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L'oscillographe enregistreur des C. F. F. a permis de constater

que l'amplitude des vibrations correspondait à une
surcharge en plus ou en moins de 10 t environ. La période
des oscillations était d'environ 1,8 seconde, dans la position I
de la surcharge ; la période semblait être un peu plus courte,
de l'ordre de 1,5 seconde lors de la mise en vibration dans

la position II de la surcharge (extrémité du porte-à-faux).
Nous devons ajouter encore que les appareils de mesure

placés sur des goussets dans les nœuds les plus chargés n'ont
donné que des taux de travail très modérés (fig. 10).

Après les essais de résistance, une inspection minutieuse
des soudures na rien révélé d'anormal et aucune retouche
n'a été nécessaire.

Une fois les essais de résistance du tablier terminés, ce

dernier a été levé à la hauteur voulue pour permettre le

montage des palées articulées et fixes. Ce levage a été fait
au moyen de huit treuils électriques travaillant simultanément,

frappés à la base de quatre pylônes doubles, de section

triangulaire ; les moufles de ces treuils étaient fixés à la partie
supérieure des pylônes et à une traverse passant sous le

tablier.
Le levage se faisait au droit des nœuds 2 et 17, c'est-à-dire

en dehors des points d'attaches des palées.

L'opération de levage a été faite en présence de la Section
de Genève de la Société des ingénieurs et architectes et a

duré environ quarante minutes (fig 9). Une fois la hauteur
nécessaire atteinte, les traverses porteuses du tablier étaient

fixées aux pylônes de levage par des boulons. Dès lors il né
restait plus qu'à monter les palées, à les souder et à placer
le portique à l'extémité de la voie de roulement, afin de

procéder à la mise en place de tous les organes mécaniques.
Les deux ripages, longitudinal et transversal, se sont

faits par glissement sur des voies appropriées et sans aucune
difficulté.

Pour cela il a fallu naturellement rendre provisoirement
rigide la palée articulée, au moyen d'une contrefiche, reliant
la partie inférieure de la palée, avec un des nœuds inférieurs
des deux poutres principales.

La charpente que nous venons de décrire est une
nouvelle preuve des avantages considérables que la soudure

électrique permet d'obtenir dans le domaine des constructions

métalliques.
Le portique est en service depuis 1949 et donne entière

satisfaction (fig. 11 et 12).
Je remercie ici très vivement le Laboratoire d'essais des

matériaux de l'Ecole polytechnique de l'Université de

Lausanne et son directeur, M. le professeur A. Dumas, ainsi que
la Direction des Chemins de fer fédéraux, pour l'aide
indispensable qu'ils nous ont apportée lors des essais de

résistance de cet ouvrage.
Je remercie aussi les Services industriels de Genève qui

ont bien voulu participer aux frais, assez élevés, exigés par
ces essais, le reste étant à la charge des constructeurs.

Monthey, le 15 décembre 1950.

DE LA PRATIQUE DES CALCULS DE COMPENSATION
par A. ANSERMET, ingénieur, professeur à l'Ecole polytechnique de Lausanne

Des problèmes de compensation se présentent dans la

plupart des domaines de la technique. Il s'agit de déterminer
des inconnues en effectuant des mesures ou observations en
surnombre. Les équations qui sont à la base de ces calculs

sont bien connues (voir par exemple Bulletin technique 1959,

p. 74) :

(1) U + v{ /,- (x, y,z, (i 1,2,3, n)

où x,y,z... sont les éléments inconnus au nombre de u
(n > u) ; cette surdétermination est à la fois gênante et
nécessaire, mais en général elle est voulue. Un point plus
ou moins controversé est celui qui consiste à fixer, dans

chaque cas, le nombre de mesures ou observations surabondantes.

Des considérations d'ordre économique jouent aussi

un rôle en pratique. Les quantités L< sont donc entachées

d'erreurs (erreur moyenne quadratique ± m{, poids p<).

(2) p<rof m2 [pvv] : (n — u).

