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FLAMBAGE EXCENTRIQUE
Application de la théorie de la plasticité

par A. SZECSI, ingénieur

Introduction

Les opinions des constructeurs divergent quant a la méthode
a appliquer pour résoudre le problemc du flambage excen-
trique.

Certains le traitent comme un probléme de tension du
deuxiéme ordre, d’autres, au contraire, le considérent comme
un probléme de stabilité et procédent de la méme maniére
que pour le flambage axial.

Dans cette étude ! nous verrons que :

1. La solution du probléme du flambage excentrique ne peut
étre trouvée sans faire appel a la théorie de la plasticité.

2. Il s’agit d'un probléeme de stabilité qui est une généralisation
de celui du flambage axial.

3. La théorie de la plasticité fournit, avec la précision désirée,
la solution des problémes symétriques et asymétriques. Nous
appelons probléeme symétrique celui ou I'excentricité est la
méme aux extrémités de la colonne et asymétrique dans le
cas contraire.

4. Nous sommes en mesure de déterminer les déformations et
les tensions internes de la colonne, notamment dans son
dernier état d’équilibre avant flambage.

5. La flexion apparait comme un cas particulier de flambage
excentrique.

6. Nous donnons enfin les lignes générales permettant de
dimensionner des construulluns (cela, bien entendu, dans “le
cadre de la théorie de la pl.’l.s‘li(,lt.u).

1 Dans 'étude « Flambage par compression axiale » (Bullet
n° 4, 1949), nous avons démontré qu'en appliquant la théorie
cité (prise en considération des déformations réelles); on pe
solution du probléme du flambage axial pour section |
matériau pour lequel le diagramme déformation-rageow

appliquées a ses extrémités au moyen d’articulations. Ces
derniéres peuvent étre appliquées au centre de gravité de
la section ou ailleurs (excentriquement). Il s’agit de trouver
les déformations de la colonne a l'état critique, c¢’est-a-dire
lorsque I'équilibre passe de la stabilité & I'instabilité. Nous
utiliserons le critére suivant pour reconnaitre si la colonne
est a I'état d’équilibre stable ou instable :

“neisageons la colonne déja déformée par les forces appli-
quées. A Uendroit de la colonne qui présente la plus grande
déformation Mz, nous accroissons encore cetle déformation
d’une quantité ANpa, trés petite, mats non infiniment petite,
puis nous cessons d’imposer ce supplément de déformation.
L’équilibre est stable si la colonne revient a sa déformation
primitive. 16 est au contraire indifférent st la colonne reste
dans sor . rous: v’. d equlhbre (caractérisé par la déforma-
] Vo 4 Cest le début du flambage et la force
“al Jorce critique.

si les forces appliquées augmentent
ngluhbr(‘ est d’abord stable, puis devient

cqxd(‘saus est tout a fait général et valable pour

pruglemvs d’ vqmllbr 3

e d’autres états d’équilibre indifférent au-dela-de

Dans certains matériaux, il

e critique, mais ceux-ci n'onl aucune importance
que, étant donné qu’ils se produisent pour des défor-
mations trop grandes.

Nous négligerons les dé sformations dues aux compressions
axiales et aux efforts tranchants. Elles sont en fait générale-
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ment négligeables devant les déformations produites par les
moments fléchissants.

Nous supposerons que la répartition des déformations
spécifiques dans toute section reste linéaire, méme aprés
déformation de la colonne. Nous supposerons en outre que
la section est choisie de fagon a ce qu’un flambage partiel
d’un de ses éléments ne puisse survenir et, enfin, que les
déformations des diverses fibres de la colonne suivent la loi
du diagramme déformation-tension du matériau, loi que nous
supposons connue.

2. — Relation entre le moment et la rotation spécifique
de la section

Pour atteindre le but que nous nous sommes assigné,
nous devons établir la relation liant, pour toute section de
la colonne, le moment et la rotation spécifique, quelle que
soit la valeur des sollicitations.

A titre d’exemple, nous déterminerons ici cette relation
pour le cas particulier d’une poutre en acier doux.

Afin de simplifier les calculs, nous remplacerons le véritable
diagramme tension-déformation par un diagramme idéal-
plastique. Ce dernier suppose
(fig. 1) que la matiére est
complétement élastique  jus-
qu'a la limite d’élasticité qui
correspond alors & la limite

)0 compression

2 @e% d’écoulement (fluage) ; au-dela
de cette limite et jusqu'a un

G eyt point correspondant a I’accrois-
Y sement de résistance naturelle,

Fig. 4. il y aura augmentation des

déformations sans augmenta-
tion des tensions. Le méme
phénomeéne se retrouve du coté de la compression. Ce dia-
gramme correspond bien au comportement d’aciers doux de
bonne qualité pour lesquels il y a peu de différence entre les
valeurs de 0, et 0.

