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ÉTUDE DES PLAQUES CIRCULAIRES FLÉCHIES

'/' D'ÉPAISSEUR LINÉAIREMENT VARIABLE B
Cas d'une force appliquée au centre

par HENRY FAVRE \ et ÉRIC CHABLOZ 2

Introduction
La flexion des plaques circulaires d'épaisseur linéairement

variable 8 a été récemment l'objet de diverses recherches
théoriques. D. Conway a tout d'abord étudié plusieurs cas où la
partie déformable de la plaque comprend un seul domaine

annulaire, dans lequel l'épaisseur h est proportionnelle à la
distance r d'un point au centre (fig. 1) 4. L'un des deux auteurs
du présent mémoire a ensuite traité les quatre cas précisés
dans la figure 2, où la plaque est formée d'une partie centrale

d'épaisseur constante et d'une partie annulaire où h est proportionnel

or6. Enfin, les deux auteurs ont étudié ensemble les

cas 1 et 2 de la figure 3, où l'épaisseur h est une fonction
linéaire quelconque de la distance r 6. Dans le premier de ces

1 Professeur de mécanique à l'Ecole polytechniqve
fédérale, Zurich.

2 Assistant de mécanique à l'E. P. F.
8 Nous supposerons essentiellement que les

plaques considérées dans ce mémoire sont des corps de
révolution et que les forces appliquées accusent elles-
mêmes une symétrie de révolution autour de l'axe
de la plaque.

4 D. Cokway, The Bending of Symmetrically Loaded

Circular Plates of Variable Thickness. Journ. of
Applied Mechanics, Vol. 15, 1948, p. 1.

6 H. Favre, Sur un type de plaque circulaire
d'épaisseur linéairement variable. Bulletin technique
de la Suisse romande, vol. 75, 1949, n" 18, 19 et 26.

6 H. Favre et E, Chabloz, Etude des plaques circulaires

fléchies d'épaisseur linéairement variable. Cas
d'une surcharge uniformément répartie. Journ. de Math,
et de Ph. appl., vol. 1, 1950, p. 317 et suiv.

deux cas, la plaque est encastrée, à surcharge uniformément
répartie ; dans le second, elle est posée le long du contour et
supporte également une surcharge uniforme.

L'objet du présent mémoire est l'étude des cas 3 et 4 de
la même figure. Ils sont analogues aux deux premiers, mais
la surcharge y est appliquée au centre au lieu d'être uniformément

répartie.
Après avoir établi l'équation différentielle du problème

(§ 1), nous intégrerons cette équation, en supposant tout
d abord la plaque encastrée le long du contour (§ 2), puis en
l'admettant posée (§ 4). Dans les paragraphes 3 et 5, nous
calculerons les déformations et les tensions correspondant à

ces deux sortes d'appuis.

y ç~~x&\ Çrcr£ C~*(ZZà 3 jrtii i ¦ P-J*^ i i i ni K

\7^~jfr-^m\ E^5--4y-:5^ îW&--»\~:£m>A
l®2tCJ
CUT

Ç^*-~-J

r^K®i

' b I

r~^Z2à L >me±

-* P=Tfa'-b"]p

Fig. 1. — Coupes axiales des plaques circulaires étudiées par D. Conway.
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§ 1. Equation différentielle des plaques circulaires fléchies
d'épaisseur linéairement variable.

Cas d'une force appliquée au centre

Rappelons tout d'abord quelques formules générales
connues. Considérons un plaque circulaire où l'épaisseur h,
la surcharge par unité de surface p et les conditions d'appui
sont uniquement fonctions de r. Nous admettrons que l'épaisseur

soit petite par rapport aux autres dimensions et que la
courbure initiale du feuillet moyen * soit très faible, de façon
que les forces intérieures agissant dans cette surface soient
négligeables 2.

Soient t0 3 le déplacement, parallèle à l'axe de la plaque,
d'un point du feuillet moyen et

dr (1)

la variation (due à la déformation) de la pente de cette
surface. La grandeur <p satisfait à l'équation différentielle du
second ordre :

dr\dr
dD fd(i> a

¦d-r(£+Vr Q, (2)

où Q désigne l'effort tranchant relatif à l'unité de longueur
(fig. 4) et

D
Eh3

12 (1 — v2) (3)

E étant le module d'élasticité et v, le nombre de Poisson *.

