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La mécanique aléatoire et le problème de la turbulence
par FRANÇOIS BAATARD, ingénieur E. P. L.

Introduction

Important dans maints domaines divers (mécanique des

fluides, météorologie, aérodynamique, astrophysique, etc.),
le problème de la turbulence semble trouver aujourd'hui,
grâce aux travaux de MM. Dedebant et Wehrlé, une solution
satisfaisante. De nombreuses tentatives (Navier, Boussinesq,
Reynolds, Prandtl, von Karman, Taylor, Gebelein) échouèrent

ou apparurent insuffisantes. Il ne pouvait en être qu'ainsi,
car l'instrument d'attaque du problème n'était pas au point.
Ces théories ont cependant laissé des traces intéressantes qui
ont guidé les recherches ultérieures.

L'histoire de la science, et celle de la physique théorique
en particulier, montre une quantité de questions résolues

grâce à l'arsenal adéquat fourni, sans idées préconçues
d'ailleurs, par les mathématiciens. Citons : Newton, le calcul
différentiel et intégral et la mécanique ; Einstein, le calcul
tensoriel et la relativité ; Heisenberg, l'algèbre des matrices
et la mécanique quantique ; les séries de Fourier, l'acoustique

et l'électrotechnique. On ne niera pas non plus que
les questions touchant de près ou de loin au hasard (jeux,
assurances, biométrie, théories cinétiques, radioactivité, etc

trouvent leur moyen d'expression dans le calcul des

probabilités. C'est précisément le développement fructueux d'une
ramification moderne de ce calcul, les fonctions aléatoires,

qui permit à MM. Dedebant et Wehrlé d'établir une mécanique

très générale, la mécanique aléatoire, particulièrement
bien adaptable au problème de la turbulence (entre autres) ;

de plus, la possibilité de construire des appareils (Kampé

C'est l'échelle d'observation qui crée le phénomène.
Chs-Eug. Guye, L'évolution physico-chimique.

de Ferriet à Lille, Angleterre, U. S. A.) donnant expérimentalement

les grandeurs introduites dans la théorie, en permet
la marche de pair avec l'expérience. On dispose d'ailleurs

pour cette étude de magnifiques laboratoires naturels :

l'atmosphère, les nuages, les rivières, les fumées, etc.
Pourquoi ne pas utiliser, dans le problème qui nous préoccupe,

la mécanique classique des fluides Parce que l'expérience

montre que la turbulence est un phénomène statistique,
discontinu dans l'espace et dans le temps, et dont l'évolution...
aléatoire, précisément, ne peut se traduire qu'à l'aide des

conceptions nouvelles. C'est le souci de se rapprocher des

phénomènes naturels qui a conduit MM. Dedebant et Wehrlé
à faire de la mécanique aléatoire le langage de la turbulence.
Cette mécanique, une mécanique statistique qui introduit
un concept de probabilité à sa base, permet non seulement
une meilleure transcription du réel, mais encore l'établissement

de lois de prévisions intéressantes et un pouvoir d'explication

étendu.

1. Lm turbulence

L'aspect d'un écoulement change considérablement dès

l'instant où son nombre de Reynolds dépasse une certaine
limite. Alors que pour de petits nombres de Reynolds l'écoulement

se faisait tranquille, par filets parallèles, les gouttes
liquides glissant les unes sur les autres sans se mélanger,
caractérisant de la sorte Vécoulement laminaire, il apparaît
brusquement un véritable changement d'état du fluide pour
le nombre de Reynolds critique : agitation désordonnée
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directement visible, vitesse variant rapidement en grandeur
et en direction, mélange des couches, etc. Ce changement
d'état, discontinu, se produit dans le temps et dans 1 espace.
La turbulence naît au voisinage des parois ou à la suite de
frottements internes dans le fluide. Les deux régimes, laminaire

et turbulent, coexistent parfois, mais séparés nettement

(couche limite de Prandtl). Il existe des phénomènes
intermédiaires, sans véritable turbulence (ex. : tourbillons
alternés).