Selon la valeur du moment M, nous aurons a distinguer
les cas suivants :

1. La sollicitation maximum de la section n’atteint nulle
part la limite d’élasticité. Alors la formule linéaire

est valable.

2. La sollicitation maximum atteint la limite d’élasticité
au cOté comprimé de la section.

Soit P la charge. Nous avons :

P = g, Fy.

” s, Entre les droites = By,
U — les sollicitations_d: dues

] au moment flé

leur (fig. 2) :

Entre les droite ="
elles valent : £ ¥

O'y = 03 — o-o—ltlf?

Exprimons que la sommejdes
citations dues au moment fléchy
est nulle (condition d’équilibre) sifgs

Jo, x dF =o.

o

Aprés intégration, il vient :
Fo (06— 00) — k E(Sp — Byo Iy) = 0. (1)

S, est le moment statique de la surface F, par rapport a
la droite y = 0.

Ecrivons encore que le moment des sollicitations dues au
moment fléchissant équilibre ce dernier :

Jo,xyxdF+M=0.
Fo

Intégrons aprés substitution de I'expression de 0,. Nous
obtenons :

(6/— 00) So— kE(J,—Byo Sp) + M=0.  (2)

L’équation (2) est la condition d’équilibre des moments.
S, est le moment statique de la surface F, par rapport a
la droite y = 0 et J, le moment d’inertie de F, par rapport
a cette méme droite.

Nous tirons successivement des équations (1) et (2):

_ 1 F,(0;— 0o)
"= ES,— R, 3)
et
M =FkE(Jy— Byo Sp) — (07— 00) So. (4)

Ces équations expriment k et M en fonction du parameétre B.
Il en résulte la valeur de la déformation :

M M

T P F,o0;

k
ainsi que T Tp qui se calculera en fonction de B de la

maniére suivante :

dk
. dk dk dp TB
P dM — dpdM — dM
B
De méme :
dk
T .__,@A dk
n 1 dM dn
F, o, dB

Rappelons que les formules ci-dessus sont absolument
générales et valables quelle que soit la forme de la section 1.
Elles sont valables aussi longtemps que les contraintes
n’atteignent pas la limite d’élasticité du coté « tendu » de

! A titre d’exemple, donnons leur application & une section rectangulaire
de dimensions b.y,.

Avee les expressions

5 by,* by,®
Fo=byyi Fy=by,(1—B)5 Sy="3 (1—B%); Jy= 2 (1—p)
I"équation (1) devient :
P i) , 2 (6)
Ey, (1—8)*
et I'équation (2) :
byo? q
M= (o) (1+26). ”
&Nous obtenons pour 'ordonnée de la déformation :
‘ 0/ —0 8
n=YA—0 g ”
_ 12 )
(1 —B)® Eby’
% 12 (10)

CE( By
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la section. Au moment ou cette limite est atteinte (fig. 3),
le paramétre B a une valeur particuliére B,.
Nous pouvons alors écrire :

(M)

0y, = — 0o + oy.

Si dans cette équation on introduit I'expression

G!/,, = 6/_‘ Gu_ku E (yu — Boyn"
il vient :
(11)

0,— 0y — ko E (yo— Boyo) -

Dans le cas d’une section rectangulaire, (1) et (11) donnent :

0;— O,
Bl — g A0
0y — Oy

(12)

Enfin si B> B,, la répartition des tensions est celle de
la figure 4.

Entre les droites y = 0 ; y = y, nous avons :

M)

Uy = 0‘/4 60

puis entre les droites y =y, ; y =y, :

0, = 0;— 60— kE (y —y)
enfin entre les droites y =y, ; y = Yo :
0\ = o, — 0,.
Etant donné que :
Y1= Byo
ya = Byo+ L2
I'équation d’équilibre des forces s’écrit :
(13)
(07— 00) F1+ (01— 00o) Fy—kE (Sy—y,F3) + (0/—0,) Fy =0
et celle des moments :
(14)

(0/—00) 51+ (0/— —kE (J3—y1S3) + (0/—0,) Sg+ M=0.

Les équations (13), (14) expriment k et M en fonction du
paramétre B.

