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LA METHODE DE WALTHER RITZ

Son application à quelques problèmes élémentaires
de résistance des matériaux

par MAURICE PASCHOUD ]

I. Introduction

§ 1. Problèmes aux limites du 2e ordre et Calcul des variations 2

L'intégrale générale d'une équation différentielle du 2e ordre
dépend de deux constantes d'intégration. Deux conditions
sont nécessaires pour déterminer ces constantes.

Quand ces conditions sont telles que la fonction cherchée
doit prendre des valeurs données pour deux valeurs de la
variable, par exemple aux deux extrémités a et b d'un intervalle

(a, b), on a affaire à un problème aux limites.
Il existe une relation étroite entre les problèmes aux limites

et le calcul des variations 8.

Les valeurs d'une fonction étant données en deux points
x a et x — b, un des problèmes du calcul des variations
consiste à déterminer cette fonction y(x) de façon à rendre
extremum une intégrale de la forme

Professeur honoraire de l'Université de Lausanne.
Pour fixer les idées, nous rappelons, dans cette introduction, certains

faits concernant les problèmes aux limites du 2e ordre. Dans la suite, nous
appliquerons sans autre des résultats analogues à des problèmes aux
limites relatifs à des équations d'un ordre plus élevé que le 2e et à des équation»

aux dérivées partielles.
s Voir Blanc, Les équations différentielles de la technique. Cours de mathé-

matiqurH appliquées de l'Ecole polytechnique de l'Université de Lausanne,
[1], chapitres IV et XL

}F (*, y, y') dx. (l)

On montre, c'est une condition nécessaire, que les fonctions

y(x) rendant / extremum sont, quand elles existent,
des solutions de l'équation différentielle

d_ fjF
dx \dy'

0 (2)

qui s'appelle l'équation d'Euler du problème considéré. Cette
équation d'Euler transforme le problème de variation en un
problème aux limites.

Si, par exemple, l'intégrale à rendre extremum est

/ 1 y y
i xy

avec les conditions y (o) 0,
l'équation d'Euler sera y" -f- y + 1 ¦ 0
et le problème aux limites correspondant consistera à trouver
la solution de cette équation différentielle qui satisfait aux
conditions

n»
m2/(o) 0, y 0
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§ 2. La méthode de Ritz

Ritz suit une marche inverse de celle que nous venons
d'esquisser. Il ramène les problèmes aux limites à des

problèmes de variation.
Reprenons l'exemple du paragraphe 1. Pour trouver la

solution de l'équation différentielle

satisfaisant aux conditions y (o) 0 y I — I 0

on cherchera une fonction y (x) satisfaisant à ces conditions

et rendant extremum l'intégrale

=/¥ y i
-* + xy dx

dont l'équation y" -\- y -\- 1 0 est l'équation d'Euler.
Cette façon de procéder présente de l'intérêt si l'on sait

résoudre le problème de varjaition auquel on est ramené.

PourTésoudre ce problème, Ritz suppose que la fonction

y{x) est de la forme

yn [x) a1X1 {x) + a2 X2 (x) OnXn(x) (3)

et qu'elle satisfies aux conditions aux limites. Les fonctions

Xi (x) doivent être linéairement indépendantes.
Si l'on porte cette expression d'y et celle de sa dérivée

dans /, celle-ci devient une fonction des coefficients a$.

Trouver l'extremum de cette fonction n'est plus un
problème de variation ; c'est un problème de calcul différentiel.
On écrit que les dérivées partielles de I par rapport aux
coefficients at sont nulles, d'où n relations

m
Ja, o, tmmè

qui permettent le calcul des coefficients a*.
L'expression (3), avec ces valeurs des coefficients a,-, sera

la meilleure approximation de la solution du problème aux
limites que l'on peut obtenir en se servant des w fonctions X{.

