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FLAMBAGE EXCENTRIQUE

Application de la théorie de la plasticité

par A. SZECSI, ingénieur

Introduction

Les opinions des constructeurs divergent quant à la méthode
à appliquer pour résoudre le problème du flambage
excentrique.

Certains le traitent comme un problème de tension du
deuxième ordre, d'autres, au contraire, le considèrent comme
un problème de stabilité et procèdent de la même manière

que pour le flambage axial.
Dans cette étude 1 nous verrons que :

1. La solution du problème du flambage excentrique ne peut
être trouvée sans faire appel à la théorie de la plasticité.

2. Il s'agit d'un problème de stabilité qui est une généralisation
de celui du flambage axial.

3. La théorie de la plasticité fournit, avec la précision désirée,
la solution des problèmes symétriques et asymétriques. Nous
appelons problème symétrique celui où l'excentricité est la
même aux extrémités de la colonne et asymétrique dans le
cas contraire.

4. Nous sommes en mesure de déterminer les déformations et
les tensions internes de la colonne, notamment dans son
dernier état d'équilibre avant flambage.

5. La flexion apparaît comme un cas particulier de flambage
excentrique.

6. Nous donnons enfin les lignes générales permettant dal
dimensionner des constructions (cela, bien entendu, dans 'le
cadre de la théorie de la plasticité).

Précisons maintenant notre problème : soit une cplonue,
de section quelconque, en équilibre sous l'action;de forces

1 Dans l'étude « Flambage par compression axiale » [Bulletin technique
n° 4, 1949), nous avons démontré qu'en appliquant la théorii' de la plasticité

(prise en considération des déformations réelle»), on peut trouver ta
solution du problème du flambugc axial pour section quelconque et tout
matériau pour lequel le diagramme déformation-raccourcissement est connu.

appliquées à ses extrémités au moyen d'articulations. Ces

dernières peuvent être appliquées au centre de gravité de
la section ou ailleurs (excentriquement). Il s'agit de trouver
les déformations de la colonne à l'état critique, c'est-à-dire
lorsque l'équilibre passe de la stabilité à l'instabilité. Nous
utiliserons le critère suivant pour reconnaître si la colonne
est à l'état d'équilibre stable ou instable :

Envisageons la colonne déjà déformée par les forces appliquées.

A l'endroit de la colonne qui présente la plus grande
déformation Y\mc,x, nous accroissons encore cette déformation
d'une quantité A^i„!ax très petite, mais non infiniment, petite,
puis nous cessons d'imposer ce supplément de déformation.
L'équilibre est stable si la colonne revient à sa déformation
primitive. IL est au contraire indifférent si la colonne reste
dans sorï .nouvel état d'équilibre (caractérisé par la déforma-

.I101JU98 BI Brißl' „tion r\max -4- A imaalt-t est le debut du flambage et ta force-K.-iMh ïno ,'flfifeeiq» /s /

appliquer est alors la force critique.

Il est évid^fct—qap si les forces appliquées augmentent
progressivement, l'êôuilibre est d'abord stable,' puis devient
înainértent.

Le critère aHpessus est tout à fait général et valable pour
tous'^es' problèmes d'équilibre. Dans certains matériaux, il
i'NlbtR trth-ave d'autres états d'équilibre indifférent au-delà-dé
lAniRïijc' critique, mais ceux-ci n'ont aucune importance
Çratfque, étant donné qu'ils se produisent pour des déformai

ions trop grandes.
Nous négligerons les déformations dues aux- compressions

axiales et aux efforts tranchants. Elles sont en fait générale-
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ment négligeables devant les déformations produites par les

moments fléchissants.
Nous supposerons que la répartition des déformations

spécifiques dans toute section reste linéaire, même après
déformation de la colonne. Nous supposerons en outre que
la section est choisie de façon ä ce qu'un flambage partiel
d'un de ses éléments ne puisse survenir et, enfin, que les

déformations des diverses fibres de la colonne suivent la loi
du diagramme déformation-tension du matériau, loi que nous
supposons connue.

2. — Relation entre le moment et la rotation spécifique
de la section

PouF^fjatteindre le but que nous nous sommes assigné,
nous devons établir la relation liant, pour toute section de
la colonne, le moment et la rotation spécifique, quelle que
soit la valeur des sollicitations.

A titre d'exemple, nous déterminerons ici cette relation
pour le cas particulier d'une poutre en acier doux.