0,) Sy

L’ordonnée de la déformation de 'axe de la colonne sera :

M
L
En outre :
dl dhk
. dk dp - dB ,
To =70 = ~ani In =g %
dp dg

Les formules ci-dessus étant valables pour toute forme de
section, nous donnons en note ! leur application au cas d’une
section rectangulaire.

Les équations (13) et (19) sent valables aussi longtemps que
n’intervient pas la limite de I'accroissement de résistance
naturelle de I'acier doux sur le c6té « comprimé » de Ja section.
Ce domaine n’a pratiquement pas grande importance, car
seules des colonnes trés courtes peuvent avoir un état d’équi-
libre dans le domaine du raidissement. Du reste le calcul
exécuté comme indiqué dans ce travail ne donnerait plus

dans ce domaine des résultats

" exacts. En effet, avec les défor-

7"——‘3‘ mations plastiques apparaissent des

! tensions de cisaillement non négli-

geables de part et d’autre de la

section. La rotation de la section

serait telle que les hypothéses de

base du calcu] ne seraient plus va-
lables.

Il est cependant intéressant de
savoir ou se trouve le commen-
cement du raidissement.

Avec les dénominations de la
figure 5, nous pouvons écrire :

m—— €, = kayp.

€} — €
ayo:Bm X ya+ 4 i 2

Mais :

€En — €&

Alors : Bm = —ky

B, étant connu, le commencement du raidissement est

déterminé.

1 Pour la section rectangulaire, on a:

. 07— of . oj— 0y
Fa = Vit Fo= b I'SZb[y"—By"* kE ]
By3 b o] — —of

=857 5= 9 AE 28y, + ° )
(13) donne :
1 (o —op)® (15)
2EYo 6, — oy — B (0] —0f)
Avec

b
Jy =3 (¥a—ud) S3 = 5 (43 —y3)

(14) devient :

b =
M =" {01 —5) (3 (1 — R} — (B—R)*) —3 (o/— 00} (16)
ol nous avons posé, pour simplifier :
R = 0 — U[
of — of
" La déformation s'écrit :
M Yo | G — of o 97— 00|
= - = =y ——— [¢ —R?) — (B—R)?} —3 ——— ;- (17
d T BRI R 8 L
La tangente a la courbe M(k) a pour valeur:
dk 3
Tp=s= =535 18
P=aM = 3E by (R —p)° (18)
et celle & la courbe n (k) :
3 .6,
Ty = . 19
n PYor J(x(l?*ﬂ)a (19)
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Dans le cas d’une section rectangulaire, nous connaissons ‘ Il faut maintenant savoir s’il existe une force P pour

ky, (équation 15) :

1 6 — 0, em—e Ac
]\'yo — em B h - A
Zb R S Bm Bm Bm
d’ou
1 S
Ry B L (20)
&§— ¢
— il
2 A€ s
3. — La colonne est chargée excentriquement et la tension

maximum ne dépasse pas la limite de proportionnalité (limite
d’élasticité avec matiére idéale plastique)

La relation entre la rotation spécifique et le moment

_ M o
fléchissant est k = — TJ et % ny figure pas!
| Examinons d’abord le cas ou I'excentri-
?— lf"f cité est la mémeaux extrémités de la co-
i P i lonme (fig. 6).
i ¥ Cherchons Nmax si la charge est P. 1.équa-
: ! tion différentielle donnant la forme de I'axe
{ -t | de la colonne est :
| 14 i
L k. Bhe
! dz? EJ
[
| = . v
I | Elle admet la solution générale :
! &
i e
l . | P P
I = As .S 108 2 A | —
| N.= Asinz 77 + B cos 5T

ou A, B sont des constantes qui se déter-
minent facilement par les conditions aux
limites. :

En premier lieu: B =0, car n = 0 pour z = 0. Ensuite,
la valeur maximum de

Nz . P
4 = Sinz i
ne peut étre que 1, d’ou:
A = Nuax .
Par conséquent
. P
Ne = Neax SID. % 5

w . o ! . &
courbe sinusoidale de demi-onde L = \/LPJ [ équation

de I'axe déformé sera donc :

1 _—
Ne = TNmax SN = Z. (21)
ll
Comme nous connaissons 'ordonnée e correspondant &
. . L—1 ol
I'abscisse z, = 5 Nous pouvons cerire
2

ml
€ = Mmax COS 5
" 2L
el

Nmax = l 5 (l)

laquelle I'équilibre de la colonne devient indifférent.