En ayant recours à des valeurs provisoires ou approchées

(xo, Vo, *o ¦ ¦ ¦ et en posant : x x„ + dx, y y0 + dy,
z — z0 -\- dz on obtient, suivant la convention admise

pour les signes :

(3) — k + vt didx + bidy -f- adz ou + h + Vi

aidx + bidy + Cidz

En pratique l'emploi de valeurs provisoires x0,y0,z0
est recommandé même si les équations initiales (1) ont déjà

une forme linéaire ; les avantages de ce mode de caleul sont

multiples. Les termes U jouent le même rôle que les L< en

compensation. On peut choisir les x0,y0,z0, de manière
à rendre nuls jusqu'à u termes lt.

Il peut y avoir avantage (par exemple si u n — 1)

à éliminer les éléments inconnus. Seules subsistent (n — u)

équations en lt et Vi.
La condition de l'extrêmum peut revêtir diverses formes :

(4) [pav] [pbv] I [pcv] 0

([•¦•] ^(•¦¦) somme)

donc en tout (n -f- u) équations entre les dx, dy, dz et les

Vi (i 1,2 w) ; en combinant les équations (3) et (4) on
obtient les équations dites normales, à u inconnues, dont les

coefficients sont [paa], [p66], [pcc] [pab], [pac], [pbc]
(voir [1], [2]). Les termes absolus de ces équations sont

[pal], [pbl], [pel]

Solution indéterminée des équations normales

Cette solution est intéressante ; elle permet de calculer les

poids des inconnues avant de déterminer ces inconnues elles-

mêmes ([2] p. 297).

dx 1 [pal]qn + [pbl]q1% + [pcl]q13 + [al]
dy [pal]qix + [pbl]q& + [pcl]qw + [ßZ]

dz [pal]q31 + [pbl]qs2 + [pd]qss + [fl]

(6)

1 [paa]qu + [pab]qla + [pac]q13 +
0 [pba]qn + [pbb]qn + [pbc]qls +
0 [pca]qn + [pob]qlt + [pcc]fu +
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et des systèmes analogues pour (q21, ç22, ç23, (ç31 ,-||j|§N
53S ; le terme absolu 1, dans le membre de gauche,
occupe successivement la place de [pai], [aH], [pel] ¦ ¦ ¦ d'un
système à l'autre.

Quant aux poids px, py, pe- ¦ ¦ des inconnues ils sont donnés

par

(7)
m
Px

9n
aa

P.

1

Py

YY

PJ

?22
-PJ

1

p,
?33

aß" aY "ßY
> ?13 — ; ?23

PJ -PJ Lp

et en plus

Le calcul de ces coefficients ql:L, q-^, g23 ne peut pas
être évité ; ces coefficients jouent un rôle lors de la détermination

éventuelle du poids d'une fonction des inconnues. On

voit bien que le calcul des coefficients de poids qu, g22, q33

peut précéder celui des inconnues ; les Lt (ou Zj) n'ont pas
besoin d'être connus pour résoudre le système (6) d'équations.

Une autre solution consiste à combiner u k u soit de (:;)
manières les n équations (3). Dans le cas où u 3 et n — 4,

par exemple, le nombre de ces combinaisons est égal à quatre.
Il n'y a plus de vit donc plus de compensation pour chacun
de ces groupes de trois équations. Chacune de ces solutions
partielles se voit attribuer un poids exprimé par un
déterminant élevé au carré (voir [2] p. 327-329). Ainsi pour
l'inconnue dx on a quatre valeurs voisines dxi23, dx12i, dx13i,
dx^M auxquelles on applique le principe de la moyenne
pondérée :

(a1è3c3)2da;123 + (a1è2c4)2aj;124 +
(8) dx + («îVi^m + (a2b3c^j2dx.•-234

KVs)2 + (aiV4)2 + (aAc4)2 + (a2*3c4)2

(pour pt 1).

Les indices montrent le groupement des équations ; solution
analogue pour dy, dz.

