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CALCUL DE LA DEFORMATION DE L'IMAGE PLASTIQUE

^^^^^^Ê EN PHOTOGRAMMÊTRIE fmHH^H
Par W. K. BACHMANN, professeur à l'Ecole polytechnique de l'Université de Lausanne

Lorsqu'il s'agit de dresser des plans p|pographiques précis
à l'aide de photographies aériennes, on utilise des appareils
de restitution automatiques, appelés autographes. Quoique
ceux-ci soient de véritables chefs-d'œuvre de la mécanique
de précision, les résultats obtenus ne sont jamais parfaits ;

pour cette raison les constructeurs et hommes de science
n'ont cessé de faire des recherches en vue d'une augmentation

de la précision.
Durant ces trente dernières années, la photogrammêtrie a

fait d'immenses progrès grâce à ces recherches et à l'heure
actuelle on ne pourrait plus se passer de cette science dans
de très nombreux domaines. Qu'on pense seulement aux
services qu'elle rend à l'ingénieur civil, et notamment aux
hydrauliciens dans la construction des barrages. Là où le
géomètre relevait autrefois péniblement quelques points à la
planchette, la photogrammêtrie permet aujourd'hui de
restituer les régions les plus inaccessibles, telles que parois
rocheuses, etc. Mais aussi pour la mensuration cadastrale et
le relever de cartes topographiques à toutes échelles, Jâ

photogrammêtrie rend de grands services.
Les appareils de restitution dont on dispose actuellement

permettant d'obtenir une très grande précision, la
photogrammêtrie est de plus en plus utilisée pour l'établissement
de plans à grande • échelle (1 : 500 à 1 : 2000). Mais comme
dans tous les domaines de la technique, en photogrammêtrie
aussi toute application nouvelle pose des problèmes
nouveaux. Ainsi, l'établissement de plans à grande échelle par
photogrammêtrie aérienne présente encore certaines
difficultés.

Lorsqu'on effectue de tels travaux, on est toujours amené
au même problème : il faut éliminer les déformations de
l'image plastique. Rappelons brièvement ce que l'on entend
par là.

Dans les appareils de restitution précis (autographes), les
deux vues conjuguées d'un couple sont placées dans les deux
chambres de restitution et orientées comme au moment de
leur exposition. Mais si les vues ont été prises par avion,
la position et l'orientation de la chambre au moment de la
prise de vue ne sont connues qu'approximativement. U
s'ensuit que les éléments d'orientation doivent être déterminés

empiriquement dans l'appareil de restitution. Dans
ce but, on procède tout d'abord à l'orientation relative et
ensuite à l'orientation absolue des clichés en se servant de
trois points connus, bien visibles sur les plaques photographiques.

Normalement, on dispose cependant d'au moins
cinq points, bien répartis sur l'ensemble de la région
commune aux deux vues. Il ne faut en effet jamais perdre de
vue que la photogrammêtrie n'est qu'une méthode
d'interpolation.

Si l'on fait abstraction de quelques cas particuliers, au
point de vue mathématique, les orientations relative et
absolue sont rigoureusement déterminées par les données du
problème. Mais comme la solution réalisée à l'autographe est
obtenue par des moyens mécaniques et optiques, elle est
nécessairement entachée d'erreurs d'observation et
instrumentales. Il en résulte que la solution n'est plus unique
puisqu'elle dépend de ces erreurs résiduelles, le plus souvent
inobservables. Nous avons donc une infinité de solutions qui
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sont toutes voisines les unes des autres. En effet, pour établir
l'orientation relative, nous devons éliminer les parallaxes
verticales dans l'ensemble de l'image plastique ou du moins en
cinq points indépendants de celle-ci. Mais comme l'erreur
moyenne d'observation d'une parallaxe verticale est
d'environ i 0,02 mm, toute parallaxe verticale inférieure en
valeur absolue à cette valeur passera en moyenne inaperçue.
Nous constatons donc qu'au point de vue pratique le
problème de l'orientation relative admet toujours une infinité
de solutions, toutes comprises dans un petit domaine d'un
espace à cinq dimensions, l'orientation relative dépendant
de cinq variables. La théorie des erreurs permet d'étudier
de plus près ce domaine et l'on peut ainsi déterminer en
particulier la précision obtenue, en calculant les coefficients
de poids et de corrélation des variables d'orientation.

