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La mécanique aléatoire et le problème de la turbulence
par FRANÇOIS BAATARD, ingénieur E. P. L.

(Suite et fin) l

14. La turbulence homogène et isotrope

Ce genre de turbulence a été étudié par Taylor, von Karman
et Howart. Dans le système des variables d'Euler, la vitesse
est Uj (xlf Xç, xs, t), u2, U3, au point A(x1, xt, x3) et u(x + t)
en B(x -\- £). La corrélation entre ces deux vecteurs, à un
instant donné, est représentée par le tenseur de von Karman '¦

u'k(x)ui{x'i -\- E). Si B vient se confondre avec A, ce

tenseur devient, au facteur — P près, le tenseur u'ku', de

Reynolds. La turbulence décrite par le tenseur de von Karman

fait intervenir neuf fonctions inconnues des points A,
B, et du temps. Une simplification remarquable se produit
dans le cas de la turbulence homogène et isotrope dont les

grandeurs qui la caractérisent restent invariantes, à un
instant donné, par rapport aux translations et aux
rotations, ce qui réduit le nombre des fonctions inconnues.

Ainsi par exemple :

l-f U^2 ttg2 K et Ujitg u^u[ UjUg 0

3K énergie cinétique d'agitation turbulente.
Le tenseur prend la forme simplifiée :

g 0 0

0 g 0

0 0 /

où g coefficient de corrélation entre les composantes de

la vitesse en A et en B qui sont orthogonales à AB
et / id. mais pour les composantes portées par AB (fig. 15).

e3

Fig. 15.

On peut placer en A et en B des appareils à fils chauds
(Kampé de Fériet) qui donnent la valeur moyenne du pro¬

duit des composantes de la
vitesse d'agitation et enre-

coeffiaent de gistrerles courbes f et g
corrélation (fig. 16).

Les coefficients de
corrélation, fonction de la
longueur des déplacements dans
le fluide, donnent une image
de cefluide. Si le fluide est
incompressible, / se réduit à g.

Dans le cas général, la
relation entre f et g est
donnée par l'équation de

Fig. 16. von Karman :

distance entre
les Zpoints

f VI ä
2

'
àr

Pour établir la relation entre les nombres K, /, et 1% données

par les appareils et la vitesse a* du mouvement
d'ensemble, von Karman a proposé l'utilisation des équations
de Navier, ce qu'il fit, tout en étudiant les corrélations entre
les composantes des déformations et celles des vitesses, ou
des pressions et des vitesses, démontrant par exemple que
les moments conjugués de la pression et de la vitesse sont
nuls, la vitesse étant prise en B et la pression en A, etc.

Von Karman donna en outre une équation intéressante,
dite équation de propagation des corrélations, et dont il fit
de nombreuses applications.

15. Le spectre de la turbulence homogène

Si l'on admet que la turbulence se manifeste par des

oscillations périodiques des particules, oscillations traduites par
leur agitation, il est possible, à l'image de l'optique ou de

l'acoustique, de les soumettre à l'analyse harmonique. Ainsi :

u'(t) V (At cos tu*« + Bt sin w*t)
1=1

1

1
m

1

représentant l'énergie ou intensité de la— (A2 4-

raie K. Si le spectre des oscillations est continu, la série de

Fourier ci-dessus est remplacée par une intégrale de Fourier ;

le spectre des vitesses comporte en effet des raies ou des

bandes suivant que l'on a affaire à des composantes isolées

de fréquences précises ou à des fréquences continues. En pre-
uu

nant la fréquence ra 0— comme variable, au heu de la

pulsation, on écrira :

fQ(n)dn.

Q(n)dn énergie contenue entre les fréquences ra et
ra + dn (elle peut être obtenue expérimentalement au moyen
de filtres de fréquence).

En général, Q(n) — K.q(n) et q(n) est la fonction spectrale,

dont la relation suivante: fq{n)dn i lui attribue les

caractères d'une densité de probabilité. Rappelons que la

probabilité pour que ra < N < n -f- du est une certaine
fonction q(n) appelée densité de probabilité de la variable n.

Il existe une relation fondamentale, découverte par Taylor,
entre la fonction spectrale et la fonction de corrélation

R(h) 0 u'(t)u'{t + h).