Appliquons le critére du flambage dont nous avons parlé
plus haut. Le supplément de fleche maximum Anpay produit
une augmentation de rotation donnée par la formule :

A/"max = Zknmax é)j *

Le déplacement correspondant aura pour valeur

(s P
fnTg Anmztx EJ

parce que la différence entre la position nouvelle et initiale
de I'axe de la colonne peut étre considérée, avec une exac-
titude trés grande, comme une courbe sinusoidale avec demi-
onde [ et 'ordonnée maximum AnNpasx.

La condition d’équilibre indifférent (flambage) s’écrit
done :

2 P
Anmax = ? A'rlmax ﬁ
d’ou
n2EJ
P = 2 2

Nous retrouvons la formule d’Euler ! Etant donné que la
colonne a été supposée chargée excentriquement et que cette
formule ne contient pas I'excentricité, il en résulte que la
charge critique ne dépend pas de I'excentricité ! Ceci n’est
vrai que pour autant que notre hypothése de départ soit
vraie, ¢’est-a-dire que la limite d’élasticité ne soit nulle par
dépassée. 7

Les essais vérifient effectivement que, pour des colonne
trés élancées, la charge critique ne dépend pas sensiblement
de Pexcentricité.

On peut retrouver les résultats ci-dessus en exprimant,
conformément au critéere du flambage, que la dérivée de P
par rapport a Nmax est nulle lorsque P est charge critique.
En vertu de (I), cette condition s’écrit :

4EJ

1P 1
- ., —5— arc? cos 2. =1,
(lnmux dnmax l Nmax
Les solutions sont :
Nmax = € P =0
mEJ
Nmax — X P= _[2_ L

Bien entendu, la premiére est sans intérét et la seconde
est le résultat que nous voulions obtenir. -

Cherchons maintenant la valeur de la charge qui rend. la
contrainte maximum de la colonne égale a la contrainte de
fluage :

Omax = Oy

Ceci ne peut naturellement avoir lieu que dans la section
pour laquelle N = Npay. L'équation (1) nous donne :

B p W (0;—00)
Nmax = [ o a”lf

CcoOs .
9 EJ
o,k
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et par suite :

l - el o,

2_E——J ~ Wo—o0,
0o F

Il fournit aisément 6, donc P. On peut aussi chercher,
dans le méme but, [, P et 'excentricité étant fixés. L’équation
ci-dessus s’écrit, a cet effet :

(11)

cos

EJ el O,
——Lolareeos o - S0
OoF W (0; — 0,) (It

Nous sommes maintenant en mesure de déterminer la
longueur de la colonne pour laquelle il y a flambage ; bien
entendu nous respectons les conditions ci-dessus (P, e donnés
et Omax = 0y). Il suffit de joindre a (III) la condition :

2
n2EJ
P = FO") = T b

formule qui, combinée a (III), donne

. n2 EJ
T . 2
g = 8recos pr——— o — 0l
ou encore
n2 EJ
B 0.

Nous constatons que le flambage n’est possible que pour
l—> o,

Il est intéressant de voir & quel résultat nous conduit le
critérium du flambage appliqué au flambage axial.

1er cas: 0o << Op.
Le critére s’écrit : .
An= & Ak
avec :
P

Akmax = An E_J :

(
Il en résulte la formule d’Euler.

2¢ cas : Os = Op.

. : AM
La seule différence avec le premier cas est que Akmax = T 7
k.
c’est-a-dire qu’il faut écrire 7% en lieu et place de E.1!
Généralisons maintenant les résultats précédents pour les
rendre valables dans le cas asymétrique.
On a toujours la condition

Omax = Of
e; et e, sont les excentricités comptées algébriquement.

e, est celle qui posséde la plus grande valeur absolue.
[axe a une forme sinusoidale de demi-période :

EJ
o I

=7

La figure 7 nous permet d’écrire :

; EJ e
L =2 —  arc cos -
o,k Nmax
! Tk est connu pour le flambage axial ; voir bibliographie indiquée en

derniére page.

si nous rappelons que AT‘
W (6;—0,) 4]
Niae— — =+ 2a
0o I Ffatr
: i
puis 0 Ll
E—f AR
[
Z == - I Nt
X |
q |
Exprimons encore que I'axe passe par B : I == ¥
|
e nl  wli Lo Ay
€08 [+ — 5= |=e,. pFee
Nmax I ar)T e W
Nous en déduisons Fig. 7.
l L e
= )r 4+ = arc cos —2-
-~ ™ nmax
ou encore
e e EJ
li= (arc cos —1- -+ arc cos —2 — (Iv)
max Nmax GgF

équation qui est la généralisation cherchée.

