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Contribution à l'étude de phénomènes transitoires
à l'aide de suites de temps

par MICHEL CUÉNOD, ingénieur, E. P. F.

I. Introduction

De même que les autres formes de la connaissance,
l'évolution des mathématiques s'exerce en deux directions

apparemment opposées : si d'une part, elles explorent des

domaines qui deviennent de plus en plus abstraits, voire
inaccessibles aux non-mathématiciens, d'autre part, elles

tendent à se simplifier et à offrir un instrument de plus en

plus souple et commode à disposition des non-spécialistes.
La définition et l'utilisation de « suites de temps tt représentent
un pas dans cette deuxième direction dont l'ingénieur est le

tout premier bénéficiaire. Le principe de ces suites a été
donné par M. A. Tustin1. Nous nous proposons de rappeler
ce principe en nous plaçant à un point de vue quelque peu
différent de celui de l'auteur précité, et nous nous efforcerons
ensuite de mettre en évidence les avantages pratiques qu'offre
cette méthode de calcul.

II. Définition d'une suite de temps

Considérons une fonction quelconque du temps /'' (t)
représentée par la figure 1 que nous supposons par exemple
avoir été relevée expérimentalement. La surface circonscrite

par cette courbe peut être considérée comme étant formée
par un ensemble de rectangles tels que celui qui est hachuré.

1 Voir A. Tustin : Method of analysing the behaviour of Linear System in
Term of Tims series. — The journal of the inititution of electrical
engineer! Vol. 94, Part II A, N» 1 1947, p. 180-148.

La base de ce rectangle est égale à une unité de temps t
sa hauteur est égale à la moyenne des ordonnées entre deux
abscisses séparées par une unité de temps ;

soit fn -ff(t)dt F({n—1)t) + F (m)
2

avec F((n—1)t) valeur de F(t) pour t (n—1)t
F (m) valeur de F(t) pour t m.

Ainsi à une fonction F(t), il est possible de faire correspondre
une certaine suite de temps S telle que

Fit) S [/i ; /, ; h /»]

fi étant la moyenne des ordonnées pour les temps de 0 à t
/8 » » » » » » de t à 2t

etc.

Fft)
mjM

0 i & fii-u-i ht

Fig. 1. — Définition d'une suite de temps.
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L'imité de temps t doit être choisie de façon suffisamment

petite pour que l'on puisse admettre que la fonction étudiée

varie linéairement pendant la durée d'une unité de temps.
L'exactitude de ce procédé peut être élevée à volonté en

réduisant l'unité de temps choisie.

III. Opération avec les suites de temps

Considérons les deux fonctions Fa(t) et JF'j(l) et les deux

suites de temps correspondantes

Sa

et S»

I/»! ; az; a3 ; o»J

[ox ; b2 ; bs; bn].

Nous allons montrer comment effectuer avec ces suites

les quatre opérations suivantes et quelle est la signification
de ces opérations.

Addition et soustraction

La fonction Fa+b{t), obtenue par la somme des fonctions

Fa(t) et Fb(t), est donnée par la somme des ordonnées des

fonctions Fa(t) et Fb(t) pour la même abscisse. Les termes
de la suite Sa+b correspondant à la fonction Fa+b(t) sont
obtenus par l'addition des termes des suites Sa et Sb

F1+t(t)=Fa{t) + Fb(t)++ Sa+b=Sa+Sb=[a1; a2; ; a»]+

+ [&x ; &2 : ¦ • ¦ tn] [a-i + b1 ; az + b2 : a» + bn]

A titre d'exemple, considérons les deux suites telles que :

S„= [1; 2; 1] et Sb [1; 2 ; 2 ; 1]

nous obtenons :

Sa + Sb=Sa+b [l+l; 2 + 2; I. + 2; 1 + 0]

[2 ; 4 ; 3 ; 1]

La figure 2 montre quelle est la signification géométrique
de l'addition de deux suites. Nous, vérifions que la surface

de la somme soit égale à la somme des surfaces Sa et Sb

(1 + 2 +1 + (1 + 2 + 2 + 1) (2 + 4 + 3 + 1) 10.

Sa^*r^
¦'ig. 2. — Signification géométrique de l'addition et

de la soustraction de suites de temps.

Nous admettons que l'on a pu déterminer la fonction

Fib(t) de la variation de ß à la suite d'une variation de A
selon une impulsion unitaire représentée par la figure 3a et
caractérisée par un rectangle de base égale à l'unité de

temps t et dont la surface est égale à 1.

Nous nous proposons de déterminer la variation de B
résultant d'une variation de A selon une fonction

quelconque Fa(t)

Fart)k

r*Hi

(n-Vz nx
a b

Fig. 3. — Décomposition d'une fonction A[t) en une suite
d'impulsions rectangulaires.

La figure 3b représente la fonction Fa décomposée en une
suite d'impulsions rectangulaires.

