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LA METHODE DE WALTHER RITZ

Son application a quelques problémes élémentaires

de résistance des matériaux

par MAURICE PASCHOUD '

I. Introduction

§ 1. Problemes aux limites du 2¢ ordre et Calcul des variations *

L'intégrale générale d’une équation différentielle du 2¢ ordre
dépend de deux constantes d’intégration. Deux conditions
sont nécessaires pour déterminer ces constantes.

Quand ces conditions sont telles que la fonction cherchée
doit prendre des valeurs données pour deux valeurs de la
variable, par exemple aux deux extrémités a et b d’un inter-
valle (a, b), on a affaire a un probléme aux limites.

Il existe une relation étroite entre les problémes aux limites
et le calcul des variations 2.

Les valeurs d’une fonction étant données en deux points
z=a et x = b, un des problemes du calcul des variations
consiste a déterminer cette fonction y(z) de facon a rendre
extremum une intégrale de la forme

L Professeur honoraire de I'Université de Lausanne.
2 Pour fixer les idées, nous rappelons, dans cette introduction, certains

faits concernant les problémes aux limites du 2° ordre. Dans la suite, nous
,

appliquerons  sans  autre des résultats analogues & des problémes aux
limites relatifs 4 des équations d’un ordre plus élevé que le 2¢ et A des équa-
tions aux dérivées partielles.

* Voir Branc, Les équations différentielles de la technique. Cours de mathé-
matiques appliquées de I'Ecole polytechnique de I'Université de Lausanne,

[ll, chapitres 1V el X1,

b
1= [F(2,y,y) da (1)

On montre, c¢’est une condition nécessaire, que les fone-
tions y(x) rendant I extremum sont, quand elles existent,
des solutions de I'équation différentielle

IF d (oF \
=k — =0 ; (2)
dy  dx\oy')
qui s’appelle I'équation d’Euler du probléeme considéré. Cette
équation d’Euler transforme le probléme de variation en un
probléme aux limites.

S5i, par exemple, I'intégrale & rendre extremum est

™

9

piLF <”.,“ =k .Ty') du
)

.
(

st ) &5
avec les conditions y (o) =0, y (§> =)
'équation d’Euler sera y”" 4y + 1 =10,
et le probléme aux limites correspondant consistera a trouver
la solution de cette équation différentielle qui satisfait aux
conditions
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§ 2. La méthode de Ritz

Ritz suit une marche inverse de celle que nous venons
d’esquisser. Il raméne les problemes aux limites a des pro-
bléemes de variation.

Reprenons 'exemple du paragraphe 1. Pour trouver la
solution de I'équation différentielle

y¥+y+1=0,
satisfaisant aux conditions y (0) =0, ¥y (g) =0,

on cherchera une fonction y (z) satisfaisant a ces conditions
et rendant extremum lintégrale

™

2
/2

5 -
I :/. <y2_ _% + my') dx
0

dont I'équation y” + y + 1 = 0 est 'équation d’Euler.
Cette facon de procéder présente de I'intérét si I'on sait
résoudre le probleme de variation auquel on est ramené.
Pour résoudre ce probléme, Ritz suppose que la fonction
y(a) est de la forme

Yo (@) = a1 X; (@) + ap X, (@) + ... + an Xn (2) (3)

et qu'elle satisfait aux conditions aux limites. Les fonctions
X; («) doivent étre linéairement indépendantes.

Si I'on porte cette expression d’y et celle de sa dérivée
dans I, celle-ci devient une fonction des coeflicients a;.

Trouver 'extremum de cette fonction n’est plus un pro-
bléeme de variation ; ¢’est un probléme de calcul différentiel.
On écrit que les dérivées partielles de [ par rapport aux
coefficients @; sont nulles, d’ou n relations

a
(7(‘[; Gl A
qui permettent le calcul des coellicients a; .

L’expression (3), avec ces valeurs des coeflicients a;, sera
la meilleure approximation de la solution du probléme aux
limites que I'on peut obtenir en se servant des n fonctions X;.

Généralement, pour que la fonction y(z) donnée par (3)
satisfasse aux conditions aux limites, on choisira comme
fonctions X; des fonctions qui, elles-mémes, satisfont a ces
conditions.