4. — Le flambage dans le cadre du comportement réel
de la matiére

Si nous ne nous contentons pas de I’étude du cas parti-
culier ou la tension maximum atteint sans la dépasser la
tension de fluage, mais cherchons a atteindre I’état d’équi-
libre indifférent, I'application de la théorie de la plasticité
est inévitable. Cette derniére nous permet de connaitre les
déformations et les tensions des constructions au-dela de la
limite d’élasticité.

D’aprés les résultats acquis aux paragraphes précédents,
nous sommes en droit de supposer connues les courbes k (n)
et Tn (n). Ces courbes sont faciles a obtenir, avec plus ou
moins de travail selon le matériau et la forme de la section.
Rappelons que nous avons donné, a titre d’exemple, le
calcul détaillé pour une section rectangulaire et matériau
idéal plastique (acier doux). Il sera donc possible de confronter
les résultats de cette étude avec ceux des essais.

Nous nous proposons ici de trouver la fonction o, (),
0, étant la tension de flambage et A I'élancement de la colonne.
Ce but peut étre atteint par deux chemins: la longueur de
la colonne étant donnée on cherche la tension critique ou,
la tension o, étant donnée, on cherche la longueur critique.
L’excentricité est donnée dans les deux cas. Nous adopterons
cette derniére méthode. Elle est en effet plus simple, du fait
que la fonction M (k) varie sensiblement avec 0,.

Résolvons d’abord le probléme symétrique.

Il nous faut d’abord trouver, pour une déformation Mmax
choisie arbitrairement, la longueur [ de la colonne en équi-
libre sous I'action de la force P.

Les déformations a I’état d’équilibre sont les déformations
réelles, ¢élastiques ou élastoplastiques selon Iendroit.

Marche a suiyre

Nous adoptons une valeur de Nmax et admettons, a titre
de premiére approximation, que la déformation est sinu-
soidale. Cette sinusoide de demi-période ! et d’ordonnée
maximum Npax — e traverse les extrémités de la colonne au
centre de gravité des sections (fig. 8).

Puisque nous connaissons n (2) et k(n) comme nous 'avons
remarqué, nous dessinons la courbe & (x). Cette courbe n’est
plus une sinusoide et sa forme dépend sensiblement de g,

el MNmax.
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g Par intégration graphi-
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il que, nous tragons ensuile la
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rotations des sections. Puis-
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que mnous étudions actuel-
lement le cas symétrique,

= () pour N = Nuax.

Par une seconde intégra-
tion graphique, nous obte-
nons la courbe de I'axe dé-
formé ny (z) en seconde ap-

«
r———
’? 7 i
.
n

i
' . .
! % /} # proximation.
f=0 i 7 Nous obtiendrons géné-
1

i ralement Nymax différent de
/}9'71 Nmax — e. Bien entendu, la
bonne valeur de [ est celle

=3
3
3
™
| 1

qui conduira & un Nymax tel
que

Nimax — Nmax — €.

Cette équation va nous permettre d’éviter des tatonne-
ments pour trouver [. En effet, si au lieu d’une longueur [

nous avions adopté une longueur [, la double intégration
2

. L .
graphique changera Nmay, dans le rapport 1; Par suite, la

condition ci-dessus permet d’écrire :

2

1
M1 max 7‘2 = Nmax — €,

ou encore

= nmax ’j
1 = )

N1 max
ce qui détermine la longueur l; cherchée. Nous savons que,
pour cette longueur, la colonne est en état d’équilibre ; d’ail-
leurs Npax est connu ! A est connu également et par suite
notre but est atteint.

On peut itérer le procédé ci-dessus pour obtenir des approxi-
mations d’ordre supérieur et arriver ainsi a n’importe quel
degré de précision.

