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CALCUL DES TUBES CYLINDRIQUES DE RÉVOLUTION

D'ÉPAISSEUR VARIABLE, SOLLICITÉS A LA FLEXION CIRCULAIRE

par JACQUES PASCHOUD, ingénieur» 1. L.

Introduction

Le calcul des déformations et des contraintes d'un tube
cylindrique de révolution d'épaisseur variable, sollicité par
des efforts circulaires, a été effectué de diverses manières par
plusieurs auteurs (bibliographie n° 1, 2, 3, 4) ; les méthodes
proposées conduisent à des calculs beaucoup plus compliqués
et plus longs que dans le cas particulier du tube cylindrique
de révolution à épaisseur constante.

Le présent travail tend à donner la possibilité de calculer
les tubes cylindriques de révolution d'épaisseur variable avec
la même facilité et la même rapidité que les tubes à épaisseur
constante j son but étant essentiellement pratique, la justification

de la méthode est placée en fin d'article (paragraphe 8)
et réduite au strict nécessaire. •

La méthode est tout d'abord expliquée brièvement, puis
illustrée par des exemples de calcul numérique.

La méthode de calcul

i. Notations et signes

La figure 1 indique les sens positifs adoptés.
h épaisseur du tube, variable ou constante, comptée radia-

lement.

Â — dérivée de h par rapport à x, c'est le taux de varia-
dx

tion de l'épaisseur le long de l'axe.
I longueur du tube.

r rayon moyen du tube, perpendiculairement à l'axe.

s h' i /— Cte. facteur de forme du tube (voir paragr. 2).

x abscisse comptée sur l'axe du tube, à partir d'une des
sections limites du tube.

y déplacement radial d'un point de la fibre moyenne.
i dy

y — rotation de la fibre moyenne.dx
E module d'élasticité monoaxial.

fibre moyenne après dérorirtarion

"\>
-îa'

Mf

'Tp

lonaueuriona
unir

e

Fig. 1. — Notations et sens positifs adoptés
(en réalité les moments et efforts tranchants positi

provoqueraient des rotations y' négatives).
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M moment fléchissant, uniformément réparti sur la circon¬
férence du tube, et rapporté à l'unité de longueur de la
circonférence moyenne,

T effort tranchant dirigé radialement et réparti comme M.
X longueur d'amortissement : c'est l'abscisse x pour laquelle,

dans le tube illimité, les valeurs de y, 6, M et T sont le
1/aB des valeurs respectives à l'origine. La désignation
« croissant » ou « décroissant » mise en indice sert à indiquer
le sens dans lequel le tube est considéré (tube à épaisseur
croissante ou décroissante).

v coefficient de Poisson, pris égal à 0,3.
A d.z.H angle en radians sans signification spéciale

rappel : 1 radian 57,3°.
— Eh9 y
y extension radiale réduite

rotation réduite

10,92 rh

10,92
'

\frh~

T= T.\rh effort tranchant réduit.

longueur d'amortissement réduite

où 10,92 12 (1-v«)

\frho
x

20v^,
abscisse réduite.

m, m', t, t', Y, Y', Z, Z' ; m0, m'0, t0, t'0, Y0, Y'0, Z0, Z'0 ; ß, d, z
sont des facteurs n'intervenant que numériquement, et
sont donnés par leurs courbes représentatives (voifpig. 3,
4 et 5 et paragraphe 6).

« o » indice de la section origine du tube.
« l » indice de la section terminale limite du tube.
«/» indice rappelant qu'il s'agit de grandeurs se rapportant

aux « tubes fictifs » (voir paragraphe 5).

Remarque : Les tubes seront répartis en trois catégories
suivant leur longueur :

1° tubes longs : l > Aoroissant> o ; ce sont les tubes dont
la longueur est plus grande que la longueur d'amortissement

comptée dans le sens de l'épaisseur min. à l'épaisseur

max. (sens croissant), lorsque cette longueur
d'amortissement est positive ;

2° tubes courts : l < Agissant ;

- 3° tubes très courts : l < AdéoroiBgant ou \jroi£sant< o.

2. Limites d'application de la méthode

Un tube cylindrique de révolution est un corps creux pré
sentant la symétrie de révolution autour de l'axe du tube
et dont la couche moyenne (qui est la surface radialement
équidistante des surfaces intérieure et extérieure du tube) est
à une distance radiale r de l'axe, distance qui peut être
considérée comme constante sur toute la longueur du tube.
L'épaisseur h comptée radialement doit être faible par
rapport au rayon r du tube. Les sollicitations doivent non seulement

présenter la symétrie de révolution mais être
constantes sur toute la longueur d'une même circonférence

moyenne du tube : ce sont les sollicitations circulaires ; elles

provoquent évidemment des déformations également
circulaires, vu la symétrie de révolution du tube.