Généralement, pour que la fonction y(x) donnée par (3)

satisfasse aux conditions aux limites, on choisira comme
fonctions Xi des fonctions qui, elles-mêmes, satisfont à ces

conditions.
Appliquons la méthode à notre exemple. Nous choisirons

d'abord pour y (x) l'expression

2/i «i x

qui est de la forme (3), avec un seul coefficient.
La fonction

X,

est un polynôme qui s'annule pour x 0 et pour x —-

En portant yx et sa dérivée dans /, il vient

/ m al
2 m* 2ira;-f 4 s2 —

0

a? CD" — TT X* + X* + atx
TT

2 ••
-2x

2

Tout calcul fait

Uga8^ — af 1920 48

et la condition -— 0 donne
dax

TT3 ir'N
V.24 960/ 48 °'

On a donc % 0,66. La lre approximation est

y1 0,66 x 2

Pour la 2e approximation, nous prendrons

2/z (*) alx x -j- a* x2 TT — x

avec deux coefficients. On trouve alors

2/2 0,638 x fc — xJ + 0,057 |w|H

§ 3. Le procédé de Galerkine

M. Galerkine a donné à la méthode de Ritz une forme

qui permet, lorsque, aux limites, on a y (a) 0 et y (b) 0,

de partir directement de l'équation à intégrer, sans passer

par la fonction F. Le procédé de Galerkine permet en outre
d'écrire les équations donnant les coefficients o, sans calculer

I en fonction de ces coefficients.
b

Soient I F (x, y, y') dx
a

1 intégrale dont il faut chercher l'extremum et

y"—f(x,y,y') o

l'équation d'Euler correspondante.
Partons toujours de l'expression

yn (x) a1 Xx (x) + àg-f an Xn (x),

les fonctions Xi satisfaisant aux conditions aux limites.
Portons cette expression d'y dans /. On a

dai J \dy ' dy I
a '

Si l'on intègre par parties le 1er terme du 2e membre, on

peut écrire, en tenant compte des conditions

Xi (a) 0 et Xi (b) 0

b

M
dOi m dx \?y'] dy

dx

Le facteur dans le crochet n'est pas autre chose que le

1er membre de l'équation d'Euler relative à /. On aura donc
finalement comme condition nécessaire pour l'extremum de I

b

S fXi [y"-f(x,y,y')]dx 0.
i)ai

DI
C'est la forme donnée par Galerkine aux équations -^— 0.

wßt

Appliquons ce procédé à l'intégration de l'équation

y" + y + 1 0

avec les conditions

2/(o) 0 et 2/(5) =0-
En lre approximation

2/i a1x\^—xj
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et l'équation de Galerkine (que nous appellerons l'équation G)

est
TT

2

fx(^-x)[y"1+y1+l]dx 0.

Si l'on porte dans cetl^êquation les expressions de y1 et
de y?, on obtient la relation

/•(i 2 fli + «! x (-g x\ +1 dx 0

d'où l'on tire la valeur ax 0,66 déjà trouvée plus haut.
En 2e approximation, avec

2/2= <h.x\-2~—-

les deux équations G sont

2 /tt

/W?—*)rjjî + y,+ i] o

V

et ./"^(Ç—*) [2/2+2/2+l] 0.
o

Elles donnent pour ax et pour a% les valeurs trouvées
précédemment.

Au lieu de

Xi==x 2~~X) et X*

on aurait pu se servir des expressions

Xx sin 2 x et Xt sin2 2 a;

TT

qui, toutes deux, s'annulent pour x 0 et pour x jr
On trouverait alors, en lre approximation, y1 0,42 sin 2 x

et, en 2e approximation, y» 0,484 sin 2 x — 0,071 sin* 2 x.

TT

En prenant

.Xj x — a; 1 et X2 sin 2 a;

on obtiendrait la 2e approximation suivante :

y* HiliPB l 2 — x) + 0,°98 sin 2x-

§ 4. Critique de la méthode de Ritz

L'exemple suivant ([1], p. 251-253) met en évidence
certaines difficultés qui peuvent se présenter dans l'emploi de

la méthode de Ritz.
Soit à intégrer l'équation y" — A (x) y 1, avec les conditions

y (o) 0, y (i^É== 0
On donne

Alx)
P

TT

7 '