1 Vt. Bulletin technique du 11 scpl 1948, 233.
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En introduisant dans cette dernière u'(t) calculée par sa

série de Fourier, on obtient :

1 Y,u'(t)u'(t + h) K-R(h) -k- V (Al + B\) cos u)kh

En passant des séries aux intégrales, cette relation devient

u'(t)u'(t -\-h) K fq(n)-2t:nh-dn

R(h) lq(n)- cos 2irnh-dn

et

Ce qui s'énonce :

La fonction de corrélation R(h) est une intégrale de Fourier
inverse de Fourier de la fonction spectrale.

Inversement, q(n) Cmi) cos 2itraA • dh.

Le peu que nous avons montré de la théorie de Taylor-
von Karman permettra, nous l'espérons, de constater la

description déjà avancée qu'elle donne de la turbulence.
Elle n'écarte cependant pas certaines lacunes et von Karman

n'a pu, malgré plusieurs tentatives, échapper aux
équations de Navier pour la description du mouvement
d'ensemble. La nature des particules pose également un
problème périlleux pour leur existence ; en effet, un des

caractères le plus remarquables d'un fluide turbulent est sa

diffusion, incompatible avec l'emploi des coordonnées de

Lagrange. Comment suivre les particules, puisque à peine
formées, elles se détruisent en perdant à tout jamais leur
individualité. Comment mesurer la corrélation entre les

vitesses en deux points différents dès lors La situation
est d'autant plus sérieuse que ces critiques ne proviennent

pas de vues de l'esprit, mais des yeux ; on voit en
effet en regardant un fluide turbulent (une fumée par exem-
pie) (fig- 17) :

diffusion

£ l'instant t à l'insfanl t*l)

Fig. 17.

D'autre part, suivant la finesse de l'enregistrement, le

graphique obtenu n'est pas une ligne continue, mais un

nuage de points recouvrant une certaine région du plan
variant suivant la sensibilité de l'appareil employé ; ceci

permet en particulier de constater que la vitesse d'un fluide
turbulent n'est pas une fonction continue et derivable du

temps d'une part, et que l'échelle d'observation joue un rôle
essentiel d'autre part. Les règles de calcul utilisées dans

l'estimation des moyennes présentent de graves lacunes
d'ordre mathématique 1.

Les intégrales de Riemann n'offrent pas la possibilité de

rendre compte de l'évolution d'un fluide turbulent Ainsi,

par exemple :

Soit X la coordonnée d'une particule fluide ; sa dispersion,
c'est-à-dire

1 Exemple écha nge «v il,MU moyen le» a v

intégration.
8 Lei iiiov innés tempo elles, intégra es au

constante» nr pouvi nt rent Ire compte c 'un p
évolutif.

l'opération dérivation ou

'us de Riemann, sont des
loniène maeroscopiquement

X'Ht)

t +T

^f(Xls ¦Xfds constante

(une moyenne temporelle au sens de Riemann)

avec X' X — X
montre que si, à l'instant t 0, la particule est en un point
donné, X'2(t) X'2 0. Autrement dit, il n'y a pas de
diffusion à l'intérieur du fluide et le caractère turbulent qu'il
s'agit précisément d'étudier est ainsi supprimé.

Choisies parmi un grand nombre, ces critiques élevées et
approfondies par Dedebant et Wehrlé ont amené ces auteurs
à repartir de zéro et à donner du problème une solution
purement statistique.

16. La théorie de Dedebant et Wehrlé

La solution proposée par ces deux auteurs, à laquelle
collabora également M. Bass, qui a fait une importante étude

sur les méthodes modernes du calcul des probabilités appliquées

au problème de la turbulence (étude publiée récemment

par le Groupement français pour les recherches
aéronautiques), ne tarda pas à déborder largement des cadres
du problème de la turbulence pour devenir un corps de

doctrine, la mécanique aléatoire, qui jette un jour très
nouveau sur quantité de questions soit anciennes (thermodynamique,