L'intégration de l'équation (2), compte tenu de deux conditions

aux limites, permet de déterminer <p(r). Les moments de

flexion Mr, Mt 5 et les tensions normales o>, o~< peuvent ensuite
être calculés à l'aide des formules

Mr D
*p/acp

\dr M,-- "<*+*$ (4)

Mr
WJÏ2 <yt

Mt
As/12

5 Par feuillet moyen nous entendons la surface qui, avant la déformation,
a ses points équidistants des deux faces de la plaque.

2 il importe surtout que le plan tangent en un point quelconque du feuillet
moyen fasse un petit angle avec un plan fixe.

8 Z.O, ainsi que la grandeur z que nous introduirons plus loin, seront comptés
positivement vers le bas, en supposant l'axe de la plaque vertical et la surcharge
dirigée vers le bas.

4 L'équation (2) a été indiquée pour la première fois par H. Hölzer, il est
vrai sous une forme un peu différente. C'est à O. Pichler que l'on doit la forme
sous laquelle nous l'avons écrite. Pour sa démonstration, voir par exemple
S. Timoshenko, Theory of Plates and Shells. McGraw-Hill Book Company,
New York and London, 1940, p. 282 et suiv.

6 Le moment de torsion Mrt Mtr est ici identiquement nul. Il en est
de même de l'effort tranchant relatif aux éléments de surface hdr.

b=cr

mle v y v ¦» im mi a

-*\

//////^sfmr,r't//\y£$ \

->r*

' 7j3-X/yJUlL7y mm .--¦¦---- —

Fig. 2. — Coupes axiales des plaques circulaires étudiées par
H. Favre.

h=cr+cfyP
OU y y -i \ imi k 4- » v*
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%

i¦m^^^m^^
Fig. 3. — Coupes axiales des plaques circulaires étudiées par
H. Favre et E. Chabloz. Les cas 1 et 2 ont été traités précédemment.

Les cas 3 et 4 sont l'objet du présent mémoire.

z désignant la distance d'un point de la plaque au feuillet
moyen. En particulier, les valeurs de ces tensions aux points
z h/2 de la face inférieure sont :

(o>).
6 Mr

\<*t)i ¦¦

6 Mt
h* ¦¦ (6)

celles aux points correspondants z — A/2 de la face
supérieures sont égales aux valeurs (6) changées de signe.

Enfin, le déplacement t0 s'obtient en intégrant l'équation
(1):

ill- J9 (r) dr + C, (7)

C étant une constante qu'on détermine à l'aide d'une condition

aux limites.
Soit maintenant une plaque circulaire de rayon a et d'épaisseur

linéairement variable, soumise à une force P appliquée au
centre. On peut supposer, par exemple — comme nous l'avons
fait dans les figures 2 et 3 —¦ que l'une des deux faces de la
plaque soit un plan (fig. 5 a). Dans ce cas, l'autre face et le
feuillet moyen seront des surfaces coniques de révolution. Il

feui/lef moyen

h/2 •S ;

«S

lii
coupe ax/a/ej

«•••»p/an
77 \ u Z

surface con/"çuex a/? i

'ri- — "—"W
jeuiilet moyen

fsurface conique) y,
e?

coupe ax/a/e

surfconique? Al.£^^fefe^^|l*
surface conique \ j/.

f**"* w
euiller moyen • r

(Plan) *
Fig. 4. Fie. 5 a. Fiar. 5 b.
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sera alors nécessaire, pour que la courbure initiale de ce

feuillet soit très faible et les formules (1) à (7) applicables, que
l'épaisseur h soit elle-même très petite par rapport au rayon a
du contour.

On peut aussi supposer que le feuillet moyen soit un plan,
les deux faces, qui sont symétriques, étant des surfaces

coniques (fig. 5 b). La courbure initiale-du feuillet étant alors

nulle, les formules rappelées plus haut seront applicables dans

les meilleures conditions possibles. On peut d'ailleurs imaginer
une infinité de cas intermédiaires pouvant intervenir dans les

applications. Les calculs qui suivent seront applicables à tous
ces cas, mais seront d'autant plus exacts que la courbure du
feuillet moyen sera plus faible. Ils ne seront en outre valables

que lorsque les déplacements 'Ç0 des points du feuillet moyen
pourront être eux-mêmes considérés comme petits par
rapport à l'épaisseur h.