La surface du rectangle hachuré est égal à

Fa (ni) + Fa ((n—l) r)

Si l'unité de temps t est choisie de façon suffisamment

petite, nous pouvons admettre que F (fit) F ((n—l)t) et

nous obtenons

AFa Fa [m T.

La variation de la grandeur B résultant de l'impulsion
¦/ (nf) qui agit au temps 6 tjt est égale à

AF AFa ¦ Fyb (t—m) Fa {m) ¦ Flb {t—m) t.

' La variation Fb de la grandeur B résultant d'une variation
de A selon la fonction Fa est donnée par la somme des variations

A-Fj de B dues à l'action successive des différentes

impulsions AFa de A

Fb IAF» ZFa (ht) • F.Xb (t—ht) t.
n

Si nous faisons tendre l'unité t vers zéro et en posant

La soustraction s'opère selon le même principe que l'addition,

en soustrayant membre à membre lès termes des deux

suites à soustraire. Nous obtenons ainsi :

Fa—Fb Sa—Sb S. [al—b1 ; A; ¦b»].

I nT= e

\ t de,

nous obtenons Y intégrale de Duhamel :

Multiplication

Considérons les deux grandeurs variables A et B et admet-,

tons qu'il existe une certaine dépendance entre ces deux

grandeurs telle que les variations de B puissent être considérées

comme la conséquence des variations de A.
Ces deux grandeurs peuvent être par exemple : la tension

aux bornes d'entrée et aux bornes de sortie d'un quadripole

électrique, la force agissant sur un point matériel et le

déplacement de ce point, la grandeur à régler et la course d un

régulateur, etc.

Ft{t) =-- I Fa{Q)-Flb{t- OdÔ.

11 est connu que cette intégrale permet, lorsque l'on peut
admettre que le système est linéaire, de calculer la variation
de B,Fb(t). résultant d'une variation de A, Fa(t), la fonction

Fu(t) étant la variation de B résultant d'une variation de A
selon une impulsion unitaire dont la durée est infiniment;

courte et dont l'intégrale est égale à I. Il est connu également

que, selon le théorème de Borel, l'intégrale de Duhamel
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correspond au produit des fonctions équivalentes écrites
sous formes opérationnelles

JA (0) ¦B(t—Q)de---+a(p) ¦ b(p).

Par analogie, nous pouvons écrire que la suite qui corres
pond à la fonction Fb(t) est obtenue par le «produit» des

suites Sa et Sb correspondant à Fa et à F\b, et nous indiquons
ce produit par le signe (*)

La surface hachurée (1) représente la fonction S„ multipliée
par le facteur 1, la surface hachurée (2) représente la fonction
Sa multipliée par le facteur 2 et décalée de 1 unité de temps,
la surface hachurée (3) représente la fonction Sa multipliée
par le facteur 1 .et décalée de deux unités de temps. Nous
vérifions que la surface représentée par la suite Sab est égale
au produit des surfaces représentées par Sa et Sb (1 + 2 + 2 +
+ 1). (1 +2 + 1) (1 + 4 + 7 + 7 + 4 + 1) 24.

Il est connu que

/ Fa (6) Flb (t—0) dQ <r -> Sab Sa * Sb

=Éê T„Fa (m) • Flb (t—m) t
[ax; a2 ; aj * [b1 ; b2 bn].

La variation de B résultant de l'action de la première
impulsion ax qui compose la variation de A est égale à

[axbx ; a-J)2 ; axb3 ; a^ ; ; axbn].

La variation de B résultant de a2 agissant au temps t est
égale à

[o ; «ai»! ; azbz ; azb8 ; azb„].

La variation de B résultant de a3 agissant au temps 2r
est égale à

[o; o; Oa/Ji ; 0362 ; 0363 .03611].

Le résultat du produit est égal à la somme de ces différentes
suites ainsi que cela ressort du tableau suivant :

Sb h
«3

b, b,

a1b1 o,zb1 a3bx -aibi
<h.h azbz a3b2

a2b3

Sab «1&1 ; «1^2 + a2&i i 01&3 + «2^2 + Ozb1; • • •

Considérons l'exemple de la multiplication des deux séries

représentées par la figure 3

Sa 1 2 2 1

Sb 1 2 1

1 2 2 1

2 4

1

4

2

2

2 1

Sa 1 1

La signification géométrique de cette multiplication
ressort directement de la figure 4.

i&lra

/-my%\: EL

Fig. 4. —¦ Signification géométrique de la multiplication
et de ja division de suites de temps.

Fab(t) / Fa(Q)Fb(t—Q)dQ / Fa{t—Q)Fb(Q)dQ
0 0

nous en concluons que

Sab Sba Sa * Sb Sb * Sähe

produit de deux suites est donc commutatif, c'est-à-dire
que l'ordre dans lequel on effectue la multiplication de deux
suites n'influe pas sur le résultat de ce produit.