Applications

Considérons le cas simple d'un triangle où les trois angles
sont mesurés

Après compensation
k + vx x poids Pi Px Px

k + H y » Pi ps py
h + "3 180° — (x + y) » Pa m Px-t V

[paa Pi + Ps ; [Pab]

(Pl+P3)?ll + P3-?12

Ps; [pbb]
1 1

P2 + Pa

Ps-?n + (P2 + Pzlixi °

d Où qn pi PiPz + PiPs + PsPi
+ P3

D

d î même
1 Ps + Pi 1

P2~ D ' P,
;

P1 + P2

D

el [pt: PI8 W 9

Les poids des trois angles mesurés sont amplifiés par la
compensation ; cette amplification est exprimée par la relation

[pi : Pfli'Z 1 — u qui est générale. Les erreurs moyennes
des éléments x,y,z et de fonctions de ces éléments ont
les valeurs les plus favorables lorsque [p( : Pi]* u. Une

compensation n'est vraiment complète que si ce contrôle a
été effectué. Les praticiens hésitent parfois devant ce surcroît
de calcul.

La station Urirotstock du réseau géodésique suisse fournit
un nouvel exemple. De cette station partent 8 directions ;

il y a donc 7 inconnues. En combinant deux à deux les
8 directions on obtient 28 angles. Si l'on mesurait et
compensait ces angles on aurait pour

1 9.pt 1 (i
[Pi:Pi]T [l:Pi]T-

28 u 7

7; P, 4

Les poids primitifs sont quadruplés par la compensation.
Cette méthode est dite parfois « symétrique » parce que les

Pi sont égaux, ce qui est aisé à établir. A Urirotstock le
Service topographique fédéral a mesuré 11 angles : n 11,
u 7 [xx, xt x7).

Angles mesurés Valeurs compensées

Rigi-Hundstock x1
Hundstock-Balmeten x%
Balmeten-Krônte xs
Hundstock-Schwarzgrat xi
Schwarzgrat-Krönte .r2 + x3 — a;4

Scharti-Hundstock x&
Scharti-Schwarzgrat ar4 -j- z5
Krönte-Schlossberg xe
Schlossberg-Titlis x1 — xe
Krönte-Titlis x-,

pi Pi pi'- P%

8 10.7 0.75
8 11.5 0.69
8 11.5 0.69
6 12.2 0.49
6 9.9 0.61
6 9.6 0.62
6 9.6 0.62
6 9.5 0.63
6 9.5 0.63
6 11.6 0.52

Titlls-Rigi 360° — [xx + x2 -fxs + x7) 8 10.7 0.75

0.49 < pt : Pi < 0.75 [p{ f>P$] 7.00 u

Il y a encore 17 angles non mesurés directement (17
28 —11) dont on pourrait calculer les poids. Avant de trair

ter un tel cas, il y a lieu de démontrer l'égalité [p,- : P,]" ;<.

Considérons une fonction déjà linéaire

F ggg + F3y + F3z (poids PF)

et le système :

'j + fi anc + b,y + az (poids de /,• p.)

I

(9)
Fî + ^s;1]* + [f3-2f a.t^.3]'

PF [paa]. [pbb A] [pcc.2] [pdd.3]

(voir [1] p. 148, 182)

Pr ü Pt pour Fx a<, F2 b{, F3 Ci

[pab] „[Ft.i] l
[paa]

[F,. 11 [Pac]
[paa]

||»[F,.2] [f',.13-^[F,.l]
Limitons à trois le nombre des inconnues :

[Pi--PiTi
[Piai]i ¦ _i
[paa]

~*~
[pbb A] [p<[^2-i]an +

+ [7^2]^-™
[p<[F*-mi - [(PA8 + ^p P,«? - 2 M PiOibi)],

[pMm-\^[pab] [pbbA]

De même [pt [F,. I]2]J [pcc. 1]

et [MF2.l][F8.l]]ï [pèc.l]

Hffi [PMA] + fclj! [pbbA] -
[pbcl]
[pbb A]

[pbc A] [pee.2]
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10) Finalement Pi [paa] [pbb A]
[pad] "h [pbb A] "*"

+ [pcc. 2]

[pcc. 2]

Il y a d'autres solutions (voir [4]).
Traitons succinctement encore un exemple portant sur

quatre repères de nivellement Rx, i?2, R3, Rt (u 3) reliés
deux à deux en épuisant toutes les combinaisons ; il n'y a

pas « symétrie », car les poids p,- sont inégaux. Une altitude
peut être choisie arbitrairement pour le calcul

Lignes nivelées
(n 6) p.