théories cinétiques), soit actuelles (mécanique
ondulatoire, relativité restreinte, particules élémentaires, etc.).
Très récente, la mécanique aléatoire est en pleine évolution
et ne prétend pas avoir atteint sa forme définitive et
parfaite ; sa partie purement mathématique, le calcul et l'analyse
aléatoires est déjà extrêmement vaste et renouvelle sur de

nombreux points, en les généralisant, plusieurs conceptions
fondamentales de la théorie des probabilités. C'est, ainsi

que nous l'avons déjà dit dans l'introduction, une ramification

moderne de ce calcul, la théorie des variables et des

fonctions aléatoires, développée par divers mathématiciens
contemporains qui a fourni l'outil mathématique à MM. Dedebant

et Wehrlé, bien qu'ils se soient cantonnés dans une
classe déterminée de fonctions aléatoires, celles qui sont
dérivables en moyenne quadratique et pour lesquelles les

règles connues du calcul différentiel et intégral peuvent être

transposées sans trop de modifications. C'est d'ailleurs cette
possibilité qui a engagé Dedebant et Wehrlé à utiliser cette
catégorie de fonctions plutôt qu'une autre.

Dans leur mémoire original paru dans la revue Portugaliae
Physica les auteurs précisent leurs idées et les développent
(Fascicule 4, 1945) ; M. Dedebant expose dans sa publication
« Les schémas aléatoires devant la relativité restreinte »

(Port. Phys. 1946, fasc. 2) le point de vue aléatoire face aux
nouvelles mécaniques.

Voici quelques points essentiels, que nous essaierons

seulement de rendre plausibles dans ce très bref aperçu, des

conceptions de MM. Dedebant et Wehrlé.
Comme nous l'avons déjà dit à plusieurs reprises, l'aspect

d'un diagramme change complètement suivant l'échelle
d'observation. Un instrument enregistreur de sensibilité insuffisante

tracera d'un phénomène une courbe, alors qu un
enregistrement fin en donne un nuage de points recouvrant une
certaine région du plan. Supposons que nous ayons un tel
enregistrement de la vitesse dans un fluide turbulent. Il est

impossible de retrouver l'ordre chronologique des points et
de les relier entre eux par une courbe continue, cela n aurait
aucun sens : on ne peut donc pas non plus donner du phénomène

la valeur moyenne par une intégrale de Riemann,
c'est-à-dire par :
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«• t

'¦1*1

Um
_1_

U(t)dt

ce serait illusoire (fig. 18).
Dedebant et Wehrlé

ont suggéré de procéder
de la manière suivante :

*" Traçons des bandes hori¬
zontales d'ordonnées ut et

Ui+i par exemple; comptons

le nombre nt de

points que chacune d'elles contient. N= 2«t représente le nombre

total des points du graphique ; la valeur moyenne du nuage
compris dans la zone i*,- < uj < itj+i, est, si m est le nombre

Fig. 18.

des points d'ordonnées ut :
ru fi; (ce dénombrement

peut se faire automatiquement par l'analyse au microphotomètre

du noircissement d'une plaque impressionnée par un
spot lumineux commandé par l'organe sensible). Pour
l'ensemble du graphique, on obtient la moyenne :

— Iraj-Mj vi n* >

2.71» *-l N
La limite de cette somme est l'intégrale de Lebesgue :

I uf(u)du.

En effet, on peut dire que —-- représente la fréquence fi

de la vitesse uj<Uj<u,+i, ou approximativement la probabilité

pour que cette vitesse u- soit telle que mj<Uj<u» -f" du%.

La courbe donnant les fi en fonction des «,- représente une
fonction f(u) qui a le caractère d'une densité de probabilité.
A la limite, on peut donc bien écrire :

+ 00

u / uf(u)du.

Le temps t a disparu du processus d'intégration ; aux
moyennes de Riemann se substituent ainsi les moyennes
stochastiques. Si, au cours de son évolution, une molécule (s'il
s'agit d'un gaz, par exemple) passe successivement par des

conditions cinématiques réalisées simultanément par
l'ensemble des molécules à l'instant t, on dit que le principe
ergodique est satisfait, et dans ce cas l'intégration se ramène
au type Riemann.