De même, l'orientation absolue est influencée par les
erreurs accidentelles et instrumentales. Nous en concluons
que l'image plastique est entachée aussi bien des erreurs
provenant de l'orientation relative que de celles ayant leur
origine dans l'orientation absolue. La distinction entre
l'orientation relj^Bve et l'orientation absolue a du reste un
caractère plutopSitheorique que pratique, car une fois le
problème dégrossi, on ne peut plus les traiter séparément,
en.ce sens que toute modification de l'orientation relative
change aussi l'orientation absolue. Cette dépendance se fait
surtout sentir quand il s'agit de dresser des plans à grande
échelle. C'est précisément pour cette raison que l'établissement

photogrammétrique de ce dernier genre de plans s'est
révélé si difficile.

Nous venons de voir que nous pouvons faire varfeê-dans
une certaine mesure l'ô!s§ntation relawve de deux clichés
sans faire apparaître des parallaxes verticales gênantes. Mais
cette variation des éléments d'orientation entraîne forcément
des déformations de l'image plastique. Nous constatons ainsi
que nous pouvons déformer l'image plastique dans certaines

îrJ

«£C

Fig. 1.1. — Schéma de l'autographe Wild A5.

limites. Une telle déformation se présente du reste toujours
indépendamment de la volonté de l'opérateur et est éliminée
partiellement par l'orientation absolue. Ces déformations
deviennent surtout apparentes, et hélas aussi gênantes,
lorsqu'on dresse des plans à grande échelle. Ce phénomène
provient essentiellement du fait que les vues pour de tels
levers doivent être prises à basse altitude (800 à 1200 mètres
sur le sol), ce qui donne un certain flou aux clichés. On est
dès lors constamment amené à se demander si l'on peut
éliminer — ou du moins réduire — les erreurs résiduelles de
l'image plastique en modifiant convenablement les éléments
d'orientation sans introduire de parallaxes verticales gênantes.
Pour répondre à cette question, il faut tout d'abord savoir
calculer la déformation de l'image plastique en fonction des

accroisgjpnents attribués aux éléments d'orientation. Notre
première tâche consistera donc précisément dans l'établissement

de ces relations.
Les erreurs résiduelles de l'image plastique se manifestent

tant en planimétrie qu'en altimétrie, mais pratiquement on
PUÏJachera que très rarement la même importance à ces
deux catégories d'erreurs. Lorsqu'il s'agit de levers cadastraux,

la planimétrie seule étant restituée, on portera toute
son attention à l'élimination des erreurs planimétriques. Pour
les plans topographiques à grande échelle, on exigera géné-
lalement une plus grande|Sffécision dans l'altimétrie que dans
la planimétrie et ceci surtout pour des terrains relativement
peu inclinés. Dans ce dernier cas, on s'efforcera avant tout
de réduire les erreurs altimétriques. Il est entendu que le
cas général, où les deux genres d'erreurs ont la même importance,

se présente également dans la pratique. Nous le
rencontrons notamment en photogrammêtrie terrestre où le
terrain à restituer est souvent très incliné.

Nous n'avons pas la prétention d'épuiser ce problème. Il
est vrai que nous établirons des formules tout à fait
générales. Mais nous étudierons ensuite tout particulièrement la
déformation altimétrique de l'image plastique, où nous avons
quelques expériences pratiques grâce aux travaux effectués
à l'Institut de photogrammêtrie de notre Ecole.

Les formules que nous allons développer furent publiées
pour la première fois par O. v. Gruber dans son Traité de

Photogrammêtrie. Malgré tout le respect que nous avons pour
cet eminent photogrammètre, une certaine prudence s'impose
lorsqu'on veut appliquer ses relations, car elles ne conduisent
pas toujours à des résultats corrects. En 1943 déjà, nous
attirions l'attention du lecteur dans [1], où nous reprenions
cette question en basant nos calculs uniquement sur les

opérations et observations qu'on effectue à l'appareil de
restitution.