Afin de simplifier les calculs, nous remplacerons le véritable
diagramme tension-déformation par un diagramme idéal-

plastique. Ce dernier suppose
wtr lompnsuoi, (fig ^ ^g ]a matière est

cf ¦— complètement élastique jus¬
qu'à la limite d'élasticité qui
correspond alors à la limite
d'écoulement (fluage) ; au-delà
de cette limite et jusqu'à un
point correspondant à l'accroissement

de résistance naturelle,
il y aura augmentation des

déformations sans augmentation
des tensions. Le même

phénomène se retrouve du côté de la compression. Ce

diagramme correspond bien au comportement d'aciers doux de
bonne qualité pour lesquels il y a peu de différence entre les
valeurs de op et ff/.

Selon la valeur du moment M, nous aurons à distinguer
les cas suivants :

1. La sollicitation maximum de la section n'atteint nulle
part la limite d'élasticité. Alors la formule linéaire

<+'£%,

Fig. 1.

k m i M
KJ

est valable.
2. La sollicitation maximum atteint la limite d'élasticité

au côté comprimé de la .section.
Soit P la charge. Nous avons :

P a„ F,.
Entre les droites ,y,=ï= O'üri/ ßy„

i n• •? ?• jUria^AiioÂ.?»,. jles sollicitations dans fa àection, dues
au moment fléff^isiirf ont^fur..va-
leur (ng. 2) : T^H

Gy ga^p-JJWibivà im II

Entre les droites t/*FD,; y.^-Uo-
elles valent :

ay a, - a. - kE\^ %).MOi
Exprimons que la somme>4es sddliri

citations dues au moment fléchisaanlsl
est nulle (condition d'équilibre) :\\r-u\

j'cSy X d F 0.

/
r> j

nrnLAJ

-nTTTTTiïïTlîK-'y-

pp"
Fig. 2.

Après intégration, il vient :

Fo (a, — Oo) — kE (S, — ßr/„ F%) 0. fl)
Sa est le moment statique de la surface F2 par rapport à

la droite y 0.
Ecrivons encore que le moment des sollicitations dues au

moment fléchissant équilibre ce dernier :

JrSy X y X dF + M 0.

Intégrons après substitution de l'expression de o„. Nous
obtenons :

(oy — Go) So — kE[J2 — ß2/0Sa) + M 0. (2)

L'équation (2) est la condition d'équilibre des moments.
S0 est le moment statique de la surface F0 par rapport à
la droite y 0 et J2 le moment d'inertie de F3 par rapport
à cette même droite.

Nous tirons successivement des équations (1) et (2) :

k
1 F, (a,— a0)

E S2 — ßy0 Fz
et

M kE(J2— ßy. S2) — {G, — Go) S0.

(3)

(4)

Ces équations expriment k et M en fonction du paramètre ß.

Il en résulte la valeur de la déformation :

M

ainsi que
dk
dM

_Mn ~=
7^ '"'' TTgo

Tp qui se calculera en fonction de ß de

manière suivante :

tr m

De même

dk
_

dk dß
dM ~ d^dM

dk
dj

dk
~d$

dM
~dj

dk
1 dM dr\

F0 G0 dß

Rappelons que les formules ci-dessus sont absolument
générales et valables quelle que soit la forme de la section 1.

Elles sont valables aussi longtemps que les contraintes
n'atteignent pas la limite d'élasticité du côté « tendu » de

1 À titre d'exemple, donnons leur application à une section rectangulaire
de dimensions b.yn.

Avec les expressions

„=by0; F2

l'équation (1) devient :

Fo=byB; Ft by„(1 -ß) ; S2 ^*(l-f by?

et l'équation (2) :

g/ — g„ 2

Ey0 (l-ß)a
bu -

«Nous obtenons pour l'ordonnée de la déformation:

Bu. n

B9010I f>i>

-i.lrjulq al ab yri'ioôrl
fit 'laVUO'jJ tu'iq no
hioJ Jo BUpnoâtQiip i

.nmio'j tee Jnojnfmam

D Ö*

TB
12

P (t — P)» Eby»
12

(6)

(V)

(8)

(9)

(10)
E (1 - ß)» y*
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/¦«

—-3

il Jkl
r"'" ww-"9 -r

fig. 3. Fig. 4.

la section. Au moment où cette limite est atteinte (fig. 3),
le paramètre ß a une valeur particulière ß0.

Nous pouvons alors écrire :

<tf>=—00+ G,.