Nous avons ébauché la genèse du concept de fonction
aléatoire. Un nombre aléatoire est un nombre indéterminé
susceptible de prendre une série de valeurs avec des probabilités

données ; si ce nombre dépend d'un indice ou d'un
paramètre, il devient une variable aléatoire. L'approfondissement

de ce qui précède a donc conduit Dedebant et Wehrlé
à admettre que la vitesse n'est pas une fonction derivable du

temps et des coordonnées du lieu, mais une variable aléatoire
fonction du temps et des coordonnées du lieu.

La vitesse d'ensemble du fluide est la valeur moyenne en

chaque point de la vitesse aléatoire ; elle est donnée par la

fonction f(u) ou explicitement f(ult f<2, ua ; xlt x2, x3, t)

u uf(u ; x, t)du.
Rappelons que la probabilité pour que la vitesse U reste

comprise entre deux limites infiniment voisines u et u -\- du
est :

Prob, (u <^ U < u f(u)du.

f(u ; x, t) est la probabilité liée des composantes de la
vitesse u en un point donné x, à l'instant t.

Dedebant et Wehrlé envisagent le tenseur de corrélation
entre les vitesses à deux points différents et à deux instants
différents : c'est le tenseur de corrélation cinématique :

u'k (x> l) u'e (y> *i) (h ^ 0 (y^x)
qui comprend les cas particuliers suivants :

tenseur de corrélation dans le temps :

ut(x> l)u'e(x> *i) (y x) (l^ h)

tenseur de corrélation géométrique ou de von Karman :

u'k(x, t) u'e (y, t^ (y ^x) (t j|
tenseur de corrélation des composantes de la vitesse en

un point :

u't(x, t)u'e(x, i,) (y x), (t tj).

Tels sont les éléments qui donnent la structure du champ
aléatoire des vitesses (variables d'Euler).

Une des créations les plus originales de la mécanique
aléatoire est celle du corpuscule aléatoire, où l'on assiste au
mariage des variables de Lagrange et des variables d'Euler,
ce qui permet une image complète de la turbulence ainsi
qu'une généralisation de la notion de champ des vitesses.

f(u ; x, t) est donc la loi de probabilité liée du champ des

vitesses en chaque point de l'espace ; c'est celle des composantes

[/j U2 U3, de la vitesse en un point donné xlt x2, x3,
c'est-à-dire pour des valeurs données x±, x2, x3, d un vecteur
aléatoire X1} X2, X3.

p(x, t) représentant la densité du fluide, on peut dire :

pdx donne « grosso modo » la proportion des particules
contenues dans le volume dx, ou si l'on veut : la probabilité
de présence de ces particules dans dx ; c'est une loi de

probabilité de position. On peut maintenant construire une
relation R(u ; x, t) qui soit la loi de probabilité entre les

composantes de la position X(t) et de la vitesse U(t).
R(u ; x, t) représente donc la loi de probabilité conjuguée

entre la position X(t) et la vitesse U(t) d'un corpuscule
aléatoire, c'est-à-dire la loi de probabilité conjuguée entre
p(x, t) et f(u ; x, t).

Le théorème des probabilités composées permet d'écrire :

R(u ;x,t) — p(x, t) f(u ; x, t).

Un ßuide turbulent est donc un corpuscule aléatoire, c est-à-

dire un point dont les coordonnées et les composantes de la
vitesse sont des fonctions aléatoires du temps.

Un fluide turbulent est donc l'analogue en mécanique
aléatoire du point matériel en mécanique rationnelle ; si la

dispersion des coordonnées disparaît, le corpuscule aléatoire
dégénère en point matériel et la turbulence disparaît. R
contient donc la densité, la vitese moyenne du fluide et la loi
de distribution des vitesses d'agitation. On peut définir la
vitesse d'ensemble du fluide comme étant la moyenne attachée

à la loi /, c'est-à-dire la moyenne liée de la vitesse du

corpuscule aléatoire pour X x ; on la désigne par ut.
La théorie des fonctions aléatoires in l nul nil une importante

notion, celle de la connexion d une fonction aléatoire
(c'est une généralisation de celle de corrélation) ; c est la
corrélation entre deux variables aléatoires X(tj) et X(tg),
valeurs d'une même fonction aléatoire en deux instants
distincts ij et f2. La mécanique aléatoire étudie la connexion
du corpuscule aléatoire en distinguant trois types de lois :
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xW *(h)

1. Les lois corpusculaires. Exemple :

G(x, y, u, v, • t, t-yjdxdydudv probabilité pour que :

a) à l'instant t on ait x <^ position <^ x -\- dx

u < vitesse < u -\- du

b) à l'instant tx on ait y <^ position < y -\- dy
v < vitesse <i v -\- dv.

