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ETUDE DES PLAQUES CIRCULAIRES FLECHIES
D’EPAISSEUR LINEAIREMENT VARIABLE

Cas d'une force appliquée au centre

par HENRY FAVRE ! et ERIC CHABLOZ®

Introduction

La flexion des plaques circulaires d’épaisseur linéairement
pariable ® a été récemment I'objet de diverses recherches théo-
riques. D. Conway a tout d’abord étudié plusieurs cas ou la
partie déformable de la plaque comprend un seul domaine
annulaire, dans lequel Uépaisseur h est proportionnelle a la
distance v d’un point au centre (fig. 1) *. L’un des deux auteurs
du présent mémoire a ensuite traité les quatre cas précisés
dans la figure 2, ou la plaque est formée d’une partie centrale
d’épaisseur constante et d’une partie annulaire ot h est propor-
tionnel a r°. Enfin, les deux auteurs ont étudié ensemble les
cas 1 et 2 de la figure 3, ou l'épaisseur h est une fonction
linéaire quelconque de la distance v ©. Dans le premier de ces

1 Professeur de mécanique a 1’Ecole polytechnique
fédérale, Zurich.

2 Assistant de mécanique a I'E. P. F.

3 Nous supposerons essenticllement que les pla-
ques considérées dans ce mémoire sont des corps de
révolution et que les forces appliquées accusent elles-
mémes une symétrie de révolution autour de 'axe
de Ja plaque.

4 D. Conway, The Bending of Symmetrically Loa-
ded Circular Plates of Vartable Thickness. Journ. of
Applied Mechanics, Vol. 15, 1948, p. 1.

& . Favee, Sur un type de plaque circulaire
d'épaisseur linéairement yariable. Bulletin technique
de la Suisse romande, vol. 75, 1949, n% 18, 19 et 26.

¢ H. Favre et E. Caanvoz, Elude des plaques circu-
laires fléchies d’épaisseur linéairement variable. Cas
d’'une surcharge uniformément répartie. Journ. de Math.
et de Ph. appl., vol. 1, 1950, p. 317 et suiv. Fig. 1.

deux cas, la plaque est encastrée, & surcharge uniformément
répartie ; dans le second, elle est posée le long du contour et
supporte également une surcharge uniforme.

L’objet du présent mémoire est I’étude des cas 3 et 4 de
la méme figure. Ils sont analogues aux deux premiers, mais
la surcharge y est appliquée au centre au lieu d’étre uniformé-
ment répartie.

Aprés avoir établi I'équation différentielle du probléeme
(§ 1), nous intégrerons cette équation, en supposant tout
d’abord la plaque encastrée le long du contour (§ 2), puis en
Padmettant posée (§ 4). Dans les paragraphes 3 et 5, nous
calculerons les déformations et les tensions correspondant a
ces deux sortes d’appuis.

P g
i 1522 IR

)

leo @

— Coupes axiales des plaques circulaires étudiées par D. Conway.
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§ 1. Equation différentielle des plaques circulaires fléchies
d’épaisseur linéairement variable.
Cas d'une force appliquée au centre

Rappelons  tout d’abord quelques formules générales
connues. Considérons un plaque circulaire ou I'épaisseur h,
la surcharge par unité de surface p et les conditions d’appui
sont uniquement fonctions de r. Nous admettrons que I’épais-
seur soil petite par rapport aux autres dimensions et que la
courbure initiale du feuillet moyen ! soit trés faible, de fagon
que les forces intérieures agissant dans cette surface soient
négligeables 2.

Soient %, % le déplacement, parallele a 'axe de la plaque,
d’un point du feuillet moyen et

dz,

p=— W

la variation (due & la déformation) de la pente de cette sur-

face. La grandeur ¢ satisfait a I'équation différentielle du
second ordre :

D pE -] o

dr 7 dr r

ou () désigne I'effort tranchant relatif a I'unité de longueur
(fig. 4) et

ER3

D=

’ (3)

E étant le module d’élasticité et v, le nombre de Poisson %

L’intégration de I'équation (2), compte tenu de deux condi-
tions aux limites, permet de déterminer @ (r). Les moments de
flexion M,, M,? et les tensions normales o,, o; peuvent ensuite
étre calculés a Iaide des formules

] I
M, =D (%’ +v ?) M,— D (‘33 +v %?) (4)

M, M,
or=p2 * -

1 Par feuillet moyen nous entendons la surface qui, avant la déformation,
a ses points équidistants des deux faces de la plaque.

2 Jl importe surtout que le plan tangent en un point quelconque du feuillet
moyen fasse un petit angle avec un plan fixe.