La méthode exposée est rigoureusement applicable aux
tubes dont l'épaisseur varie selon la loi

h (a + bxf
a et b étant deux constantes quelconques ; de tels tubes ont

un facteur de forme s h\ f - qui garde une valeur constante

en toutes sections du tube. Pour toute autre loi de variation
de l'épaisseur, le facteur de forme s varie le long du tube.

La méthode sera cependant encore applicable, par extension,
à des lois quelconques de variation régulière de l'épaisseur x ;

en particulier elle permettra de calculer les tubes à variation
linéaire de l'épaisseur, à condition de prendre alors, pour le
facteur de forme s, la valeur résultant de la figure 2 qui

donne la courbe représentative du rapport — (où s0 est la
tr S°

valeur de h' k I - à l'origine du tube linéaire) en fonction du

rapport — de l'épaisseur ht dans la section terminale limite

du tube à l'épaisseur h0 dans la section origine ; étant spécifié
que pour la détermination de ht la longueur à considérer du
tube doit être au plus égale à la longueur d'amortissement a

dont la valeur résulte de la figure 3 ou de l'expression du
paragraphe 6 et qui est différente suivant le sens croissant
ou décroissant dans lequel le tube est parcouru. Comme là
figure 3 et l'expression du paragraphe 6 donnent a en fonction
de s qui n'est pas encore connu, la valeur de s0 sera prise en
première approximation et corrigée successivement ainsi que
la valeur de X correspondante.

Ceci revient à assimiler le tube à variation linéaire de

l'épaisseur à un tube équivalent de même h0 et r et ayant
cette valeur de s. Lorsque le tube est court (l < a ou a < 0),
il conviendra de noter que Za valeur absolue de s n'est alors pas
nécessairement la même pour les deux tubes fictifs dont il sera
question au paragraphe 5.

3. Relations entre les forces intérieures et les déformations dans

une section quelconque du tube axialement illimité.
En faisant usage des notations précédentes (paragraphe 1),

ces relations sont les suivantes :

M — m .y — m'. 0

f 2t.y + t'.Q

10 Y.M
1

ÏÔ Y'.T

¦~Z.M —Z'.T
5 10

1 Voir bibliographie n° 3, paragraphe 12.

¦ï
l&.x-

0.9

OS

if^f
;jr*tt333£iE p

0.7

X'!x- - i '. : t
ht
h.

Fig. 2. — Ppur le facteur de forme du tube
à variation linéaire de l'épaisseur.

«o=A'V / — valeur à l'origine du facteur de forme du tube

à variation linéaire de l'épaisseur.
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Les coefficients m, m', t, t', Y, Y', Z, Z' sont donnés
numériquement par leurs courbes représentatives en fonctions du

lrfacteur de forme (voir paragraphe 2) s h\ I - pour les valeurs

les plus fréquemment utiles — 0,6 < s < + 0,6 (voir fig. 3) ;

pour d'autres valeurs exceptionnelles de s, ces coefficients
seront calculés au moyen des expressions données plus loin
au paragraphe 6.

Ces relations I permettent le calcul immédiat des hyperstatiques

à l'origine d'un tube assez long (l > a > 0).
Elles servent également au calcul des tubes courts (l < a ou

a < 0) selon le procédé indiqué plus loin au paragraphe 5.

4. Lois de variation des forces intérieures et des déformations
d'une section à une autre du tube axialement illimité.
Avec les notations du paragraphe 1, les relations exprimant

ces lois sont les • suivantes :

T-e-Wi.

y =e—P°S-

K»iosinA + cos A 1. M0+1 -^ m'0 sin A

/ 1
(—t0smA).M0+ I — -^„smA + cosA

1
.f0

Y»sinA + cosA •2/o- YôsinA 6

Z0 sin A). y0 +( —rZ'0 sin A + cos A

II

Co£fR5Èffs|is FormuMl

6 _—J

flH

m

m»!

y

m -0.5 -0.4 -_ -H2 0,1 0 *ftl »0,2 .(£ HJJÎ +0,5 <6

Fig. 3. — Coefficients des formules I ;
longueur X d'amortissement réduite.

les coefficients mo, ml, to, tô, Y0, Y0, Z0, Z' ft, d sont
donnés numériquement par leurs courbes représentatives en

fonctions du facteur de forme (voir paragraphe 2) s h\ / —

pour les valeurs les plus fréquemment utiles — 0,6 < s < + 0,6
(voir fig. 4) ; pour d'autres valeurs exceptionnelles de s, ces
coefficients seront calculés au moyen des expressions données
plus loin au paragraphe 6 ;

le coefficient z est donné numériquement par sa courbe
représentative en fonction du produit (£.s), de l'abscisse

xréduite E p= par le facteur de forme s (voir fig. 5) ;
20\/rhB

la valeur de l'exponentielle e—P*5 est donnée par sa courbe
représentative en fonction du produit (ßz£) (voir fig. 6) ;

enfin l'angle A, exprimé en radians, est égal au produit
(dzi). Il est rappelé que 1 radian 57,3°.

Ces relations II permettent le calcul rapide des déformations
et des forces intérieures dans une section quelconque d'un tube
assez long (l ^ a > 0), en fonction de leurs valeurs dans la
section origine de ce tube.