2. Variables de Lagrange, variables d'Euler

L'équation fondamentale de la dynamique, appliquée à un
fluide de masse p, soumis à une force extérieure F,* donne :

J F grad p où J — accélération et p pression.

On peut dès lors donner la description du mouvement
d'après les coordonnées ou variables de Lagrange, consistant
à suivre une particule (fig. 1).

r&ecA

Q-.

r*°;sj
O

Fig. 1.

(x, y, z, t) : coordonnées du point P variables de

Lagrange.
L'équation du mouvement du point P suivant son vecteur-

lieu est :

2*7{P ; t)r=r{P;t), J
Pt2

Les variables d'Euler permettent de « regarder » la vitesse

W(P; t) (fig. 2).

if'
ro

*co
Fig. 2.

Wx, Wv, Wt, composantes de W, sont les variables d'Euler.
On passe des variables de Lagrange à celles d'Euler en

d7
intégrant -i. W (P ;tdt

-> dW(P-t) -*-*-*J= ft ' >

+ W(V)W
dW
dt

variation dans variation dans variation
le temps de W l'espace de W totale de W

où y représente l'opérateur :

dx

Il y a deux dérivées bien distinctes dans l'expression de J :

1° — taux de variation en un point de l'espace, oudt il.dérivée locale (t ^ t' ; P P') ;

2° taux de variation le long de la trajectoire de la
dt h J

particule, ou dérivée moléculaire (t =fc t' ; P =j= P').

* Rapportée ù l'unité de masse.

On suit donc le mouvement en examinant la variation
dans le temps et dans l'espace du champ des vitesses.

r peut être développé en série :

—».-*¦-*-*¦ b
r=r0 + a(t — t) + ^ [t — t„f

où r0 r (P0 ; t0)

\ch(P0;t)
àt W(P0;t„)

t fdW
b=(-dt etc.

3. L'équation de continuité

Elle exprime que le fluide est conservatif.
Si le fluide est incompressible, sa masse spécifique est

constante et l'équation de continuité se réduit à :

_¦*, dWx dWy 2Widiv W 0 ou -; \- —^- + ~^—dx </y dz
0

4. La description des tourbillons d'après Ilelinholtz

Elle s'obtient en modifiant l'équation d'Euler ; si W(P ; t)
représente le champ des vitesses, le vecteur tourbillon est

• -& 1 Jf ¦défini par : T (P, t) - rot W, lequel, introduit dans 1 équation

d'Euler, donne :

dW
~dT 2Wr\T '~2~ + U

où P (p) énergie potentielle interne de press 1dp

et U énergie potentielle.
Le vecteur T obéit à l'équation de Helmholtz, qui permet

d'en suivre l'évolution :

d /T\ _ (T
dt(p)~[p

Dans un champ de forces dérivant d'un potentiel, c'est-à-
dire si F — grad U, le théorème de Lagrange exprime la
conservation du tourbillon :

V )w

d -T iT
p (pA+lt-te;\~^

ce qui peut s'énoncer : un fluide ne peut acquérir de rotation
si elle n'existe pas à l'instant initial.

5. Equation de Bernoulli

Dans le cas d'un potentiel des vitesses, c'est-à-dire si
W grad ep, ce qui entraîne nécessairement rot W 0, le
mouvement est donc irrotationnel. Ajoutons encore la condition

de la permanence du mouvement, c'est-à-dire que les

dérivées par rapport au temps — de W, p, p, soient nulles.

Les équations d'Euler se transforment alors en équation de

Bernoulli et le long d'une ligne de courant on a la relation :

p .„,„;, rdp+ U (P) + / -£ constante
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ce qui s'énonce : dans un mouvement permanent, la somme
de l'énergie cinétique, de l'énergie potentielle et de l'énergie
interne acquise sous l'effet d'une augmentation de pression
est constante.