Nous pouvons poser (fig. 5 a ou 5 b) :

h 1 + X 2 K, (8)

d'où

H (A)r=a (1 + A) h0, hx (h)r=0 (1 — A) h0

h0 désignant la valeur de h aux points où r a/2 et A la

variation, divisée par h0, que subit l'épaisseur depuis ces

points jusqu'au contour ou jusqu'au centre.
Posons encore :

m (9) et />.=
Eh0

12 (1 — v2 (10)

L'équation (2) devient, en tenant compte de (3), (8), (9),

(10) et en remarquant que

?=2^:

d fd<f aP 1

\ a + a ¦fa12 dEdÇ\dÇ di2-aD0i

d2a>
11\2 a 21 dt

r̂fç
*3Ki

d% d$ ir
ou

«11 6Ç-

a»=12p —12Ç + 3,

a12=12-Ç)

aM 36Ç — 24 +

agl 8§3 — 12Ç2+6Ç — 1,

3

:32e2 —36Ç+12— -

«18 =—6(1-

023 —12(1 —2v)S+ 12(1— v)
ç-

(12)

(1 —3v)§2 +12 (1 — 2v) Ç —6 (1-

Telle est l'équation différentielle d'une plaque circulaire
d'épaisseur linéairement variable et soumise à une force
appliquée au centre.

1 Ces deux figures ont été dessinées en choisissant une valeur positive de À.
Elles se rapportent au cas des paragraphes 2 et 3, où la plaque est encastrée le
long du contour.

§ 2. Intégration de l'équation (11) dans le cas où la plaque
est encastrée le long du contour

Nous utiliserons la méthode que nous avons déjà appliquée
à la même plaque, sous l'action d'une surcharge uniformément
répartie l.

Développons <p, qui peut être considéré comme une fonction

de Ç et de A, en une série procédant selon les puissances
croissantes de A :

00

?&*) q»(9 + çi(9* + <p2(9*2 + • • • =SS quA«. (13)

Pour des valeurs suffisamment petites de A, il faut s'attendre
à ce que cette série converge rapidement, de sorte qu'on
pourra se contenter, dans les applications, de ne considérer
qu'un petit nombre de ses termes. Ce point sera confirmé
plus loin.

Pour déterminer les fonctions <f{, introduisons la série (13)
dans les deux membres de l'équation (11) et identifions les
coefficients des mêmes puissances de A. Nous obtenons ainsi
le système d'équations différentielles simultanées :

A0

A2

d (da>0 f -9-0

d /drpj <fi

aP 1

dÇVdÇ

d (d<p2

d~t,\~dj
92
g

2-n-A, g '

111 d? '

111 d? '

d2y0
«21 dçt

«12 dç + «is I
«^Pi 9i

i
d9o 9o\

f««-^- + o»Tj,

14)

Ces équations sont applicables quelles que soient les conditions

aux limites, pourvu que ces dernières ne dépendent que
de r.

Supposons maintenant que la plaque soit encastrée le long
du contour r a (fig. 5 a et 5 b). Les conditions aux limites
sont alors :

(<p)r=0 (<p)ç 0 0 et (f)r=-a (tp)g=l 0 (15)

Pour que ces conditions soient satisfaites quel que soit A,
il est nécessaire, d'après (13), que

(<p,)5-o 0 et (9<)ç=i 0 (i 0, 1, 2, oo (16)

Revenons aux équations (14). Nous pouvons intégrer
directement la première, qui est une équation d'Euler pour la
fonction inconnue <p0. En tenant compte des conditions
(<p0)ç=o 0 et (<p0)ç=i 0, nous obtenons par des calculs
élémentaires :

aP
4irZ>0

ÇLogg. (17)

En introduisant cette valeur de <p0 dans la seconde des
relations (14), cette dernière devient elle-même une équation
d'Euler ne contenant que la fonction inconnue ©j :

dÇ\«*g T S

3aP
2-rrDo "f +(1 v) Log f + 3

1 Voir H. Favre et E. Chaut.oz, toc. cit. L'équation différentielle (11)
obtenue ici ne diffère de celle relative au cas d'une surcharge uniformément
répartie que par le premier terme du second membre, qui est ici

aP 1

2nDo l aulîi arp
TDo
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La solution de cette équation, compte tenu des conditions

(ç^ç-o 0 et ((pOç-i 0, est
(18)

aP r 2 n

* 4^ L2 (1 +v) LogÇ~3 Çl0g Ç+ 3(5 - 4v) <? _ ® \
En introduisant les valeurs (17) et (18) de <p0 et 9X dans la

troisième des relations (14), on obtient une nouvelle équation
d'Euler permettant, en tenant compte des conditions
(ç2)ç=o 0 et (ça)ç=i 0, de déterminer ç2, et ainsi de

suite. En procédant de la sorte, nous avons obtenu :

^[-|(3+ 4v + v2)Ç'Logfi + 8(l + v)fLogÇ-'4iri>.