Elles servent également au calcul des mêmes lois dans les
tubes courts (l < a ou a < 0) selon le procédé indiqué au
paragraphe 5.

5. Calcul des tubes courts
Le calcul des tubes courts (l < a0 .c'estrà-dire

II
9- hr4 Coefficients desJÉj^ul&H

pour 'h. el" ^„jDir cp_urbe.spaalB: !z<ci

pour Yfefj, voir ^aigfe-éjgyaïe^

i

ni^y;

x-z
D T-0

sth
gr~T-r—i

Pour

-0.6 -0.6 -0.4 -0,5 -0,2 .-0.1 0 *0J «0.2 <0.î «0,4 <0,5 *Ct6

Fig. 4. — Coefficients des formules II.
z et A voir courbe spéciale du coefficient z, fig. 5.

Pour e-Pz5 voir courbe spéciale, fig. 6.
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CoefKgiDf" % des Form|j|s I
t'tfMpKJuir âgalaBealjdait&'i^''$p§;.,.
-miP..Wwza&fà dès coeÉ|^Sffimules I

'T-' i ":! -'¦'Hi JL
-a07 -m -0JJ5 -USA -Q_ -_Z~9_: -O »P «W? ^B «QM +D.05 >a06 «467 «HB «0,031

Fig. 5. — Coefficient z des formules II ; E

20 ]/rh0
s'introduit également dans A d.z.i

Pour d, voir courbes des coefficients des formules II, fig.- 4.

tels qu'il ne soit pas possible de négliger l'influence d'une
extrémité du tube sur l'autre extrémité, s'effectuera selon
les relations I et II par approximations successives, de la
manière expliquée ci-dessous pour le cas particulier où ce
sont les forces intérieures qui sont imposées aux deux extrémités

du tube ; les autres cas se traitent de façon similaire ;

lorsque par exemple les déformations sont imposées, il suffit
de remplacer, dans ce qui suit, M par y et T par 6.

Le tube à calculer est sollicité, dans sa section origine O,

par Mo et T0 et, dans sa section limite L, par M% et Ti imposés

; il a la longueur l (voir fig. 1).
Ce tube est remplacé par la superposition de deux tubes

fictifs, illimités axialement, 1 un 1 au-delà de la section L,
l'autre 2 en deçà de la section O, et chargés uniquement dans
leurs sections origines respectives O et L par M0f et T0f,
respectivement My et Ty

1) l'origine du tube 1 est la section O. Cette section O

étant chargée par M0j M0 et T0/ T0, les relations m
permettent de calculer les forces intérieures en x l (sec¬

tion L) de ce tube fictif; elles seront notées AMj et ATi1-
2) l'origine du tube 2 est la section L. Cette section L

étant chargée par Mif Mi— AMi et Ty — Tt + ATi,
les relations Il^g, où l'on introduit My et Ty à la place
de Mo et T0, permettent de calculer les forces intérieures
en x l (section O) de ce tube fictif y elles seront notées
AM, et AT0.

1') refaisant le calcul 1) à partir de M0f M0 — AM, et
T„f T0 -\- AT,, il vient en x l (section L) : AM{ et
Af,';

2') refaisant le calcul 2) à partir de My== Mi— AM/ et
Ty — Ti + AT/, il vient en x l (section O) : A Mo et
AT'o qui permettent de répéter le calcul 1') d'où AMf et
AT"/' qui permettent de répéter le calcul 2')... et ainsi de
suite jusqu'à des résultats invariables à la précision désirée,
résultats correspondant aux valeurs de :

pour le tube 1 : M0j et Toi dans la section j origine O et
AMi et Aîr-èn x l.

pour le tube 2 : My et Ty dans la section origine L et
AM, et AT, en x l.

Les relations 13,4 permettent alors de calculer

pour le tube 1 : y0f et 8»/ en x O puis Ayr'et A9j en x l
pour le tube 2 : yy et 61/ en x O puis Ay0 et A 60 en x l

Les relations II permettraient également de trouver lea
forces intérieures et les déformations dans toutes les sections
des tubes fictifs, si cela était désiré.

La superposition des forces intérieures et des déformations
de ces deux tubes fictifs fournit enfin les forces intérieures et
les déformations du tube court proposé. A remarquer, pour ce
faire, que le tube 2 est considéré dans le sens inverse du
tube 1 et du tube proposé ; dans la superposition, les valeurs
de Tf et 9/ de ce tube 2 devront donc changer de signe ; d'où :

pour le tube réel

Mo Mo, + AM„ ; To T0, — ATB

M, My + AMi ; T, — Ty + ATi

Do V'I + Ay«, ; 0« 90/ — A6„

yi =-îrâ + Aï« ; ët —Qif + Aë;

III

1 A est ici le symbole d'une variation, et non pas l'angle A — dt£ qui
n'apparaît que précédé du signe trigonométrique sin ou cos.