Si dans cette équation on introduit l'expression

'Vo G/ — Go—k0 E (y„ — ß„y0)

il vient :

~G, G, — ko E (y, — ß0y„). (11)

Dans le cas d'une section rectangulaire, (1) et (11) donnent :

(12)^=1-2*'-°°
G,— G,

Enfin si ß > ß0, la répartition des tensions est celle de

la figure 4.

Entre les droites y 0 ; y y, nous avons :

(10.
Gf — G0.

puis entre les droites y y-^ ; y y^ :

G(JO. Gf—Oo — kE {y —yt)
enfin entre les droites y y2 ; y y0 :

ffS,J°= Ôt— G0.

Etant donné que

Vl ty»

y* VVo
0/— 0/
TE

l'équation d'équilibre des forces s'écrit :

(13)

[G,—Go) f!+ {Of— Go) F2—kE{Ss—y1F2) + {G,—Go) Fa 0

et celle des moments :

(14)
(Gl—Go)S1+ {G,—Go) S2—kE{Jz—yßi) + {G/—G0) Sa+M 0.

Les équations (13), (14) expriment k et M en fonction du

paramètre ß.

L'ordonnée de la déformation de l'axe de la colonne sera :

M
F0 G0

En outre :

dk
dk dß

Ta
dM dM_

if

dk*
o!ß

1$

FoGo

Les formules ci-dessus étant valables pofläpjtoute forme de

section, nous donnons en note x leur application au cas d'une
section rectangulaire.

Les équations (13) et (19) sont valables aussi longtemps que
n'intervient pas la limite de l'accroissement de résistance
naturelle de l'acier doux sur le côté « comprimé » de la section.
Ce domaine n'a pratiquement pas grande importance, car
seules des colonnes très courtes peuvent avoir un état d'équilibre

dans le domaine du raidissement. Du reste le calcul
exécuté comme indiqué dans ce travail ne donnerait plus

dans ce domaine des résultats
exacts. Bb effet, avec les
déformations plastiques apparaissent des
tensions de cisaillement non
négligeables de part et d'autre de la
section. La rotation de la section
serait telle que les hypothèses de

base du calcul ne seraient plus
valables.

Il est cependant intéressant de
savoir où se trouve le commencement

du raidissement.
Avec les dénominations de la

figure 5, nous pouvons écrire :

!-^H

™
S. u

-<r

Fig. 5

€m— u= kay0.

Mais : ay0 ßm X y0 +

Alors :

€/— to

_em—e,
Pm —

kyo

ßm étant connu, le commencement du raidissement est
déterminé.

Pour la section rectangulaire, on a

^i bfLy0

Sx b

(13) donne :

'—^ m Vo ßy»-
oi—Of

kE

S,= l°L-*UyB+°<-°<\
2 kE

(a/ — âf)

kE

ZEyo oB — of — ß [of — af)
(15)

Avec

J%
3

(«/t — J/ï) 8 ~ 9 lyo — yî)

(14) devient :

mM |? {(a, — a/) [3(1— IP) — (ß — R)"] —3(0f — a0)} (16)

où nous a,vons posé, pour simplifier:

R

La déformation s'écrit i

M yoLJl — Ôf

Ol— Of

by00° £ I 00 l

La tangente à la courbe M[h) a pour valeur :

dk 3

bt celle à la courbe rj, (k) :

T,

dM 2E byKR — ß)»

3 00

2Eyl(R — f)«

(18)

(19)

4mJgt
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" Dans le cas d'une section rectangulaire, nous connaissons
ky0 (équation 15) :

1 G/ — G, _ em— 6/ Ae

d'où:

ky«

ßm=i?

1ER- -»m y m

2 Ae

(20)

3. — La colonne est chargée excentriquement et ia tension
maximum ne dépasse' pas la limite de proportionnalité (limite

d'élasticité avec matière idéale plastique)

La relation entre la rotation spécifique et le moment
• M

fléchissant est k ;=ry et <J0 n'y figure pas

Examinons d'abord le cas où l'excentri-
ÉÉ »äsSSä i « i icite est la memeaux extrémité» de la co-
ï' lonne (fig. 6).

y ~f~\ Cherchons 1max si la charge est P. L'équa¬
tion différentielle donnant la forme de l'axe
de la colonne est

drfii PïU
EJ

Elle admet la solution générale :

r\z A sin z
EJ

B cos
P
EJ

Fig. 6.
où A, B sont des constantes qui se
déterminent facilement par les conditions aux
limites.