Ces nouveaux résultats, publiés en 1943, n'ont sans doute
guère été remarqués par les photogrammètres puisque nous
n'avions pas la possibilité de les vérifier pratiquement. Si
nous les reprenons aujourd'hui, c'est parce que les travaux
pratiques que nous avons pu effectuer entre-temps nous

permettent de dire qu'il ne s'agit nullement
d'une pure spéculation théorique, mais que
les dites formules sont quasi indispensable
pour l'établissement de plans à grande échelle

par photogrammêtrie aérienne.

§1. Formules différentielles fondamentales

En établissant les formules pour le calcul de
la déformation de l'image plastique, il est
indispensable de préciser le type d'appareil de
restitution qu'on veut considérer. Si l'on ne
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chambre /J Sase fnférteure e/ia/nÔre .iff
chombre B ease extérieure chambre /?

CÀamère gauche I il

e X

V

by

efiamôre ciïvffe

Fig. 1.2. — Systèmes de coordonnées et sens positif des variables
pour un observateur placé devant l'autographe.

=^e X

tient pas compte de cette nécessité, on risque de s'égarer
dans des calculs purement formels qui n'ont plus rien de

commun avec les opérations et observations qu'on effectue
à l'autographe lors de la restitution. Nous allons considérer
un appareil de restitution à projection mécanique du type
le plus utilisé (constructions Santoni ou Wild, par exemple).
Pour éviter toute confusion, nous adapterons nos igr,mules
à l'autographe Wild A5, mais il va de soi qu'elles resteront
encore valables pour tous les autres appareils de restitution
du même type. D'une façon générale, on peut dire qu'elles
s'appliqueront à tous les appareils de restitution à projection
mécanique. Si l'on observe par contre directement l'image
plastique (Multiplex), ces formules doivent être quelque peu
modifiées.

Le fonctionnement de l'autographe Wild A5 étant bien

connu, nous nous bornerons à en donner le schéma ; voir
figure 1.1.

Le lecteur non initié trouvera tous renseignements utiles
dans la publication [2]. Les systèmes de coordonnées, ainsi

que le sens positif des variables, que nous adopterons dans
cet exposé, sont indiqués à la figure 1.2.

Cette figure montre que nous désignons la chambre gauche
(pour un observateur placé devant l'autographe et regardant
dans les lunettes d'observation) par A et la chambre droite
par B lorsque la base est introduite vers l'intérieur. Par
contre, si la base est à l'extérieur, la chambre gauche est
désignée par B et la chambre droite par A. Moyennant cette
convention, les formules que nous établirons seront valables

pour les deux cas, ce qui est très appréciable pour les travaux
de triangulation aérienne.

Considérons l'une quelconque des deux chambres de
restitution. Par définition, on entend par « axe de chambre »

la droite qui passe par le centre (mécanique) de projection 0
et le point principal S du cliché. En désignant le vecteur
unité, porté par 1 axe de la chambre, par n, nous avons
d'après la figure 1.3

(1 i sin <p + /' cos <p sin w -f- k cos cp cos tu.

Lorsque l'opérateur observe dans l'autographe un point
quelconque de l'image plastique, les deux marques repères
sont projetées en deux points conjugués des clichés. Soient P
la douille conductrice de l'une des chambres et p le point
image observé. En faisant abstraction de quelques particularités

d'ordre constructif de l'autographe, qui sont ici sans
importance, nous pouvons dire que les points p, 0 et P
sont alignés. Si (X, Y, Z) sont les coordonnées cartésiennes

du point P, nous avons, en posant OP R

IH R iX + jY + kZ.