Rt — Äa
Ri — R*

i-Pi Pi-Pt
0.04 10.7 0.43
0.11 6.11 0.67 [paa] 0.125 [pbb]= .0.22

i?4 0.035 8.56 0.30 [pcc] 0.33 [pab]= -0.025Ri
R2 — Ra 0.06 9.0 0.54 [pac]= -0.06 [p6c]==_0.16
R2 — Rt 0.16 lllll 0.78 0.28 < (p,-: P{) < 0.78

R3 — R„ 0.025 11.1 0.28 (voir [5] p. 70)

[Pi-.Pjll =3.00 Le quotient p{: Pf
varie beaucoup ici.

Les compensations dans le voisinage de l'extrêmum

Le praticien est parfois amené à s'écarter de la solution
théorique ; ces compensations approchées donnent lieu à

des calculs plus simples, mais les erreurs moyennes obtenues

sont moins favorables. En outre une certaine ambiguïté se

manifeste lors de la détermination de ces erreurs moyennes
et poids.

Considérons de nouveau les n équations :

k + d ctiX + bty + Cj-z -f
[pav] [pbv] [pcv] 0

Admettons pour simplifier pi 1 (i 1,2 n)

x [aï], y [ß/], z m ¦ ¦ ¦ (voir [1] p. 107)

[aa] 1 [ba] 0 [ca] [av] 0

[6ß] 1 [aß] 0 [cß] l>] 0

[cY] 1 [aT] 0 [bf] l>] 0

Limitons à deux le nombre des inconnues et désignons

par x' une valeur voisine de x telle que

x' [a'ï] [aa'] I [ba'] 0

Tandis que la valeur x donne lieu à un système ax, a2

<x„ bien défini, il n'en sera en général pas de même pour les

a'{ ; on peut toutefois vouloir pour x' la plus petite erreur
moyenne, ce qui implique pour la fonction <p une va||fe"
minimum

cp [a'a'] — 2KX ([aa'] — 1) — 2F2 ([ba']) -
-2K3([a'l]-x')

_£. ==0 a' atKx + bfK2 + K3U [x' donné)
CrÇt t

V( OiX + biy— k [vl] — [vv]

[a'v] [a. ] Kx + [bv] K2 + K3 [vl] - K8 [vv]

[a'v] [aa']a; + [ba'] y — [a'I] x — x' - K3 [vv]
'

x' x + Ka [vv] =x — Kz[vl] [al]-K3 [vl]
dx' :dU=Oi — Kz vt et [av] 0

M2,1 ?n2 ([aa] + K\ [vv] — 2K3 [av])
(Mz> erreur moyenne)'

L=m s m ÏÏixte|#fP
Px' Px Px M

o\x pxi et px sont les poids respectifs de x' et x.

De même pour y on trouverait
Û

WM± 1 + ^-
p. Pv 91

y
Pv' < Pv)

Un calcul analogue peut se concevoir pour des poids pt
inégaux et pour une fonction des inconnues a;, y, z

Application. Un cas intéressant est celui de la mesure des

angles par la méthode dite des secteurs. Choisissons le cas

simple où le tour d'horizon est divisé en trois secteurs com-
prenaÄi'chacun deux sous-secteurs (n 9, u 5). Admettons

de plus pi 1. Des indices 1, 2 6 définiront les

sous-secteurs et 7, 8, 9 les secteurs.

(h + "t) + (*s + 's) + (k + 360°

l7 (h + fi) + ih + "«)

De même pour (lg -\- v3) et l9 -\- v9) ; combinons les mesures
directe If et partielles (l^, y, ce qui donne une moyenne
Jz + o,5 & + y ¦:;S5gg et pour le tour d horizon

li + la + h + OMh + h+ls + h + h + h)
1,5

360°

écart de fermeture)

Cette discordance est répartie uniformément à raison de

1/3 w par secteur :

i7 + 0,5 (u + m
l7 + v,

ce qui donne :

1,
>/.

l7 + v7 120° + 5 (4J7 — 2Za — 2Z9 + 2^ + 2/--
h L

et lx + vx 60°

3 *t '5

4Z7 —2Z
m

h-h

k)