3 Zo, ainsi que la grandeur z que nous introduirons plus loin, seront comptés
positivement vers le bas, en supposant ’axe de la plaque vertical et la surcharge
dirigée vers Je bas.

4 L’équation (2) a été indiquée pourla premiére fois par H. Horzer, il est
vrai sous une forme un peu différ ta O. Prcurer que l’on doit la forme
sous laquelle nous 'avons écrite. Pour sa démonstration, voir par exemple
S. Timosue~ko, Theory of Plates and Shells. McGraw-Hill Book Company,
New York and London, 1940, p. 282 el suiv.

5 Le moment de torsion My = Myr est ici identiquement nul. Tl en est
de méme de Peffort tranchant relatif aux éléments de surface hdr.

; h=cr
7P J S
4y idbby ety byl \
EETZTL Y FIIAW%
| ! ﬁo ! R }
I '**-é-'*: : i
e e AR
AP ! P
YT TTYITYYTY R —
: i
Fig. 2. — Coupes axiales des plaques circulaires ¢tudiées par

H. Favre.
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Fig. 3. — Coupes axiales des plaques circulaires étudiées par

H. Favre et E. Chabloz. Les cas 1 et 2 ont été traités précédemment.
Les cas 3 et 4 sont 'objet du présent mémoire.

z désignant la distance d’un point de la plaque au feuillet
moyen. En particulier, les valeurs de ces tensions aux points
z = h/2 de la face inférieure sont :

6 M, 6 M, "
(o7)i = e 0 o= e, (6)
celles aux points correspondants = = — h/2 de la face supé-

rieures sont égales aux valeurs (6) changées de signe.
Enfin, le déplacement z, s’obtient en intégrant I'équation

(4}

to=—"[¢ (rdr+C, (7)

C étant une constante qu’on détermine & I'aide d’une condi-
tion aux limites,

Soit maintenant une plaque circulaire de rayon a et d’épais-
seur linéairement variable, soumise a une force P appliquée au
centre. On peut supposer, par exemple — comme nous I'avons
fait dans les figures 2 et 3 — que I'une des deux faces de la
plaque soit un plan (fig. 5 a). Dans ce cas, I'autre face et le
feuillet moyen seront des surfaces coniques de révolution. Il

Fig. 5 a.

L l / coupe  axrale) / coupe axrale /
o
E\: b p b p
:‘; i pren KU g, N surf mm'q\ue." 14, N
, 7 XN 77K Y : . %3
o 3 ‘ TLmhorioN R P o
! . T =
W N [ surfoce comgue’ 5/, i ! N | surface conigue & /> : }
N2~ > LTRAL. > | P ERUA L | 1
3~ q VTeurller moyen i S 2uillet moyen - Pl |
i (surface conigue) feees ! (plan) & _ _,{l
i

Fig. 5 b.
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sera alors nécessaire, pour que la courbure initiale de ce
feuillet soit trés faible et les formules (1) a (7) applicables, que
I’épaisseur & soit elle-méme trés petite par rapport au rayon a
du contour.

On peut aussi supposer que le feuillet moyen soit un plan,
les deux faces, qui sont symétriques, étant des surfaces
coniques (fig. 5 b). La courbure initiale du feuillet étant alors
nulle, les formules rappelées plus haut seront applicables dans
les meilleures conditions possibles. On peut d’ailleurs imaginer
une infinité de cas intermédiaires pouvant intervenir dans les
applications. Les calculs qui suivent seront applicables a tous
ces cas, mais seront d’autant plus exacts que la courbure du
feuillet moyen sera plus faible. Ils ne seront en outre valables
que lorsque les déplacements %, des points du feuillet moyen
pourront étre eux-mémes considérés comme petits par rap-
port a I'épaisseur h.

Nous pouvons poser (fig. 5a ou 5b)?

Iz:[i—f—?\(Z;l)]hg, ®)

by = (R)p=s = (1 — A) b,

d’ou
H= A== 1+nNh,

h, désignant la valeur de h aux points ol r = a/2 et A la
variation, divisée par h,, que subit I'épaisseur depuis ces
points jusqu’au contour ou jusqu’au centre.