Nous avons déterminé I'état d’équilibre dans le domaine
idéal plastique, mais ignorons encore si I’équilibre est indiffé-
rent ou non. Utilisons le critére du flambage pour répondre
a cette question : augmentons Nmax d’une quantité ANmax trés

petite mais non infiniment
7 petite. Toute la colonne va
e 4, 4 (uitterPétat déquilibre. On
4hma e #y peut tracer la courbe An ()
| et constater qu’elle est trés
voisine d’une sinusoide, &
quelques  pour-mille
(fig. 9). Nous adopterons
| done la forme sinusoidale
: pour la courbe An (). Puis-
! que la
courbe T (n) et que

Ak = An.T,

est facile de tracer la

courbe Al (z). Cette derniére
n’est plus sinusoidale. Comme précédemment, nous obtenons
successivement Ag (z) et Ang (x) par deux intégrations gra-
phiques. Nous corrigeons la longueur de la colonne comme

pres

nous (‘,()llllal.SS()l]S

Fig. 9. i

précédemment, de maniére que

A= A
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Ainsi nous trouvons la longueur critique de la colonne.
Elle est différente, en général, de lsquiiibre. S1

[r-ritique > [(\quilibre,

alors le Npax adopté au début des calculs est inférieur au
Nwax qui correspondrait & la charge critique. Dans le cas
contraire :

[(‘ritique < lf'-quilibre~

Remarquons que pour les intégra-
tions graphiques on peut éviter tout
tracé exact des courbes par une
orientation judicieuse des calculs (va-
leurs) numériques. Voir par exemple
tableau II.

Par conséquent, cette méthode peut
étre considérée comme une méthode
de calcul et non comme un procédé
graphique.

On peut tracer (fig. 10) les courbes Asqui (Mmax) €t A (Nmax)
des états d’équilibre et des états critiques. L’intersection
fournit les valeurs A et Umax correspondant a I’état d’équilibre
indifférent (flambage). Comme ces valeurs sont déduites de
la théorie de la plasticité, et qu’elles correspondent a la
réalité, il en résulte un dimensionnement plus économique.

Remarquons que lintersection en question se trouve au
maximum de la courbe Agquilibre. Cette propriété découle
immédiatement du critére du flambage.

Le probléme asymétrique constitue une généralisation aisée
du probléme symétrique dont nous venons de donner la

solution.

Soit e; 'excentricité qui a la plus grande valeur absolue.
La résolution du probléme symétrique (fig. 11) pour une
telle excentricité permet de déterminer [.. La courbe @ (z)
détermine @ (e;). Si nous écartons les cas exceptionnels tel
que colonnes trés courtes, nous pouvons admettre que la
région pour laquelle

In] < lel

est dans la zone élastique. Par suite, la déformation est
sinusoidale dans cette région. Sa tangente au point de rac-
cordement est inclinée de 'angle @ (¢;) et son axe est le sup-
port de la force P. Conformément aux
appellations de la figure 11, nous pouvons

écrire successivement : -
|
|
NoSINT — = e el
Lo * fieal
Lo
£
) 1 ¥4 L s |
No SIN 2 — ey 'nl‘—; ]
]n it
a8
I
T 2, o 1 #
[' No COS 7 = Qey H | :
L = 1ilely |
L1y | I
T . 1% ] L
No 75 sin —— = ky, N
L? Lo, U
¥
équations dont les inconnues sont: L, Pt~
oy iy T
Elles admettent la solution Fig. 11.
e e
1 2
Lo=m = 1 -
/\'1 ]\‘2
ht [,(,’ » Lo ky
Z; = — arc tg — —
™ @ey
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T L, 2 | oy
o —i==1'"Pe === ==
m Mz, . T2y
cos sin —
L, L,
Y% .e
Zo = — arcsin 2 et lyp=1=z,—1z + I,
™ 0

I est la longueur critique recherchée, la colonne étant
chargée avec les excentricités e, et es.

5. — Valeurs numériques et conclusions

Le tableau I montre les courbes & () et 7 (n) calculées au
moyen des formules du chapitre 2. La tension 0 = 0,5 t/em?
a été choisie. Ces courbes appellent les remarques suivantes :

k (n) est une courbe continue, sans discontinuité, alors que
T, (n) montre la premiére discontinuité la ol, du coté com-
primé de la section, la tension atteint la limite d’élasticité ;
la deuxiéme discontinuité a lieu lorsque la limite d’élasticité
est atteinte du coté tendu. Ces discontinuités résultent de
I'idéalisation adoptée dans le diagramme idéal plastique.
Avec le diagramme exact, il n’y aurait pas d’autre différence
qu'un léger arrondi en ces points.

Le tableau IT montre les intégrations graphiques pour
I'état d’équilibre ainsi que 'application du critére du flam-
bage (0, = 0,5 t/em?, excentricité m = 3).

Le tableau III contient le résultat de cette étude avec les
valeurs (0; A) pour les excentricités m = 1 et m = 3.