Appliquons la méthode & notre exemple. Nous choisirons
d’abord pour y (z) I'expression

1 X /Tr'—L
A s x
Y1 1 (2 ?

qui est de la forme (3), avee un seul coeflicient.
La fonction

Xy (z) == (I; ~z>

/

)

A = \ 1T
est un polyndome qui s’annule pour z =0 et pour x =

En portant y, et sa dérivée dans /, il vient

g

1= B[ e i) -

2 2 i
- f;‘ lzz <§) — T + 1:"A| + a @ lg — 2.1:' } da.

Tout calcul fait

~

-n-s 1T5 .ITL'
T B L P L) S—
I'=ay78 — 1930 — %1 8

o )1
et la condition ~— = 0 donne
Jay

2 T8 152 s 0
|l ——=| ——= =
L (24 960 48 ’

On a done a; = 0,66. La 1r® approximation est

iy, = 0,662 (%T ——x) .

Pour la 2¢ approximation, nous prendrons
’ 2

ypla) = 0y @ <g~r) + ay 2* <g—v)

avec deux coefficients. On trouve alors

2
Yy = 0,638 x <§ —.v) + 0,057 2? (%r —x) .

§ 3. Le procédé de Galerkine

M. Galerkine a donné a la méthode de Ritz une forme
qui permet, lorsque, aux limites, on a y (a) =0 et y (b) =0,
de partir directement de I’équation & intégrer, sans passer
par la fonction F. Le procédé de Galerkine permet en outre
d’écrire les équations donnant les coefficients a; sans calculer
I en fonction de ces coeffictents.
| b
Soient I=F(zyy)ds

@

I'intégrale dont il faut chercher I'extremum et

y'—f(ny,y)=0
'équation d’Euler correspondante.
Partons toujours de I’expression

@ =X (z)+ ... + aXn(z),

les fonctions X; satisfaisant aux conditions aux limites.
| Portons cette expression d’y dans /. On a

/

b

Pl IF _, M‘»

’)(—’1_—‘/. (;y’, ‘Xl‘l_ ﬂTJAi dz .
a /

Si I'on intégre par parties le 16T terme du 2¢ membre, on
| peut écrire, en tenant compte des conditions

‘ Xi(a)=0 et X,(b)=0,

b 3
)1 L [ d [oF )F
‘—:;/‘\,- — () — | dz.
Ja; « dz \ oy Ay
£ :
Le facteur dans le crochet n’est pas aulre chose que le

1er membre de I'équation d’Euler relative a I. On aura donc
finalement comme condition nécessaire pour I'extremum de /

b
)1 ,
= (X —f (2 yy)]de=0.
Ja; . ' ' o
@
, . . , & )
‘ Cest la forme donnée par Galerkine aux cqualmns:)? =)
‘ i

Appliquons ce procédé a Pintégration de I'équation
Y+y+1=0
avec les conditions

y()=0 et y (T)r) 5§}

En 1 approximation

™
Nn=az|lg—|,
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et I'équation de Galerkine (que nous appellerons I'équation G)

est
s
2

™ U 1 Ao
(/‘a: (.i *;r) Wi+ y,+1lde=0.
0
Si I'on porte dans cette équation les expressions de y, et
de y/, on obtient la relation

s
)
»

1(?*?) [v-’_)“1+ ayx (TT

= —1‘) -+ 1] do. = 0,
0 \ ~ /
d’ott Pon tire la valeur a; = 0,66 déja trouvée plus haut.

En 2¢ approximation, avec

T ‘ o [T 2
Yp=T\5 —T) T LT |5 —x
2 J 2

les deux équations G sont

™
-: ‘rr "
/1(541) v+ y.+1]=0

/ 9
5 (TF oo 11
G fT (2 ”1‘) s+ y+1]=0.
: J
Elles donnent pour a; et pour a, les valeurs trouvées précé-
demment.

Au lieu de

P E <T)r f:r> et X, =a® (1; — .1'>_ )

on aurait pu se servir des expressions
X,=sin2z et X,=sin?2z,

. , ™
qui, toutes deux, s’annulent pour x =0 et pour x = 3 -

On trouverait alors, en 17® approximation, y; = 0,42 sin 2 x

et, en 2¢ approximation, 1, = 0,484 sin 2 2— 0,071 sin® 2 a.