Posons encore :

r ) Eh
E=r 9) et D, = 21—’

(10)

[équation (2) devient, en tenant compte de (3), (8), (9),
(10) et en remarquant que
P
Q=s5—

4Tr

dcp P aP 1 d*q dp )
d§(d§ §> *QTTDOE_ 7\(((11 d_§2 —— a,Zd‘g +al3§)_
12 1
—7\2<021 :Tg + agy bqg + gy (EP>_

d* d
‘7\3<(’31 Fﬁi) + ag, gg + agy (EP)’

ou

3
ayy = 6§—3,

g )

gy = 366 —24 +

=12 —
gy = 1282 —12€ 4 3, E :

1
= 3282 —36E 412 — -,

a5 =88 — 12824 66 —1, ayy £ 119

3
&7
oy =—12 (1 —2v) E+ 12 (1 —v)—

a3 =—6 (1—v) +
3
§)

-2v) §—6 (1

1

p— 2y E2 92 (1 - .
gy =— 8 (1—3v)E2+12 (1 Mt

Telle est I'équation différentielle d’une plaque circulaire
d’épaisseur linéairement variable et soumise a4 une force
appliquée au centre.

1 Ces deux figures ont é1é dessinées en choisissant une valeur positive de A.
Elles se rapportent au cas des paragraphes 2 et 3, ol la plaque est encastrée le
long du contour.

|

§ 2. Intégration de I'équation (11) dans le cas ou la plaque
est encastrée le long du contour

Nous utiliserons la méthode que nous avons déja appliquée
a la méme plaque,
répartie 1.

Développons @, qui peut étre considéré comme une fone-
tion de § et de A, en une série procédant selon les puissances
croissantes de A :

sous I'action d’une surcharge uniformément

©

PEN) = @06 + PuEA + Q@A+ ... = X g

i=0

(13)

Pour des valeurs suflisamment petites de A, il faut s’attendre
a ce que cette série converge rapidement, de sorte qu’on
pourra se contenter, dans les applications, de ne considérer
qu’un petit nombre de ses termes. Ce point sera confirmé
plus loin.

Pour déterminer les fonctions ¢;, introduisons la série (13)
dans les deux membres de I’équation (11) et identifions les
coefficients des mémes puissances de A. Nous obtenons ainsi
le systéme d’équations différentielles simultanées :

1 7d P
(& +%E) = mmye

Cd (dey | @1\ d*q, deo Po
AL d—§<7§ + E‘) ——'“(au 7&2 + aqe —dﬁ + a3 E)’

Cd (dey | 9, - dPey )
A% Zi§<2{€+ §7> (au g2 +[12 d§ +al3§ +

12 d;
_|_(,“(dg;0—|—a q>0+423§>

Ces équations sont applicables quelles que soient les condi-
tions aux limites, pourvu que ces derniéres ne dépendent que
de r.

Supposons maintenant que la plaque soit encastrée le long
du contour r = a (fig. 5a et 5b). Les conditions aux limites
sont alors :

(Pr=0 = (Pg=0=0 et (@)rma= (@le=1=0. (15)

Pour que ces conditions soient satisfaites quel que soit A,
il est nécessaire, d’aprés (13), que

(P)e=o =10 et (Pile=1=0 (:=0,1,2,...,0). (16)

Revenons aux équations (14). Nous pouvons intégrer direc-
tement la premiére, qui est une équation d’Euler pour la
fonction inconnue @,. En tenant compte des conditions
(Po)e=0 = 0 et (@y)e=1 = 0, nous obtenons par des calculs
élémentaires :

aP -
<Po=*ﬁ§")§L0g§ (17)

En introduisant cette valeur de @, dans la seconde des
relations (14), cette derniére devient elle-méme une équation
&’Euler ne contenant que la fonction inconnue @ :

d (dey | ¢\ _ 3aP [ 1 ) _
11§<,1§ + E)*ZnDo[ £ +(1+V)L0§,§+3]

! Voir H. Favee et E. Cumanroz, loc. cit. L'équation différentielle (11)
obtenue ici ne différe de celle relative au cas d’une surcharge uniformément
répartie que par le premier terme du second membre, qui est ici

aP 1 a’p

~ SnDy € aulieu de — Do &l
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La solution de cette équation, compte tenu des conditions
(P1)e=0 = 0 et (p1)e=1 = 0, est
e ; (18)

[2 (14v) &g Log&—3¢log §+§ (5 —4v) (& —¢) ]

En introduisant les valeurs (17) et (18) de @, et ¢, dans la
troisieme des relations (14), on obtient une nouvelle équation
d’Euler permettant, en tenant compte des conditions
(a)e=0 =0 et (@p)e=1 = 0, de déterminer @,, et ainsi de
suite. En procédant de la sorte, nous avons obtenu :

iz 3
0= gopc| —3 (B4 +VELogE+8(L+v)§ LogE—

- aP
P1= 41D,

— 6€ Log € —% (85 — 36v—25v2) & + (19)

ok ;‘ (15— Tv— ) £P— (225—116v—53v2)§],

24
gP L - -
<P3:4TI'—D;[5 (Dl +77v 4 29v2 -+ 3\13) §4 LOg g—
— 12—5 (344v+v?) & Log £+20 (1+v) € Log §&—
—10¢ L0g§+330(8493—2089v—3053v2—47’1v3)§4—
: (20)