6. Fluides réels

L'hydrodynamique classique, qui s'exprime avec les équations

rappelées ci-dessus, se présente en une théorie élégante
et mathématiquement impeccable ; mais elle concerne des

fluides parfaits, de viscosité nulle ; elle aboutit cependant
à des paradoxes gênants ; établie dans des conditions très

restrictives, son application aux fluides réels, visqueux,
turbulents, à mouvements non permanents, soulève de graves
difficultés ; d'où l'empirisme des équations chargées de

coefficients des fluides réels, parfois très nombreuses et
diverses pour rendre compte d'un seul phénomène (pensons
à certains calculs de perte de charge). D'autre part, la théorie
d'Helmholtz veut des tourbillons indestructibles alors que
la nature les montre éphémères ; une particule turbulente
diffuse et n'est par conséquent pas assimilable à un point
matériel pouvant être suivi en coordonnées de Lagrange. Le
nombre de Reynolds, critère de turbulence, est une notion
expérimentale utile, mais très restreinte et insuffisante à elle
seule à rendre compte des divers étages de turbulence. Un
fluide réel dissipe de l'énergie, ce qui rend inexacte l'équation
de continuité. Suivant l'échelle d'observation, il apparaît un
mouvement d'ensemble du fluide et un mouvement d'agitation

qui n'obéissent pas aux mêmes lois. Ajoutons que ces

mouvements d'agitation sont si compliqués qu'il est impossible

de les représenter par les fonctions dérivables et continues

de l'analyse, ce qui ressort des difficultés d'interprétation
des enregistrements dans lesquels la sensibilité des

appareils joue un rôle capital. Ce n'est pas parce qu'un
instrument de sensibilité insuffisante trace une courbe continue

qu'il s'ensuit que dans sa nature intime, le phénomène ainsi
représenté soit une fonction continue et derivable du temps.

Choisies parmi un grand nombre, ces quelques critiques
montrent qu'une voie nouvelle devait être cherchée, ce que
Navier, Boussinesq, Reynolds tentèrent d'entreprendre.

7. Les équations de Navier

Elles traduisent le mouvement d'un fluide réel visqueux,
cette dernière qualité se traduisant par une dissipation
d'énergie. Ces équations reposent cependant sur une hypothèse

assez gratuite : celle d'une relation linéaire entre les

tensions et les vitesses de déformation (Stokes) ; en outre,
on suppose des coefficients de viscosité constants, ce qui fait
que ces équations ne sont valables que dans des cas assez
restreints : viscosité normale, vitesses pas trop grandes, en
général régimes laminaires, nombres de Reynolds petits.

Voici les équations de Navier-Stokes, écrites dans un cas

un peu simplifié (le cas général nécessitant des notations un
peu complexes et des considérations tirées de la théorie de

l'élasticité) :

+[du du du du\ „ dv

1 \dt dx dy dz] 4. dx
densité composante de la force

du fluide extérieure agissant sur
le fluide

lêPu cPu cPu\

Jx* + dy* ^z*.
coefficient

de visco îité

les composantes de la vitesse au point (x, y, x, t) étant (u,
v,w).

Il est normal, vue la dissipation d'énergie due aux forces
de viscosité, d'adjoindre l'équation de la propagation de la
chaleur de Fourier :

=s—r- 2. u -=— — k. lap Y
dt dx r

En combinant cette relation avec celles de Navier et de

l'énergie cinétique du mouvement d'ensemble W ^Tpu3,

on obtient le bilan suivant des énergies :

Variation totale Travail des forces Travail des ten- Travail des forces
de la force vive extérieures appli- sions extérieures intérieures à

du fluide quées au centre appliquées à la chaque particule
de gravité surface limite

Si Ta désigne le tenseur des tensions, on aurait :

Dissipation D travail des forces intérieures -= s. Ta ^—
a dxt

8. L'idée de Boussinesq

Le premier, cet auteur proposa la décomposition du mouvement

turbulent en un mouvement moyen et un mouvement
d'agitation (fig. 3).

Fig. 3.