En premier lieu : B 0, car n 0 pour z 0. Ensuite,
la valeur maximum de

1*

EJ
sm z i / -p=n

ne peut être que 1, d'où :

A- nmax ¦

Par conséquent

1* lu sin Z \ / -=r=EJ

courbe sinusoïdale de demi-onde L ir

de l'axe déformé sera dono :

TT

E£

"max sin L

L'équation

-J21)

Comme, nous connaissons 1 ordonnée e correspor L-iabscisse ze

ridant it

2 nous pouvons écrire

e îlmax i tt/
21

et

tf).
COS

EJ

Il faut maintenant savoir «Sfil existe une force P pour
laquelle l'équilibre de la colonne devient indifférent.

Appliquons leÈSaritère du flambage dont nous avons parlé
plus haut. Le supplément de flèche maximum Almax produit
une augmentation de rotation donnée par la formule :

A*„ Arjmax
P

E~J

Le déplacement?' correspondant aura pour valeur

i! a L.
tc2

nmax EJ

parce que la différence entre la position nouvelle et initiale
de l'axe de la colonne peut être considérée, avec une
exactitude très grande, comme une courbe sinusoïdale avec demi-
onde l et l'ordonnée maximum Arimax.

La condition d'équilibre indifférent (flambage) s'écrit
donc :

A l* A P
Ar)max -s An

TT EJ

d'où :

P
EJ

Z2

Nous retrouvons la formule d'Euler Etant donné que la
colonne a été supposée chargée excentriquement et que cette
formule ne contient pas l'excentricité, il en résulte que la
charge critique ne dépend pas de l'excentricité Ceci n'est
vrai que pour autant que notre hypothèse de départ soit
vraie, c'est-à-dire que la limite d'élasticité ne soit nulle part
dépassée.

Les essais vérifient effectivement que, pour des colonnes
très élancées, la charge critique ne dépend pas sensiblement
de l'excentricité.

On peut retrouver les résultats ci-dessus en exprimant,
conformément au critère du flambage, que la dérivée de P
par rapport à nmax est nulle lorsque P est charge critique.
En vertu de (I), cette condition s'écrit :

dP
^llmaa

d 4EJ
dnn l2

Les solutions sont :

'Imax *

iw co

arca cos
tlmax

P 0

I it2£J

0.

Z2

Bien entendu, la première est sans intérêt et la seconde
est le résultat que nous voulions obtenir.

Cherchons maintenant la valeur de la charge qui.rend.la
contrainte maximum de la colonne égale à la contrainte de

fluage:
Gmax Gf.

Ceci ne peut naturellement avoir lieu que dans la section

pour laquelle r\ r)max. L'équation (I) nous donne :

W (Of—Go)
Go F

COS

T. 'y^F
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et par suite :

l
COS

eF Go

*£ W Gf—Go
(")

Il fournit aisément o0 donc P. On peut aussi chercher,
dans le même but, l, P et l'excentricité étant fixés. L'équation
ci-dessus s'écrit, à cet effet :

1=2 EJ
GoF

eF Go

W(g,— g0)
[III)

Nous sommes maintenant en mesure de déterminer la

longueur de la colonne pour laquelle il y a flambage ; bien
entendu nous respectons les conditions ci-dessus (P, e donnés
et <Jmax oy). H suffit de joindre à (III) la condition :

n2EJ
P Fa„

l2

formule qui, combinée à (III), donne

¦EJ
TT

2

l2

W(o,— a0)

ou encore
EJ
l2

0.

Nous constatons que le flambage n'est possible que pour
i M oo.

Il est intéressant de voir à quel résultat nous conduit le

critérium du flambage appliqué au flambage axial.

1er cas :

Le critère s'écrit :

G0 < Gp

l2
Atj -s A/fmal

TT

A/C„ An EJ
(^

AM

Il en résulte la formule d'Euler.

2e cas : G0^> Op.

La seule différence avec le premier cas est que AAjnax ft—j
c'est-à-dire qu'il faut écrire T% en lieu et place de E. 1

Généralisons maintenant les résultats précédents pour les

rendre valables dans le cas asymétrique.
On a toujours la condition

Omia. Of

ex et e2 sont les excentricités comptées algébriquement.
«! est celle qui possède la plus grande valeur absolue.