0 pour < x ^ tt

En prenant A', sin ix, i 1, 2, on obtient les

approximations
yl — 0,599 sin x

y% — 0,650 sin x + 0,121 sin 2a;

ys — 0,658 sin x + 0,128 sin 2 x — 0,049 sin 3 x

2/4

2/5

- 0,658 sin x + 0,128 sin 2 x — 0,048 sin 3 x
— 0,012 sin 4 a;

- 0,658 sin x + 0,128 sin 2 a; — 0,049 sin 3 x

- 0,012 sin 4 a; — 0,009 sin 5 x

On voit que, tout au moins dans les premières approximations,

les valeurs des coefficients changent quand l'ordre n
de l'approximation considérée augmente. Il est donc difficile
de déterminer, à priori, le nombre de fonctions Xi qu'il faut
utiliser pour obtenir le résultat cherché avec une précision
donnée.

D'autre part, il n'est pas facile, généralement, d'établir que
la suite des approximations yt, yt, yn, converge vers
une fonction y (x).

Enfin, si l'on porte les approximations obtenues dans

l'équation différentielle proposée, celle-ci est assez mal vérifiée,

du moins par les premières approximations. On voit
même, sur l'exemple ci-dessus, que l'équation proposée est
très mal vérifiée pour certaines valeurs d'à;, par exemple pour
x 0, si grand que soit l'ordre de l'approximation considérée.

Cela ne signifie d'ailleurs .pas que les approximations obtenues

diffèrent beaucoup de la solution cherchée. Des fonctions

peu différentes les unes des autres peuvent posséder des

dérivées très différentes. Si, dans notre exemple, on avait pris

Xt xf (tt — xf
on trouverait, en lre approximation

yt — 0,237 a; (tt — x).
Les deux fonctions

yx — 0,237 a; (tt —¦ x) et t/i —' 0,599 sin x

diffèrent assez peu l'une de l'autre. Leurs dérivées secondes

sont, en revanche, très différentes et, si l'on peut s'exprimer
ainsi, la première de ces fonctions vérifie l'équation proposée
moins mal que la deuxième.

Quand on connaît la solution du problème aux limites
proposé (elle est y cos x -\- sin x —¦ 1 pour l'exemple du

paragraphe 3), on peut évidemment l'utiliser pour se faire

une idée de la précision des approximations trouvées par.la.
méthode de Ritz. Mais la connaissance de cette solution
exacte ne rend pas du tout inutile l'emploi de la méthode
de Ritz, car celle-ci donne généralement une forme intéressante

à cette solution.
Aucune des difficultés que nous venons de signaler ne se

présente dans les applications qui suivent, aux chapitres II,
III et IV.

II. Déformée de la poutre à deux appuis simples

§ 1. Représentation par une série trigonométrique

Soit une poutre à deux appuis simples, de longueur l, de

rigidité El constante, portant la charge q (x) par unité de

longueur. (Fig. 1.)

17W
c o

XA C

p
D

1

y

»-X

Fie t.
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Pour trouver sa déformée, nous utiliserons l'équation

EI% a[x). x (1)

d'y
Les conditions aux limites sont y 0, Ifes 0 pour x 0" dx* r

et pour x — l.
Prenons pour y l'expression

n-nxira; /ira;
yn (x) % sin — f a2 sia.^ „~. ^ (- i- a„ sin —y-

qui satisfaäpaux conditions aux limites. Les n équations G

sont :

I l

I sin

El

mtx
""TT

d4 2/«

«te4 ¦?w

EI1&r-1(x

da; 0,

dx 0.

La jiième, écrite explicitement&iiÉf»!

/ sin
raira:

"1~ El

-\- n* On sin

TT

rciraA

0.,Tra; attx
Oj sm —y -f- z* aa sin —-. \

d

dx j q{x) sin —j— aa;.

(3)

Si m et p sont des entiers et si m =£ p, on a

É m-rra; pira: /» mira; Z

—j— sm i—p - 0 et / sin2

L'équation (3) s'écrit de

£/ I y I 7i* a„ » j q (x) sin -y- cte (4)

Cette expression fondamentale (4), où la charge q(x) n'in-
terVient qu'au 2e membre (terme de charge), permet le calcul
de On dès que la ftiBction q (x) est donnée explicitement.