Si ü" vitesse moyenne,
u' vitesse instantanée,

u — û" définit alors la vitesse d'agitation (fluctuation).u

Boussinesq appliqua les équations de Navier au mouvement

moyen, mais en remplaçant le coefficient de viscosité

par un coefficient de frottement interne, plus grand.

9. La théorie de Reynolds

Reynolds, se basant sur une analogie entre l'agitation
moléculaire et la turbulence, transposa, par changement
d'échelle, les propriétés de la molécule à la particule. Si Q

désigne un volume contenant à l'instant t un nombre
suffisamment grand de particules pour que la moyenne ï7 ait un
sens, Reynolds pose :

~ûi
q / / / im(x, t) dÇli

Q

Appliquant dès lors les équations de Navier à ces particules,

Reynolds calcule le mouvement turbulent d'ensemble
en opérant la moyenne sur ces équations auxquelles il adjoint
celle de la continuité, ce qui donne :

du-i ry — dm v ldp
dt •£-/ dxt p dxi

équations moyennes de Reynolds

^ dûj,
2 dxi

0.

équation de continuité moyenne

où (u1, Ug, Ug) composantes de la vitesse au point (x1( a;2, x3),

i el k étant deux indices variant de 1 à 3 ; v2 àxl
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• Conclusion importante : Ces équations s'obtiennent en
remplaçant dans les équations primitives de Navier les

grandeurs initiales par leurs moyennes et en ajoutant aux
tensions de Navier dues à la viscosité les tensions — pUju£
purement turbulentes.

On discerne dès lors trois étages d'énergie qui se transforment

en cascade de la manière suivante :

a) énergie cinétique du mouvement moyen, ou étage
I supérieur |
b) énergie cinétique d'agitation des particules, ou étage

| moyen |
c) chaleur.

Si cette théorie marque déjà d'intéressants progrès, il y
a néanmoins certaines incertitudes (choix de Q permettant
le calcul de ~û, notion de particule) qui prêtent flanc à de

sérieuses critiques. Quant au calcul des moyennes utilisé par
Reynolds, il n'est pas valable sans restriction. D'autre part,
les mouvements turbulents étant très compliqués, est-il
possible de leur attacher des fonctions intégrables au sens
de Riemann Malheureusement pas, comme nous le verrons
plus tard. Notons encore que la théorie de Reynolds admet
les équations de Navier valables pour le mouvement
d'agitation, alors qu'elles exigent déjà une grande prudence pour
des mouvements réguliers.

Pour la première fois cependant, la turbulence se manifeste

par les tensions — pu[u'k en plus de celles de la viscosité.

10. La mécanique de l'écoulement turbulent dans les conduites

fermées

Il s'agit d'une application de la théorie de Reynolds faite

par Prandtl, von Karman et Nikuradse aux écoulements
dans les conduites de sections circulaires. La nouveauté
consiste à admettre entre u't et ug une corrélation statistique

régulière exprimée par la relation u't.u't cte. Cette
théorie reprend certaines grandeurs introduites par
Boussinesq tout en en introduisant de nouvelles (longueur de

mélange de Prandtl).
L'équation de Prandtl traduit l'apport de la turbulence

dans la contrainte agissant axialement au contact de deux
couches (fig. 4).

UL-f(y)

V '.t.SUt
dy

Fig. 4.

Soient A et B deux couches liquides en mouvement à
des vitesses m et ut. Par suite de la turbulence, il y a
échange de particules à une vitesse v' entre A et B, ou
échange de leurs quantités de mouvement.

Si ut < utc par exemple, la tranche B reçoit la particule
à une vitesse v' (w — ut). Cet échange se traduit par
l'apparition d'une contrainte tangentielle t pv'uj,. La
vitesse u est fonction du diamètre y de la conduite et Prandtl

introduit la quantité l — longueur de mélange par la relation :
du

u l. -p- •

dy
L'équation de Prandtl est alors la suivante :

T p. u. v
,,dü\2 I ;2 du\ du du
*1ÊÈÈ~ \ ' dy) dv~ dv

où a façpsur de turbulence (Boussinesq).