U

r w cu>o
L directïon de vol

9
J X /

>0

dy

X

p dX

Fis. 1.3.
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Connaissant R et n, ainsi que la distance focale / de la

chambre, nous pouvons calculer le vecteur Op r. En effet,
puisque les trois points p, 0 et P sont alignés, nous pouvons
écrire, en introduisant un paramètre \ :

(1.10)

(1.3) r=\R

mais nous avons

(1.4)

d'où nous tirons

r n Xi?, n

ÜÜ

n -f

f x=-^/R.n

R.
R.n

dt=+f
\/(Y2+Z2)sJ||aq>+(Ysinuj-|-Zcosuj)2cos2cp

(—X sin cp+ Ycoscp sin uj+Z cos cpcos m)2
•AX

b) pour dR ]'AY ds

(1.11)

(it)2 cos2 cp sin2 uu—2NY cos cp sm u)-)-iv2 f A Y2

(1.12)

ds=.+/V(--Xsincp+.Zcoscpcosu))24- (-X2+.Z2) cos2cpsin2iu A v
(—X sin cp + Y cos cp sin U) + Z cos cp cos u»)2

Pour simplifier l'écriture de ces formules, nous posons

!«&&! considérant dans cette formule /
et n comme constanteset it comme
variable, nous pouvons calculer la variation

du vecteur r en fonction d'un
accroissement dit, attribué à R. La
differentiation de la formule (1.5) nous
donne

(1.6)

Désignons le produi t scalaire R. n par N ; les équations (1.1)
et (1.2) nous donnent alors

CP

IP

1.13) gj \/ (Y2 -f- Z2) sin2 cp + (Y sin ui + Z cos uu)2 cos 2 cp

(— X sin cp -HsSjK cos cp sin tu -f- Z cos rp cos tu)2

_ \/ (—X sin cp + Z cos cp cos uj)2 + [X2 + Z2) cos2 <p sina u>

1.14) (— X sin cp -f- Y cos cp sin uj -)- Z cos cp cos tu)2

f \dR.
dr R — dR

Rn \ R.n

'ejpSïous trouvons ainsi

—V —> -X sin <P + Y cos <p sin u.1
N H n

cos <P COSUJ. J

dt= +fQ. AX

/Y. Alfis

(1.7)

En formant maintenant à partir de (1.6) le produit scalaire
dr.dr et en tenant compte de l'équation (1.7), nous obtenons

1 p
+ {d~R7n)z. (R)2

-2N{d~R.~n).{R.dR)

+ iV2.(<$)2

(1-

Cela étant, nous attribuons à 2? successivement les accroissements

AX et AY et nous calculons les différentielles corres-
—>

pondantes ds et dt du vecteur r. Nous avons

a) pour dR iAX dt I dt

(1.9)
/2

(R)* sin2 cp + 2iVX sin cp + N2 \ AX!

(1.15)

(1.16)

Ces deux dernières formules, qui définissent un système
de coordonnées (s, t) sur les clichés, permettent de calculer
le déplacement différentiel (ds, dt) de la marque repère sur
le cliché en fonction du déplacement (AX, AY) de la douille
conductrice dans un plan horizontal de l'espace de l'image
plastique.

Ce résultat étant acquis, nous considérons de nouveau le
vecteur OP — R (voir figure 1.3), que nous supposons
solidaire de la chambre. Imprimons maintenant les rotations
différentielles dit, diu et dq> à la chambre et soit du le vecteur
représentant la rotation résultante. La figure 1.4 nous donne

mm

Le vecteur H étant par hypothèse solidaire de la chambre,
il subit un accroissement dR, qui est donné par la formule

-j- i (— dx. sin cp — dm)
->•

du — ->
f- / (dm cos cp sin uu — ci cp cos uj)

-)- k (dK cos cp cos uj -j- dcp sin uj)

;i.i8) dR^dS AR

En tenant compte de (1.17), nous obtenons
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(1.19) dR
i j k

(—dK sin cp — diu) (dK cos cp sin uj — dcp cos uj) (dK cos cp cos uj -f- dtp sin uj)

X Y Z

Soit (R + dR) ce nouveau vecteur. Déterminons son intersection avec le plan horizontal Z constante. Dans ce

but, nous introduisons un paramètre A et nous formons 'lexpression \(R -f- dR), qui devient :

