ft = Pled = 0’3048 m).

On obtient ainsi deux équations pour la déformée et ces
équations, polyndémes du 4¢ degré, se prétent mal au calcul
numérique.

M. Herényr remplace I'effet de la variation du moment
d'inertie de la poutre sur la déformée par I'application d’un
systéme de forces convenablement choisi, qui s’ajoute aux
forces données. Il fait agir ces deux systémes de forces sur
une poutre de méme portée que la poutre donnée, mais dont
le moment d’inertie est constant et = I,.

M. Hétényi calcule alors cette poutre & moment d’inertie
constant et, en utilisant la méthode de M. Timoshenko, met
I'équation de la déformée sous forme de série trigonométrique.

Il trouve pour cette déformée, en s’arrétant aux termes en

3z

sin N I'équation

Ely = 10° [12,891 sin ¢ + 0,305 sin ?] :

La fleche en M a la méme valeur que ci-dessus.
Appliquons la méthode de Ritz, en premiére approximation.

Si y = a; sin T I'équation G s’éerit

L. U 2/3 !
Elya, <1;) [ /sinz-n;—x dz 4+ 0(/ sin?TrTz dz + / sin? lrlfrd;r] =
T ! 21]3
1
= q/ sin_llxd.’v.
; l
0

Les quadratures effectuées, il vient

I R S
a=FEixt V3 7w

4 6

™

108 :
et y=123 Et)f() sin T

Ierreur sur la fleche est de 3 %,.
()
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T 3t
En prenant y = a, sin —- / 4= ay 8in —— —|— ag sin St
on calculerait, mais c’est assez long, une troisiéme approxi-
mation, comparable a celle de M. Hétényi.
On peut généraliser I’expression obtenue en premiére

approximation.
pl
Supposons AC = DB = —, p et n entiers, p = % On
a toujours I, = ol

On obtient pour équation de la déformée

4qlt 1 . T2
J= 5 i sin —— -
Eljm sin .n;p ox—1 e + ( S l

Si, au lieu d’une charge uniformément répartie, la poutre
porte une charge concentrée P appliquée au point d’abscisse ¢,
I'équation de la déformée devient

< G o ‘T
2Pl3 smT sm—l—
Y= Elm*  2mp oa— ;
22 E L L 1 By
Le facteur
1
2 =] 3
sin TP 22 4 g + 2 P 1—a

facteur de réduction de la ﬂéche, mesure 'effet du renforce-
ment de la poutre sur cette fleche.
Ce facteur est égal 4 1 quand o= 1. Il diminue quand

1
o augmente. Il est égal 4 1 quand p = 12L et a o quand p = 0.

§ 3. Calcul de la plaque rectangulaire

Soit une plaque élastique plane, mince, d’épaisseur h
dont le feuillet moyen est situé dans le plan ay supposé
horizontal.

Quand la plaque est sollicitée par une charge transversale
q(z,y) par unité de surface, I'équation qui donne le petit
déplacement transversal w d un point (z,y) de son feuillet
moyen est de la forme

N ,74cx
Atw = ozt + 2 ,x2)12+ T = Aq(zy) .
121 —vy 10,92 . 13
A== = aEmaS VN Sn=n

Supposons Ja plaque rectangulaire et prenons pour axes
ses cotés OM, de longueur I et ON, de longueur ; (fig. 13).

N 17 p

,, X

) >

Iig. 13,

Suivant qu’un des bords de la plaque, paralléle a 'axe des z,
est appuyé ou encastré, le déplacement & satisfait, sur ce
bord, aux conditions

d?w dw
w=20, d—y—2=0 ou w =0, d_‘/_()

Si le bord considéré est parallele & I’axe des y, on aura,
sur ce bord, suivant qu’il est appuyé ou encastré
d*w dw
=0 =10 ou w=0y . —=10,
dx

da?