Von Karman a déduit de là diverses lois de similitude
(forme identique des courbes de répartition des vitesses
turbulentes dans les parties centrales des conduites). ïï les
énonce après avoir divisé les phénomènes en une classe
différentielle (ex. : vitesses) et une classe intégrale (ex. :

rugosité) ; y interviennent des lois de distribution des

longueurs de mélange et des vitesses, mais avec l'aide d'un
très grand nombre de paramètres.

11. Quelques applications du calcul des probabilités
au problème de la turbulence

Définissons tout d'abord un degré de turbulence ; d'après
ce qui précède, on peut poser le bilan suivant des énergies :

Energie cinétique Energie cinétique Energie cinétique
du mouvement du mouvement + du mouvement

turbulent moyen d'agitation :

u'*, v"*, w'9 (si on
a une particule

de masse 1).
u'2 vitesse quadratique moyenne.

En soufflerie, on définit l'intensité de la turbulence par le

m l/"'2 ¦
rapport : T-i —jj— où Uo vitesse moyenne à 1 entrée

de la soufflerie.
Si la turbulence est homogène et isotrope, c'est-à-dire si

u* v" w z :

7\.= 1/3 de l'énergie cinétique d'agitation
\l énergie cinétique du mouvement moyen

Considérons maintenant l'enregistrement de la pression
dynamique q donnée par un tube de Pitot, q f(t). Il permet
de définir :

_ 1
9 J,.

1 aire [oA
qdt=T

1- aire (oAabcdBDo) pression dynamique
moyenne (fig. 5).

9>

ce S

B
A

S d

9

D »>

Fig. 5.

La vitesse moyenne correspondant à q n'est pas la vitesse

moyenne u mais U telle que

— P^2 P-"* /• j \
q —=— et que q - (instantanée).

U* 1 />.2 g r. /i p.Donc : p • -«"W / "ô~ "' et t/ V / / « dt
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La lecture d'un manomètre permet de définir i ainsi la
vitesse efficace et U efficace > u moyen. La différence entre
U et H est d'autant plus grande que le courant est plus
turbulent. Un mouvement non permanent n'étant pas
nécessairement turbulent, la j-aléfinition du degré de turbulence

fu^
Par A / su peut parfois donner un résultat mathématiqueV un
sans sens physique (si, par ex., u u + u'0 sin <ut).

Il est facile de calculer la répartition des vitesses turbulentes

1 u' autour de la vitesse moyenne u ; u' varie autour
de ïï de 0 à u' en prenant toutes les valeurs intermédiaires.
S'il y a en effet (fig. 6)

n2 valeurs u'f
r»,, valeurs u%2

77>l

ll'J

<l'z(r)

ni valeurs u'?!

Fig. 6.

la parallèle à ot passant par u'2 coupant la courbe des

enregistrements en nf points, les fréquences des différentes vitesses
sont :

n
n« re2 ni ÄT ^-iPi "Äf» Pi ÄF> P* — aï avec N= ni+ "2+ ru + — V «<N' N' N

niEn reportant p< — en ordonnée, et u'.2 en abscisse, on
N *

a les courbes de fréquence des vitesses entre A et B. Ces

courbes, courbes en cloche de Gauss, ont pour équation :

K
P 7= *"

m
(fig- 7)

Si la région turbulente

observée est un
mélange de deux
régions turbulentes
homogènes, on obtient
des courbes à deux Fig. 7.

sommets résultant de
l'addition des fréquences empiétant l'une sur l'autre :

Ki ,„„. Kg

m e-*" + mm (fig-8)

¦P

m 8.

1 Dubois, Thèse Fao. So., Caen 1988.

On peut définir la turbulence à partir de la courbe des
fréquences. S'il ne se présente qu'une seule courbe en cloche,
la turbulence est homogène et cette courbe donne le degré
de turbulence. En effet :

8§IHE,,|H ŒE H*lMoyenne absolue de x — v?