Sur la courbe (0; M), nous avons indiqué les résultats des

TABLEAU II

10023, G054 m-3; e= 055, a4 >
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essais! et, comme on peut voir, ces courbes calculées sont
en bon accord avec ceux-ci: elles passent au centre de la
surface de dispersion des essais.

Il est maintenant démontré que I'état d’équilibre instable
(début du flambage) se trouve dans le domaine élastoplas-
tique s’il y a excentricité.

Si les tensions maximales ne dépassent pas la limite d’élas-
ticité, le flambage ne se produit pas.

Par contre, la charge et 'excentricité étant données, il est
possible de déterminer la longueur de la colonne pour laquelle :

Omax =— 6/ )

condition qui exclut tout simplement les déformations per-
manentes | Les problémes de flambage a résoudre dans la
pratique comportent généralement cette condition. (La
force Peg. multipliée par le facteur de sécurité n ne doit pas
provoquer de déformation permanente.)

i Ligne Cmar =G
- '4."!'_??’” T - ligne dyflambage
O N i
el e TITITITI
R N s araaass
o TR TN T T T 1
T o T O O
T .r'—b: *1_\‘—1—1—'1"1*3'?
RN TISNCTT 1
:j_|ln=3——4|- =t —:'—" \:_Jl:"l
N ——a o~y
o+ L [ e el
Co T O T e 1 fne o flambage
NI AR T s =0
Liep T PR tﬂ/m;...%y:ﬁ.
- | B S 1 L) O 0 O S -
T O T N A A OO
50 100 750 2

Fig. 12.

La figure 12 montre pour section rectangulaire la diffé-
rence entre la charge critique et celle pour laquelle 0. = 0.
Cette différence est visiblement loin d’étre négligeable. Si
toutefois, au lieu d’une section rectangulaire on adopte une

section pratique I, E, ete. (i direction du flambage),
la différence sera beaucoup plus petite.

La méthode indiquée dans ce travail permet de résoudre
tout probléme de flambage et cela avec la précision désirée.
Rappelons enfin que le premier état d’équilibre indifférent

est défini par le critérium du flambage.

6. — La flexion pure, cas particulier du flambage excentrique

Si I'excentricité est nulle, on retombe sur les résultats
connus de flambage axial.

Faisons, au contraire, tendre ¢ > @ en faisant diminuer P
de fagon a maintenir constant le moment M = Pe. Il ne
s’agit plus alors de flambage, mais nos formules restent
valables et rendent compte des réalités si la limite élastique
est dépassée. Il faut bien entendu, puisque P— 0, annuler o,
dans les formules, ce qui fournit notamment la relation M (k)
entre le moment fléchissant et la rotation spécifique.

La force critique du flambage dépend non seulement de la
distribution des tensions dans la section correspondant &
Nmax, Mais encore notamment de la déformation de toute la
colonne. Il en est de méme pour la flexion pure: il faut
prendre en considération toute la déformation de la cons-
truction. Ce probléme a été traité auparavant comme un
probléme type de tension basé sur la détermination de la

! Voire bibliographie indiquée en derniére page.

tension maximum d’une seule section. Le développement de
I'idée esquissée ci-dessus conduit & la conclusion qu’il ne
saurait y avoir de séparation arbitraire entre les problemes
de stabilité et ceux de tension. Il s’agit en fait d’un seul
et méme probléme et le deuxieéme groupe n’existe pas !

On vient de voir que la flexion est un cas particulier du
flambage excentrique : il s’agit 1a, économiquement parlant,
d’une des applications les plus importantes de la théorie de
la plasticité. Nous ne voulons pas entrer dans les détails,
d’ailleurs fort intéressants, de ce probléme et tenir compte
de I'effet des charges stables et alternées. Cette étude dépasse-
rait le cadre de ce travail. Cependant, pour finir, nous aime-
rions indiquer briévement comment dimensionner les cons-
tructions, dans le cadre de la théorie de la plasticité. Les
constructions dimensionnées selon ces indications assureront
le méme degré de sécurité.

7. — Dimensionnement

Les principes suivants sont a observer :

Les dimensions des constructions sont & déterminer
de fagon a ce que les déformations, multipliées par un
ou plusieurs facteurs de sécurité appropriés, ne dépassent
pas une limite au-dela de laquelle I'utilisation de la
construction serait compromise.