Division

La division de suites de temps est l'opération inverse à.
celle de la multiplication, elle correspond à la résolution
de l'équation intégrale de Volterra et permet de déterminer
la variation. B à la suite d'une variation de A selon une
impulsion unitaire lorsque l'on connaît la variation Fb(t) de
B résultant d'une variation quelconque Fa(t) de A. Il est
connu que sous forme opérationnelle, la résolution de
l'opération de Volterra conduit à faire le quotient des transformées
de Laplace de Fa(t) et de Fb(t). De façon analogue la suite
correspondant à la fonction Fu s'obtient en faisant la « division

» des suites correspondantes Sa et Sb que nous exprimons
symboliquement parle signe J

Sa
[«i 5 a2 ; 03 ;

[b± ; b2; bs; K]

La démonstration rigoureuse du procédé de la division
nécessiterait une étude détaillée des conditions de convergence
des suites, étude qui sortirait du cadre de cet exposé. Nous
nous contentons d'indiquer la façon dont s'opère la division
des deux suites Stt et S6 telle qu'elle ressort du tableau
suivant :

So-Oj | Sb bt ; b2; 63

b* i« b»
ai a"Tx ai^ a^ £>a -r-, T-l ar-th.trl h bi\ Lbt

0 aa—ai
b.

0

Nous cherchons combien de fois bl entre dans a^ ce qui
donne" le premier terme de la suite' du quotient. Nous multiplions

chaque terme de la suite de Sb, par le'quotient t^ etjar te quotient -s—
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soustrayons la suite ainsi obtenue de la suite 5„. Nous
cherchons combien de fois fej entre dans le premier terme

~2 — Oj jj de cette nouvelle suite ce qui donne le deuxième

terme de la suite du quotient, et l'opération se continue
comme pour le premier terme. Il en est de même pour les

termes suivants.
A titre d'exemple, nous allons contrôler qu'en divisant la

suite Sab Par 1* suite'Sj nous retrouvons la suite Sa de l'exemple
précédent

2 2 11 4 7 7 4 1

1 2 2 1

40 2 5 6

2 4 4 2

0 1 2 2 1

1 2 2 J

Sa= 1 2 1

0 0 0 0

Nous cherchons combien de fois le premier terme du
dénominateur, soit 1, entre dans le premier terme du numérateur
soit 1 fois, ce qui donne le premier terme de la suite du

quotient. Nous multiplions le dénominateur par ce terme
et nous obtenons une suite que nous soustrayons membre à

membre de la suite du numérateur, c'est-â-dire que nous
soustrayons [1, 2, 2, 1] de [1, 4, 7, 7, 4, 1] ; nous obtenons

une nouvelle suite [0, 2, 5, 6, 4, 1]. Nous cherchons combien
de fois le premier terme du dénominateur entre dans le

terme différent de zéro de cette nouvelle suite et l'opération
se continue. Comme nous pouvions nous y attendre, nous
retrouvons la suite [1, 2, 1] ainsi que cela ressort de la
figure 4.

Nous vérifions que la surface correspondant à la suite du
quotient est égale au quotient des surfaces correspondant
aux suites du numérateur et du dénominateur :

1 + 4 + 7 + 7 + 4 + 1 24

1 + 2 + 2 + 1 6 (l + 2 + i;

Le tableau suivant résume la signification des quatre
opérations que nous avons définies.

Fonction du temps Suite Fonction
opérati o n no 11 o

Addition Fait) +Fb(l) Sa + Sb Fa(p) +Fb(p).

Soustraction Fa(t)—Fb(l) Sa — Sb Fa(p)~Fb{p)

Multiplication
t

/Ftt(/—6) F6(6)de

intégrale de
Duhamel

Sa * Sb Fa(p) ¦ Fb(p)

Division Résolution de Sa X S* ' Fa[p)
l'équation inté*-

grale de Volterra
Fb[p)

Tableau des opérations à l'aide de suites de tem

IV. Définition et détermination de la courbe
de réponse d'un dispositif

Lorsque les variations Fa(t) d'une grandeur A et Fb{t)
d'une grandeur B ont pu être déterminées, il est possible
de calculer les variations Gb(t) de B qui résulteraient de

toute autre variation de A telle que Ga(t). Analytiquement
ce résultat est obtenu par la résolution du système d'équations
intégrales suivant

Q)dQ(t)= /V.(e) Ub{t
O

t

h(t) / Ga(e) ub{t—Q)deG

.Fa(t), Fb(t) et Ga(t) étant connus, Gb(t) étant à déterminer
et Ub(t) étant à éliminer entre ces deux équations.-

Il est connu que sous forme opérationnelle, ce système
d'équation intégrale se réduit à un simple quotient.