L'axe a une forme sinusoïdale de demi-période :

EJ
GoF

L TT

La figure 7 nous permet d'écrire :

lr=2 EJ
ÔÏF ire cos —

¦lmax

1 Tg est connu pour le flambage axial ; voir bibliographie indiquée en
dernière page.

si nous rappelons que

¦lmaj

puis

W{0,—00
G0F

L — lr

Exprimons encore que l'axe passe par B :

fill TT lr\
Tlmax COS \j- OT/ e2-

n
i I

l I

II

-_î i

I
B,*-)

Nous en déduisons Fig. 7.

ou encore

1

lr L e2l f. -| arc cos ——

e1 e,
arc cos —— -j- arc cos •—'¦

tlmax ^lmax

EJ
Gj?

(IV)

équation qui est la généralisation cherchée.

4. — Le flambage dans le cadre du comportement réel
de la matière

Si nous ne nous contentons pas de l'étude du cas particulier

où la tension maximum atteint sans la dépasser la
tension de fluage, mais cherchons à atteindre l'état d'équilibre

indifférent, l'application de la théorie de la plasticité
est inévitable. Cette dernière nous permet de connaître les

déformations et les tensions des constructions au-delà de la
limite d'élasticité.

D'après les résultats acquis aux paragraphes précédents,
nous sommes en droit de supposer connues les courbes k (n)
et Tn (n). Ces courbes sont faciles à obtenir, avec plus ou
moins de travail selon le matériau et la forme de la section.
Rappelons que nous avons donné, à titre d'exemple, le
calcul détaillé pour une section rectangulaire et matériau
idéal plastique (acier doux). Il sera donc possible de confronter
les résultats de cette étude avec ceux des essais.

Nous nous proposons ici de trouver la fonction o0 (\),
o0 étant la tension de flambage et ^ l'élancement de la colonne.
Ce but peut être atteint par deux chemins : la longueur de

la colonne étant donnée on cherche la tension critique ou,
la tension o0 étant donnée, on cherche la longueur critique.
L'excentricité est donnée dans les deux cas. Nous adopterons
cette dernière méthode. Elle est en effet plus simple, du fait
que la fonction M Mg varie sensiblement avec o„.

Résolvons d'abord le problème symétriqjue;
Il nous faut d'abord trouver, pour une déformation iWx

choisie arbitrairement, la longueur l de la colonne en équilibre

sous l'action de la force P.
Les déformations à l'état d'équilibre sont les déformations

réelles, élastiques ou élastoplastiques selon l'endroit.

Marche à suivre
Nous adoptons une valeur de rimax et admettons, à titre

de première approximation, que la déformation est
sinusoïdale. Cette sinusoïde de demi-période l et d'ordonnée
maximum Imax — a traverse les extrémités de la colonne au
centre de gravité des sections (fig. 8).

Puisque nous connaissons n (a;) et k (n) comme nous l'avons
.remarqué, nous dessinons la courbe k (x). Cette courbe n'est
plus une sinusoïde et sa forme dépend sensiblement de o0

et Tlmax.
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f'9- 1

ft"°

Par intégration graphique,

nous traçons ensuite la
courbe (p (x) fournissant les

rotations des sections. Puisque

nous étudions
actuellement le cas symétrique,
<P 0 pour r| tlmax.

Par une seconde intégra-
fig. k tion graphique, nous obte¬

nons la courbe de l'axe
déformé nj (x) en seconde

approximation.
Nous obtiendrons

généralement llmax différent de

Imax — e. Bien entendu, la
bonne valeur de l est celle

f'9-f

fo-%

Fie. 8. qui cor

que

iduira à un n. tel

11 n*

Cette équation va nous permettre d'éviter des tâtonnements

pour trouver l. En effet, si au lieu d'une longueur l
nous avions adopté une longueur Zj, la double intégration

graphique changera lmax, dans le rapport j^.
condition ci-dessus permet d'écrire :

Par suite.

lu l2

ou encore

lx l
11

fig. il

ce qui détermine la longueur l^ cherchée. Nous savons que,
pour cette longueur, la colonne est en état d'équilibre ; d'ailleurs

imax est connu Ax est connu également et par suite
notre but est atteint.

On peut itérer le procédé ci-dessus pour obtenir des approximations

d'ordre supérieur et arriver ainsi à n'importe quel
degré de précision.