+ 00

K C

m dx
1

Ks/n

u*
K.yjn

et la valeur moyenne de u'2 est : I x I

l l

Le degré de turbulence montre que :

u* est proportionnel à -*?-, donc, si la turbulence augmente,

l'ordonnée à l'origine diminue et la courbe en cloche s'aplatit
et devient de plus en plus large à mesure que croît la turbulence.
(PhysiquenfÉht, l'égalisation autour de la moyenne est plus
rapide).

Si u'2 présente une variation périodique et sinusoïdale,
l'écoulement possède un degré de turbulence, mais la courbe
se réduit à une parallèle à l'axe des ot, car :

N N
De toute façon, un écoulement sera d'autant plus

turbulent que la courbe en cloche sera mieux formée.
La valeur réduite de l'écart absolu est, par définition :

+ 00

i r i
V* J

-** I M d\
Jn

\x\ est lié à |X| par |\| C7 et U unité d'écart absolu.

On a encore f/2 V 2wpiqi

avec : pt et qt
N—m

N
1 — N

1 P<

La valeur moyenne de u'2 est

m i-i u
u a \x I —-=-

Vit
et U

K
Dans le cas d'un régime laminaire : u' 0 et U 0

(enregistrement donnant une droite v confondue avec l'axe ot) ;
dans ce cas d'ailleurs, p i et 0 et U \2npq 0 ;

donc U unité d'écart absolu 0 pour le régime laminaire
(fig- 9).

_ U
U est variable suivant la turbulence et u'1

sente une droite passant par 0 et telle que tg a

repré-
V*

VTC

u

Fig. 9.
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Remarque : On peut calculer u'2 de deux façons :

t

i r,
a) par planimétrage : u'2 ¦

t
u'2 dt

b) en calculant la moyenne

-7» "i • «i2 + % • M22 + • ¦ ¦ 1 Vi "T,_ JT Zj "*" "sN
Notons, d'autre part, que les courbes de fréquence

permettent de distinguer par le nombre de leurs sommets le

nombre et le genre des turbulences (de paroi, de sillage, etc.).

12. Le coefficient de corrélation

Comparons deux eMÉegistrements de fluctuations de vitesses

en deux points P et Q différents :

corrélation modérée; upUq^-\^.car il existe en moyenne
une relation entre les fluctuations en P et Ç (fig. 10) ;

Fig. 10.

faible ou mauvaise corrélation : u'pu'q 0, car pour une
valeur de u'P il y a autant de valeurs positives ou négatives de

u' (fig. 11).

U,

Fig. 11.

On définit le coefficient de corrélation par la relation :

0 s u'p-u'0 1

aucune corré- éz __ tzW liaison fonctionnelle
lation y u'p*lßWl^ linéaire

(définition identique à celle de la statistique appliquée,
biométrie, économie, etc.).

On caractérise ainsi la turbulence par les produits des

vitesses d'agitation aux divers points, u'Pu'0 représentant la

valeur moyenne des produits
dans le temps. Si la
distance d PQ des deux
points varie, le coefficient
de corrélation r est fonction
de d (fig. 12).

La corrélation ainsi définie

est très imparfaite ; si

r 0, on n est pas sûr qu'il
y ait indépendance, et l'on

peut avoir un coefficient de

corrélation non nul alors

que la corrélation dégénère
en liaison non aléatoire.

Q 1 "**«

'.
p n u

Fig. 12.

13. La théorie de Taylor (dans un cas simple)

Elle introduit la notion de corrélation en mécanique des

fluides, non seulement, comme dans la théorie de Reynolds,
sous la forme u'u',. de la moyenne du produit des vitesses

d'agitation à un instant donné, mais en considérant ces

grandeurs prises à deux instants différents. Taylor admet,
comme Reynolds, des particules douées d'un mouvement
d'agitation et dont les vitesses sont des fonctions continues
et dérivables du temps.