— 6§LogÇ — g 36v — 25va)f

93 4-nDn 5

+ | (15-7v-4v2)c?- 24
(225-116v-53v2)çl,

WÈ (51 +77v + 29v2 + 3v3)¦§* Log Ç

(19)

- y (3+4v+v2) LojÇ+20 (i+v) Log g-

¦10ÇLogÇ+^(8493-2089v-3053v2-471vs)Ç4

1

n
12

(545 — 116v — 213v2 — 32v3) fj +

(705 — 195v — 233v2 — 53v3) Ç2

¦(20)

— gÔQ (11361 — 5228v —1781v2 — 1192v*)f/|

Désignons par <pW, (p<2', les approximations successives
de la fonction <p, obtenues en ne considérant qu'un terme,
deux termes, etc. de la série (13) :

p(D: UNS
9o + 9i^

(lre approximation),
(2e approximation), (21)

Dans la figure 6, nous avons représenté graphiquement les
valeurs de 9W, q><*) en fonction de S; r/a, calculées

pour A 0,2 et v 0,25. On voit que la quatrième approximation

diffère très peu de la troisième. Des calculs numériques
comparatifs nous ont d'ailleurs montré que les valeurs de
MT, Mt déduites de la quatrième approximation sont affectées
d'erreurs relatives de l'ordre de quelques millièmes si

0<|A|<0,2 et de quelques centièmes si 0,2<|A|<0,4.
Or les valeurs de |A| qui interviennent dans les applications

sont en général inférieures à 0,4.
Nous avons ainsi obtenu pour <p la valeur approchée, mais

suffisante pour les applications :

d»)= 9o + 9i * + 9^ ^ + 9s ^s
: (22)

9o> 93 ont les valeurs respectives (17) (20).

§ 3. Calcul des déformations, des moments de flexion
et des tensions dans le cas de la plaque encastrée

Les relations (4) et (7)
variable r par i, :

D id<?

§

s'écrivent, en y remplaçant la

D /q> <2ç\
Mt

S d%

— aJq»(9dÇ + C.

(*')

(7')

En introduisant dans (7') la valeur (22) de 9 (fj) et en tenant
compte de la condition d'appui (Ç0)g=i 0, qui détermine la
constante C, il nous a été facile de calculer Ç0. De même, en
introduisant 9 (£) dans les relations (4'), nous avons obtenu MT
et Mt, puis, à l'aide des formules (6), les valeurs des tensions
(pT)i et (cftji au voisinage de la face inférieure de la plaque.

Pour ne pas alourdir notre exposé, nous avons renoncé à

insérer dans ce mémoire les formules obtenues, qui sont très
longues et n'offrent qu'un intérêt relatif, et avons préféré
donner à l'aide de diagrammes les résultats numériques
auxquels elles conduisent. La figure 7 est une représentation

0,0 0,1 0,2 O.S 0,4 O.S 0,6 0,7 0,8 0,9 1,0 4

Q)//
~V

0,2

/
0.3

tt

fflmm
0,4

Eh

aP

Fig. 6. — Plaque circulaire encastrée de la ligure 5 o ou 5 6.
Représentation graphique des quatre premières approximations q>(i),

<p(*) en fonction de Eus -, pour X 0,2 et v 0,25.

*&&
tAjce de /aplaque

t.4K
?H,,,,;,,,,,,,,,

'%'•"'•""
1=0

\ +0,4

* -4r0.0 0,40,2 0.6 0,8 .O
0.0

X*0
0.1

\=-0.2
0.4\*+0.2'

0.3

Eh
a2P

Fig. 7. — Plaque circulaire encastrée de la figure 5 a ou 5 b. Repré-
I j.»son tat ion graphique de Z0 en fonction de £ =—( pour différentes
a

valeurs de \ (v 0,25).
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graphique de la fonction ?o(Ç), P°ur les valeurs —0,4, —0,2,
^0, -f 0,2 et -f 0,4 de A. Les diagrammes des moments MT,

Mt sont donnés dans la figure 8 et ceux des tensions (oy)<,

(o»)j dans la figure 9, pour les mêmes valeurs de A. Toutes
ces courbes ont été calculées en choisissant v 0,25. Cette
valeur du nombre de Poisson est une moyenne entre les

valeurs correspondant à l'acier (~ 0,33) et au béton armé
[r^i 0,15 à 0,2). Il faut d'ailleurs s'attendre à ce que toutes les

valeurs calculées dépendent très peu du nombre v, comme
c'est en général le cas dans la Théorie de l'élasticité.