— 5 (545 — 116y — 213v® — 320%) € +
= % (705 — 195y — 233v2 — 53v3) £2 —

1 ,
— G0 (11361 — 5228y —1781v2 —1192?) g]

Désignons par ¢, (), ... les approximations successives
de la fonction @, obtenues en ne considérant qu’un terme,

deux termes, etc. de la série (13) :

P = 9
P = @p + 1A

(1re approximation),

(2¢ approximation), [ (21)

00 o7 0z 03 04 05 06 07 08 09 10 L=%
a0 s
p
| ,{‘;I
) /4
\ ;
a7 4
' o
g o)
1 b
%\ Jg’ e
02 | 26
T Viey
b\
i
! A
kY 2
y @ //
| S —
W \\7/
)‘.\ L Pl f/
P 4
o
04
£ns
Y ap ¥
Tig. 6. — Plaque circulaire encastrée de la figure 5 @ ou 5 b. Repré-

sentation graphique des quatre premiéres approximations @), ...,

@) en fonction de & = :—l, pour A = 0,2 et v 0,25.

Dans la figure 6, nous avons représenté graphiquement les
valeurs de @M, ..., ¢® en fonction de § = r/a, calculées
pour A = 0,2 et v = 0,25. On voit que la quatriéme approxi-
mation différe trés peu de la troisieme. Des calculs numériques
comparatifs nous ont d’ailleurs montré que les valeurs de
M,, M, déduites de la quatriéme approximation sont affectées
d’erreurs relatives de lordre de quelques milliémes si
0 <|A| <02 et de quelques centiemes si 0,2 < |A| <<0,4.
Or les valeurs de |A| qui interviennent dans les applica-
tions sont en général inférieures a 0,4.

Nous avons ainsi obtenu pour ¢ la valeur approchée, mais
suffisante pour les applications :

P (§) = oW= 0y + @1 A + @, A* + @3 A%,
., (20).

(22)

ot @, ..., @3 ont les valeurs respectives (17), ..

§ 3. Calcul des déformations, des moments de flexion
et des tensions dans le cas de la plaque encastrée

Les relations (4) et (7) s’écrivent, en y remplagant la
variable r par §:

D (d
M=~ <i’

d&“ﬂ&))’

D (¢ do ,
M=C (G vE @
to=—afoEdE+C. (7)

En introduisant dans (7’) la valeur (22) de ¢ () et en tenant
compte de la condition d’appui (4)e=1 = 0, qui détermine la
constante C, il nous a été facile de calculer Z;,. De méme, en
introduisant ¢ (§) dans les relations (4), nous avons obtenu M,
et M,, puis, a I'aide des formules (6), les valeurs des tensions
(o7)i et (oy); au voisinage de la face inférieure de la plaque.

Pour ne pas alourdir notre exposé, nous avons renoncé a
insérer dans ce mémoire les formules obtenues, qui sont trés
longues et n'offrent qu’un intérét relatif, et avons préféré
donner a I'aide de diagrammes les résultats numériques aux-
quels elles conduisent. La figure 7 est une représentation

[« Axe at /o plague

06k, 4 =04
W : 4% o =0
!
146 "1 E Nzr04
1
20 0.2 a4 06 04 10 &=L
20 T ———
A=0
a1 A =-020T =
A=-04
a2t
A=-0,2~
A=+0,2-
a3
J £hy
2%
Iig. 7. — Plaque circulaire encastrée de la figure 5 a ou 5 b. Repré-

5 4 3 . r A
sentation graphique de Z en fonction de & =~, pour diflérentes
a

valeurs de \ (v = 0,25).
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graphique de la fonction &, (), pour les valeurs —0,4, — 0,2,
+0, + 0,2 et + 0,4 de A. Les diagrammes des moments M,,
M, sont donnés dans la figure 8 et ceux des tensions (o);,
(ov); dans la figure 9, pour les mémes valeurs de A. Toutes
ces courbes ont été calculées en choisissant v = 0,25. Cette
valeur du nombre de Poisson est une moyenne entre les
valeurs correspondant a l'acier (~0,33) et au béton armé
(~ 0,15 a 0,2). Il faut d’ailleurs s’attendre a ce que toutes les
valeurs calculées dépendent trés peu du nombre v, comme
c’est en général le cas dans la Théorie de I’élasticité.