B 20)
jX + Z(dKcoscpsinuj—dcpcosiu)l * |Y+X(dKcoscpcosuj + dcpsin

A (R 4- dR) — \i\\ ,r, |+jr(—Y(aK cos cpcos uj+rfcpsinuj) j

ujH -* I—X(dK cos cpsintu —dcpcosuj]
Z(dK sin cp + duj) Z + Y(— dK sin cp — diu)

Nous obtenons le point d'intersectiqn cherché lorsque la composante du vecteur A(i? -)- dR) dans la direction de k
est égale à Z, ce qui nous donne la condition

.Z -\- Y (— dK sin cp — diu)
— X (dK cos cp sin uj — dcp cos uj)

ou bien

(1.21) X= —
1

Y X
1 -\—y-{— dK sin cp — du)) — -~-(dK cos cp sin uj — dcp cos uu)

Nous pouvons développer cette expression en série ; en négligeant les termes yaipérieurs au premier ordre, nous obtenons

(1.22 X

Y
1 + — (rfK sin cp + dw)

X+ -^ {dK cos cp sin w — d(p cos tu).
Zj

En introduisant cette valeur de X dans la formule (1.20), on obtient, toujours aux termes du second ordre près

(1.23)

X (i? + dR)

X -\- Z (dK cos cp sin uj — dcp cos uj) — Y (dK cos cp cos uj + dcp sin tu)

XY X2
H =— (dK sin cp -f- diu) -\——¦ (dK cos cp sin uj — dcp cos uj)

Y -\- X (dK cos cp cos uj + dcp sin uj) -j- Z (dK sin cp -f duj)

Y2 XY+ -=- (dK sin cp 4- dtu) -\ =r, (dK cos cp sin uj — dcp cos uj)Z Zj

k. Z

dw

9*i etH cos if cos tu

dK

dtp cos oi

dcp

db

Fig. 1.4.

dbz
6X

y dby

e/y dZ

'.n posant

..24) \(R + dR) i(X + d-Ji) + j(Y + dJL) + kZ

nous obtenons finalement
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(1.25)

(1.26)

d1K

dj L

XY X2
•J Z cos 9 sin uj — Y cos cp cos iu -| — sin cp -|—— cos cp sin tu \ dK

X2 XY
{ Z cos uj + Y sin uj -)—=- cos iu > dcp -j *g du)

Y2 XY
•[ X cos cp cos uj + Z sin cp -|—— sin cp -)- —— cos cp sin uj } dK

(- \ X sin uj =r- cos uj > dcp 4- Z | 1 -\~™ \ du)

Avant de continuer ces développements, rappelons la
signification géométrique des formules (1.25) et (1.26).
Supposons qu'on ait un rayon lumineux partant du point
image p et passant par le centre de projection O. Ce rayon
coupe le plan horizontal Z constante en un point P dont
les coordonnées sont (X, Y, Z). Lorsqu'on imprime les

rotations dcp, dut, dx à la chambre, le rayon les subit également

et intercepte le plan horizontal Z constante en un
point P de coordonnées X + d-yK, Y -\- djL, Z.

Examinons maintenant ce qui se passe lorsque nous imprimons

un déplacement différentiel à la douille conductrice ;

attribuons aux composantes de base les accroissements (dbx,
dby, dbz) et imprimons au chariot de base une translation
de composantes (&X, &Y, &Z). Le signe positif de ces variables

est indiqué à la figure 1.4. En désignant le déplacement
résultant de la douille conductrice par d2R, nous avons

(1.27)

(1.32)

i2 R i (dbx + bX) 4- / {dby + bY) + k (— dbz + bZ).