Fig. 6. — Courbe de e—ß*f des

formules II ; H -=r •

20VrA,
_Pour ß, voir courbes des coefficients

des formules II, fig. 4.
Pour z, voir courbe du coefficient z

des formules II, fig. 5.

¦mtourbe de e des formulesI

m
m-

17-

0.5-

D.2-

m
S 1 5 67 83 i i 5 6 789

0.
4 5 6 7 89

aooi
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Tableau des valeurs numériques

s - 0,6 - 0,5 - 0,4 - 0,2 0 + 0,2 + 0,4 + 0,5 + 0,6

m t' 2,299 2,607 2,939 3,305 3,715 4,189 4,749
m' 1,522 1,837 2,187 2,571 2,987 3,437 3,922
t 3,12.9 3,438 3,802 4,248 4,807 5,524 6,463

Y Z' 5,426 4,466 3,676 3,026 2,491 2,051 1,688
Y' 3,591 3,148 WEEß 2,354 2,003 1,683 1,394
Z 7,385 5,889 4,755 3,890 3,223 2,704 2,297

mo lô 3,483 2,904 2,417 2,000 1,634 1,307 1,008
m'o Y'o 1,650 1,597 1,566 1,556 1,566 1,597 1,650

to 4,888 3,893 ^^Psf* 2,571 2,130 1,788 1,520
Yo Z'o 1,503 1,627 1,791 2,000 2,261 2,585 2,988

Zo 1,897 2,081 2,301 2,571 2,909 3,344 3,917
ß 8,444 7,275 6,175 5,142 4,175 3,275 2,444
d 4,849 5,010 5,109 5,142 5,109 5,010 4,849
1 1,222 1,344 1,491 1,870 2,505 3,600 6,07 8,34 13,02

Ç.« -0,080 -0,075 -0,070'-0,065 -0,060 -0,055 -0,050 -0,045 -0,040 -0,035 -0,030 -0,025 -0,020 -0,015 -0,010 -0,005 0 + 0,005
z 10,059 9,242 8,600 8,075 7,636 7,260 6,931 6,643 6,385 6,154 5,945 5,753 5,579 5,417 5,268 5,130 5,000 4,879

k'rs +0,010 +0,015 +0,020+0,025 +0,030 +0,035 +0,040 +0,045 +0,050 +0,055 +0,060 +0,065 +0,070 +0,075 +0,080 +0,085 +0,090 ¦J-0,095
Z 4,765 4,659 4,558 4,463 4,373 4,287 4,206 4,129 4,054 3,984 3,917 3,852 3,790 3,731 3,673 3,619 3,566 3,515

P-z.f 0,001 0,002 0,004! 0,007 0,01 0,02 0,03 0,04 0,05 0,06 0,07 0,08 0,09 0,10 0,12 0,15 0,20 0,25
«r-p^ 0,999 0,998 0,996 0,993

1

0,990 0,980 0,970 0,961 0,951 0,942 0,932 0,923 0,914 0,905 0,887 0,861 0,819 0,779

3-z.Ç 0,30
1

0,40 0,50
1

0,60 | 0,70 | 0,80 0,90 j 1,0 1,2 1,5 2,0 2,5 3,0 | 3,5 1 4,0 | 5,0 6,0 7,0
e-P'Ç 0,7408 0,6703 0,6065 0,5488 0,4966 0,4493 0,4066 0,3679 0,3012 0,2231 0,1353 0,0821 0,0498 0,0302 0,0183 0,0067 0,0025 0,0009

Dans le cas des tubes très courts (l < adécroissant ou
^croissant < 0), qui, cela doit être noté, ne présentent
qu'exceptionnellement un intérêt industriel vu leurs sollicitations
généralement défavorables, le procédé précité d'approximations

successives ne converge que lentement, et il peut y
avoir intérêt à résoudre directement le système des quatre
équations III précédentes avec Mot, To,, My, Tî/^feomme
inconnues, A Mo, AT» <»t.jA|t/> ATi étant liés parles relations
II à My, Ti, et respectivement Mo,, To, ; cette résolution
est aisée car chaque équation ne contient que trois inconnues.
Cette manière de faire, si elle est jugée préférable, est d
ailleurs applicable pour toutes les longueurs de tubes.

6. Expressions analytiques des coefficients des relations I et II
Les courbes des figures 3 et 4 donnent les valeurs de ces

coefficients lorsque le facteur de forme (voir paragraphe 2)

s h'\ I— est compris entre —0,6 et +0,6 ce qui correspond

aux valeurs les plus fréquemment utiles ; ces courbes, ainsi

que celles des figures 5 et 6, ne sont que la traduction
graphique du tableau suivant des valeurs numériques qui
permettront, au lecteur qui le désirerait, de tracer ces courbes
à une échelle supérieure à celle des reproductions ci-jointes,
pourtant le plus souvent suffisante (voir le tableau des valeurs
numériques au haut de la page).