En prenant
. ™ \ - .
Xy =@ (7_) - z) et X,=sin2zx

on obtiendrait la 2¢ approximation suivante :

ye = 0,513 (T_,r f.l-> + 0,098 sin 2 2.

§ 4. Critique de la méthode de Ritz

L’exemple suivant ([1], p. 251-253) met en évidence cer-
taines difficultés qui peuvent se présenter dans I'emploi de
la méthode de Ritz.

Soit a intégrer I'équation y”—A (x)y =1, avec les condi-
tions y (0) =0, y (mw) =0.

On donne

9 O T
l 2,25 pour 0 =z = 5,

A (z) = e
I 0 pour g <z = 1Tr.

in prenant X; = sin (x, ¢ =1, 2, ... on obtient les
approximations
y, = — 0,599 sin z
Y1 ,
Yy = — 0,650 sin @ + 0,121 sin 22

Yy = — 0,658 sin & + 0,128 sin 2 2 — 0,049 sin 3
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Yy, = — 0,658 sin @ + 0,128 sin 22 — 0,048 sin 32 —
— 0,012 sin 4z
ys = — 0,658 sin @ + 0,128 sin 2 2 — 0,049 sin 3 —

— 0,012 sin 42 — 0,009 sin 5 2.

On voit que, tout au moins dans les premiéres approxima-
tions, les valeurs des coeflicients changent quand l'ordre n
de Iapproximation considérée augmente. Il est donc difficile
de déterminer, a priori, le nombre de fonctions X; qu'il faut
utiliser pour obtenir le résultat cherché avec une précision
donnée.

D’autre part, il n’est pas facile, généralement, d’établir que
la suite des approximations ¥y, Yg, ... Yn, ... CONVeErge vers
une fonction y ().

Enfin, si 'on porte les approximations obtenues dans
I'équation différentielle proposée, celle-ci est assez mal véri-
fiée, du moins par les premiéres approximations. On voit
méme, sur I'exemple ci-dessus, que l'équation proposée est
trés mal vérifiée pour certaines valeurs d’z, par exemple pour
x =0, si grand que soit Uordre de U'approximation considérée.

Cela ne signifie d’ailleurs pas que les approximations obte-
nues different beaucoup de la solution cherchée. Des fonctions
peu différentes les unes des autres peuvent posséder des
dérivées trés différentes. Si, dans notre exemple, on avait pris

X; =2t (r —a)t,
on trouverait, en 1T¢ approximation
y=—0237z (w —az).
Les deux fonctions

y,=—0237z(m—a) et y;=—0599sinx

different assez peu I'une de I'autre. Leurs dérivées secondes
sont, en revanche, trés différentes et, si I'on peut s’exprimer
ainsi, la premiére de ces fonctions vérifie I'équation proposée
moins mal que la deuxiéme.

Quand on connait la solution du probléme aux limites
proposé (elle est y = cos & + sin 2 — 1 pour I'exemple du
paragraphe 3), on peut évidemment l'utiliser pour se faire
une idée de la précision des approximations trouvées par la
méthode de Ritz. Mais la connaissance de cette solution
exacte ne rend pas du tout inutile emploi de la méthode
de Ritz, car celle-ci donne généralement une forme intéres-
sante a cette solution.

Aucune des difficultés que nous venons de signaler ne se
présente dans les applications qui suivent, aux chapitres 11,
ITI et IV.

Il. Déformée de la poutre a deux appuis simples

§ 1. Représentation par une série trigonomeétrique
Soit une poutre a deux appuis simples, de longueur [, de
rigidité EI constante, portant la charge ¢ (2) par unité de
longueur. (Fig. 1.)

d
7/
c D 8 g
P
y |
Fig. 1.
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Pour trouver sa déformée, nous utiliserons I'équation
dy

EI2=q(2). *

Les conditions aux limites sont y = 0 y =0 pour =10

et pour z =1.
Prenons pour y l'expression
nmr
. 4+ a, sin =y (2)
qui satisfait aux conditions aux limites. Les n équations G
sont :

v . 2Tz
Yn (T) = a4 sin a3 —+ ay sin L + .

d*y,
/ sin —- [EI dr“

l
’ 1y
: /sm i [Elt & —q(r)] de = 0.

. dat
o

La nit¢me  écrite explicitement, est

L 4 2
/cm [EI( > <alsinzlic—|—24agsini[x—{-,..