Gt(p)
f»(p)
fa(p)

Ga(p)

fa{p), fb{p), Ga(p), Gb(p) étant les transformées de La-
place de Fa(t), Fb{t), Ga{t) et Gh{t).

Selon la définition que nous avons donnée de ¦ la
multiplication et de la division à l'aide de suites de temps, il est
possible de calculer aisément la suite Tb caractérisant une
variation de B à la suite d'une variation T„ de A lorsque les
suites Sa et Sb ont pu être relevées expérimentalement :

Tt
Sb

Sa
Ta.

Il est ainsi possible de ramener les variations de B à un
commun dénominateur des variations de A et de comparer •

entre eux les résultats de différentes mesures. Comme variation
de référence, il semble indiqué de choisir la fonction unitaire
caractérisée par la suite Sj [1 ; 1 ; 1 .]. La suite Sbi que
nous obtenons est définie comme étant la suite de la courbe
de réponse de B par rapport à A.*

Sb

Sa
Si [&i; h; bs bn] 1]

Nous insistons sur le fait que ce mode de calcul n'est valable
que si on peut considérer que les fonctions en question sont
linéaires, ce qui est généralement, le cas lorsque l'on considère
de faibles variations par rapport à un état initial.

A titre d'exemple, considérons que la suite Sb [0,06 ;
0,35 ; 0,88 ; 1,55 ; 2,35 ...] représentée par la courbe 1 de la
figure 5 a été mesurée comme résultant d'une variation de
Sa selon une fonction linéaire Sa [0,5 ; 1,5 ; 2,5 ; 3,5 ]
(courbe 2). Nous calculons la suite de la courbe de réponse
en effectuant la multiplication et la division ci-dessus définies.

* Nous rappelons quo la courbû de réponse d'une grandeur B par rapport
à une grandeur A est définie comme étant la variation de j&, résultant
d'une brusque variation'de A selon une fonction unitaire représentée par la
courbe 3 de la flg. 5.
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0,06
1

0,35
1

0,88
1

1,55
1

0,06 0,35
0,06

0,88
0,35
0,06

1,55
0,88
0,35
0,06

SA,S,

2
1
0
0
0

0,06 0,41 1,29 2,84 5,

0,06 0,18 0,30 0,42 0

0 0,23 0,99 2,42- 4

0,23 0,69 1,15 1,

0,30 1,27 3;

0,30 0,90 1

,34
1

,34
,55
,88
,35
06

0 0,37 1

0,37 1

0 0

53

11
42

SA 0,5 1,5 2,5

0,12; 0,46; 0,60; 0,74; 0,84

Nous obtenons la suite Sbi [0,12 ; 0,46 ; 0,60 ; 0,74 ;

0,84 ; ] représentée par la courbe 4 de la figure 5, de la

courbe de réponse de B par rapport à A, résultant d'une
variation de A selon la fonction unitaire représentée par la
courbe 3.

S /
4 /

/ "^îg

3 /
/ ,//2 /

/ / ~^-7

1
/ /

// ¦^
2 3 4 5 t

\T
Fig. 5. — Détermination d'une courbe de réponse

à l'aide de suites de temps.

V. Intégration à l'aide de suites' de temps

Considérons à nouveau une fonction F(t) représentée par
la figure 6 et la suite S [/x ; /2 ; /3 ; ] correspondante.
Etant donné la définition des composantes impulsives, nous

pouvons calculer à l'aide de cette suite les valeurs de I'inté-
i

grale [F (t) dt pour les temps t, 2t, 3t...
T

F(t)dt= /,

Fft)

Î2X3Z

Fig. 6. —
Définition de
l'intégrale à

l'aide de suites
de temps.

2t

/ Z' (0* /l + /ï
0

3t

J F (t) dt /j + /2 + /8 etc.

O

Considéroiis à nouveau l'intégrale de Duhamel.

t

y{t)= jE(t—Q)F[Q)dQ
O -

et posons la fonction E(t—t) const 1

Nous obtenons

3/(0 - J lF{Q)dQ= / F(t)dt.

Ainsi que nous l'avons exposé précédemment, à cette équation

intégrale correspond un produit de la suite S1 [1 ; 1 ;

] et la suite [/j ; f2 ; f3 ; ] ; il en résulte

/ F (t) dt rtç \fii hl ¦¦¦ M 11.