Remarquons que si A est positif, l'épaisseur de la plaque
est plus faible au voisinage du centre que vers le contour (cas
des fig. 5 a et 5 b). Le contraire a lieu si A est négatif.

La figure 7 montre éloquemment comment évoluent les

déplacements Ç0, lorsque A croît de — 0,4 à -f 0,4. Il est
intéressant de constater que (Ç0)f=o, qui est la flexion au
centre ou flèche de la plaque, passe par un minimum pour
une valeur de A très voisine de zéro. Toutes choses égales

d'ailleurs, c'est donc la plaque d'épaisseur constante (A 0) qui
accuse sensiblement la plus faible flexion au centre. En
conséquence, pour les valeurs du paramètre A comprises entre
— 0,2 et -f- 0,2, (Ç0)ç=o est pratiquement indépendant de ce

paramètre. Ceci montre que, pour de petites valeurs positives

-0,12
O 0,1 0.2 0,3 0,4 O.S 0,6 0,7 0,8 0,9 1.0

de A, l'influence sur (Ç0)ç=o du renforcement de l'épaisseur
dans le domaine 0,5 < \ < 1,0 est approximativement
compensée par celle de la diminution d'épaisseur dans le domaine
0 < % < 0,5. Une compensation analogue existe pour de

petites valeurs négatives de A.
Ces renforcements et diminutions d'épaisseur dans les deux

zones en question, expliquent d'ailleurs clairement l'évolution
de la forme des courbes Ç0(£)> lorsque A croît de — 0,4 à -f 0,4.

Les moments de flexion MT et Mt sont, quel que soit A,

négatifs au voisinage du contour (§ 1) et positifs près du
centre (Ç 0) (fig. 8). Ils croissent régulièrement à partir
de valeurs finies négatives et tendent vers -f oo lorsque fj

décroît de 1 à 0. Quelle que soit la valeur de Ç, les moments Mr
et Mt sont des fonctions décroissantes de A.

Les diagrammes des tensions normales (<7r)j et (<j(),- accusent

par contre un caractère assez différent (fig. 9). Ces tensions
sont, quel que soit A, négatives au voisinage du contour et
positives près du centre, comme les moments. Elles croissent —
mais moins régulièrement que les moments — à partir de
valeurs finies et tendent vers -f oo lorsque Ç décroît de 1 à 0.1

Dans les diagrammes de chacune des tensions (or)i et (cxtji,

on peut assez bien distinguer une première zone, voisine du

contour, où la tension est une fonction croissante de A, une
seconde zone, près du centre de la plaque, jouissant de la
même propriété, et une troisième, située entre les deux

1 La tension (o>)< commence par décroître très légèrement avant de croître,
lorsque À 0,4.
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Fig. 8. — Plaque circulaire encastrée de la figure 5 a ou 5 6. Repré-
r

pourgentation graphique de Mr et Mt en fonction de E

différentes valeurs de X (v 0,25).
a

Fig. 9. Plaque circulaire encastrée de la figure 5 a ou 5 b. Repré-
rsentation graphique de (oy),- et (Ot)i en fonction de S -, pour

différente /aie de X (v 0,25)
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premières, où la tension est une fonction décroissante de A.

Pour A 0,4, on voit que la plaque réalise cette condition
que la tension (<jT)i est sensiblement constante dans le domaine
0,5 < i < 1,0.