2. Les lois de champ ou lois de probabilités liées des vitesses

une fois les positions choisies ; exemple : la loi f(u ; x, t).

3. Les lois de passage p(y ; x, t, f.]) qui donnent la probabilité

pour que le corpuscule parti de la position x à l'instant

t soit à l'instant tt à une position comprise entre y et

y + dy.
La turbulence est définie par l'association des lois de pas"

sage et des lois de champ, ce qui permet l'interprétation de

la diffusion du fluide. La théorie classique des fluides conduit
à retrouver à un instant tx et dans un certain volume,
le même nombre de particules
que dans le même volume à

l'instant initial, ce qui est ' n
contredit par les faits. Nous
dirons maintenant : A l'instant

t, les vitesses des micro-
particules sont des fonctions
aléatoires et à l'instant t1; toutes

ces microparticules sont
distribuées au hasard dans le
fluide (au lieu d'être restées

groupées) (fig. 19), avec une densité de probabilité p(y ; x, t, tj).
Dedebant et Wehrlé donnent la position moyenne des micro-
particules à l'instant tt en attachant la probabilité p aux
moyennes de Lagrange :

X(tj) Iyp(y; x, t, t^dy dont la dispersion vaut

x\t) f y:-r,X(h) 'p(v ; *> t, tx)dy.

Si X'*(t) 0, les particules restent groupées (cas limite
où elles obéissent à la mécanique classique des fluides) et
leurs positions moyennes coïncident avec leurs positions
réelles ; il n'y a pas de diffusion.

En mécanique rationnelle, la dérivée de la position donne
la vitesse ; Dedebant, Wehrlé et Kampé de Fériet
remarquèrent qu'en général la position du corpuscule aléatoire est

une fonction aléatoire non derivable, mais par contre que
la vitesse est intégrable au sens de Lebesgue ; en se basant
sur l'étude de la connexion entre X(t) et X(t + h), ces auteurs
arrivèrent à la conclusion que la vitesse U(t) est continue en

moyenne quadratique, et que par conséquent son intégrale
aléatoire est derivable en moyenne quadratique. On dira

qu'une fonction aléatoire Xjt est derivable en moyenne
quadratique s'il existe un nombre aléatoire X/t tel que

Fig. 19.

X/t 1 tend vers zéro avec h.Xjt +h — Xlt

Etendu à la vitesse, ce raisonnement permet d'en définir
A(t), sa dérivée aléatoire.

X(l) et U(t) étant dérivables en moyenne quadratique, leur
loi <le probabilité conjuguée obéit à une équation de conservation

des probabilités dont la généralisation est extrêmement
importante et porte le nom d'équation générale de transfert
dont les applications sont pour le moins assez surprenantes.
En quelques mots, voici de quoi il s'agit ;

Ak définissant la moyenne liée de l'accélération pour une
position et une vitesse données et w une fonction de t, xk, uk,
if obéit à la relation :

)\\l ^ àW yry-' d^\
dt t-* dxk —^ aukjt{p^ + lik{9^)

applicable à toutes sortes de grandeurs.
Si <p 1, on obtient :

qui est l'équation de continuité du mouvement d'ensemble.
Si >t< désigne non plus uft scalaire, mais le vecteur vitesse,

le « transfert » de la vitesse donne :

duk
dt + y, i du*

Dx, û-j^mM
qui est l'équation la plus générale de l'hydrodynamique dans

laquelle p densité et uk vitesse d'ensemble. Si Ak,

moyenne liée de l'accélération en un grant, peut être identifiée

à un champ de forces, pu'eu'k contient implicitement
les tensions moléculaires et de turbulence. Appliquée à

l'énergie cinétique, l'équation de transfert fournit une relation

thermodynamique où se trouvent reliées l'énergie
cinétique, une quantité analogue à l'échelle turbulente à la

température en théorie cinétique, l'entropie, et un symbole
de dérivation totale dans l'espace position-vitesse. La recherche

de la signification de cette relation a conduit Dedebant
et Wehrlé à énoncer un principe très général, celui de la
dissipation minimum d'énergie, qui permet le calcul de mouvements

réels. Une forme de son énoncé peut être, dans un cas

simple : l'arrangement des vitesses dans un fluide turbulent
est tel que les forces de frottement turbulent dissipent le
moins possible d'énergie.