-2l9
h

lllx — 7l2

5 1W

11 1 1

9,9.5

[Pi ¦ P*Ji

A A jL_A_JL A A A J
:p*~p*'' p1^i8"p;_p;_p4_p5_p6

Sur les quinze angles compris entre les six directions, il
y en a neuf qui sont mesurés directement. Considérons un
des six autres angles :

| + 1 + (h + v*) I 180o + A (6Z9_6Z8 + 325 +
+ 3^ + 9^ -9^-3^ -3LJ

et pour le poids Px+9 :

1
_

270
_

1

P~T9 _ 324 Î^Ô •

Solution approchée. La compensation est plus simple si

l'on fait abstraction provisoirement des sous-secteurs :

„a=_(360° —I, —i, —I,) 120°

^(1, + k + h)

fi fi 2 | & + ^t) — (^1 + i

120° 3(2*. W

Z1 + ^ 60° + g (21,- Z8 -1, + 3 lx ¦ 3L

finalement [I : P{]\ 9 X j-? 6 (au lieu de 5)
1,0



34 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

Cas où les équations initiales ont une forme périodique

De telles compensations se présentent dans la technique
instrumentale, la météorologie, l'hydraulique, etc.

Les équations aux erreurs auront la forme
K m K m

U + vt A0 + V AK cos iKp -f V BK sin iKp
K=1 k=i

(voir [1], p. 410)
2ttoù i 0, 1, 2 (n — 1), K est entier, p — p» 1.

Il y a u 2m -\- 1 inconnues (A0, Ak, Bk). Le calcul est
simple car les coefficients quadratiques des équations
normales et aux coefficients de poids sont seuls différents de

t i i i. n — 1 nzero. La valeur de m ne dépasse pas —=— °u q|Iuivant que

n est impair ou pair.
Les coefficients des inconnues sont :

K 1 2 3 4 5

i 0 1 cos 0 sin 0 cos 0 sin 0 cos 0
1 1 cos p sin p cos 2p sin 2p cos 3p
2 1 cos 2p sin 2p ce

6

sin 0
sin 3p
sin 6pcos 4p sin 4p cos 6p

3 1 cos 3p sin 3p cos 6p sin 6p cos 9p sin 9p
4 1 cos 4p sin 4p cos 8p sin 8p cos 12p sin 12p
5 1.

n — i

Il est possible d'éliminer au préalable A0 car [v] 0

[li]n0-1 n.A0 A0=j-[li]

[aa] n [bb] [ce] [dd] -~

1
?11 — ~ ?22 — ?83 — ?44

Le contrôlé [1 : Pî]0 se présente comme suit :

A _ _|_ i (cos2 0 + sin2 0 + cos2 0 + sin2 0
Px n n

1 2
- + -.mn n112—- —j (cos2 p -f- sin2 p + cos2 2p -+- sin2 2p

¦* 2 71 n
1 2
- + -mn n112¦=- —I— (cos2 2p -f- sin2 2p 4- cos2 4p 4- sin2 4p

P3 n n
1 2
_ x _ m
n n

[1 : P,]"-1 n I + - m) 1 + 2m u\n n f
AK — - [h cos iKp]

n
B,, [U sin iKp]

Ellipses d'erreur isolées ou groupées

La détermination d ellipses d'erreur est fréquente en
pratique ; la solution la plus simple consiste à calculer ces ellipses
individuellement, c'est-à-dire successivement et non pas
simultanément. II faut parfois les grouper par paires ; ce cas
sera traité plus loin.

L'ellipse d'erreur peut être engendrée ponctuellement ou
tangentiellement ; elle est d'essence géométrique mais fut
étudiée surtout par voie analytique (voir [3] p. 205-248).
L'ellipse est souvent définie comme étant l'enveloppe d'un
rectangle inscrit dans le cercle dit orthoptique ; le paramètre
est l'orientation du rectangle.