Nous avons déterminé l'état d'équilibre dans le domaine
idéal plastique, mais ignorons encore si l'équilibre est indifférent

ou non. Utilisons le critère du flambage pour répondre
à cette question : augmentons imax d'une quantité Arimax très

petite mais non infiniment
petite. Toute la colonne va
quitter l'état d'équilibre. On

peut tracer la courbe An (x)
et constater qu'elle est très
voisine d'une sinusoïde, à

f'9-^f quelques pour-mille près
(fig. 9). Nous adopterons
donc la forme sinusoïdale

pour la courbe An (x). Puisque

nous connaissons la
courbe T^ (n) et que

A/c An.7^
il est facile de tracer la
courbe Ak (x). Cette dernière

n'est plus sinusoïdale. Comme précédemment, nous obtenons
successivement Acp (x) et Alx (x) par deux intégrations
graphiques. Nous corrigeons la longueur de la colonne comme
précédemment, de manière que

Atix= An.

ii.

M

âf.-o

hH,

Fig. 9.

Ainsi nous trouvons la longueur critique de la colonne.
Elle est différente, en général, de /équilibre. Si

^critic. lt.;ique £5^; ''équilibre j

alors le Umax adopté au début des calculs est inférieur au
Imax qui correspondrait à la charge critique. Dans le cas
contraire :

•critique "^ 'équilibre •

6ovr6e Atr

-Ä
F 10.

Remarquons que pour les intégrations

graphiques on peut éviter tout
tracé exact des courbes par une [

orientation judicieuse des calculs
(valeurs) numériques. Voir par exemple tour, >e X •^aiiibréi

tableau II.
Par conséquent, cette méthode peut

être considérée comme une méthode
de calcul et non comme un procédé
graphique.

On peut tracer (fig. 10) les courbes A^ (r|max) et A», (r)max)

des états d'équilibre et des états critiques. L'intersection
fournit les valeurs A et Umax correspondant à l'état d'équilibre
indifférent (flambage). Comme ces valeurs sont déduites de
la théorie de la plasticité, et qu'elles correspondent à la
réalité, il en résulte un dimensionnement plus économique.

Remarquons que l'intersection en question se trouve au
maximum de la courbe équilibre. Cette propriété découle
immédiatement du critère du flambage.

Le problème asymétrique constitue une généralisation aisée
du problème symétrique dont nous venons de donner la
solution.

Soit e1 l'excentricité qui a la plus grande valeur absolue.
La résolution du problème symétrique (fig. 11) pour une
telle excentricité permet de déterminer lr. La courbe cp (x)
détermine cp (e-^. Si nous écartons les cas exceptionnels tel
que colonnes très courtes, nous pouvons admettre que la
région pour laquelle

hl < lei|
est dans la zone élastique. Par suite, la déformation est
sinusoïdale dans cette région. Sa tangente au point de
raccordement est inclinée de l'angle cp (e1) et son axe est le support

de la force P. Conformément aux
appellations de la figure 11, nous pouvons
écrire successivement :

n0 sin tt -j- er
Ljo

r\0 sin
Lo

TT

Lo
n« cos

TTZj

T.

1»
1T2

sin TXZ1

To

9*i

m

équations dont 1 es inconnues sont : L„
n«,

Elles admettent la solution

P,,
>+-»

(¦t

La Tt

L„
ire to

TT (pCj

*»
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"<-
Lo

W® —zr :
TTZ_

Lto

TTZj

To

Lo e2
— arc sm — - et
tt rt»

h+'r-
I est longueur crritique recherchée, la colonne étant

chargée avec les excentricités ej et e2.

5. — Valeurs numériques et conclusions

Le tableau I montre les courbes k (n) et T* (n) calculées au

moyen des formules du chapitre 2. La tension o 0,5 t/cm2
a été choisie. Ces courbes appellent les remarques suivantes :

k (n) est une courbe continue, sans discontinuité, alors que
Tf, (n) montre la première discontinuité là où, du côté
comprimé de la section, la tension atteint;Jla:limite d'élasticité;
la deuxième discontinuité a lieu lorsque la limite d'élasticité
est atteinte du côté tendu. Ces discoSî®nuités résultent de

l'idéalisation adoptée dans le diagramme idéal plastique.
Avec le diagramme exact, il n'y aurait pas d'autre différence

qu'un léger arrondi en ces pointpfÇJ
Le tableau II montre les intégrations graphiques pour

l'état d'équilibre ainsi que l'application du critère du flambage

(o0 0,5 t/cm2, excentricité m 3).
Le tableau III contient le résultat de cette étude avec les

valeurs (o1 A) pour les excentricités m 1 et m 3.