Nous venons de remarquer que les moments de flexion et les
tensions normales deviennent infiniment grands au centre de

la plaque. Or on sait qu'au voisinage du point d'application
d'une force concentrée, la théorie utilisée dans le présent
calcul doit être révisée. Dans le cas où une force P agit au
centre d'une plaque circulaire simplement posée, d'épaisseur
constante h^ et de rayon h, A. Nadai et 5. Woinowsky-Krieger
ont montré, par une analyse délicate du problème, que les

tensions <jr et o* aux points A et B de la figure 10 sont données

par les formules :1
p ri + 2v iMa {a,)a =ax — ^l-^ (* + v) ßj' <23)

(Oris l°i) |[(1 + v) (0,485 Log£+ 0,52) + 0,4s], (24)

où e désigne le rayon du petit cercle où la force P est supposée
être uniformément répartie et cx1 est la tension normale
o> at, en A, que donne la théorie ordinaire des plaques en

tenant compte de la répartition de cette force. Quant à ß,
c'est un coefficient dépendant du rapport s/h^

Dans les applications, on peut cependant se contenter de

ne calculer que la tension au point B, qui est une traction, car
la tension relative au point A est une compression de caractère

local qui occasionne très rarement la rupture de la
matière 2. La formule (24) donne donc la tension dangereuse
au centre de la plaque de la figure 10.

Cette formule peut être appliquée au cas étudié ici.
Considérons en effet la portion de la plaque d'épaisseur variable
comprise entre le centre et un cercle de rayon b, égal par
exemple à 0,1 a (fig. 5 a ou 5 b)3. Cette portion peut être
considérée comme une plaque d'épaisseur sensiblement
constante h\, simplement posée le long du contour r b et sur
laquelle agirait, outre la force P au centre, un couple de

moment
(Mr)T=b uP

le long du contour (le facteur u est représenté par les ordonnées

—5— des courbes de la figure 8).

Ce moment engendre dans le domaine 0 < r < b des

moments de flexion sensiblement constants et indépendants
de la direction de l'élément de surface considéré, approximati-

1 Voir S. Timoshenko, Theory of Plates and Shells, p. 75. Voir aussi
A. Nadai, Elastische Platten, p. 308 et S. Woinowsky-Krieger, Ing. Archiv,
vol. 4, 1933, p. 305.

2 Voir S. Timoshenko, loc. cit., p. 77.
8 II faut choisir pour b une valeur petite par rapport à a, mais au moins

égale à deux fois la valeur/^ de l'épaisseur au centre. Les tensions (or).s={o'()g
données par la formule (25) que nous obtiendrons plus loin, dépendent très
peu du choix de b, comme on le vérifie facilement.

vement égaux à [Mr)r=0. La tension produite en B par le
moment relatif à ce point est

(<Xr)j, {cst)B -jrp- yjSM
En ajoutant cette valeur à celle donnée par la formule (24),

on obtient ainsi pour la tension dangereuse au centre de la
plaque :

[<ït)b =(fj,)B -J[(l+v) (0,485 Log^ +0,52) + 6u + 0,48~l

En résumé, les tensions (o>)j, {°t)i relatives à la plaque de la
figure 5 a ou 5 b, sont données par les diagrammes de la figure 9,

sauf au voisinage du centre, où la tension dangereuse, qui se

produit au point B, est donnée par la formule (25).

§ 4. Intégration de l'équation (11) dans le cas où la plaque
est posée le long du contour

Les conditions aux limites sont ici (fig. 11 a ou 11 b) :

(9)r=0 (9)5-0 0 et {Mr)r=a (Afr)s_i =0 (26)

Posons, comme précédemment :

oc

9(Ç,X) 9otë) + 9ifê)A + «Pi®*1 + ¦ ¦ • =2 *P*A<- (13)
»•=o

Comme nous l'avons vu au § 2, la première des conditions
(26) exige que :

(9i)5_o 0. (£ 0,1,2, ...,co) (27)

Remplaçons, d'autre part, 9 par le développement (13) dans

l'expression (4') du moment de flexion MT :

Nous obtenons, en tenant compte des relations (3), (8), (9)

et (10) :

^9o ,9o\ d9i ,9iDJd^ 90
3(2Ç-l)l^-r A+

|° + vf) ++ [3 (2§-

+3(2Ç_1)(|. + V|.) + |. + „|
+[pt-'K$+'î)+»«-«,(f+.t)+

I

V////AhiV////T////////////777A
B\

->K/--
Fie. 10.