Si nous effectuons cette multiplication selon le procédé que
nous avons indiqué, nous retrouvons en effet les termes de la

suite qui correspond à l'intégrale JF (t) dt

h h fa fi ••

1111..
f- k h fi ¦¦

fi ft h ¦¦
h h ¦¦

fi ; h + h ; h + h + h ; • • •

A titre d'exemple, nous calculons l'intégrale de la fonction
linéaire F(t) t

S 0,5 1,5 2,5 3,5

1111
0,5 1,5 2,5 3,5

0,5 1,5 2,5

0,5 1,5
0,5

ftdt «~> [0,5 ; 2; 4,5; 8; ..] - %[1; 4; 9; 16;...].
o

Nous obtenons la suite parabolique qui correspond à la

t ¦ l
fonction r,
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Bemarque

Le nième terme de la suite de temps qui correspond à

l'intégrale donne la valeur moyenne de l'intégrale entre les

temps (n—0,5) t et (n + 0,5) t (alors que le terme fn est la
valeur moyenne de la fonction entre les temps (n — 1) t
et n~). Ainsi, toute la suite de l'intégrale est décalée de 0,5 t
en avant par rapport à la suite de la fonction intégrée ; cependant

lorsque t est très petit, ce décalage est négligeable.

VI. Différenciation à l'aide de suites de temps

Fff}'

\S

rn-1)T nx Yn+VZ

Fig. 7. — Définition de la dérivée à l'aide
de suites de temps.

Considérons à nouveau une fonction F(t) à laquelle
correspond une certaine suite S [fx ; f2 ; f3 ; fn ;]•

Ainsi que le montre le petit triangle hachuré de la figure 7,
la dérivée de la fonction au temps (m) est donnée en première
approximation par tga

tea
dF F((n + 1)T)-F(m)
dt I=HT

dF
~dt

ff»T
h-U

dF
~dt J—2t

k-fl etc.

La dérivée est donc caractérisée par une certaine suite
telle que

dF
~dt

S' - \fi—foi fr-t-ï /s-/.; ¦ • • U-fn-i].

Considérons à nouveau l'intégrale de Duhamel dont nous

prenons la dérivée; les relations suivantes sont classiques :

t t

-Ae (t-0) F (0) d0 ftE («-©) F (O) dQ

O 0

t

\E{t 9) -r F(')d~.I dt

Nous admettons à nouveau que la fonction E est la fonction
unitaire U(l) 1 ; la dérivée de cette fonction unitaire est

une impulsion d'amplitude infinie et de durée infiniment
courte, c'est-à-dire l'impulsion unitaire limite, lorsque t -> 0

Soit S - ¦ [[] ; f2 ; /3 /„] la suite qui correspond à F (t)

et S' [f[; f2; f3 f'n] la suite qui correspond à
dF(t)

dt

Nous obtenons ainsi :

[1] S [1 ; 1 ; 1 ;

[i]S' =-- s
; 1; 1;

..]. S'

S * [1 ; — 1].

Si nous effectuons le produit de la suite [fi ; f2 ; /B] par
[1 ; — 1], nous retrouvons les termes de la suite de la dérivée

que nous avons définie précédemment :

H I k k fi
1 —1

/l k k fi
_/o fi /2 k

S'-- /i /o k Ai > k k i fi k

F0 étant la moyenne de F(t) entre t — t et t 0 si l'on

prolonge F(t) selon sa tangente pour -r- pour t — 0. A

titre d'exemple, nous calculons la dérivée de la fonction
t%

parabolique F (t) k et vérifions que nous obtenons la

fonction linéaire F' (t) t

Fit) 0,5 2 4,5 8

l —1

0,5 2 4,5 8

0 —0,5 —2 -4,5
F'(t) =.t ^* 5' 0,5 1,5 2,5 3,5

Comme la tangente de parabole est horizontale pour t 0,
nous avons /(0) 0.

Bemarque

La différenciation apparaît bien comme l'opération inverse
de l'intégration. Au lieu de multiplier par la suite [1 ; 1 ; 1 ; ]
elle consiste à diviser par cette suite.

Le niéme terme de la suite qui correspond à la dérivée d'une
fonction donne la moyenne de cette dérivée entre les temps
(n — 0,5) t et (n + 0,5) t c'est-à-dire que, de même que pour
l'intégrale, la suite qui correspond à la dérivée est décalée
de 0,5 t par rapport à la suite de la fonction à dériver.

VII. Relation entre le calcul opérationnel et
les suites de temps

Il est connu que Fimpulsion unitaire s'exprime
mathématiquement de la façon suivante :

-f-co +/'«

J(t) lfeil'dl ±jJeP'dp.
— OO —j»"

Exprimée sous forme réelle, nous obtenons
v

J (0 s-— / sin wt dt
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Or cette intégrale est la transformation de Laplace, telle
que Carson et Doetch l'utilisent, permettant de calculer la
fonction « objet » A(t) qui correspond à la fonction « image »

<P {P)

A{t)
%«k

+}<*>

op (p) eP1 dp.

L'intégrale de la fonction impulsion n'est pas autre chose

que cette transformation appliquée à la fonction ep (p) 1.