Suivons les particules dans leur mouvement, d'après
Lagrange, et formons les moyennes des vitesses V(t), V(t-\-h),
[V(t)]2, [V(t + h)]2 à deux instants différents t et t + h. On

en peut déduire le coefficient de corrélation R(h) entre les

vitesses des particules aux
x(t)

f~o

mmÊÊ

deux instants différents t et

f-f h.

Pour simplifier, admettons

que toutes les particules soient
en A à 1 instant t 0, et soient
x(t) leurs positions, que nous
suivons (fig. 13).

On peut écrire
d

x*{h) x(h)o(h)

d

x(h) V(s)d

2 dh

puisque v

s paramètre d'intégration,

donc :

et

|if= fv(s)V(h)ds

m -J- x'2{h) jV'{s)V'{h)ds

Ce qui s'énonce : La dérivée de l'écart quadratique moyen
est l'intégrale du coefficient de corrélation.

Admettons la permanence de l'agitation, V'(s)V'(h)ds ne

dépend alors que de (h — s). On peut poser V* — C8, C2 étant
la vitesse quadratique moyenne d'agitation. Par définition,
on a :

V'{s)V'(h) C2R(h — s) et par suite
h h

2 dh
(h) C2 R(h — s)ds C2 R{s)ds

On peut tirer de là d'intéressantes conclusions :

1° Si h est très petit : R(s) ^ 1 et -^- ^ Y* {h) C*h.

yc^2 h. C y x'2 dispersion des particules.

Cette dispersion est donc proportionnelle au temps, dans
le voisinage du point origine A.

2° Si h est grand :

Le coefficient de corrélation R(h) est très petit, car le

mouvement initial a peu d'influence sur le mouvement
lointain. Prandtl, dans son hypothèse du mélange, a proposé

que R devienne négligeable dès l'instant où la particule a

été renouvelée par suite de la diffusion. Soit

00

6 lR(s)ds cet instant (h est comparc a
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La longueur de corrélation est dès lors définie de la manière

suivante :
00

l1== C-G- C- \R{s)ds.

0

GO

On a donc, j R(s)ds étant remplaçable pratiquement

R(s)ds

TS*"W (76 et 2-C2-Q-h=2Cl1-h,

d'où le résultat important suivant :

La longueur de mélange l1 joue en turbulence, le rôle que

joue le libre parcours moyen d'une molécule dans la théorie

cinétique des gaz.
Pour être complet, il faudrait donner l'expression de la

corrélation dans le système des variables d'Euler ; ainsi un
écoulement turbulent d'agitation C est complètement déterminé.

Plaçons-nous en deux points A et B à l'instant t tt >

mesurons-y les vitesses U(o) et [7(E) des particules qui y
passent. Toujours dans le
cas simple d'un mouvement
permanent, on forme les

moyennes temporelles des

produitsï/(o) 17(E) (fig. 14).
De là il est possible de

tirer le coefficient de corrélation

r(E) entre U(o) et 17(E)

et de former Z2; longueur de

corrélation dans le système
des variables d'Euler :

«.Ci
uro)

r°r,
(¦-t-

Fig. 14.

Ji= lr{l\dl.
0

Ainsi, l'identité de deux écoulements turbulents est définie

par l'identité de leurs fonctions de corrélation (développées

en série). ¦ (A suivre.)

Essai sur le
caractère de l'architecture tchèque \

On sait combien change à mesure l'aspect des construc-
dions, des villages, des villes, voire des pays que l'on traverse
d'un pays d Europe à un autre.

Si on bandait les yeux d'un architecte expérimenté et si,

par exemple, on le transportait de Bohême en Bavière, puis
en Hollande, en France et en Angleterre, il dirait certainement

avec précision chaque fois qu'on lui ôterait le bandeau des

yeux, dans quel pays il a été transporté s'il ne voyait autour
de lui que des maisons et des rues, fût-ce des maisons et une

rue sans importance de type moyen, sans inscriptions
indicatrices.