(3)
+ nta, sin —)] dz = fq ) sin LT;:-E dx .
Si m et p sont des entiers et si m # p, on a
:}/E sin m;rx sin p1;r = (et / sin? m'lrr:v = é .
L’équation (3) s’écrit donc
El (1%)4 ntan 5 : / q(x) sin il dx . (%)

Cette expression fondamentale (4), ou la charge ¢ (z) n’in-
tervient qu’au 28 membre (terme de charge), permet le calcul
de a, dés que la fonction ¢(z) est donnée explicitement.

Ce calcul étant fait pour un mode de charge donné, on
portera les valeurs des a; (i =1,2, ... n) correspondants
dans (2). Si on suppose alors que n augmente indéfiniment,
I'expression (2) deviendra I'équation de la déformée sous
forme de série trigonométrique.

§ 2. Calcul de quelques termes de charge
a) La charge est une charge uniformément répartie appliquée

de C a D

a
. nmx ql nre nrd
f gsin —— dx i [cos — —cos 71—] .

N\

(4
la charge uniformément répartie, ¢, s’étend sur toute
la poutre,
1 "
nma 2ql : .
/ ¢sin —— dx = —— pour n impair ;
. l nt
(5 bis)
. nTx :
/ g sin —~ dn = 0 pour n pair.
)
b) La charge est une charge concentrée P, appliquée au point C
-] )
d’abscisse ¢
Nous partons de expression (5) et supposons que le
point D, d’abscisse d = ¢ 4 € se rapproche de C de fagon
que lorsque € tend vers zéro, qe tende vers P.
1 Voir Timosnenko, Résislance des Matériaux, 17¢ partie, [‘.!], p. 132, On
pourrait évidemment partic de I'équation classique du  deuxiéme ordre
2
El d l/ "
dz*

plus compliqué,

- M, ou M est le moment fléchissant. Le caleul serait un peu

a
lim. E/q(x) sin LTIW dz =
| . (6)
. ql nire nt (¢ + €) Ny - )
= lim. — |cos — —cos ——— | = P sin —— -
nr l l l

¢) La charge est un couple de moment M, appliqué au point C
‘ d’abscisse ¢

Nous supposons la poutre sollicitée par deux forces P,

verticales. L’une, ascendante, est appliquée au point C;
I'autre, descendante, est appliquée au point D d’abscisse
| d=c+ e Ces deux forces égales forment un couple de

moment Pe (que nous considérerons comme positif s’il tourne
dans le sens des aiguilles de la montre). Faisons tendre &
vers zéro, de facon que Pe tende vers M. On aura

d

Jim. /'q(T) sin L;w di=
c

| =lim. [ Psm*—}— P sin M] — AW* nlc

l l

§ 3. Equation de la déformée pour divers modes de charge®

a) La poutre porte une charge uniformément répartie sur toute
sa longueur (Fig. 2)

P |
777 72 X

| A A , Bﬁ%ﬁ

Fig. 2.

avec les expressions (5 bis) pour le 2¢ membre. Elle est

4ql* y 1 . nma
= = =§in —— —
n=r§‘,‘5.... n’ ! (8)
_ 4gt 4 T 1 . 3mz
= 130602 |1 %" Tt e e

Ecrivons, a titre de comparaison, I'équation classique de
cette déformée

y:‘)/FI (Bx — 202® 4 a?) . (8 bis)

Si, dans (8) et dans (8 bis) on fait @ = é R

' fleche au milieu de la poutre, respectivement, les expressions

qqit [ 1 1 1 Hqlt
Elh-30s- ]« i

il vient, pour la

Bl | F T 5 IR4ET

‘ En les égalant, on obtient la relation

\ 1 5z
1536 °

5
‘ n=1,-8,5 ..

1 Ce mode de représentation par unc série trigonométrique est dia a
M. Tivosnenko, qui I'établit en partant de la notion d’énergic de défor-
mation. Malgré des différences sensibles dans Papplication, la méthode de
Ritz et celle qui est basée sur la notion d’énergie de déformation sont, au
| fond, identiques.

Sur ces développements en séries trigonométriques, voir TiymosneNko,
Résistance des matériaux, 2° partie, [3] et Théorie de la stabilité élastique, [4].