Or, par définition, cette fonction impulsion correspond à la
suite [1 ; 0 ; 0 ; ] [1] lorsque l'unité de temps choisie

t tend vers 0.
Nous avons vu que le^produit de deux fonctions sous forme

opérateur correspond au produit de deux suites de temps.
t 700

Ca (t) B (i—t) dr~ 2~-. fa (P) b (P) eP' dp Sa * Sb

O JOO

avec a(p) et 6(p) transformée de Laplace correspondant à

A(t) et B(t)
Sa et Sb — suite de temps correspondant à A (t)

et B[t).
Daûs le cas particulier ou b(p) 1 nous obtenons

+J0O

i r
2^-- a(p) e* dp==Sa * [1] Si

¦—/oo

Les suites de temps permettent donc d'effectuer l'intégrale de

la transformation deLaplace, il suffit de remplacer l'opérateur p
par la suite [1 ; — 1] pour obtenir la suite qui correspond à la
fonction objet ainsi que cela ressort du tableau suivant :

Fonction
image Fonction objet suite

p

P2

p"

1

p
1

1

+ 00

J- [é* dl
2trJ

CO

+ 00

00

+ 00

-k— (l-eh< dl
2nJ

—-CO

+ 00

-4- 1 ia en dlInj
—co

1

t
T

•i
e~l'
T

[1]

[l ; — H

[l;-2;l]

[1 ; — 3 ; 3 ; 1]

[1;1; 1]

>X3,.,
1 1

pT+1 7T_1;-1]+1 [7+1;-7]

Tableau de quelques « fonction image », « fonction objet » et « suite »

équivalentes.

Cette propriété est particulièrement avantageuse lorsque la
fonction image est appliquée à une fonction du temps X(t)
relevée expérimentalement dont on ne connaît pas 1 expres¬

sion mathématique ; la suite correspondante est égale au
produit de la suite qui correspond à X(t) par la suite qui
correspond à cette fonction image.

La transformation de Laplace est utilisée différemment par
certains auteurs tels que K. W. Wagner qui écrivent :

Alt) 2*d
'f(p) / (p) fonction «dérivée»' vr' eP'dp avec

p A (i) fonction «primitive».

Dans ce cas, la fonction unité qui correspond à f{p) 1

n'est plus l'impulsion unitaire J (t) mais la-fonction unitaire

U(t) telle que U (t)
0 t <0
1 t >0'

Pour obtenir les suites de temps qui correspondent aux
fonctions « primitives » de ces fonctions « dérivées », il faut
les diviser par l'opérateur p, ou ce qui revient au même, les

multiplier par la suite [1 ; 1 : ...] qui correspond à la fonction
unitaire.

VIII. Exemple d'utilisation des suites de temps

a) Détermination des conditions de stabilité d'un, réglage
automatique

Considérons le>réglage de vitesse d'une'turbine hydraplique.
Nous supposons que le circuit de réglage est « ouvert » c'est-
à-dire que le régleur de vitesse est entraîné par un moteur
dont on puisse faire varier la vitesse à volonté, indépendamment

de la vitesse du groupe.

Fig. 8. — Détermination des conditions de stabilité du réglage de
vitesse d'un groupe hydro-électrique.

Ainsi que le représente la figure 8, nous supposons que l'on
ait pu faire varier passagèrement la vitesse enregistrée par le
régleur de vitesse et que l'on ait mesuré également la course
du vannage selon la courbe 2 et la variation résultante de la
vitesse du groupe selon la courbe 3, la charge du groupe étant
restée constante. A l'aide de ce seul essai, il est possible de
calculer les courbes de réponse du dispositif de réglage et du
groupe, c'ést-à-dire de déterminer expérimentalement leur
caractéristique dynamique et de vérifier si les conditions de
stabilité • sont remplies, en calculant les courbes de Nyquist
correspondantes et en leur appliquant le critère de Nyquist1).

b) Solution d'équations différentielles linéaires

Considérons le dispositif mécanique, représenté par la
figure 9, formé par un amortissement B et un ressort F.
Nous nous proposons de calculer la course x du point X en

1 Voir : Etude des propriétés d'un réglage automatique, M.CuAnod, « Bulletin
technique de ta Suisse romande », 26 avril et 10 mai 1947.
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fonction de la force K qui agit sur ce point. Ce système obéit
à l'équation différentielle suivante :

r, dx
K — b^r -j- fxdt '

avec h constante d amortissement

/ caractéristique du ressort

K

-X

B

F

Fig. 9. — Dispositif mécanique
statique avec amortissement.

Nous considérons une variation de K et de X par rapport
à un état initial et posons

K K0 + AK et x xB + Ax ;

nous tenons compte du fait que K0 / x0 ;

dxo
que dl o et obtenons

AK bAx
W fAx.