Sur la courbe (o1 A), nous avons indiqué les résultats des

"[mofl-OOZVc

TABLEAU H

Ci' OS/én'j m-3 ; e- OS*
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integrations graphiques
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essais1 et, comme on peut voir, ces courbes calculées sont
en bon accord avec ceux-ci : elles passent au centre de la
surface de dispersion des essais.

Il est maintenant démontré que l'état d'équilibre instable
(début du flambage) se trouve dans le domaine élastoplas-
tique s'il y a excentricité.

Si les tensions maximales ne dépassent pas la limite d'élasticité,

le flambage ne se produit pas.
Par contre, la charge et l'excentricité étant données, il est

possible de déterminer la longueur de la colonne pour laquelle :

Gmax Of,

condition qui exclut tout simplement les déformations
permanentes Les problèmes de flambage à résoudre dans la
pratique comportent généralement cette condition. (La
force Peg. multipliée par le facteur de sécurité n ne doit pas
provoquer de déformation permanente.)

ligne Gmu =£/*

ligne duflambaqt
-t—r-i

r*
***äfc?3tt
¦\A-\- T.fflaa

tHT
I

Tl

\— f-=fcri-i-mt.±
:ttth±Hill i_

i

-l_Li
foa

x f/gne du flambage

I I I I U-*
ISO zoo

Fig. 12.

La figure 12 montre pour section rectangulaire la
différence entre la charge critique et celle pour laquelle ömax O/.

Cette différence est visiblement loin d'être négligeable. Si

toutefois, au lieu d'une section rectangulaire on adopte une
section pratique T f etc. f direction du flambage),
la différence sera beaucoup plus petite.

La méthode indiquée dans ce travail permet de résoudre
tout problème de flambage et cela avec la précision désirée.
Rappelons enfin que le premier état d'équilibre indifférent
est défini par le critérium du flambage.

8. — La flexion pure, cas particulier du flambage excentrique

Si l'excentricité est nulle, on retombe sur les résultats
connus de flambage axial.

Faisons, au contraire, tendre e -*¦ oo en faisant diminuer P
de façon à maintenir constant le moment M Pe. Il ne
s'agit plus alors de flambage, mais nos formules restent
valables et rendent compte des réalités si la limite élastique
est dépassée. Il faut bien entendu, puisque P-»- 0, annuler o0

dans les formules, ce qui fournit notamment la relation M(k)
entre le moment fléchissant et la rotation spécifique.

La force critique du flambage dépend non seulement de la
distribution des tensions dans la section correspondant à

Imax, mais encore notamment de la déformation de toute la
colonne. Il en est de même pour la flexion pure : il faut
prendre en considération toute la déformation de la
construction. Ce problème a été traité auparavant comme un
problème type de tension basé sur la détermination de la

1 Voire bibliographie indiquée en dernière page.

tension maximum d'une seule section. Le développement de
l'idée esquissée ci-dessus conduit à la conclusion qu'il ne
saurait y avoir de séparation arbitraire entre les problèmes
de stabilité et ceux de tension. Il s'agit en fait d'un seul
et même problème et le deuxième groupe n'existe pas

On vient de voir que la flexion est un cas particulier du

flambage excentrique : il s'agit là, économiquement parlant,
d'une des applications les plus importantes de la théorie de
la plasticité. Nous ne voulons pas entrer dans les détails,
d'ailleurs fort intéressants, de ce problème et tenir compte
de l'effet des charges stables et alternées. Cette étude dépasserait

le cadre de ce travail. Cependant, pour finir, nous aimerions

indiquer brièvement comment dimensionner les

constructions, dans le cadre de la théorie de la plasticité. Les
constructions dimensionnées selon ces indications assureront
le même degré de sécurité.

7. — Dimensionnement

Les principes suivants sont à observer :

Les dimensions des constructions sont à déterminer
de façon à ce que les déformations, multipliées par un
ou plusieurs facteurs de sécurité appropriés, ne dépassent

pas une limite au-delà de laquelle l'utilisation de la
construction serait compromise.

D'autre part, il faut exclure la possibilité de rupture
par fatigues alternées. Il faut donc que les fatigues réelles
des fibres ne dépassent pas celles tolérées dans le
diagramme des tensions alternées. Bien entendu, les charges
les plus désavantageuses seront envisagées. Elles seront
multipliées au préalable par le ou les facteurs de sécurité.