Pour appliquer la méthode de Ritz, prenons
w=anX,Y; + a, X)Y, + 0, X,Y; + a0 X, Y, + ...
ou Xj(z) et Y)(y) sont respectivement des fonctions d’z et
d’y seulement, qui satisfont aux conditions aux limites

imposées a la plaque.
Le procédé de Galerkine donne les équations G suivantes :
1y
/ / X7 R s A iy G
60

/ X,Y,[A%% — Ag)dady =0, ...

Supposons le plaque encastrée sur tout son pourtour. Nous
allons calculer & en premiére approximation, en prenant

w=a,;X,Y;
L’équation G s’écrit
F0
//alleYl [X7'Y, +2X7Y] + X Y ] dedy =
0% 1y (3)

=4 j j q(z, y) X,V dzedy.
00

Prenons (voir paragraphe 1)
2
Y, = cos <%— 1> .
1

X, = cos <{)T'rrx == 1)
Les conditions aux limites seront satisfaites sur le contour
de Ja plaque.
En utilisant ces expressions de X et de Y, ainsi que celles
de leurs dérivées deuxiémes et quatriemes, le 1°T membre de
(3), les quadratures effectuées, devient

282 [3 1 3B
3117[2;4‘ +913]

Si Iy =1 (plaque carrée), le crochet prend la valeur 4.
121
Si ;=151 il vaut 36 st I, = 21, il vaut ?g

Supposons maintenant que la charge de la plaque est
uniformément répartie, q¢ = constante ; le second membre de
(3) est

Aqlly .

On aura donc la relation

90med (31 3
T [2 | +/ + >13] = 41l

et wi= Ag——— s [1‘\ 241 —_—

31 I s
)';TTJI:) l + + )[:x]
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Au centre de la plaque, X; =—2 et Y;=—2 et

481,

31 1 3B8]°
934 |21 Al =l
s [2z+z]+2zg]

f=A4q

; Alors
[

frmt = 0,00129 Agl,  fo_1.51 = 0,00230 Aglt,

fr=2 = 0,00285 Aql*.

sissant pour X, et Y, des polyndmes, en @ et en y respective-
ment.

Appelons 21 et 2[; les longueurs des cotés de la plaque et
prenons des axes de coordonnées paralleles a ces cotés,
lorigine étant au centre de celle-ci.

Avec X;=2a*—2P22 L I* et Y;=y*—2B82 4 i, les
conditions au contour de la plaque seront vérifiées.

Un calcul analogue a celui que nous venons de faire donne

‘ Répétons ce calcul de premiére approximation en choi-
|
[

Aq.49.X,Y,
TO8[71 + 4B + 717

w =

Au centre de la plaque, pour z =0 et y = 0

e Aq.49.00
= 128[78 + 4P + 714

X,0)=% Y, (0) =84 et

~

Si l; = [ (plaque carrée), le crochet = 18*; si [, = 1,51, il
vaut 51,4104 ; si [; = 21, 1] est égal a 13514 Alors
fu=1 = 0,0213 Aql*, fr=151 = 0,0375 Aql4,

fr—2 = 0,0450 Aql*.

Pour comparer ces résultats aux précédents, il faut les
diviser par 2%, La concordance est satisfaisante et I'on peut
présumer que nos premiéres approximations de s donnent
des valeurs acceptables pour les fleches.

Il en est tout autrement pour les moments M., M,, M,,
qui dépendent des dérivées deuxieémes de .

Biezexo et Grammer, dans leur Technische Dynamik
(Berlin, Springer, 1939), p. 139-142, font le calcul en prenant
pour w l'expression

w=ayX,Y; + a1 X;Y, + a3 Xp Y, + a4y XpYy,

avec quatre coeflicients.
Les polyndmes X; et Y; sont ceux que nous venons d’uti-
liser et

X, =a22X, =28 —2022% 4 l'2?, Y,=2Y, =y5— 20 4 U2

En prenant [; = 1,5, ces auteurs trouvent pour les moments
des valeurs qui concordent & 1 9%, prés avec les valeurs exactes
(dont le calcul est beaucoup plus compliqué) et la fleche au
centre

fu=1,51 = 0,0350 Aqlt,
est exacte a 0,4 9, pres.