2 Voici un certain nombre de relations analogues. Elles peuvent toutes
se déduire, comme celle que nous venons d’établir, de la comparaison entre

des expressions classiques de la Résistance des matériaux ot les expressions

correspondantes obtenues par la méthode de Ritz. On peut aussi (Bous-

L’équation de la déformée s’obtient en utilisant la relation (4),
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Moment fléchissant. — En dérivant (8) deux fois terme &
terme, nous obtenons pour le moment fléchissant, qui est
donné par la relation

L dPy .
M=—EI T2 9)
Pexpression
! 49 v 1 . nmx g
M = TK'3 _’\.J ;:‘;SII]T e (10)
n=1,3,5,...

Si la charge uniformément répartie n’agissait qu’entre les
points C et D de la poutre (Fig. 3), on aurait pour la déformée

d

C
"IV 9
LacC

Iexpression

2P o 1 ¢ ntrd nme
q =Y nir T . .
v= s o0 T oo sn M

n=1,2,3,...

On déduit immédiatement de ces expressions celle de la

. d
pente de la déformée qui est donnée par d—i/ et celle du
moment fléchissant. '

b) La poutre porte une charge concentrée P appliquée au point C
(Fig. 4)

En se servant de l'expression (6) du terme de charge, on
trouve pour équation de la déformée

A

Fig. 4.

siNesqQ, Caleul intégral, fascicule 11, p. 171-173) déduire ces relations, dont
nous allons avoir besoin, du développement connu

™  sinax  sin3x | sin Sx

P g T g Trg e
On a
1 @ 9,87 N 1 2
Vo = =R 1,934 = = = 1,645 ;
Ld n? 8 ] R ,\_J n* ) 1645
n=1,3,5,... n=1,2,3,
1 1 1 2 i
TR T =g = 0822
5 41 "1 1 w3101 .
>_4 n® 13 33 " 58 ~ 32 g o Dbl
n=1-35, ...
97,41 N 1 mt
=250 1,015 N\ 2
9 96 1,915 L ik g e
"= n=1.2,3, ..
1 1 1 7t
ERE TR 790 — %947

2Pk 1 . nmwe . nma
Y= EEa Y, aSnposng =

n=1,2,3,... (ll

. 2pp 1 . mec. we 1 . 2mwe . Q-mr_L
_Flm T;SlnTslnT+i—4SIIl'TSlnT T o0 o0

Cette expression est valable pour toute la longueur de la
poutre, alors que les expressions classiques correspondantes

Pll—c)z
Y="—GIET [2lc — ¢ — 2?] et i
1
Pl —e)z . P(s—=c)®
y="qgr Pl—¢—a+ g

ne sont valables que pour # = ¢ et pour x = ¢ respectivement.

L’expression (11) ne change pas si Uon y remplace ¢ par x
et x par c¢. On peut donc énoncer le théoréme de réciprocité
suivant : la fleche au point D due a une charge P appliquée
au point C est égale a la fleche au point C due a la charge P
appliquée au point D.

De (11), on déduit par des dérivations terme a terme les
expressions de la pente de la déformée et du moment fléchis-
sant, cette derniére ne changeant pas si l'on y remplace ¢
par @ et x par c.

¢) La poutre est sollicitée par un couple de moment M appliqué
au point C (Fig. 5)

c
M
cr B
P
= o |
Fig. 5

En utilisant 'expression (7), on peut écrire immédiatement
I'équation de la déformée. Clest

2MI? S\ 1 nTe . nTw

Y=EIS Qi @0ty SR =
=123, ... 12)
A=)
2M2 [1  me . wz | 1 2mwe: 2w
=EBLUI|B T T Tt |
Celle de la pente de la déformée est
dy 2M1 L nre nma
o= Bl D w [ % [

n=1,2,3,...

Elle ne change pas si 'on y remplace ¢ par a et a par c.
Si le couple est appliqué sur un des appuis de la poutre,
on obtient les relations

’dy) ML Ny L MLy

(a, s=0= EIv® 24 n* " 3El (;z;,);i; =
=5 n=1,23,... =

dy), _ 2Ml oy 1 L My

%Effhﬁl?w_w_“wr4ﬁ§'

n=1,3,3,...