Dans un cas limite où en particulier la vitesse d'ensemble

est nulle et le fluide incompressible, on retrouve l'équation
de la propagation de la chaleur de Fourier.

La question du spectre de la turbulence peut se résoudre

assez simplement. Limitons-nous au cas où X(t) et U(f) sont
stationnaires, c'est-à-dire lorsque la loi de probabilité conjuguée

entre X et U ne dépend que des différences tg — tlt
In tn—1, etc.

Bappelons que u'(t) u'(t + h) Kr(h) où

r(h) coefficient de corrélation entre les vitesses

et K vitesse quadratique moyenne.
Kintchine, mathématicien contemporain, a montré que

dans ces conditions

r(h) /cos uuA dF(\u)

et F(uu) fonction de répartit ion ou fonction spectrale.

F(xlt x%, Xg, Xn ; t], tu (3, (¦) est la probabilité
des inégalités Xt -^- "x\ X2 ^ .t2 A3 ^ x3 Xn ^ xH.

Au développement en série de Fourier de r(t) correspond
la décomposition suivante de la fonction aléatoire U(t) :

U(t) U0+U1(t)+U2(i)_
(trois termes stochastiquement indépendants)

avec r(t) — a0 + k^h) + h'2r-2(h) ;
(T0 moyenne temporelle de ffjt) au sens classique, soit

une variable aléatoire indépendante de t;
Ui(t) série de Fourier presque périodique, purement

aléatoire ;
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C7g(t) intégrale de Fourier aléatoire pure donnant la

partie continue de la fonction spectrale;
a0. klt Zca sont les moments du second ordre de

U0(t) Ux(t) U2(t)
et rx(h) r2(h) leur coefficient de connexion.

On appelle moment d'ordre k la valeur moyenne de la
fonction M* (m) w* ;

Mk= j u*f(u)du ;

si k 1, Mj moyenne proprement dite.

La fonction spectrale caractérise la distribution d'énergie
suivant la fréquence. De la fonction spectrale on peut déduire
la fonction de corrélation, et vice versa.

Il est une question capitale, à laquelle la mécanique aléatoire

donne une réponse intéressante : celle de la notion de

particule, et voici dans quel sens Dedebant et Wehrlé voient
la chose : c'est l'échelle d'observation qui crée le phénomène.
Prenons l'exemple suivant : l'atmosphère est troublée par
des perturbations constituées par des masses d'air (10 m
d'épaisseur et quelques km2 de surface) en mouvement
d'agitation à grande échelle par rapport à la circulation
générale de l'atmosphère, le mouvement d'ensemble (particules

synoptiques). On peut descendre tous les étages jusqu'à
la molécule en passant par la soufflerie de laboratoire et

pour chacun de ces étages, la vitesse d'une particule [à l'échelle

considérée) est la somme d'une vitesse d'ensemble et d'une
vitesse d'agitation, la vitesse d'ensemble d'un étage étant la
vitesse d'agitation de l'étage supérieur, l'échelle fixant le choix
des instruments de mesure. On appelle temps de persistance
le temps pendant lequel une particule garde son individualité,
cette durée jouant à l'échelle de la turbulence le rôle du

temps de libre parcours moyen à l'échelle moléculaire.
Dès lors la question du rapport entre les étages de perturbation

et le spectre de la turbulence se pose : on peut montrer

que qualitativement le spectre reste le même tandis que
l'intensité des raies faiblit quand l'échelle augmente.