Nous divisons le terme de gauche par Ko, le terme de
droite par fx0 et introduisons les valeurs relatives suivantes :

AK
~Ko~

il en résulte :

_
bdï

K~~ fdl

et

dl

Az

T~ + Z E{PT + 1)

avec p opérateur de différenciation

T constante de temps j
nous obtenons la relation de transfert suivante

k pT+1 T [1 — 1] + 1

Nous calculons la courbe de réponse résultant d'une variation

de K selon la courbe 1 de la figure 10. Nous supposons
que la constante de temps T 3 sec. Nous obtenons

Sx
M/) [1;1

k 3[1;-1] + 1 [4;-3]
[0.25 ; 0,44 ; 0,58 ; 0,68 ; 0,75 ; 0,82 ; 0,87 ...].

Ainsi que le représente la courbe 2 de la figure 10 et comme
on devait s'y attendre, nous voyons que £ varie selon une
courbe exponentielle. Nous nous proposons de calculer les

variations de E résultant d'une variation arbitraire de k telle

que SK [1 ; 3 ; 2 ; 1] représentée par la courbe 3 de la
figure 10. Nous obtenons

MO _ [1 ; 3 ; 2 ; 1]
K

Ü0
K

[4;-3]
[0,25; 0,94; 1,20; 1,15; 0,86; 0,65; 0,49;

0,37; 0,27; ...].
Ce résultat est représenté par la courbe 4 de la figure 10.

Nous voyons que l'amortissement a pour conséquence de

retarder et de diminuer les variations de £. Nous insistons
sur le fait que les calculs ne sont pas rendus plus compliqués
par le fait que les variations de la force K peuvent être une
fonction quelconque qu'il n'est pas nécessaire d'exprimer
mathématiquement.

2

f1

\ -
O 5 2 : 1 4

O

Fie 10. — Résolution d'une équation différentielle linéaire
à l'aide de suites de temps.

IX. Conclusion

La forme que l'on choisit comme fonction unitaire n'a
aucune importance, pouvu que la surface de cette fonction
soit égale à l'unité et que la base en soit proportionnelle à

l'unité de temps. Il est ainsi également légitime de se

servir de triangles ainsi que le fait M. Tustin, ce qui ne change
pratiquement en rien le procédé du calcul et le résultat final
dès que l'unité de temps choisie est suffisamment petite.
Les opérations nécessitées par la multiplication et la division
de suites de temps n'offrent aucune difficulté théorique et
peuvent être effectuées à l'aide de machines à calculer telles

que les machines à cartes perforées du type Holorit.
L'utilisation de suites de temps offre un nouveau moyen

d'analyse dont cet exposé ne donne qu'un court aperçu et
qui peut être envisagé chaque fois que l'on se propose d'étudier
la relation dynamique qui existe entre deux grandeurs que
l'on ne peut exprimer par une expression mathématique.
Cette méthode s'impose ainsi pour l'étude de phénomènes que
l'on est réduit à constater et qui échappent de par] leur nature
à des essais systématiques, phénomènes que l'on rencontre
en géologie, par exemple, relation entre les variations de
température moyennes annuelles et le mouvement des glaciers ;

en économie, par exemple, relation entre les variations de
l'investissement et celles du degré de production, entre les
variantes de l'offre et celles des prix, etc. ; en biologie et en
médecine : détermination des réactions physiologiques à la
suite d'une intervention médicale, etc.

En permettant de ramener les variations des grandeurs
envisagées à un commun dénominateur des variations de la
cause (par exemple fonction unitaire), cette méthode donne
la possibilité de comparer entre eux le résultat de différentes
mesures et d'établir une moyenne des caractéristiques
dynamiques que l'on se propose de déterminer. Si le fondement
théorique des suites de temps fait appel à des mathématiques
relativement élevées, par contre leur utilisation, pratique ne
donne lieu à aucun calcul compliqué ni à aucune construction
graphique, ce qui doit leur Attirer la faveur des ingénieurs
praticiens. Cette méthode peut rendre de précieux services
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en technique, en particulier pour l'étude des phénomènes de
réglage automatique et chaque fois qu'en mécanique ou en

électro-technique l'on est conduit à résoudre une équation
différentielle avec terme perturbateur selon une fonction
échappant à une détermination mathématique. Elle permet
d'étudier facilement l'influence de retard qui conduit la
méthode classique à des calculs très compliqués. Cette méthode
ne doit pas être appliquée aveuglément, mais doit être considérée

comme une approximation d'autant meilleure que

l'unité de temps choisie est faible par rapport à la durée des

phénomènes envisagés et que leurs variations sont lentes, et
peuvent être considérées comme linéaires.

Qu'il nous soit permis en terminant d'exprimer notre
reconnaissance envers Monsieur W. Frey pour toute l'aide qu'il
nous a apportée dans l'élaboration de cet exposé.