Remarquons que si A est positif, I’épaisseur de la plaque
est plus faible au voisinage du centre que vers le contour (cas
des fig. 5a et 5b). Le contraire a lieu si A est négatif.

La figure 7 montre éloquemment comment évoluent les
déplacements ,, lorsque A croit de — 0,4 a 4 0,4. II est
intéressant de constater que (Zo)g=o, qui est la flexion au
centre ou fléeche de la plaque, passe par un minimum pour
une valeur de A trés voisine de zéro. Toutes choses égales
d’ailleurs, c’est donc la plaque d’épaisseur constante (A = 0) qui
accuse sensiblement la plus faible flexion au centre. En consé-
quence, pour les valeurs du parameétre A comprises entre
—0,2 et + 0,2, (¢))e=0 est pratiquement indépendant de ce
parameétre. Ceci montre que, pour de petites valeurs positives

4 o7 02 03 04 085 06 07 08 09 10
-0,12 |
-0, V*o;%

0,2
F
_0’0‘9 /‘VZ%)/
A A 9
-0,06 7 //f//O, ]
£Z
004 / A 4 ,Oh_
///// > by 2
- A >
A
/ pdl s ol BN
0.00 e R
/ / //06/// N
Y AA Y
0,02 O g
/7
[/ T |
0,04 = 5 p
4 A=+02
/ //”}’//)\ ).—*0
006 A7 -
[V g gl |2
/
0.08 Ve
/
L AL
o170 7 // 7
Ly
/ /A
a12 f/ J71[7
/
.74 ! // 7
Wy
1414, —_
016 =i T p
{I/ /// / e
o1 it HT 7
1)
0,20 L
j’l I 1
/]
022 Uml) )
I
02i |41
i
M
Yo
Fig. 8. Plaque circulaire encastrée de la figure 5 @ ou 5 b. Repré-
sentation graphique de M, et M; en fonction de E = ’r, pour
1

différentes valeurs de A (v = 0,25).

[y

de A, linfluence sur (Zg)e=o du renforcement de I'épaisseur
dans le domaine 0,5 < § < 1,0 est approximativement com-
pensée par celle de la diminution d’épaisseur dans le domaine
0 <§<0,5. Une compensation analogue existe pour de
petites valeurs négatives de A.

Ces renforcements et diminutions d’épaisseur dans les deux
zones en question, expliquent d’ailleurs clairement I’évolution
de la forme des courbes ¢,(€), lorsque A croit de — 0,4 a + 0,4.

Les moments de flexion M, et M, sont, quel que soit A,
négatifs au voisinage du contour (§ = 1) et positifs prés du
centre (€= 0) (fig. 8). Ils croissent réguliérement & partir
de valeurs finies négatives et tendent vers 4 oo, lorsque §
décroit de 1 a 0. Quelle que soit la valeur de §, les moments M,
et M, sont des fonctions décrotssantes de A.

Les diagrammes des tensions normales (o,); et (oy); accusent
par contre un caractére assez différent (fig. 9). Ces tensions
sont, quel que soit A, négatives au voisinage du contour et
positives prés du centre, comme les moments. Elles croissent —
mais moins réguliérement que les moments — & partir de
valeurs finies et tendent vers + oo , lorsque § décroit de 1 4 0.1

Dans les diagrammes de chacune des tensions (o,); et (o7)s,
on peut assez bien distinguer une premiére zone, voisine du
contour, ou la tension est une fonction croissante de A, une
seconde zone, prés du centre de la plaque, jouissant de la
méme propriété, et une troisiéme, située entre les deux

! La tension (or)i commence par décroitre trés légérement avant de croitre,
lorsque A = 0,4.

700 g7 02 035 04 05 06 07 08 09 10
-0.8 /
-06 -
-04 S
0.2 7
LZ &=L
0.0 = .
! 7~
£02 2%
gl S A=+04
e s
04 / / P g AN NS
0 4
V- A= 0
4,21 -
106 7 A=-02 _|
7 A=-04
7
+08 v &
’“'0'4"@/ 2, 5)\
+1,0 (AN A =-0.4
A:—a?-ﬂlﬁ 1NN A=-02
+12 1 //,( A=0
A=0—] J,/'/ A=+02
+14 / / A=+04 f;2 |
'f / = i
/ 2
+1.6 1ty ho ]
A=+024| 1) -0 T/O‘;)‘
+ 18 t
A:¢0,4'/i"
<20 | —
i
+ 2,2
2
h,
70(0/1'
Fig. 9. — Plaque circulaire encastrée de la figure 5 @ ou 5 b. Repré-
sentation graphique de (o7); et (0); en fonction de & =';, pour
a

différentes valeurs de A (v = 0,25).
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premiéres, ou la tension est une fonction décroissante de A.