Ces principes fournissent des résultats qui correspondent
beaucoup mieux à la réalité que ceux qui se basent sur la
détermination des tensions des fibres extérieures de la section

critique.
Pour se rendre compte du fait que la méthode de

dimensionnement se basant sur ffm^ n'est pas satisfaisante, il suffit
de comparer (fig. 13) les deux poutres ci-dessous (les charges
sont stables) :

r__ iL-, __*
fia cm

PI'
1-m

1 J

J I 444 cm*

W - 14tm'

Fig. 13.

La poutre a étant chargée avec P et la poutre 6 par 12P,
le 0max est le même. Mais, cependant, la déformation de la
première esf douze fois plus grande que celle de la seconde.
Par suite, si les déformations et tensions de la seconde poutre
sont admissibles de justesse, la première poutre est
inutilisable.

Pour les charges non alternées, les déformations sont
déterminantes et non les tensions.

On doit rejeter également la méthode préconisée par cer-
tains auteurs selon laquelle la base de départ du
dimensionnement devrait être la déformation spécifique de la fibre
extrême d'une section critique. En effet c'est la déformation
de l'ensemble de la construction qui est déterminante et non
la déformation au voisinage d'un seul point. Il suffit de
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comparer les deux poutres de la figure 14 pour trouver des

contradictions dans cette dernière méthode. Comme on sait,
la seconde poutre supporte une charge beaucoup plus grande
que la première.

B mmma,m pu
3- %

DJ H
Fie. 14.

Les principes de dimensionnement de la théorie de la
plasticité peuvent paraître à première vue osés ou pratiquement

pas assez exacts. En fait il n'en est rien et même, après
examen approfondi, on s'aperçoit qu'ils sont également
applicables à tous les problèmes statiques. Avec une utilisation
rationnelle de la théorie de la plasticité, nous pouvons suivre
les déformations des constructions aussi dans le domaine
élastoplastique.

Cette étude ne cesse pas d'être valable si, en un point
de la construction, la tension dépasse la limite élastique. En
effet, en négligeant les déformations élastoplastiques, on
obtient des résultats erronés pour certaines constructions.

Les méthodes classiques ne respectent pas le principe :

« même degré de sécurité pour divers types de constructions

».

Notre méthode de dimensionnement ne contient pas ces
fautes et contradictions et permet un dimensionnement plus
économique.

Nous espérons que cette étude aidera à placer dans la
lumière qu'elle mérite la théorie de la plasticité, qui fut
maintes fois attaquée.

BIBLIOGRAPHIE
Flambage par compression axiale. Application de la théorie de

la plasticité, par A. Szécsi, ingénieur. (« Bulletin technique de
la Suisse romande », n° 4, du 12 février 1949.)

Die Knickfestigkeit der technisch wichtigsten Baustoffe, par Prof.
Dr M. Ros et Dr ing. J. Brunner.

Suppression du passage à niveau de Territet et route de transit
par R. DÉGLON, ingénieur cantonal, Lausanne1

La route principale n° 9, de Vallorbe à Brigue, par Lausanne,
franchit les voies des chemins de fer fédéraux à Territet,
sur territoire de la commune de Montreux-Les Planches.
C'est le dernier||passage à niveau restant à supprimer sur
cette artère de grande communication.

Cette traversée est un obstacle qui n'est plus tolerable
sur une route internationale de cette importance et sur
laquelle l'intensité de la circulation est une des plus fortes
en Suisse. Il y a lieu, en effet, de remarquer que ce passage
est fermé plus de six heures sur vingt-quatre, arrêtant ainsi
un trafic qui dépasse parfois 5000 véhicules par jour.

La suppression de cette entrave à l'écoulement du trafic

a déjà fait l'objet, au cours de ces cinquante dernières années,
de très nombreux projets, études, concours d'idées, dont
aucun n'a donné de résultat positif jusqu'à ces derniers

temps. Une des solutions préconisées consistait à détourner
la ligne C. F. F. du Simplon en tunnel entre la gare de

Montreux et un point situé à la sortie orientale de Territet,
pour laisser la place à la route qui n'avait plus, de ce fait,
à franchir les voie|re?l

Mais ce projet, comme les précédents, fut écarté pour des

1 Article paru au n° 3, 1951, de « La route et la circulation routière »,
organe officiel de l'Association suisse des professionnels de la route, qui a
bien voulu mettre à notre disposition les clichés des figures. (Réd.).
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Fig. 1. — Situation de la route de transit projetée et du nouveau passage sous voies,
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