Pour toutes autres valeurs de s, qui correspondent d'ailleurs

à des formes de tubes moins couramment réalisées, les
coefficients seront calculés, en posant :

2t| 2,571 ,-
2b

e

j—'—-VVl+0,0805.*4 ±0,3215.*2
signe + pour 2y

signe — pour 26,

I
au moyen des expressions suivantes

?JH3
s Nr

1
m =-(e

1
1 =4

1/ longueur d'amortissement réduite-. i

4b2)..s2

(2e —3).m.s

10
1

Y'

(2e + l).s

• y

Z =-, .Yt! Z' Y

m0
e — 4

2b

1 8(€-2)-(e*|§||
""2 i 2b

Ya 2
2b

Z0 s m. m'0

ß 2(e — 4).*

m'o
4

~2bTs

t'o m»

Y'o m'o

Z'o Yo

d 2.2b.s

Ü

en

a

o

Enfin, dans le cas exceptionnel où (E.s) n'est pas compris
dans l'intervalle —0,080 à +0,095, la valeur de z sera calt
culée par l'expression :

BKp-taBi.(rV+.i0J#).
1 Lorsque la valour de X est infinie (pour s -f 1,341) il n'y a aucun

amortissement dans le sens considéré (croissant) du tube, c'est dire que
dans ce sens les lois de y, ë, M et T sont alors purement sinusoïdales.

Lorsque la valeur de \ est négative, au lieu d'amortissement il y a an
contraire amplification dans le sens considéré (croissant) du tube.
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7. Exemples numériques

Les exemples numériques maintenant développés
permettent de préciser la marche des calculs.
1er exemple : tubes longs : l S Croissant> 0.

Il s'agit du même exemple précédemment traité par les

auteurs cités en bibliographie n08 2, 3 et 4.
Calculer les déformations origines, flèches et rotations, des

deux tubes cylindriques, croissant et décroissant linéairement,

donnés par :

r 50 cm, h0 5 cm, h' ± 0,02, 11 200 cm
sous les deux cas de charges origines suivants :

a) M0
E.h%

12 (1 —v2

b) Mo 0, f0

,To=0

12 (1 —¦
En voici le calcul complet fait à la règle (les valeurs

supérieures sont celles du tube croissant, les valeurs inférieures
«ont celles du tube décroissant) :

selon le paragraphe 2 : s0 h'\ / — + 0,0632V
selon la figure 3, avec s

hx (1,17
ÄT~l0,86

s»: X= 2 25 douX

alors

et d'après la figure 2 : —
(0,976
11,024

d'où s

les courbes de la figure 3 permettent de relever

v_ 12,84 Y, _ (2,24 ~_/3,65 §y _ \3,23 ' Y ¦ \2,47 ' L - \4,14 ' z

Les relations I donnent alors immédiatement :

E.hl
«) Tubes sollicités par

en multipliant par

M„

Vo_

rh„
(0,284
10,323

y'o _}— 0,730

b) Tubes sollicités par

en multipliant par

Vo

12(1-
12 (1 —v2)

E.hl
''

d'où

d'où

et

43,7 cm
35,6 cm

[ + 0,062
1 — 0,065

2,84
3,23'

To 0

y0

y'o-

(71,0 cm
180,7 cm

— 11,54
—13,09

_ Eh3
M°=0 et È^&mÊÊÊm

12(1—va) 1

Eh% sJrho

rh„. \Jrh0
_ (0,224" 10,247

(881 cmdou y«= 976 cm

Vo_

rh„
0,284
0,323

d'où yo
1-71,0
1 — 80.7

Le tube à. épaisseur constante conduit à des calculs en
tous points semblables à partir de s 0.

2e exemple : tube court ; l < ^croissant (par approximations
successives)

Calculer les moments fléchissants aux extrémités d'un
tube à épaisseur variable donné par :

r=100 cm, A„=7,5cm, ht i cm, h'0 — 0,1098, Z 37 cm
l'épaisseur variant selon la loi h — (a + bx)a,
et dont les déformations sont imposées aux extrémités :

y0 1000, 1 0 et yi=êl 0.
C'est intentionnellement qu'un tel tube, à considérer

comme déjà très court puisque l < ^décroissant
> a été pris

comme exemple du procédé d'approximations successives
qui est alors suffisamment développé pour que le lecteur
puisse- s'en faire une idée exacte. Dans les cas les plus
courants de tubes moins courts, le procédé est beaucoup plus rapide
parce que la deuxième approximation est alors' suffisante.

Voicile calcul complet fait à la règle (selon le paragraphe 5) :

a) sens décroissant : * — 0,40 ; tube fictif 1

selon figure 3 : K 1.49 d'où X 41 cm > l,
les courbes figures 3, 4, 5 et 6 permettent de relever-; -

m 2,60, m' 1,835, Y0 1,627, Y0 i ,595, Z0 2,08
Z'o 1,627, ß 7,27, d 5,01.