Pour A = 0,4, on voit que la plaque réalise cette condition
que la tension (o,); est sensiblement constante dans le domaine
05 < & <1,0. )

Nous venons de remarquer que les moments de flexion et les
tensions normales deviennent infiniment grands au centre de
la plaque. Or on sait qu’au voisinage du point d’application
d'une force concentrée, la théorie utilisée dans le présent
caleul doit étre révisée. Dans le cas ou une force P agit au
centre d’une plaque circulaire simplement posée, d’épaisseur
constante hy et de rayon b, A. Nadai et S. Woinowsky-Krieger
ont montré, par une analyse délicate du probleme, que les
tensions o, et oy aux points A et B de la figure 10 sont données
par les formules : 1

P 2
(4= (o)a = oy — =3 [1—+—) "—+vel e

(0r)z =(0%) :ﬁ[(l + v) (0,485 Loo -+ 0,52) + 0 48] (24)
1

ou g désigne le rayon du petit cercle ou la force P est supposée
étre uniformément répartie et o; est la tension normale
o, = oy, en A, que donne la théorie ordinaire des plaques en
tenant compte de la répartition de cette force. Quant a (3,
c’est un coeflicient dépendant du rapport €/h;.

Dans les applications, on peut cependant se contenter de
ne calculer que la tension au point B3, qui est une traction, car
la tension relative au point A est une compression de carac-
tére local qui occasionne trés rarement la rupture de la
matiére 2. La formule (24) donne done la tension dangereuse
au centre de la plaque de la figure 10.

Cette formule peut &tre appliquée au cas étudié ici. Consi-
dérons en effet la portion de la plaque d’épaisseur variable
comprise entre le centre et un cercle de rayon b, égal par
exemple a4 0,1 a (fig. 5a ou 5b)3. Cette portion peut étre
considérée comme une plaque d’épaisseur sensiblement cons-
tante &y, simplement posée le long du contour r =
laquelle agirait, outre la force P au centre, un couple de
moment

b et sur

(Alr)r=b - Up

le long du contour (le facteur p est représenté par les ordon-

(M),

=0
nées —p— des courbes de la figure 8).

Ce moment engendre dans le domaine 0 << r < b des

moments de flexion sensiblement constants et indépendants
de la direction de I’élément de surface considéré, approximati-

! Voir S. Timosuenko, Theory of Plates and Shells, p. 75. Voir aussi
A. Napar, Elastische Platten, p. 308 ¢t S. Woinowsky-Kriecer, Ing. Archiy,
vol. 4, 1933, p. 305.

2 Voir S. Timosnenko, loc. cit., p. 77.

3 1 faut choisir pour b une valeur petite par rapport 4 @, mais au moins
égale 4 deux foisla valeur by de I’épaisseur au centre. Les tensions (or) p=(ot) g
données par la formule (25) que nous obtiendrons plus loin, dépendent trés
peu du choix de b, comme on le vérifie facilement.

[coupe axiale)

vement égaux a (M,),—,. La tension produite en B par le
moment relatif & ce point est

o \ o («“Ir)r:b . @
(O';-)B = (O't)B = ’_‘@6_ = ]l% P

En ajoutant cette valeur a celle donnée par la formule (24),
on obtient ainsi pour la tension dangereuse au centre de la
plaque :

©hy

(or)2==(0v)B =IT)2[(1+\1) (0,485 Log +O ,52) + 6p+ 0, 48] (25)

En résumé, les tensions (o,);, (0y); relatives a la plaque de la
figure 5 a ou 5 b, sont données par les diagrammes de la figure 9,
sauf aw voisinage du centre, o la tension dangereuse, qui se
produit au point B, est donnée par la formule (25).

§ 4. Intégration de I'équation (11) dans le cas ou la plaque
est posée le long du contour

Les conditions aux limites sont ici (fig. 11 a ou 11 b):
(@hr=0= (@)e=0 =0 et (M;)r=o= (M;)g=1 =0. (26)
Posons, comme précédemment :

PEN) = 90(6) + @A + @a(€A2+ ... =) @Al (13)

'L\/x

Il
=)

i

Comme nous I'avons vu au § 2, la premiére des conditions
(26) exige que :

(q)1)§=0=ﬂ (L~0117 = )I) (27)

Remplacons, d’autre part, ¢ par le développement (13) dans
I'expression (4’) du moment de flexion M, :

n=b(g

Nous obtenons, en tenant compte des relations (3), (8), (9)

t (10) : '
g
+3<2§~1>(-{f§§1 §)+lq§+ “;2]7\°+
+[(2£ 02 %) 13 05— 12 (%04 v )

+
3 (26 — ,((1§+ §)+ Bt ";3]7\3+

[coupe axiale)

Fig. 11 a.