§ 4. Applications
Caleul du moment d’encastrement M d’une poulre encastrée a
un bout et appuyée a Uautre. La charge est triangulaire
(Fig. 6)
La poutre & deux appuis simples obtenue en supprimant
I'encastrement en A se déforme sous la charge. Sa déformée
a pour équation
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X
7:9.%
-
.
NI 8
¢
N I
Fig. 6

2¢,10 [ 1 T 1 21z
2¢, LT .
Y= G |:T5 sin - — g5 sin —— +]

Les coefficients de la série précédente sont donnés par la
relation (4) dans laquelle on a

a B
i n W n Q!
(x) sin —— dv = = sin —/— dz=—-"— (— 1)~
/qr\l;cm i dx L/ % ] n‘n'( )
. ,
c 4

La pente de cette déformée sur 'appui A est alors

’dy) 2qp3f4 L A4 _2q,8B T Tgl?
(?1},_,:.,: Elmt |18 20738 | = Efmt 720 = 360 EI

Si, d’autre part, on applique a cette poutre 4 deux appuis
simples AB, sur son appui A, un couple de moment M, la
pente de sa déformée, sur cet appui A, sera

Ml
3EI
Il v a encastrement en A. On aura donc

Tl | Ml

360 E1 T 3E1 ="
d’on
- 7.q, 1%
M= — 90

Moments d’encastrement — d’une poutre encastrée aux deux
bouts et sollicitée par une charge P (Fig. 7)

Fig. 7.

Quand la poutre a deux appuis simples obtenue en suppri-
mant les encastrements est sollicitée par la charge P, les
pentes de sa déformée sur ses appuis A et B sont respec-
tivement

({ly) _2PP a1 . nme

dx z2=0 ILTI1T3 sl )
n=1,2.3,...

dy 2 P2

(‘,/..-) wey1 EIT?

n=1,2,3,...

1 . nme
Vo (—1)» 5 sin -
d. oon

Quand cette poutre AB, a4 deux appuis simples, est solli-
citée par un couple de moment M 4, appliqué sur son appui A,

les pentes de sa déformée sur les appuis sont respectivement

M, Myl
IEr GET

Quand la méme poutre est sollicitée par un couple de
moment My appliqué sur son appui B, on aura, pour les
pentes de la déformée sur les appuis A et B, respectivement,
les expressions

Myl Myl
"~ 6EI 3EI

La poutre est encastrée aux deux bouts, on aura donc les
deux relations

QPR Ny L onme | Mgl Mgl

Bline 24 .78 2 0 U 3EL 6Bl
n=1,2.3,

2P}2 N, l‘[ . nTre Myl Myl

B2 LS Waioe—em Tame Y

On en déduit les expressions suivantes des moments
d’encastrement :

l
Pour ¢ = 5, on trouve les valeurs bien connues

4PL[ 1 1 4Pl m® Pl

=Ma= F[(1_23+§s—~-1)+ 30]:?‘3*2: g
Vo — 4 Pl ™\ Pl
AR EEE

Remarque. — Les séries trigonométriques développées dans

ce chapitre peuvent étre utilisées pour les calculs numériques.

Les unes convergent trés rapidement et, dans les appli-
cations, on pourra les employer en n’en conservant que le
premier terme.

Pour les autres, il faudra, suivant les cas, en conserver
plus ou moins de termes.

Mais, dans chaque cas particulier, on pourra aisément se
rendre compte du nombre de termes qu’il faut conserver
pour obtenir le résultat cherché avec une précision voulue.

Notons aussi que les expressions approchées obtenues en
ne conservant que le premier terme de la série trigonomé-
trique relative a un cas donné permettent quelquefois d’éta-
blic des résultats que, généralement, I'on démontre en par-
tant de I'équation rigoureuse de la déformée.

Ainsi, dans le « Bulletin technique » des Ateliers de cons-
tructions mécaniques de Vevey (n® 1, 1941); M. J. Tache
étudie la question de la Contre-fleche d’un pont roulant.

En utilisant 'équation classique de la déformée d'une
poutre a deux appuis simples, M. Tache établit divers résul-
tats généraux intéressants. Son caleul est compliqué par le
fait que dans le cas de la charge concentrée, I'équation de
la déformée qu’il emploie n’est valable que pour une partie
de la poutre.

n se servant de I'expression approchée de I'équation de
la déformée obtenue en ne conservant que le premier terme
de la série (11), on établit trés simplement les résultats donnés
par M. Tache.

(A suivre.)
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