=^W

-•H

(coupe axiale)

plan
fci ±

surf, conique \. s'2 J

feuiliei moyen
(surf, conique)

Fig. 11 a.
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surf.conique'i«.-* p

B\
surface conique L ^J?

feuiiief moyen
/"p/an)

r* '
'«•

Fig. 11 6.
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Pour que la seconde des conditions (26) soit satisfaite quel

que soit A, il est nécessaire, d'après l'expression ci-dessus de

MT, que :

(dtfi(* + vf) =0. (^0,1,2, (28)

Pour déterminer les fonctions 9n(£), 9i(Ç), • • -, nous devons
donc intégrer le système (14), compte tenu des conditions (27)

et (28). En procédant selon la même méthode que celle utilisée

au § 2, consistant à intégrer l'une après l'autre les équations

(14) en substituant chaque fois les valeurs de 9, déjà
calculées, nous obtenons successivement :

aP
~ 4tta90 J^-SLogf;

aP
4TTi>0

2(l+v)?Log§ —

5 — 6v— 8v2/
3(1 + v) ^J

ÇLogÇ (l-2v)P-

4-rrDn -2(3+4v+v2)f Log Ç + 8 (i+v)? Log fj-

6{jLog{;— ~ (49 — 48v — 25v2) Ç3 +

3
"(11 — Hv— 4v2)C2

203 — 19v — 275v2 - 53v3

aP
4^Â,

24(1

g (51 + 77v + 29v2 + 3v3) Ç* Log Ç -
-y(3+4v+v2)^Log^+20(l+v)Ç2LogÇ-

- lOÇLogÇ + göö (5433 — 3649v — 3233v2—

- 471v3) Ç* -1 (413- 256v- 245v2- 32v3) Ç3 +

¦" 12

11059+3789v-13107v2-6549v3-1192v*

(619 S7v — 339v2 — 53v3) Ç2

600 (1 4

(29)

Des calculs numériques comparatifs analogues à ceux
mentionnés à la fin du § 2 nous ont montré que, pour les valeurs
de A comprises entre — 0,4 et -f 0,4 (qui sont celles intervenant

en général dans les applications), le degré d'approximation
de la fonction définie par les quatre premiers termes de la

série (13) est certainement suffisant Is

Nous avons ainsi obtenu pour 9 la valeur approchée :

9 (9 9(4J 9o + 9i* + 9ü*2 + 93A3

93 ont maintenant les valeurs (29).

(30)

§ 5. Calcul des déformations, des moments de flexion
et des tensions dans le cas de la plaque posée

Connaissant 9 (Ç), il nous a été facile de déterminer les

déplacements £„, les moments Mr, Mt et les tensions normales

{or)i, {a,){ à l'aide des formules (7'), (4') et (6).
Comme dans le cas de la plaque encastrée et pour les mêmes

raisons que celles invoquées au § 3, nous avons renoncé à

insérer dans ce mémoire les formules obtenues et avons préféré

1 Comme dans le cas où la plaque est encastrée, les valeurs de Mr, Mt
déduites de la quatrième approximation sont affectées d'erreurs relatives de
l'ordre de quelques millièmes si 0 <. |À|< 0,2 et de quelques centièmes si

0,2<|Â|<0,4.

yAxff de lap/aque
O.6/1
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Fig. 12. — Plaque circulaire posée de la figure 11 o ou 11 6.

Représentation graphique de Zo en fonction de £

valeurs de \ (v 0,25).

pour différentes

0,0 0,1 0.2 0.3 0,4 O.S 0,6 0,7 0,3 0.9 1,0 *~ T
0,0 i

0.02

0,04

0,06

0,08

0,10

0.12

0,14

0,16

0,18

0,20

0,22

0,24

0,26

0,23

0,30

3«-

V>
\&7. ^\ Jf/7[.f f g

1 sS\ XA^<>.')s~ 1 _

£âm

'T '/ï,Ui' **

¦ ^ 1

VaïX ££j£ij3i 3j S

/1 / f ".&¦'
* Tl' — | l/ v / Xr/ \#/.¥7/f A-+oJ Ss

H/r /tf/'/
I
vnï/fII

I m f i*
// fii)11// ll~~-

"~- A O
"~ X =-0,2
~^~A =-0,47 f'/i

1

l/**4
1

//
// ii n
I p

' "
P7 11

n0,32

0,34

0,36

0,38

0,40

>

1

1

m
pfitiii 1

it

' p

Fig. 13. — Plaque circulaire posée de la figure 11 a ou 11 6.

Représentation graphique de Mr et^jjifi en fonction de E =-, poura
différentes valeurs de km 0,25).



^^ -

BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

donner directement les résultats à l'aide de diagrammes,
reproduits dans les figures 12, 13 et 14, où sont dessinées les
courbes relatives aux valeurs — 0,4, —• 0,2, i 0, -f 0,2, -f 0,4
de A et calculées en choisissant v 0,25.