D’autre part, il faut exclure la possibilité de rupture
par fatigues alternées. Il faut donc que les fatigues réelles
des fibres ne dépassent pas celles tolérées dans le dia-
gramme des tensions alternées. Bien entendu, les charges
les plus désavantageuses seront envisagées. Elles seront
multipliées au préalable par le ou les facteurs de sécurité.

Ces principes fournissent des résultats qui correspondent
beaucoup mieux & la réalité que ceux qui se basent sur la
détermination des tensions des fibres extérieures de la section
critique.

Pour se rendre compte du fait que la méthode de dimen-
sionnement se basant sur Omax n’est pas satisfaisante, il suflit
de comparer (fig. 13) les deux poutres ci-dessous (les charges
sont stables) :

a, s, |f2p Acm
P em 'Euun
Aem
:._._-L———J A me/s s o
J= Am* J = 444 m*
W= 2em® s W = 24em?
" =i3E7
Fig. 13.

La poutre a étant chargée avec P et la poutre b par 12P,
le Opax est le méme. Mais, cependant, la déformation de la
premiére est douze fois plus grande que celle de la seconde.
Par suite, si les déformations et tensions de la seconde poutre
sont admissibles de justesse, la premiére poutre est inuti-
lisable.

Pour les charges non alternées, les déformations sont déter-
minantes et non les lenstons.

On doit rejeter également la méthode préconisée par cer-
tains auteurs selon laquelle la base de départ du dimen-
sionnement devrait étre la déformation spécifique de la fibre
extréme d’une section critique. En effet c’est la déformation
de I'ensemble de la construction qui est déterminante et non
la déformation au voisinage d’un seul point. Il suflit de
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comparer les deux poutres de la figure 14 pour trouver des
contradictions dans cette derniére méthode. Comme on sait,
la seconde poutre supporte une charge beaucoup plus grande
que la premiére.

Les principes de dimensionnement de la théorie de la
plasticité peuvent paraitre a premiére vue osés ou pratique-
ment pas assez exacts. En fait il n’en est rien et méme, apres
examen approfondi, on s’apergoit qu’ils sont également appli-
cables a tous les problemes statiques. Avec une utilisation
rationnelle de la théorie de la plasticité, nous pouvons suivre
les déformations des constructions aussi dans le domaine
élastoplastique.

Cette étude ne cesse pas d’étre valable si, en un point
de la construction, la tension dépasse la limite élastique. En
effet, en négligeant les déformations élastoplastiques, on
obtient des résultats erronés pour certaines constructions.

Les méthodes classiques ne respectent pas le principe :
« méme degré de sécurité pour divers types de construc-
tions ». >

Notre méthode de dimensionnement ne contient pas ces
fautes et contradictions et permet un dimensionnement plus
économique.

Nous espérons que cette étude aidera & placer dans la
lumiére qu’elle mérite la théorie de la plasticité, qui fut
maintes fols attaquée.
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Suppression du passage a niveau de Territet et route de transit

par R. DEGLON, ingénieur cantonal, Lausanne!

La route principale n° 9, de Vallorbe a Brigue, par Lausanne,
franchit les voies des chemins de fer fédéraux a Territet,
sur territoire de la commune de Montreux-Les Planches.
C’est le dernier passage a niveau restant a supprimer sur
cette artere de grande communication.

Cette traversée est un obstacle qui n’est plus tolérable
sur une route internationale de cette importance et sur
laquelle I'intensité de la circulation est une des plus fortes
en Suisse. Il y a lieu, en effet, de remarquer que ce passage
est fermé plus de six heures sur vingt-quatre, arrétant ainsi
un trafic qui dépasse parfois 5000 véhicules par jour.

La suppression de cette entrave a I’écoulement du trafic

St.Légier - Ld Chiesaz

a déja fait Iobjet, au cours de ces cinquante derniéres années,
de trées nombreux projets, études, concours d’idées, dont
aucun n’a donné de résultat positif jusqu’a ces derniers
temps. Une des solutions préconisées consistait a détourner
la ligne C.F.F. du Simplon en tunnel entre la gare de
Montreux et un point situé a la sortie orientale de Territet,
pour laisser la place a la route qui n’avait plus, de ce fait,
a franchir les voies.

Mais ce projet, comme les précédents, fut écarté pour des

1 Article paru au n°® 3, 1951, de «La route et la circulation routiére»,
organe officiel de 1I'Association suisse des professionnels de la roule, qui a
bien voulu mettre a notre disposition les clichés des figures. (Réd.).
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Fig. 1. — Situation de la route de transit projetée et du nouveau passage sous voies,
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