Le calcul donne £j.(en x l) 0,0676, Et.s — 0,02704
à quoi correspond (fig. 5) z 5,83. Alors ßz?j 2,865
ce qui donne (fig. 6) er-P*& 0,057 ; puis Aj dzlt 1,974
d'où sin A, + 0,920 et cos At — 0,391.

Les relations I et II permettent d'écrire (en remplaçant
comme expliqué y0, 0<,, yi, ëj respectivement par y„f, Qof,

Ayi, H :

aj) M — 2,60.y —1,835.e
og) Ayi 0,02032.y0, + 0,0418.%,; AQt — 0,1091 .yof —

— 0,0650.60/

sollicitations réelles à l'origine y0 — 1000, ô0 0 ; ce sont
les valeurs à prendre en première approximation pour yof
et 6o, du tube fictif 1.

6) sens croissant : s + 0,40 ; tube fictif 2
X B 6,07 d'où X 121,5 cm > l ;

de la même façon que précédemment, il vient successivement:
(à noter que Y'0, d et Ai restent inchangés)
m 4,20, m' 3,43, Y0 2,58, Y0 1,595, Z0 3,34
Z'0 2,58, ß 3,27 ; h 0,0925, h.s + 0,03700,
z 4,25, ßzEg 1,286, e-W 0,273 ;

d'où (en remplaçant comme expliqué yo, 60, yt, 6j respectivement

par yy, Oy, Ay\>, A80) :

bj) M — 4,20.i/ — 3,43.ë
6ä) Ayo 0,2182.yy + 0,2005.fy ; Aë0 — 0,840.^ —
— 0,431. Qy

sollicitations réelles à l'extrémité : yi 9j 0 ; ce sont les
valeurs à prendre en première approximation pour les
sollicitations origines du tube fictif 2.

Procédé d'approximations successives :

f a) y0, 1000 ;

\b) yy 0 — 20,32 — 20,32 ;

e0/ o

ev o —109,1

a') yti 1000 + 26,31 1026,31 ; 6«,/ 0 + 64,1
b') yy 0 — 23,53 — 23,53 ; êy 0 — 116,1

a") yo, 1000 + 28,41 1028,41 ; 8,/ 0 + 69,8

b") yft 0 — 23,81 — 23,81 ; êv 0 — 116,7

a'")
b'")

y0, 1000 + 28,59

yi, 0 — 23,84 -

¦¦ 1028,59 ; 6., 0 + 70,3 -¦

23,84; Qy 0 — 116,8

d'où par o2) : Ayi + 20,32

— 109,1 d'où par b2) : Ay0 — 26,31

+ 64,1 d'où par öj) : Aï/i *= + 23,53
—116,1 d'où par b2) : Ay0 — 28,41

+ 69,8 d'où par Oj) : Ayt + 23,81

—116,7 d'où par ia) :

d'où par a8) :+ 70,3

— 116,8

Ay0 — 28,59

Ayi + 23,84

AG* — 109,1
Aë«, + 64,1

Aê« — 116,1
A60 + 69,8

Aëi —116,7

Ae, + 70,3

Aë, —116,8
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Les valeurs encadrées sont les valeurs définitives à la
précision de la règle (il aurait d'ailleurs été suffisant de s'en
tenir à la troisième approximation).

Il vient donc :

Tube fictif 1 :

y., 1028,59 ; Q0, I + 70,3

d'où par %) : MB, — 2804 kg cm
cm

Ayi + 23,84 ; A9z — 116,8

kg cm
cm

Tube fictif 2 :

d'où par Oj) : AMi + 152,3

23,84 ; Qy — 116,8m
d'où par bj) : My - 501 kg cm

A*/, — 28,59 ; Ae0

d'où par bx) : AM0 — 121,5

70,3

kg cm
cm

La superposition des deux tubes fictifs (comme expliqué,
les signes de Qy et A90 doivent être changés) donne les valeurs
du tube réel :

kg cm
yo -- + 1000 ; 6o 0; M0 2925 M

cm

yt 0; ëi==0; Mi | 653kg-cm

Ici encore le calcul serait le même pour le tube à épaisseur
constante ; une simplification s'introduit cependant par le
fait que les relations ai#) et 61,2) sont identiques pour s 0.

Cet exemple pourrait également se traiter par la méthode
d'élimination du tube très court (voir paragraphe 5 et
troisième exemple).

3e exemple : tube très court : l < ^décroissant OU ^croissant < 0.

Il s'agit d'un exemple déjà traité par les auteurs cités en
bibliographie n03 3 et 4.

Un tube cylindrique à épaisseur variable selon la loi
h (a + bx)*, donné par
ho 56 mm, r 1150 mm, s — 2,355 ; l 90 mm,
hi 19 mm, est sollicité dans la section origine par

E E
s et T0 5 et à 1 autre extrémité parM„

1 1—v2'

Mi 26,49. ¦
E

et Ti — 0,0717. Calculer la1—v2
flèche y0 à l'origine.