Ce calcul étant fait pour un mode de charge donné, on

portera les valeurs des a,- (i 1, 2, n) correspondants
dans (2). Si l'on suppose alors que n augmente indéfiniment,
l'expression (2) deviendra l'équation de la déformée sous

forme de série trigonométrique.

§ 2. Calcul de quelques termes de charge

a) La charge est une charge uniformément répartie appliquée
de C à D

a
C mxx ql
I q sm —j— dx

WTT

nirc rnrd

Si la charge uniformément répartie, q, s'étend sur toute
la poutre,

S Mira: 2ql
/ a sm—r~ dx pour n impair ;

,- mtx/ q sin —j— an U pour n pair.

b) La charge est une charge concentrée P, appliquée au point C
d'abscisse c

Nous partons de l'expression (5) et supposons que le

point D, d'abscisse d c + £ se rapproche de C de façon

que lorsque e tend vers zéro, 56 tende vers P.

1 Voir TiMosHENKO, Résistance des Matériaux, lTe partie, [2], p. 132. On

pourrait évidemment partir de l'équation classique du deuxième ordre

d*yEl —— — M où M est le moment fléchissant. Le calcul serait un peu
dx2

plus compliqué.

lim. / q(x)
mxx

sin —j— dx

ql mx (c + e)

l l

(6)

P sin

c) La charge est un couple de moment M, appliqué au point C
d'abscisse c

Nous supposons la poutre sollicitée par deux forces P,
verticales. L'une, ascendante, est appliquée au point C ;

l'autre, descendante, est appliquée au point D d'abscisse
d c -\- e. Ces deux forces égales forment un couple de

moment Pe (que nous considérerons comme positif s'il tourne
dans le sens des aiguilles de la montre). Faisons tendre e

vers zéro, de façon que Pe tende vers M. On aura

Jim. / q (x) sin —y- dx

hm. — P sm —j—|- Jr sm y-
„,«Tr mrc
M_cos_r.

(7)

§ 3. Equation de la déformée pour divers modes de charge1

a) La poutre porte une. charge uniformément répartie sur toute

sa longueur (Fig. 2)

/fwi
v//////?/////////////,

B

Fig. 2.

L'équation de la déformée s'obtient en utilisant la relation (4)
avec les expressions (5 bis) pour le 2e membre. Elle est

y(x)

iql*

4oZ* VI 1 mxx
kT^s Zl 3sm —r

1 Tra; 3 ira;
(8)

Ï8 sin T + 243 sm "T— £7306,02

Ecrivons, à titre de comparaison, l'équation classique de

1
îtte déformée

y=2m^Px-2lxa ' bis)

l
Si, dans (8) et dans (8 bis) on fait x „ il vient, pour la

flèche au milieu de la poutre, respectivement, les expressions

iql* [I _!_ 1
_£/tt8 l15 35 ' 5« I

En les égalant, on obtient fa relation

et 384£/

/ j 1

n—1,-3,5

air"
" 1536 '

1 Ce mode de représentation par une série trigonométrique est dû à

M. TiMosHENKO, qui l'établit en partant de la notion d'énergie de
déformation. Malgré dés différences sensibles dans l'application, la méthode de

Ritz et celle qui est basée sur la notion d'énergie de déformation sont, au
fond, identiques. ¦

Sur ces développements en séries trtgonométriques, voir Timoshenkq,
Résistance des matériaux, 2e partie, [3] et Théorie de la .viabilité élastique, [4J.

8 Voici un certain nombre de relations analogues. Elles peuvent toutes
se déduire, comme .celle que nous venons d'établir, de la comparaison entre
des expressions classiques de la Résistance des matériaux et les expressions
corvspondanf.es obtenues par la méthode de Ritz. On peut aussi (Bous-
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Moment fléchissant. — En dérivant (8) deux fois terme à

terme, nous obtenons pour le moment fléchissant, qui est
donné par la relation

d*yM —EI dx*'
l'expression

M i£ V mra;
sm —z—tt" —j n" l

»1=1,3,5,...