La figure 12 montre qu'en un point donné de la zone
0 < £ < 0,5, Ç0 croît avec A et cela d'autant plus rapidement
que le point est plus près du centre de la plaque. Par contre,
dans la zone 0,5 < Ç < 1,0, les déplacements Ç0 sont pratiquement

indépendants de A. On voit combien les déformations
diffèrent de celles relatives au cas où la plaque est encastrée
(fig. 7).

Les moments de flexion MT et Mt sont représentés par des
courbes très régulières (fig. 13). Quel que soit A, Mr croît de
0 à -)- oo lorsque § décroît de 1 à 0. En un point quelconque
de la plaque, Mr est une fonction décroissante de A.

Les moments Mt croissent en général d'une valeur finie
positive à -f "ôô, lorsque Ç décroît de 1 à 0, sauf dans le cas
A + 0,4, où Mt commence par décroître. Dans la zone 0,45
< Ç -< 1,0 — et surtout le long du contour de la plaque
(Ç 1) — Mt est une fonction croissante de A. Cette fonction
est au contraire décroissante dans la zone 0 < £ < 0,45.

Les diagrammes des tensions normales (o>). et (<?<). (fig- 14)
aTeoûsent un caractère assez différent de ceux des moments.
(oy). croît de 0 à -f oo et (ai), d'une valeur finie positive à

-f- oo, lorsque Ç décroît de 1 à 0, quel que soit A, comme les
moments. (o>). est une fonction décroissante de A dans la zone
0,2 < § < 1,0, mais croissante au voisinage du centre. Au
contraire, (o>). est une fonction croissante de A quel que soit £.

Nous venons de remarquer que MT, Mt, (cXr). et (a<). deviennent

infiniment grands au centre de la plaque ; la théorie
utilisée dans le présent calcul doit donc être révisée. Comme
nous l'avons vu au § 3, c'est au point B de la figure 11 a ou
11 b qu'existe la tension la plus dangereuse au voisinage du
centre. Elle est donnée par la formule établie au § 3 :

(25)

6u + 0,48Wj=<oiV JIWv) (0,485 Log ~ 0,52)

où b a la même signification que précédemment et où le fac-
(M,V-jteur pi est représente par les ordonnées —p— des courbes

de la figure 13.

En résumé, les tensions (a>). et (o>). relatives à la plaque de la
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Fig. 14. — Plaque circulaire posée de la figure 11 a ou 11

sentation graphique de (o>)j et (o"*)«' en fonction de E

différentes valeurs de X (v 0,25).

6. Repré-
r
-, pour

figure 11 a ou 11 b sont données par les diagrammes de la
figure lé, sauf au voisinage du centre, où la tension dangereuse,
qui se produit en B, est donnée par la formule (25).

Zurich, le 29 mars 1951.

Le développement actuel des aménagements hydroélectriques
en France1

L'objet de la conférence de M. Clément a été double :

1° donner une vue d'ensemble du développement actuel
des aménagements hydroélectriques en France,

2° renseigner sur l'aménagement du Rhin en aval de Bâle,
soit en fait, sur le Grand canal d'Alsace et l'usine d'Ottmarsheim,

dont la visite était prévue à l'occasion de l'Assemblée
générale.

Développement actuel des aménagements hydroélectriques

La production d'énergie électrique en France a augmenté
de 60 % de 1938 à 1950, pour atteindre à cette date un total
de 33,2 TWh 2. L'énergie hydraulique et l'énergie thermique
ont une part sensiblement égale dans cette production et, en

ce qui concerne l'énergie hydroélectrique, la part des Alpes
a été, en 1950, de 59 %, celle du Massif central de 19 % et
celle des Pyrénées de 22 %.

L'augmentation de la production durant ces 12 années n'a
pas été uniforme (voir tableau I). Pendant la guerre elle est
restée approximativement stationnaire, avec un minimum en
1944. Les aménagements nouveaux, lents à s'effectuer, ne
compensaient que difficilement les destructions du moment,
de sorte que l'indice d'augmentation de 60 % par rapport à

1 Résumé d'une conférence à l'Assemblée générale de l'UCS, le 22
septembre, à Bâle, par M. Clément, contrôleur général de l'équipement à
E. d. F., Paris. Ce texte a paru au n° 26, 1951, du Bulletin de l'Association
suisse des électriciens.

» 1 TWh (terawattheure 10" Wh 10° kWh (1 milliard ds kilowattheures)
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