La valeur de « étant extérieure à l'intervalle — 0,6 à + 0,6,
les coefficients seront calculés par les expressions du
paragraphe 6 ; le calcul suit la marche indiquée au paragraphe 5 :

a) sens décroissant : s — 2,355
selon le paragraphe 6 : X 0,429 d'où X 109 mm > l
Y 26,81, Y'= 8,80, m0 29,49, m'0 5,46. t0 80,0
t0 29.49, ß 21,59, cZ 1,464, E, 0,01773,
£*.« — 0,0418, z 6,47, ßzE, 2,478, A* dzï{

0,1680 radians, e~Mi 0,0839, sin A; 0,1672,
cos A, 0,986,

d'où :

aà y «* 2,681. M + 0,880. f

au) AMi 0,2896. Moi + 0,03832. T0, ;

ATf - 1,122. Mo, — 0,1242. T0,

sollicitations réelles à l'origine :

M„ JÜlfi et T. 4- 253,8.
11—v2

b) sens croissant : s + 2,355
X < 0 : il n'y a donc pas d'amortissement dans ce sens, il
y a au contraire « amplification ».

Y 0,3415, Y' 0,1830, m0 — 2,671, m'0 5,46,
t0 1,019, to — 2,671, ß — 1,956, d 1,464,
h 0,03044 h. s + 0,0717, z 3,77, ßzE, — 0,2245,
A* 0,1680 radians, e~Mt 1,252, sin Aj 0,1672,
cos Ai 0,986,
d'où :

M WÈ 0,03415. M + 0,01830. f.
b2) A M0 + 0,956. My + 0,573. fv ;

AT0 — 0,2138. My + 1,517. flf
sollicitations réelles à l'extrémité :

Mi 26,49. BL et f1 —10,60. T^—„

Pour un tube aussi court, le procédé d'approximations
successives converge trop lentement ; les équations III (voir
le paragraphe 5) s'écrivent donc, au moyen de Oç) et 62)

1—v2
tout est multiplié par E

M0=Mo,+AM0= 1. Mo,+0,956. Mv+0,573. Tv +1
f0 To, —A r„= 1. T0/+0,2138. Mv—1,517. 7y= + 253,8

Mi My+ AMi=0,2896. M0,+0,03832.ro/+l.M„= + 26,49

-Ti^Ty-AT, 1,122 .Mo/+0,1242 .fol + l.Ty= +10,60

Par substitution de Mo, et To, tirés des deux premières
équations et élimination de My, il vient successivement et
aisément :

fy + 8,77, AT* - 1,83

My + 24,38, AM, + 2,11

M0,= - ¦ 27,35, AM0= + 28,35

T,0, 261,85, ATo 8,05

le facteur
E

T^v2
est sous-entendu

Ces valeurs introduites dans Oj)et 6j) donnent :

tube fictif 1 : y0, + 156,9

tube fictif 2 : Ay0 + 1,116

et par superposition :

12. r _tube réel : y0 - + 158,0 d'où y0 — ,2 -y« — + 696 mm.

Calculs effectués à la règle.
Ici encore les calculs seraient les mêmes pour un tube à

épaisseur constante, les équations «1,2) et &i,s) étant cependant

alors identiques puisque s 0.

8. Justification de la méthode

Dans une précédente étude (voir bibliographie n° 3, en
particulier le paragraphe 8), l'auteur 1 .avait montré que
l'équation différentielle de l'élastique du tube cylindrique
de révolution à épaisseur variable, soumis à des sollicitations
circulaires,

(h3.y")" + 12.(1— v2). | .y 0
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était satisfaite, lorsque h (a + bx)*, par l'expression

y h

+ Wr-3
,[AX cos (b Log h) + 5X sin (b Log h)] +

[.A2 cos (b Log A) + 52 sin (b Log ÄÄE

Log étant le symbole du logarithme népérien, T et & ayant
la même signification qu'au paragraphe 6.

Le paragraphe 10 de l'étude précitée donnait la méthode
générale de calcul des constantes A et B en fonction des

conditions aux limites ; cette méthode s'exprimait par une
suite d'écritures symboliques, à développer numériquement
dans chaque cas. S'il avait été possible de traduire analyti-
quement jusqu'au bout les écritures symboliques, des expressions

analytiques auraient été trouvées, en fonction des

données, pour les constantes A et B. La complication
inextricable de ces développements analytiques a conduit à

n'envisager alors que les cas beaucoup plus simples des

tubes axialement illimités. C'est le développement analytique
complet de la méthode générale symbolique, dans le cas des

tubes axialement illimités, qui conduit aux relations I et II
et aux expressions de leurs coefficients données précédemment.