Considérons un point (x, y) déterminé par des mesures
linéaires Lx, L2 Ln d'égale précision (p,- 1)

Li + Vi fi (x,y) i 1,2 n, u 2

ou k + V{ Oidx -f- bidy at sin as- bi cos a,-

En géodésie moderne Jes mesures de longueurs tendent à

jouer un grand rôle, ce qui justifie l'hypothèse faite. L'orientation

des axes de coordonnées est arbitraire ; cette
orientation peut être choisie pour que

0 bt=0 (« 1 «,•

Les erreurs moyennes des y ou des x donnent alors celles
des (U -j- Vi) ; la longueur Li coïncide en effet avec une
parallèle à l'un des axes de coordonnées. Pour chaque direction

Oj on aura une paire de tangentes à l'ellipse définie
par l'erreur + M/,- + «f. De plus on peut éliminer les x et y ;

par exemple pour n 3 on a

«i h fi + h
fl2 ba V9. + U

b3 c3 + h

0

L'ellipse est définie par des paires de tangentes respectivement

normales aux directions a1; a^, cig. Le problème peut
être traité par la géométrie synthétique. Aux erreurs
moyennes Mti + vi correspondent les poids Pi,- + »,¦ P< tels
que [pt : P,]" u 2.

Ce contrôle est aisé même si la compensation est basée
sur des observations conditionnelles où les Vi et U sont liés
par des équations telles que :

«f si + "i 0, [bv]\ + à o, HïJl ^ ™1

les It étant contenus dans les

0

b. p.-:; Pi Y

at\ ;

b-iA
2

¦a 2"Siw - pt-
Pi \

-. p*-M
J

ce 'aa bb

Lp J LP _ IP J

(voir [4])

les cti, bi, <h n'étant plus les mêmes qu'auparavant.
Le cas où l'ellipse d'erreur a une forme circulaire intéresse

plus particulièrement le praticien ; il suffit que l'expression
donnant l'erreur moyenne (Mti+vî) soit indépendante du
gisement a,.

Les cas où les Li sont des mesures angulaires et non plus
linéaires sont traités de façon analogue.

Calcul par paires d'ellipses. Désignons par A (x, y) et B
(x', y') la paire de points à compenser ensuite de mesures
linéaires L< effectuées en surnombre ; il y a deux groupes
d équations :

U + Vi — ai dx -\- bt dy (pour A)
Ik + vk — c* dx' -f dK.dy' (pour B)

et en plus : l + v adx -f- b. dy + c. dx' -f- d. dy'
(pour A-B)

ou et b d u 4

soit en tout n équations ; le calcul est plus long et surtout
la recherche de la forme circulaire des ellipses est assez
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malaisée. En revanche la valeur m2 [vv] : (n —- u), dont
dépend • l'échelle des courbes, est commune, ce qui est un
avantage. Le calcul non simultané des ellipses donne lieu
parfois à des valeurs assez différentes pour m.

Une compensation complète fournit aussi les coefficients
de poids

'[aa], [ßß] [aß], [or] j ¦ • [lb] ;

les éléments des deux courbes seront donc connus. Le cas

peut se présenter où l'on désire tracer les ellipses avant de

connaître la valeur de [vv] ; il faut admettre une valeur
provisoire, c'est-à-dire une échelle arbitraire, en attendant
de posséder tous les éléments nécessaires à l'achèvement
du calcul.

Solutions indéterminées

Considérons des mesures ou observations d'égale précision
(pi 1) au nombre de six (n 6) et le cas où u n — u 3.

Le raisonnement qui suit est d'ailleurs applicable au cas où

u =£ (n — u).
U -+- Vi eux + bty + dz (i 1, 2 n)

[av] — [bv] [cv] 0

Le même problème peut aussi revêtir la forme :

[Av]\ + wx [Bv]l + w2 [Cv]\ + «-3 0

où les w sont des fonctions des li
on a en plus :

vt AiKx + BiKz + CiK3 (i 1, 2 n)

donc en tout (n -f- u) 9 équations dans les deux éventualités.