M. Cuénod
Ing. à la S. A. Brown Boveri & C*e, Baden.

La controverse des barrages continue

En complément de son article paru dans notre numéro du
21 mai 1949, M. Maurice Paschoud nous prie de porter à la
connaissance de nos lecteurs les lignes suivantes (Réd.) :

Des entrefilets parus récemment dans la presse pourraient
faire croire que le différend des barrages est réglé. Il n'en
est rien et voici, à ce sujet, quelques renseignements qui
intéresseront peut-être les lecteurs du Bulletin Technique.

Deux jours avant la publication de notre article de mai 1949,
le Tribunal fédéral avait rejeté les conclusions prises par le
Conseil d'Etat du Valais tendant à ce qu'il plaise à ce
Tribunal de prononcer que le Département fédéral n'était
pas compétent pour prendre ses décisions de 1948 concernant

le type de barrage à adopter pour la retenue de Cleuson.
D'ailleurs, au début de février 1949, l'Inspection fédérale

des travaux publics, sans attendre cet arrêt et comme si elle
en avait deviné à l'avance la teneur, demandait à sa commission

d'experts « d'examiner comment, à Cleuson, on pourrait
utiliser la partie du mur évidé déjà construite pour en faire
un mur plein »

Afin d'accélérer les travaux de cette commission, elle la
compléta ensuite en lui adjoignant deux nouveaux membres,
un professeur de l'Ecole polytechnique fédérale et un ancien
ingénieur en chef des Chemins de fer fédéraux. En même
temps, elle la pria d'étudier aussi « comment on pourrait
renforcer le tronçon de mur évidé existant pour qu'il
présente la même sécurité qu'un mur plein ?»

Au début de mars, l'Inspection soumit à sa commission
Gutachten Ober die Staumauer

.SA Barthélémy fCleuson)

Massiver Maueraufbau - Variante AI
Schnitt

Scfinit'f a-s

500

*1
t riß»

Prot Pfeilerstaumauern n

Pfeiler ft-13

Pfeifer 8-13
".*

H _.

1 d

a T-t,*+-\

a tatjf tts

^

Rechnung!basis
Kütitschftfte, werden
fuctitraglith Jusùefonierf

30 April 1949'

Fig. 1.

élargie le rapport du groupe d'ingénieurs consultés par
Salanfe S. A. à propos des barrages de Salanfe et de Cleuson.
Cette commission pourrait ainsi compléter son rapport de
mars 1948 et son rapport spécial de juillet de la même année
(dont nous ignorions jusqu'alors l'existence) relatif à l'action
des tremblements de terre sur les barrages.

La commission d'experts de l'Inspection décida de répondre
d'abord aux deux questions posées par cette dernière, en se
réservant de revenir, plus tard, sur le mémoire des ingénieurs
consultés par Salanfe S. A.

Voici les éléments essentiels du rapport de cette commission,

du 30 avril 1949, qui contient la solution des deux
problèmes qui lui étaient posés.

Après quelques critiques sur les travaux (fouilles, injections
de ciment) déjà exécutés à Cleuson et sur la granulométrie et
le dosage du béton mis en place, critiques qui se sont d'ailleurs
révélées injustifiées, les experts présentent quatre solutions aux
problèmes posés par l'Inspection. Les variantes désignées par
A I et par A II répondent à la preinière question, les variantes

B I et B II à la seconde.
Nous allons donner quelques indications sur celle de ces

deux variantes, la variante A I, qui, de l'avis des experts
eux-mêmes, est la moins mauvaise des deux solutions de
transformation du mur évidé en mur plein et sur la variante
B II, qui prévoit un renforcement du mur évidé.

Variante A 1. La figure 1 donne les renseignements nécessaires

sur cette variante qui prévoit l'achèvement, sous
forme de mur plein, de la partie du barrage déjà exécutée.

Elle indique aussi, en trait-trait, la
forme du projet primitif de barrage
évidé. Pour tenir compte des « Directives

», l'épaisseur du couronnement
est portée à 5 mètres. En vertu de
ces directives aussi, on prévoit un
abaissement préalable de 15,90 m. du
niveau maximum de la rétenue, en-
cas de danger. Cet abaissement
devrait porter sur le 36 % du volume
de la retenue supposée pleine et
nécessiterait alors l'écoulement de 7,5
millions de mètres cubes d'eau.

Le parement amont est vertical, le
e fruit du parement aval est 1: 0,733.
[_ Le raccordement entre les parties

ancienne et nouvelle se fait à la
cote 2 132. A ce niveau, la longueur
du pilier existant est de 50,07 m.,
mesurés suivant l'axe de 1 évidement.
Elle surpasse de 9,77 m. la longueur
de base de la partie nouvelle du mur
plein. Entre la cote 2 132 et les
fondations, la construction existante
dépasse, à l'aval, le profil du mur
plein achevé. Pour éviter des difficultés

dues à ce saillant, les experts en
préconisent la démolition. Le
remplissage de l'évidement ne doit évi-
demment se faire, à 1 aval, que
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