Cherchons l'intersection de cette nouvelle position de la
tige conductrice avec le plan horizontal Z constante. Les
calculs sont les mêmes que précédemment. En introduisant
un paramètre n, nous formons l'expression

(1.28)

et nous obtenons ainsi pour u

(1.29) u(Z — dbz + bZ) Z

ou bien aux termes du second ordre près

u (R 4- d2fl)

4-îu (X 4- dbx + bX)

+ 7» (Y + dby + bY)

+ £u (Z — dbz + bZ)

¦

1 1 „ -%bZ.
Zj

u — ' z
1 — -= dbz 4- -y bZ(1.30)

Si nous introduisons cette valeur dans l'équation (1.28
nous trouvons

(1.31)

M (# + d2R) =jl + ^dbz—^bZ |

-f- i(X+dbx + bX)

+ *j(Y + dby + bY)

+ t(Z — dbz + bZ)

11X + dbx 4- bX + ^ dbz --HI
M(fi4-d2ß) -jh + dby+bY + ^dbz-

k. Z
W

Si nous posons

(1.33) M (R 4- d2R) —R=i d^K 4- / dJL

l'équation (1.32) nous donne

(1.34)

(1.35)

X
d2K dbx 4- bX + -^ dbz

Zj
bZ

Y Y
d2L dby -\- bY -\- -= dbz ¦— &¦ bZ.

Considérons maintenant simultanément les intersections
du rayon p(9 et de la tige conductrice avec le plan horizontal
Z constante et formons la différence entre les coordonnées
de ces points (voir fig." ~Vßm) ; nous avons

(1.36) /\X d1K — d2K AY^d^L — d2L

X

HfX'cUK.Y'd^L) AX-dJC-dJÇ

(tige
conductrice)

AY-qL-cliL

?y

(rayon lumineux)
P,QC*<ilK,y'ti,l)

Fier. 1.

ou. en negligeegéant les termes supérieurs au premier ordre,
En introduisant deux nouvelles grandeurs dL et dK au

moyen des équations
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[1.37)

(1.38)

dK

dL

XY X2
\ Z cos cp sin lu — Y cos cp cos uj -\—=- sin cp -|—— cos cp sin uj [ dK

X2 XY X
Z cos u) 4- Y sin uj 4" %" cos uj ^ dcp H—^— diu — dbx — — dbz

/ Y2\ XY 1

{ X cos cp cos u) + Z 1 4" -72 sin cp -| yr cos cp sin iu \ dK

Y ¦ XYX sm uu — cos uu
Zj

I f ^21 Y
fdcp4-Zjl4--72f«UJ — dby — ¦= dbz

XAX=dX —bX bZ

AY dL—bY+ -=bZ

les reniions (1.36) deviennent

(1.39)

(1.40)

En vertu des équations (1.15) et (1.16), les différences
correspondantes As et At des coordonnées sur les clichés
sont

(1.41)

(1.42)

(1.43)

(1.44)

où nous avons introduit les indices A et B suivant que les
grandeurs mentionnées se rapportent à l'une ou à l'autre des

deux chambres de restitution.
Arrêtons-nous un instant à ces formules, afin de bien

nous rendre compte de leur signification géométrique.
Supposons qu'on ait introduit deux vues conjuguées quelconques
dans l'autographe et qu'elles aient été orientées correctement.
Nous voyons alors une image plastique du terrain dans
l'autographe et la marque repère spatiale peut être placée en un
point quelconque de cettgâmage. L'opérateur voit la marque
spatiale en un point de l'image plastique, lorsque les deux
marques repères coïncident avec les points image conjugués
sur les clichés. Il les y amène en déplaçant convenablement
le chariot de base.

Cette orientation initiale correcte des deux clichés étant
par hypothèse réalisée, nous imprimons aux deux chambres
les rotations (dcp^, d\uA, dxA) et (dcpn, dvjß, dxB). De plus,
nous modifions les composantes de base respectivement de

(dbxA, dbyA, dbzA) (dbxß, dbyß, dbzß) tout en imprimant au
chariot de base une translation de composantes. (bX, b Y, bZ).
L'introduction de ces accroissements a naturellement pour
effet d'éloigner sur les clichés les marques repères des points
image sur lesquels elles reposaient précédemment ; ces écarts

Chambre A

AtA + f^AdKs- -bX4-^bzl

AsA 4- j\uA \ dLA — bY+^bZ 1

Chambre B

AtD + /cpjj | dKj, - bX4-^bz}

AsB + /ipü 1 dLB -

sont donnés par les formules (1.41) à (1.44) qui se

rapportent aux systèmes de coordonnées (tA, sA) et (tB, sB)
introduits sur les deux clichés. La question qui se pose
maintenant est la suivante :