Le praticien hésite parfois entre les deux formes de

compensation, surtout si u n — u. Ce cas a été choisi à

dessein, car le nombre d'équations normales est le même
quelle que soit la solution choisie,

Ce problème d'indétermination fut déjà traité dans le
Bulletin technique (1950, p. 266 ou aussi dans [2] p. 326-329).
On peut considérer soit le système d'équations normales en

x, y, z (ou Kx, K%, K3), soit le système des (re -f- u) équations
en Vi, x, y, z (ou Vi, Kx, K%, K3). Le résultat est le même en
ce sens que le dénominateur des inconnues est égal à :

N N

%(agbhCK)* ou ^(AçB.Ck)2 (N=Q)
i i

les indices g, h, ifs'obtenant en combinant 3 à 3 les n indices.
Les déterminants (ag b^CK) et (Ag Bh Ck) sont du même ordre
dans le cas particulier, parce que u n — u ; en général
u =£ (re — u). Si un seul de ces déterminants est différent de

zéro le problème est susceptible d'une solution ; cela résulte
aussi de la formule (8). Une autre manière de traiter ces

cas d'indétermination est due à M. le professeur Hopf, de

l'Ecole polytechnique fédérale (voir Revue suisse des

mensurations, juin 1948).

La substitution d'éléments fictifs aux
quantités mesurées U et aux poids pt

Le cas se présente où les équations initiales ont la forme :

Fi (x, y, z, U + vt, n, st) — 0 (i — 1, 2, n)
où r< et st désignent des paramètres. En ayant recours à

des valeurs provisoires s», y0, z0 des inconnues (x x0 -f- dx,

y y0 + dy, z z0 -\- dz) et en posant :

fdFj\
dU

on obtient le développement linéaire :

fi-\- ai dx -f bidy -\- Cidz + X< v,• 0

X< Ft(x0, y0, z0, U, rt, s<) /<

Vi h (ai dx + bidy + a dz + /<) (poids p<).

Une solution peut être trouvée en substituant aux quantités

Zj et pt des'éléments fictifs. Ce n'est pas la valeur observée

l{ qui subit une correction mais, par exemple, le
paramètre rt :

Fi (x, y, z, k, n -jr. v'f, Si) 0

et, en posant :

on aboutit à la forme :

/,- + «»" dx -+• bi dy

d_Fj

Jri

- Ci dz

P»

v'i 0

v%

1
(aidx + bidy -f- Cidz -\- fi) (poids fictif p't

Considérons d'abord le cas simple où u 1 (re 4)
et e liminons les inconnues dans le système Vi non fictif :

axbxcx Kxvx + fx

«2 hcz ^2^2 + ti
a3b3c3 \3v3 + f3

a^b^Ci \4t>4+ /4
ou

Ax \x vx + A2 X2 v2 + A3 h3 v3 + A,
et en plus

[pvv] -, minimum

14X4p4 0

?K

wK'

ce qui se traduit par l'équation normale :

'AA ~\n
X2 K + w 0 [pvv] —

- P Ji
où K est le coefficient indéterminé (corrélatif).

Le système fictif donne lien à l'équation
'AA 1"
—r p2 K' + w 0 IV. VI -P Ji

Par la comparaison de ces résultats on obtient
X2 P? p2-

- — ou Pi — P< iP — poids fictif).
Pi Pi ^

Ce résultat a une portée générale pour re quelconque, ce

qui est aisé à établir (voir aussi Revue suisse des mensurations,

mai-juin 1948). On verrait sans peine qu'on peut
substituer aux quantités observées k non seulement un
paramètre r< mais encore une fonction d'un paramètre ou d'une
inconnue. Dans chaque cas on calculera le poids fictif à

attribuer. La solution de certains problèmes de compensation
est facilitée par l'emploi de poids et observations fictifs.

Conclusions

Le but de cette note est de mettre en évidence certains
aspects des calculs de compensation ; la littérature sur là
matière n'est pas toujours très explicite quant aux
applications de la méthode. L'accent a été mis ici surtout sur les
valeurs obtenues pour les erreurs quadratiques moyennes
après compensation (poids des li -f- vt). Ce calcul est parfois
relativement long et les praticiens y renoncent, us n'ont
ainsi pas le bénéfice du contrôle [p,- : P<]J u ; ce résultat
est un extrêmum au même titre que [pcc]. Une compensation
ne peut être considérée comme complète qu'une fois ce
contrôle effectué.
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