Fig. 11 b.

surf conigue !L
p ho TN by by b
—¥ ) 74 L e N
: Szl < i e
/ A | 5 | 1

«L; /i‘h’ 5{:/ T/QL\ i : surface conigue | 2 : E

I . i , it feurllet moyen :‘"“ >l| } feuitlet moyen gL K. !

l< ---------------------------- >'</ """""""""""""""""""" > ﬁ”’f {vnllqllf’} [ SRS e > //)/9/7/ [P Q. N



BULLETIN TECHNIQUE DE LA SUISSE ROMANDE 7

Pour que la seconde des conditions (26) soit satisfaite quel
que soit A, il est nécessaire, d’apres Pexpression ci-dessus de
M., que:

dg §

Pour déterminer les fonctions g (§), @1 (§), - . ., nous devons
donc intégrer le systéeme (14), compte tenu des conditions (27)
et (28). En procédant selon la méme méthode que celle utilisée
au § 2, consistant & intégrer I'une aprés l'autre les équa-
tions (14) en substituant chaque fois les valeurs de ¢; déja
calculées, nous obtenons successivement :

aP 1
%:M[ﬂ‘vg =6 LOgﬁ]’

%= mD, [2<1+v> € Logf—3fLogE +5(1—w)8—

5 — 6v —8v? ]
b

(d;*’i+v$f)§ =0 (=012 ...) (28)

31+ v)

aP 3 -
2= %D, [—2(3+4V+V2)§3 Log§+8(1+v)§ Log€—
— 6&Log&— é (49 — 48v — 25v?%) £ +
+ g (11 —11v—4v?) €2 —
203 — 19v — 275v2 — 53v? _
= % (1 +v) ‘5} (28)
aP |1 _ . O .
Ps Tl | 5 (51 + 77v + 29v2 + 3v®) € Log § —

15
2’ (34 4v+v?) € LogE 420 (1+-v) €2 Logf —
1 ,

— 108 LogE + 55 (5433 — 3649v —3233v> —
4TI é (413 — 256y — 2452 — 320%) €8 +

- 112 (619 — 387y — 339v2 — 53u3) £2 —

11059+3789v—13107v2—6549v%—1192v*
600 (1 +v) &)

Des calculs numériques comparatifs analogues a ceux men-
tionnés a la fin du § 2 nous ont montré que, pour les valeurs
de A comprises entre — 0,4 et + 0,4 (qui sont celles interve-
nant en général dans les applications), le degré d’approxima-
tion de la fonction définie par les quatre premiers termes de la
série (13) est certainement suflisant 1.

Nous avons ainsi obtenu pour ¢ la valeur approchée :

¢ (€)= 0 = @) + P1 A+ ¢ A" + @3 A%, (30)

ol Qg. ..., Py ont maintenant les valeurs (29).

§ 5. Calcul des déformations, des moments de flexion
et des tensions dans le cas de la plaque posée

Connaissant @ (§), 1l nous a été facile de déterminer les
déplacements z,, les moments M,, M, et les tensions normales
(07);5 (o), & 'aide des formules (7'), (4’) et (6).

Comme dans le cas de la plaque encastrée et pour les mémes
raisons que celles invoquées au § 3, nous avons renoncé a
insérer dans ce mémoire les formules obtenues et avons préféré

! Comme dans le cas o0 la plaque est encastrée, les valeurs de My, M
déduites de la quatriéme approximation sont affectées d’erreurs relatives de
Pordre de quelques millitmes si 0 < [A]<C0,2 et de quelques centiémes si
0,2<|A|<0,4.

“Axe ae /o plague

A==
KA g L =0
T/#_‘*Vr i 3 it
14h, N=+04
00 0.2 04 06 0.8 10 &=L
0.00
A=+04
0.20
i
A=-04
040 —— Ar-_02
———
060 — A=
7\) =402
A=+0,4
080 I
£hy
22D
Fig. 12. — Plaque circulaire posée de la figure 11 @ ou 11 b. Repré-

sentation graphique de Z, en fonction de € = -, pour différentes
a

valeurs de A (v = 0,23).
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I'ig. 13. — Plaque circulaire posée de la figure 11 @ ou 11 b. Repré-

o i N % r
sentation graphique de M, et Mg en fonction de & = -, pour
a

différentes valeurs de N (v = 0,25).
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donner directement les résultats a 1'aide de diagrammes,
reproduits dans les figures 12, 13 et 14, ou sont dessinées les
courbes relatives aux valeurs — 0,4, — 0,2, 4+ 0, + 0,2, + 0,4
de A et calculées en choisissant v = 0,25.