(9)

(10)

Si la charge uniformément répartie n'agissait qu'entre les

points C et D de la poutre (Fig. 3), on aurait pour la déformée

tMc D

Fig. 3.

l'expression

2?^4 vi 1 T RTrc wirdl njrx
Ëh? Ln* lcos~t ~ cos T~J sin "Ty — EjT&

n=l,2,3

On déduit immédiatement de ces expressions celle de la
du

pente de la déformée qui est donnée par -j- et celle du

moment fléchissant.

b) La poutre porte une charge concentrée P appliquée au point C

(Fig. 4)

En se servant de l'expression (6) du terme de charge, on
trouve pour équation de la déformée

Aâ

Fis. 4.

si.vtsQ, Calcul intégral, fascicule II, p. 171-173) déduire ces relations, dont
nous allons avoir besoin, du développement connu

tt gin x sin 3./' sin 5.r

4=— + HJ- + +
On a

¦ I u» 9,87

—i r,

n l,3,ô,...
Sa*8 VI 1 Tt2

-S TT 1>645
n2 6

n—1,2,3,...

y,

i i i
1« 2a 38

2j n" 1» 3» i~ 5

n-1-3,6,...

VI BfPP _ 97,41
_

n* ~ 96 |i 96

i _M i_

{i 2* 34
"

y 1,015 ;

1t»

12
0,822.

TT»

_ 31,01
_

32 32~

n i *

0,969.

B-1,8,«,

y éZj n<

2,3,...

0,947.

90
1,082

M 1.2,3,...

720

2PP
E~hT* 2j n*

2PP
El 97,41

n=l,2,3,...

1 TTC Tra;

r*smTsmT

mtc nrrx
i~rsin-r

2tcc 2-rra:

l +
(11)

sj sm —j- sin -

Cette expression est valable pour toute la longueur de la
poutre, alors que les expressions classiques correspondantes

P(l — e)x
y —ft7Ff i2lc—c — xi

y

61EI

P{l — c)x
61EI [2lc ¦x*] +

et

P(x-
(11 bis)

6EI

ne sont valables que pour x :_? c et pour i^c respectivement.

L'expression (11) ne change pas si l'on y remplace c par x
et x par c. On peut donc énoncer le théorème de réciprocité
suivant : la flèche au point D due à une charge P appliquée
au point C est égale à la flèche au point C due à la charge P
appliquée au point D.

De (11), on déduit par des dérivations terme à terme les

expressions de la pente de la déformée et du moment fléchissant,

cette dernière ne changeant pas si l'on y remplace c'

par ï et i par c.

c) La poutre est sollicitée par un couple de moment M appliqué
au point C (Fig. 5)

Fig. 5.

En utilisant l'expression (7), on peut écrire immédiatement
'équation de la déformée. C'est

y

2MZ2

2MP
£7t? y i «TTC nira;

n=l,2,î
iasjcos—z-n* l

(12)
1 TTC TXX

JgCOS-y-sin-y-
1 2ttc 2tra;
_cos—cos-'E^l.Ol

Celle de la pente de la déformée est

dy
dx

2MI ^ 1 «ire mrx
T?t » >, —, cos —— cos -£/tt2 Zj n2

«=1,2,3,...
I l

Elle ne change pas si l'on y remplace c par i et i par c.
Si le couple est appliqué sur un des appuis de la poutre,

on obtient les relations

dy 2MI
àx)T"n El-n* y i

n=l,2,3,...

Ml
3Ë1

dy\
dloh\ et

dy
dxItZt

2MI
E~h? Y Ii(_1)„ _J_l /^\

nt \ x> QEI \dx}'- i

§ 4. Applications
Calcul du moment d'encastrement M d'une poutre encastrée à

un bout et appuyée à l'autre. La charge est triangulaire
(Fig. 6) j

La poutre à deux appuis simples obtenue en supprimant
l'encastrement en A se déforme sous la charge. Sa déformée
a pour équation
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<7.-s
K

N^

Fig. 6.