Est-il possible d'imprimer au chariot de base une translation

(&X, &Y, bZ) telle que les écarts AtA, AsA, Atß, A*^.
s'annulent simultanément

Pour y répondre, il suffit de considérer les différentielles
6X, &Y, &Z comme variables dans les formules (1.41) à

(1.44), tandis que les autres grandeurs figurant dans le
membre de droite de ces équations ont des valeurs fixes.
Nous voyons que les quatre écarts AtA, As^, Atg, Asj
s'annulent simultanément lorsqu'on a

(1.45) (1.46)

bX ~bZ dKA bY~~bZ dLA
Zj Zj

bX — ^-bZ dKB bY — ^bZ dLB
Zj Z

Rappelons que (X^, YA, Z) et (XB, YB, Z) désignent les
coordonnées des points d'intersection des tiges conductrices
et du plan horizontal Z constante. En négligeant les
différentielles du premier ordre — ce qui est permis ici puisque
ces grandeurs seront ensuite à multiplier par les différentielles
&X, 6 Y, bZ — nous obtenons YA YB Y. De plus, la
figure 1.2 nous permet d'écrire la relation

c + Xb — bxB — c 4" bxA — XA 0

d'où nous tirons
XA — Xb bxA — bxB.

La différence bxA — bxß s'introduisant directement dans
l'autographe, nous la désignons par bx et obtenons ainsi les
relations

(1.47)

Yb YA Y XA — Xb bx bx bxA — bxB ^> 0.

Que pouvons-nous alors dire au sujet de la résolution des

équations (1.45) et (1.46) par rapport à 6X, 6Y, bZ Le
déterminant principal du système (1.45) est toujours différent

de zéro puisque nous avons XA zfc Xß. Il en résulte que
nous pouvons calculer les valeurs de &X et de bZ. Par contre,
le déterminant du système (1.46) est toujours nul puisqu'on
a YA Yß. De plus, nous avons deux équations à satisfaire,
tandis que nous ne disposons plus que d'une seule variable
qui est bY. Il s'ensuit que ce second système n'admet en
général pas de solution, à moins qu'on n'ait dLA dLß. Si
nous admettons dLA ^ dLß, les systèmes (1.45) et (1.46)
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n'ont pas de solution commune, ce qui veut dire qu'il y a

impossibilité de trouver un déplacement (&X, ôY, bZ) du
chariot de base tel que les deux marques repères coïncident
à nouveau avec les deux points image conjugués ; l'orientation

relative est dans ce cas inexacte. On peut donc
développer la théorie de l'orientation relative avec les formules
ci-dessus. Pour observer la parallaxe verticale en un point
quelconque de l'image plastique, on annule tout d'abord à

peu près AtA et Atg en se servant de bX et de &Z, mais
nous verrons que ceci est sans importance pour la suite des

opérations. On peut alors amener la marque repère de la
chambre B en coïncidence avec le point image en se servant
de ôY. Cette coïncidence a lieu lorsqu'on a Atß Asb 0.
Elle peut être obtenue en choisissant convenablement 8 Y et
bZ ; désignons les valeurawintroduites par bYx et bZv Les

équations (1.43) et (1.44) nous donnent dans ce cas

(1.48)

dKB—bX + J^bZ1
(1.49)

0 dLf bYx \bZx 0.

Notons que la valeur de &X reste encore arbitraire et que
nous pouvons en profiter pour annuler AtA. L'équation
(1.42) devient maintenant, quel que soit SX

Y
AsA 4- f.\uA j dLA

ou bien, si nous tenons compte de (1.49)

bYj4- 2-§§f

(1.50)
Asb AtB 0

AsA pvA 4- i-VfA {dLA — dLß).