La figure 12 montre qu’en un point donné de la zone
0 < §<0,5, % croit avec A et cela d’autant plus rapidement
que le point est plus prés du centre de la plaque. Par contre,
dans la zone 0,5 << § << 1,0, les déplacements ¢, sont pratique-
ment indépendants de A. On voit combien les déformations
different de celles relatives au cas ou la plaque est encastrée
(fig. 7).

Les moments de flexion M, et M, sont représentés par des
courbes trés réguliéres (fig. 13). Quel que soit A, M, croit de
0 a + oo, lorsque § décroit de 1 a4 0. En un point quelconque
de la plaque, M, est une fonction décroissante de A.

Les moments M, croissent en général d’une valeur finie
positive a + 5, lorsque € décroit de 1 a 0, sauf dans le cas
A = + 0,4, ou M; commence par décroitre. Dans la zone 0,45
< &< 1,0 — et surtout le long du contour de la plaque
(€ = 1) — M, est une fonction croissante de A. Cette fonction
est au contraire décroissante dans la zone 0 << &€ < 0,45.

Les diagrammes des tensions normales (ov), et (ov), (fig. 14)
accusent un caractere assez différent de ceux des moments.
(ov), croit de 0 & + o0 et (01), d’une valeur finie positive a
+ oo, lorsque § décroit de 1 a 0, quel que soit A, comme les
moments. (oy), est une fonction décroissante de A dans la zone
0,2 < & < 1,0, mais croissante au voisinage du centre. Au
contraire, (ov), est une fonction croissante de A quel que soit §.

Nous venons de remarquer que M,, M,, (0’)z et (c,)i devien-
nent infiniment grands au centre de la plaque; la théorie
utilisée dans le présent calcul doit donc étre révisée. Comme
nous I'avons vu au § 3, ¢’est au point B de la figure 11 a ou
11b qu’existe la tension la plus dangereuse au voisinage du
centre. Elle est donnée par la formule établie au § 3 :

(25)
p b . Y
(01),= (00 = 13 [(1+v) (0,485 Log F}l +0,52) + 6u + 0,48],

ou b a la méme signification que précédemment et ou le fac-

(My)r=s

teur g est représenté par les ordonnées P des courbes

de la figure 13.

En résumé, les tensions (o,)i et (c,)i relatives a la plaque de la

|
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i I
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I
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Fig. 14. — Plaque circulaire posée de la figure 11 @ ou 11 b. Repré-
sentation graphique de (0;); et (0¢); en fonction de & :2, pour

différentes valeurs de A (v = 0,25).

figure 11 a ou 11 b sont données par les diagrammes de la
figure 14, sauf au voisinage dw centre, oi la tension dangereuse,
qui se produit en B, est donnée par la formule (25).

Zurich, le 29 mars 1951,

Le développement actuel des aménagements hydroélectriques

en France'

L’objet de la conférence de M. Clément a été double :

10 donner une vue d’ensemble du développement actuel
des aménagements hydroélectriques en France,

20 renseigner sur aménagement du Rhin en aval de Bile,
soit en fait, sur le Grand canal d’Alsace et 'usine d’Ottmars-
heim, dont la visite était prévue a I'occasion de I’Assemblée
générale.

Développement actuel des aménagements hydroélectriques

La production d’énergie électrique en France a augmenté
de 60 9, de 1938 4 1950, pour atteindre 4 cette date un total
de 33,2 TWh 2. L’énergie hydraulique et I'énergie thermique
ont une part sensiblement égale dans cette production et, en

ce qui concerne I'énergie hydroélectrique, la part des Alpes
a été, en 1950, de 59 9, celle du Massif central de 19 %, et
celle des Pyrénées de 22 %,.

L’augmentation de la production durant ces 12 années n’a
pas été uniforme (voir tableau I). Pendant la guerre elle est
restée approximativement stationnaire, avec un minimum en
1944. Les aménagements nouveaux, lents a s’effectuer, ne
compensaient que difficilement les destructions du moment,

de sorte que I'indice d’augmentation de 60 9, par rapport a

! Résumé d’une conférence a I'Assemblée générale de I'UCS, le 22 sep-
tembre. a Bile, par M. Clément, contrdleur général de 1'équipement a
E. d. F., Paris. Ce texte a paru au n° 26, 1951, du Bulletin de I’ Association
suisse des électriciens.

?1 TWh (terawattheure = 10 Wh = 10° kWh (1 milliard de kilowatt-
heures).
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