2 g,*4
y~ Ein5 psmT 25 sin—y-

Les coefficients de la série précédente sont donnés par la

relation (4) dans laquelle on a

C i \ ¦ rmx j cI q (x) sin —j— dx I
x mrx
r sin —— dx

q0l

l :-1)-.

'dy
dx.

La pente de cette déformée sur l'appui A est alors

2 q„ Is 7-rr4 7 q0l32q0P
El-n*

1_ $
2* + 34 £/tt4 720~360£/

Si, d'autre part, on applique à cette poutre à deux appuis
simples AR, sur son appui A, un couple de moment M, la

pente de sa déformée, sur cet appui .A, sera

Ml_
3ËT

Il y a encastrement en A. On aura donc

7q0P j Ml
Tt

d'où
360 El ' 3 El

7q„P

0,

M — 120

Moments d'encastrement d'une poutre encastrée aux deux
bouts et sollicitée par une charge P (Fig. 7)

VfZ

|p C B
y/>

Quand la poutre à deux appuis simples obtenue en supprimant

les encastrements est sollicitée par la charge P, les

pentes de sa déformée sur ses appuis A et B sont
respectivement

2PP
I7t? Y i et

2Pl* VI j». 1 "TTC

»1=1,2,3.

Quand cette poutre Aß, à deux appuis simples, est sollicitée

par un couple de moment MA, appliqué sur son appui A,
les pentes de sa déformée sur les appuis sont respectivement

MJ
3 El et Mjl

6 El

Quand la même poutre est sollicitée par un couple de

moment MB appliqué sur son appui B, on aura, pour les

pentes de la déformée sur les appuis A et B, respectivement,
les expressions

MBl Met
6EI 3 El'

La poutre est encastrée aux deux bouts, on aura donc les

deux relations

2PP Y i
Elit3 ^i n-

91=1,2,3,...

2PV_ Y I <l\nX>j (—1) 7ssin

MJ MBl
3 EI 6EI

nirc MAl MBl
~1 617 + 3EI

On en déduit les expressions suivantes des moments
d'encastrement :

M 4« / TTC 1 3TTC
tf^= ^rTT* \smT ~*~

3~3 sm ~1—^ " '

„ /l 2-rrc 1 4-rrc V
+ 3 1

2ï sin — + £g sin — + 1

4 PI / TTC i 3tXC
B —gTT3 ~{sm T + &sin~r + -

_ /l 2ttc 1 4-n-c V
+ 3 ^2ï sm — + £g sin -y- + 1

Pour c s, on trouvejgfes valeurs bien connues

MA-
4PZ

1 —

MB

3.0
4i>Z TT8 PI
tt8 32 ~~ 8

4 PI _32
PI
"8

Remarque. — Les séries trigonométriques développées dans

ce chapitre peuvent être utilisées pour les calculs numériques.
Les unes convergent très rapidement et, dans les

applications, on pourra les employer en n'en conservant que le
premier terme.

Pour les autres, il faudra, suivant les cas, en conserver
plus ou moins de termes.

Mais, dans chaque cas particulier, on pourra aisément se

rendre compte du nombre de termes qu'il faut conserver

pour obtenir le résultat cherché avec une précision voulue.
Notons aussi que les expressions approchées obtenues en

ne conservant que le premier terme de la série trigonométrique

relative à un cas donné permettent quelquefois d'établir

des résultats que, généralement, l'on démontre en
partant de l'équation rigoureuse de la déformée.

Ainsi, dans le « Bulletin technique » des Ateliers de
constructions mécaniques de Vevey (n° 1, 1941), M. J. Tache
étudie la question de la Contre-flèche d'un pont roulant.

En utilisant l'équation classique de la déformée d'une

poutre à deux appuis simples, M. Tache établit divers résultats

généraux intéressants. Son calcul est compliqué par le
fait que dans le cas de la charge concentrée, l'équation de
la déformée qu'il emploie n'est valable que pour une partie
de la poutre.

En se servant de l'expression approchée de l'équation de
la déformée obtenue en ne conservant que le premier terme
de la série (11), on établit très simplement les résultats donnés

par M. Tache.
(A suivre.)
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