Il serait tentant de discuter quelques relations existant
entre la mécanique aléatoire, l'optique et la mécanique

ondulatoire, mais l'étendue du sujet ne le permet pas, ni
le cadre d'ailleurs de la présente étude, qui aura pu, nous

l'espérons, montrer quelques points turbulents de la mécanique

aléatoire.
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De nos jours, un ingénieur, quelle que soit sa spécialité, doit
en général connaître la plupart des nombreux matériaux
bruts ou de fabrication proposés par l'industrie, ainsi que
leurs propriétés essentielles.

Le manuel cité passe en revue d'une manière concise, mais
suffisante dans bien des cas, les principales substances
utilisées dans les divers domaines de la technique : mécanique,
électricité, génie civil, chimie industrielle, etc.

L'auteur a rassemblé une documentation considérable, tant
sur les métaux et leurs alliages que sur les roches, les verres,
les ciments, les huiles, le bois ou encore sur certaines matières

organiques, synthétiques, sur les plastiques, etc. Sans entrer
dans trop de détails, il indique cependant les caractéristiques
les plus importantes de ces matériaux, en se plaçant toujours
au point de vue des applications pratiques. L'exposé est

complété par des diagrammes, des tableaux de valeurs numériques

et des notices bibliographiques qui font de cet ouvrage
une source précieuse de renseignements.

LES CONGRÈS

Association suisse pour l'Aménagement
des Eaux

37e As ibléissemblee generale, le 11 septembre 1948.

L'Association suisse pour l'aménagement des eaux a

tenu sa 37e Assemblée générale ordinaire le 11 septembre 1948,

dans la grande salle du Comte du Château de Chillon.

Le président, M. le Dr P. Corrodi, directeur des NOK à

Zurich, a ouvert la séance en saluant la présence des autorités,

parmi lesquelles on remarquait notamment M. le

conseiller d'Etat P. Oguey, chef du Département de

l'instruction publique et des cultes du canton de Vaud.

Dans son allocution, M. Corrodi a rappelé que les insuffisances

de notre économie électrique sont les conséquences

de la période de guerre pendant laquelle on a peu construit

et par ailleurs, beaucoup développé l'emploi de l'énergie

électrique en la substituant à d'autres sources d'énergie. En

conséquence, nos besoins d'énergie d'hiver ne peuvent être

que partiellement satisfaits et l'on doit s'attendre encore à

des restrictions de consommation. Seule, la construction de

nouveaux bassins d'accumulation est à même de faire

disparaître cette situation déficitaire. Il est à souhaiter que

l'intervention de nos autorités fédérales tende de préférence

à aider les initiateurs plutôt qu'à les restreindre.

L'assemblée, comprenant plus de cent participants, a

procédé ensuite aux opérations statutaires en approuvant la

gestion et les comptes de l'exercice écoulé, en acceptant
la modification de l'article des statuts fixant les cotisations,

en renouvelant le mandat des membres de son comité, de

son président et des membres du bureau, tout en appelant à

siéger au sein de ce dernier M. E. Steiner, Dr ing., vice-

président de l'Association suisse des consommateurs d'énergie

à Zurich.
A l'issue de la partie administrative, M. P. Meystre,

ingénieur, chef du Service de l'électricité de la ville de Lausanne,

a exposé les grandes lignes du projet de l'usine de Lavey

sur le Rhône, appelée à remplacer l'usine du Bois-Noir, et

dont les travaux en cours ont fait l'objet de la visite de

l'après-midi.
Cette manifestation a été pleinement réussie et chacun se

doit d'en remercier les organisateurs, en particulier M. le

Dr h. c. R. Neeser et M. M. Wenger, ingénieur.
Avant la séance administrative, une visite du manoir de

Chillon, sous la conduite experte de M. le colonel O. Schmid,

architecte, a révélé à chacun les pages caractéristiques de

l'histoire de cet édifice si connu par l'image.

L'après-midi, un groupe de participants a pu encore, en

sacrifiant il est vrai le dessert du repas en commun, se rendre

près de Martigny pour contempler les dégâts résultant des

inondations du Rhône, qui a rompu la digue de la rive gauche

sur une longueur de près de 120 mètres. Ce spectacle désolant

engage chacun à appuyer les efforts de ceux qui ont inscrit

à leur programme d'aménager nos eaux, soit pour les utiliser,

soit pour les discipliner. F. P.
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