Nous avons désigné cette expression par pvA parce que
c'est la parallaxe verticale qu'on observe dans la chambre A
lorsque la marque repère de la chambre B coïncide avec le

point image. De la même façon, nous pouvdns aussi calculer
la parallaxe verticale pvB qu'on observe dans la chambre B
lorsque la marque repère de la chambre A est en coïncidence
avec le point image ; on obtient dans ce cas

(1.51
As

AsA AtA 0

pvB 4- / • Vu {dLB — dLA).

On constate ainsi que les deux parallaxes verticales n'ont

pas la même valeur absolue lorsqu'on a ipj. ^ \\>b, résultat
que nous avons déjà indiqué en 1943 dans [1].

Mais revenons au problème de la déformation de l'image
plastique et reprenons les formules (1.41) à (1.44). Si l'orientation

relative n'est pas rigoureusement correcte, on ne peut
avoir simultanément As^ As^ AtA= AtB 0. Mais
elle est comme que comme toujours entachée de petites
erreurs résiduelles, vu qu'il s'agit d'opérations physiques et
non pas d'un problème de mathématiques. L'opérateur
travaille donc à l'autographe avec des parallaxes résiduelles,
percepraEles ou non, et a par conséquent toujours affaire à

une image plastique plus ou moins déformée. Si le nombre
de points de contrôle est suffisant, on peut déterminer cette
déformation avec assez de précision pour envisager une
correction moyennant une petite variation des éléments
d'orientation sans introduire de parallaxes verticales gênantes.
C'est précisément là la valeur pratique de ces développements

: savoir comment il faut faire varier les éléments
d'orientation des chambres de restitution pour donner à

l'image plastique une déformation déterminée.
Mais comment l'opérateur place-t-il les marques repères

sur l'image plastique lorsque celle-ci est entachée de petites
parallaxes résiduelles Une chose est certaine, c'est qu'il les

place aussi près que possible des points image et que l'écart
— puisque écart il y a nécessairement — est réparti
uniformément sur les deux vues. Nous avons introduit cette façon
de voir pour la première fois en 1943 dans [1] sous la
dénomination principe de symétrie. En appliquant ce principe,
nous obtenons

(1.52) AtA AtB ü 0 AsA — Asu

et la résolution des formules (1.41) à (1.44) nous donne

(1.53)

bX ^-\xAdKB — XßdKA\ bZ ~\dKB — dKl

kV Y ijv aïs \ _i_ Vt-dLji 4- »Pü-dLB
bY r- (dKß — dKA) -\ ;oxK MU 4- Vb

Avec les formules (1.53) nous pouvons calculer la
déformation de l'image plastique pour des accroissements
différentiels quelconques attribués aux variables d'orientation.

(A suivre.)

DIVERS

Forces Motrices du Mauvoisin
Les Forces motrices du Mauvoisin utiliseront, en deux

paliers sur une chute totale de 1480 m, les eaux de la Dranse
de Bagnes entre Mauvoisin situé en amont de Fionnay dans
la partie supérieure du val de Bagnes (1950 m s. m.) et Riddes
dans la plaine du Rhône (470 m s. m.). En raison du vaste
bassin versant qui comporte de nombreux glaciers, le lac
d'accumulation, aménagé dans une région entièrement inhabitée

et improductive, pourra être rempli sans pompage. A
l'achèvement complet des travaux, le barrage-voûte projeté
à Mauvoisin atteindra une hauteur de 180 m au-dessus du
fond de la vallée et permettra l'accumulation de 157 millions

de ms d'eau. Au cours d'une année hydrologique moyenne,
les usines pourront produire 756 millions de kWh, dont
531 millions en hiver et 225 millions en été. Elles seront
donc en mesure de fournir une contribution appréciable à

l'approvisionnement de la Suisse en énergie électrique. Les

travaux préparatoires ont commencé en automne 1949 et la
mise en chantier des travaux principaux a eu lieu en janvier
1951.

Le groupe d'usines est caractérisé par les particularités
suivantes :

Dont recouverts
de glaciers

Bassin versant naturel 113,5 km2
Bassin versant additionnel rive gauche

(torrents de Séry, Corbassière et
Bocherease) 40,2 km2
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