Souvent on s'est posé la question de savoir si les œuvres
de l'architecture moderne portent des signes nationaux et
locaux caractéristiques qui étaient jusqu'ici observés dans

les constructions des temps passés.

1 Cet article, dû à M. Kabel Honzik, Dr ing., architecte, a paru dans

lf N° 3-4, 1948, de la revue française Techniques et Architecture,

Il est vrai que l'architecture moderne de tous les pays
est issue du même moule international, et qu'elle est même
dans ses tendances, internationale. Ses œuvres, on les trouve
ordinairement noyées au milieu de la grande masse des

constructions antérieures dont elle se différencie d'une
manière frappante, comme un élément étranger. Mais dès

aujourd'hui, après quinze ou vingt ans de durée de ce modernisme,

nos yeux se sont accoutumés à reconnaître les liens
curieux qui unissent cette architecture d'avant-garde avec
la tradition du pays et à sa production moyenne anonyme.
Si nous ouvrons un bvre dans lequel est passé en revue le

catalogue de leurs œuvres par pays, nous constatons avec
étonnement comment les différentes nations s'expriment
différemment d'après ce langage international. Si l'on présente
le livre à un architecte expérimenté et si on lui dissimule
les noms de l'auteuipspt du pays, il arrivera rarement qu'il
se trompe sur la désignation géographique du heu.

Ainsi s'ouvre à nous un champ nouveau et important
d'étude et de découvertes et c'est ce qui constitue le caractère

de Varchitecture.
Avant d'entreprendre une telle étude, il sera nécessaire

de s'entendre sur certaines notions et sur certains termes.
Le caractère peut « exprimer » soit ce qui se fait en matière

de constructions ou ce qui se fait dans l'esprit de l'architecte
créateur. Ce sont là deux grands complexes dont on peut
appeler le premier : caractère fonctionnel ou aussi objectif,
le second, formel ou subjectif. Mais les deux termes sont

peu précis et il faut, avant tout, examiner leur contenu.
Le caractère fonctionnel exprime la fonction sociale de la

construction, ses conditions statiques, d'exploitation et
climatiques, des espaces et d'autres faits résultant de conditions

extérieures.
L'expression formelle exprime le sentiment formel de

l'architecte, lequel dépend de toute une classe et de la nation
et de l'époque. Mais à côté de ces deux exemples de caractère,
il existe encore quelque chose que nous pouvons appeler le

caractérogramme.
Le caractère subjectif ou formel est ordinairement lié à

certaines formes, à un système de formes. Il est la

conséquence d'un effort conscient. Au contraire, le « caractérogramme

» est cette teinte personnelle involontaire, cet accent
individuel qui ne s'expriment par aucun système de formes,
mais seulement par une dimension, par un rapport réciproque
de parties, de proportions ou par une déformation à peine
saisissable. Même un griffonnage ou un amoncellement de

pierres et un ensemble de planches clouées d'une manière

provisoire, dénués de toute forme, toute trace de ce genre
d'activité humaine ¦ ¦ fussent-ils construits sans aucun
effort artistique i—¦ sont déjà des caractérogrammes parlants
et nous dévoilent de qui nous les tenons.

D'ailleurs, pour lire ce caractérogramme, une graphologie
a été fondée et un graphologue pourrait, à proprement
parler, lire le caractère de ceux qui ont été à l'origine de la

composition des villes et des maisons, de la méthode d'établir
des modèles des choses, justement comme on déchiffre

aujourd'hui une leliic.
Certes, cette manière de traiter la question a pour but

de saisir des mots — ne disons pas de définir le caractère

et le caractérogramme de l'architecture tchécoslovaque.
Nous poserons d'abord la question : « Quelle est la caractéristique

de l'architecture tchèque »

Le premier fait dont nous devons immédiatement nous

étonner -- quand on com pure cette architecture avec une
architecture étrangère — est la plus grande étendue spatiale,
le caractère massue, et disons-le, la lourdeur des construe-
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