Nous venons de faire le calcul de la plaque pour une charge
uniformément répartie. Il se ferait d’une maniére analogue
si la plaque était sollicitée par une force P appliquée en son
centre.

En se servant des polyndmes convenables, on calculerait
par la méme méthode une plaque dont les cotés sont les
uns appuyés, les autres encastrés.

Ritz, pour son calcul de la plaque carrée encastrée, avait
utilisé, au lieu de polyndmes, les fonctions propres U; dont
nous avons parlé au paragraphe 1.

LES CONDITIONS D'UN BON ECLAIRAGE'

par Madame C. ROY-POCHON, ingénieur E.P.U.L.,
Présidente de la 2™ Section de la Société Frangaise des Electriciens

On peut juger un éclairage de différents points de vue;
les plus importants sont I'utilité, ’hygiéne et I'esthétique.

Nous ne parlerons pas ici d’esthétique. Non pas que nous
la considérions comme négligeable ; mais elle est essentielle-
ment affaire de gott et de sens artistique. Ce n’est pas un
ingénieur qui peut trancher en une telle matiére. D’autre
part, I'esthétique conduit parfois & s’écarter des régles éta-
blies par les éclairagistes ; on peut le faire, il va de soi, avec
moins d’inconvénients dans le cas d’un salon que dans celui
d’un bureau ou d’un atelier.

Du point de vue de I’hygiéne, nous devons considérer les
effets de D'éclairage (ou du manque d’éclairage) sur la vue

et, d’une facon générale, sur la santé et le bien-étre des occu-
‘ pants du local. A ce genre de préoccupations, nous rattachons,
un peu arbitrairement, celle de la sécurité du travail.

Le point de vue utilitaire fait intervenir la rapidité d’exé-
cution d’une tiche donnée, le rendement dans le travail, et
nous incite a rechercher la plus grande efficacité de la lumiére
distribuée dans le local.

La technique de I'éclairage comporte un certain nombre de
régles qui répondent & deux ordres de préoccupations :

a) assurer un niveau d’éclairement suflisant pour I'exécu-

tion d’une tiche donnée ;

b) ne pas éblouir.

1 Causerie faite le 4 mars 1952 &4 'A% E? P, L., section de Paris.

Rappel de définitions

Avant de parler de niveaux d’éclairement, il n’est pas
inutile de rappeler quelques définitions.

Qu’est-ce qu’un éclairement ? Clest une densité de flux
lumineux, un flux par unité de surface éclairée. Qu’est-ce
qu'un flux lumineux ? C’est un débit d’énergie rayonnée sous
forme de lumiére visible. On pourrait le mesurer en watts ;
on préfére utiliser le lumen, unité subjective, qui tient compte
de la sensibilité variable de I’eil suivant la longueur d’ondes.
Le maximum de sensibilité correspond a 5500 angstroéms,
c’est-a-dire & une lumiére jaune verdatre. Pour cette longueur
d’ondes, on peut définir un « équivalent mécanique de la

- . 1
lumiere » : 0,0016 watt <G—ZT5

dit, un watt équivaut a 625 lumens. Mais ce n’est pas le cas
des lampes usuelles qui sont des sources de lumiére blan-
che. En lumiére du jour, par exemple, le lumen correspond

) pour un lumen. Autrement

environ a watt ; en lumiére artificielle, a watt. Ceci

1

250 100
veut dire que si 'on compare deux surfaces identiques,
éclairées I'une par la lumiére du jour, 'autre par une lampe
a incandescence, I'égalité d’éclairement sera obtenue avee des
énergies recues dans le rapport de 1 (lumiére naturelle) &
2,5 (lumiére artificielle).

Nous croyons utile d’insister sur ce caractére essentiellement
subjectif de 'unité de flux Tumineux : le Tumen « rouge » ne
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