Le calcul des tubes courts à partir des lois des tubes
illimités se justifie aisément :

L'expression de la flèche y, rappelée ci-dessus, est linéaire
et homogène en les Alt Blt A2, B2. Le tube illimité a deux
constantes nulles : Ax et B1 si le tube est décroissant, A2 et
jB2 s'il est croissant. Ainsi le terme en Aj et Bx correspond
à la loi du tube illimité croissant et le terme en A2 et B2

correspond à la loi du tube illimité décroissant de mêmes
données. Les constantes Ax et Bx d'une part, A2 et B2 d'autre

part s'expriment donc en fonction des sollicitations limites
inconnues respectives de ces deux tubes illimités. En
additionnant les deux termes, c'est-à-dire en superposant les

deux lois des tubes illimités, on revient à l'expression initiale
complète de la loi du tube court, à laquelle correspondent les

sollicitations limites imposées de ce tube. Ecrire cette corres¬

pondance conduit à déterminer les sollicitations limites inconnues

des tubes illimités dits «tubes fictifs», ce qui donne
les relations III. Le fait que ces relations peuvent généralement

être résolues par approximations successives est si

naturel, vu l'amortissement des lois des tubes illimités,
qu'il est superflu d'insister sur ce point.

Enfin l'étude précitée donnait déjà un moyen de
déterminer le tube équivalent — dont l'épaisseur varie selon la
loi h (a + bx)2 — remplaçant le tube à calculer dont la
loi de variation de l'épaisseur peut être quelconque. La
détermination de très nombreux tubes équivalents a conduit
à la solution pratique rapide donnée au déBut de la présente
note pour les tubes à variations linéaires, de l'épaisseur.

9. Remarque

Il est intéressant de souligner en terminant que le tube
correspondant à | * | 1,341 ne provoque aucun amortissement
des lois de y, 9, M et T dans le sens, croissant et au contraire

un amortissement très rapide dans le sens opposé (3,6 fois

plus rapide que pour le tube à épaisseur constante
correspondant) ; les tubes dont le facteur de forme s est plus grand,
en valeur absolue, que 1,341 provoquent même une
amplification des lois susdites dans le sens croissant ; ce fait n'est

pas sans signification pratique.
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Résistance des matériaux et élasticité (cours professé à l'Ecole
des Ponts et Chaussées), par Gaston Pigeaud, inspecteur général
des Ponts et Chaussées, chef du Service central d'études
techniques du Ministère des travaux publics. Troisième édition.
Librairie-imprimerie Gauthier-Villars, 55, quai des Grands-
Augustins, Paris (6e). — Tome I: un volume 16x25 cm de

xv + 510 pages, avec nombreuses figures ; 1948. Prix : broché,
2000 fr. français. — Tome II : un volume 16 X 25 em de 522
pages, avec nombreuses figures ; 1950. Prix : broché, 3000 fr.
français.
Voici la troisième édition — et même la quatrième, si l'on

tient compte que l'une d'elles a donné lieu à deux tirages —
d'un cours, enseigné pendant plus de vingt ans aux élèves
de l'Ecole nationale des Ponts et Chaussées.

L'auteur, outre ses fonctions de professeur, dirigeait en
même temps le Service d'études techniques du Ministère des
travaux publics, et à ce titre a eu soit à faire, soit à faire
faire, soit à connaître la plupart des projets d'ouvrages, tant
métalliques qu'en béton armé, exécutés pendant cette période.

C est dire que le traité, dont voici l'édition définitive, a
subi les deux sanctions redoutables et de l'enseignement et
des réalisations pratiques, et il est devenu, au moins pour
les pays de langue française, un véritable classique en la
matière.

Il a été conçu pour un auditoire spécial, celui des élèves
de l'Ecole nationale des Ponts et Chaussées, dont la culture
scientifique est élevée et dont l'activité professionnelle aura

surtout à s'exercer dans le domaine des ponts et charpentes.
Il leur faut surtout des notions générales et des méthodes
d'ensemble, reposant sur des bases aussi larges et aussi bien
assurées que possible, à la fois souples et fécondes, afin de
s'adapter facilement à l'immense variété des cas concrets de
la pratique, et avec toutes les réserves nécessaires quant aux
frontières d'un domaine d'application légitime. Les
ingénieurs, qui ont des besoins analogues aux leurs, peuvent sans
doute se soumettre avec profit aux mêmes disciplines.

Dans une première partie, on trouve un exposé complet et
élevé de la théorie mathématique de l'élasticité, ce qui permet
d'en faire ensuite le support des théories plus simplistes et
beaucoup plus assouplies de la résistance des matériaux,
dans le domaine qui leur est commun, celui qui est appelé
domaine élastique et qui répond aux grandes hypothèses ,de
continuité et de proportionnalité.

Les différents cas qui peuvent se présenter à l'ingénieur
constructeur sont, après une discussion minutieuse des
hypothèses de base, examinés en détail et poussés assez loin pour
permettre leur utilisation pratique et réelle dans les bureaux
d'étude.

La 3e édition comporte des remaniements importants,
notamment sur les deux problèmes de Boussinesq, sur les
principes théoriques et pratiques des fondations sur pieux,
sur le calcul des ponts suspendus à une ou plusieurs travées
et à poutre de rigidité, et enfin une discussion minutieuse de

l'application de la résistance des matériaux à 1 étude des

matériaux non continus ou non isotropes, avec une
considération particulière pour les ouvrages en béton armé.
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