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Sur les équations différentielles linéaires à coefficients
lentement variables

Application à l'étude de couplages non linéaires

par CH. BLANC,

professeur de mathématiques appliquées à l'Ecole polytechnique de l'Université de Lausanne.

(Suite et fin) 1

§ 7. Les couplages non linéaires
entre haute et basse fréquences

On dit qu'il y a un couplage entre deux grandeurs
variables lorsque les variations de chacune d'elles sont
influencées par celles de l'autre. Analytiquement,
considérons deux grandeurs dont les variations satisfont
chacune à une équation différentielle linéaire ; le

couplage des deux grandeurs transforme les deux équations

en un système différentiel de deux équations à deux
fonctions inconnues.

Supposons que les deux équations, en l'absence de

couplage, sont linéaires ; selon les cas, le couplage des

deux grandeurs donnera un système différentiel linéaire

ou non linéaire ; dans le premier cas, on dit que le

couplage est linéaire, dans le second qu'il est non linéaire.

Il est facile d'imaginer des exemples de l'un et l'autre
cas.

Prenons pour commencer deux circuits électriques

comportant des résistances, des capacités et des induc-
tivités ; si les deux circuits sont voisins, ils sont couplés

par leur inductivité mutuelle : un tel couplage est linéaire.

*) Voir Bulletin Technique du 17 juillet, p. 185.

Reprenons ensuite un des circuits considérés et
plaçons-le dans le voisinage d'un pendule portant une

masse ferro-magnétique : il y a couplage, car l'induc-
tivité du circuit dépend de la position du pendule, et
le pendule subit, par l'effet du courant, une force qui
modifie son mouvement ; ce couplage est non linéaire,
en particulier parce que la force exercée par le courant
est proportionnelle au carré de son intensité.

Mathématiquement, l'étude des couplages linéaires

(à coefficients constants) se ramène à un problème
d'algèbre des polynômes ; on en peut faire une théorie

générale et les seules difficultés sont au niveau du calcul

numérique (ce qui ne signifie pas qu'elles sont
négligeables). L'étude des couplages non linéaires ne paraît

pas pouvoir se faire par une théorie générale. Les

circonstances imaginables sont si diverses qu'il est nécessaire

de ne considérer simultanément que certaines

d'entre elles.

Nous allons voir comment on peut aborder le cas

d'un couplage entre deux grandeurs variant périodiquement

(ou presque périodiquement), avec des fréquences
notablement différentes. Il s'agira, pour fixer les idées,

soit des haute et basse fréquences de la radiotechnique,
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soit de la fréquence d'un courant alternatif à 50 périodes

par seconde et d'une fréquence lente (période de l'ordre
d'une seconde). Ce qui importe seulement, c'est le

rapport des fréquences, qui doit être grand. Nous parlerons
donc de haute et de basse fréquences dans ce sens relatif,
le seul qui intervient dans l'étude mathématique du

couplage.
Faisons alors tout de suite une remarque : s'il y a un

couplage en une haute et une basse fréquences, l'action
de la basse fréquence sur la haute ne dépend pas de la

nature périodique de la basse fréquence, puisque cette
action varie lentement en regard de la haute fréquence ;

il n'est donc pas nécessaire de tenir compte de cette

périodicité et il suffit de parler d'un couplage entre une

grandeur périodique et une grandeur variant lentement.

Reprenons l'exemple du pendule et du courant alternatif

: supposons que le circuit est relié aux bornes d'un
générateur à 50 périodes par seconde et que le pendule
a une période propre de l'ordre d'une seconde ; le mouvement

du pendule étant très lent par rapport aux variations

de courant dans le circuit, l'étude de ce courant
est la même que si l'on imposait au pendule un mouvement

arbitraire, pourvu seulement qu'il se fasse assez

lentement. On cherchera donc à exprimer le courant
dans ce circuit en tenant compte de la position et de

la vitesse du pendule, mais sans faire intervenir la nature
globale de son mouvement.

Analytiquement, on arrive ainsi d'une façon générale
à une équation de la forme (1), où la fonction u(t) est

la mesure de la grandeur qui fixe l'état du système à

haute fréquence (l'intensité du courant dans le circuit
électrique, si l'on reprend l'exemple du pendule), où

F(t) est une fonction périodique, ou peu différente d'une
fonction périodique et où les a»(t) sont des coefficients

variant peu et lentement relativement à la période de

F(t). Nous avons vu, dans la première partie de ce

travail, comment on peut intégrer une telle équation, au

moins d'une façon approchée. Nous avons vu, en
particulier, que l'on peut introduire une fonction Y(s, t) qui
joue le rôle d'une admittance : si le second membre
de (1) est eiat, la solution cherchée est simplement

u (t) Y(iw, t) eiat ;

cette admittance satisfait à une équation différentielle

en s, d'ordre infini, dont nous avons vu l'intégration
sous une forme approchée, dans l'hypothèse que les

coefficients de 1 équation donnée varient lentement.
En première approximation, on pourrait prendre déjà

Y1{s,t) J{s,t),

la fonction J(s, t) étant définie par (8). Cette première

approximation doit suffire le plus souvent : si les

caractéristiques du système varient très lentement, ce

système est à chaque instant équivalent (sensiblement) à un

système dont l'admittance est la quantité J.
Il est possible cependant d imaginer des couplages

dont les effets, même qualitatifs, ne s'expliquent pas si

l'on se borne à cette première approximation. Pour avoir

une seconde approximation, on prend, comme on l'a
vu, les dérivées premières dans l'équation différentielle
en Y, et on obtient l'expression déjà écrite (10) ; il est

peu probable qu'on soit amené à prendre une approximation

plus poussée de Y ; elle est suffisante, comme
nous le verrons, pour prévoir ce qui se passe dans l'exemple

du couplage entre un pendule et un circuit parcouru
par un courant alternatif.

§ 8. Entretien du mouvement d'un pendule
par un courant alternatif

On sait, depuis longtemps déjà, que le couplage d'un
pendule et^d'un courant alternatif peut donner lieu, si

l'on se place dans des conditions convenables, à l'entretien

du mouvement du pendule, et cela d'une façon qui
exclut que le couplage soit essentiellement linéaire.

Supposons, pour simplifier les calculs, que le circuit
possède simplement une self-induction, avec une
résistance ohmique en série ; cette restriction n'est pas
nécessaire et on pourrait traiter par la même méthode
le problème pour un circuit composé d'une façon
absolument quelconque. Si l'on appelle u(t) le courant et
x(t) la grandeur fixant la position du pendule, on a le

système différentiel *

(U)

(12)

d2x dx X

mdT*+flt+kx 9."

dt (Lu) + Ru E y 2 sin uif,

dL
où \ =: -j- ; on supposera simplement que L(x) est une

fonction croissante de x, donc que X garde un signe

constant.
On a cherché parfois à intégrer ce système d'une

manière approchée en écrivant a priori que x(i) est une
fonction sinusoïdale du temps, puis en tirant de là des

conditions nécessaires pour les coefficients indéterminés
introduits de cette façon. Malheureusement il n'est guère

possible de montrer ensuite que ces conditions sont
suffisantes ; au reste, les calculs que l'on est amené à

faire ainsi sont très longs, même dans le cas du circuit
électrique très simple que nous avons considéré.

Remarquons que

1° le carré du courant figurant au second membre de

l'équation (lM'ipeut être remplacé par une valeur
efficace moyenne, à cause de la fréquence relativement

élevée du courant ;

2° le coefficient L(x) varie lentement, puisqu'il varie

avec x(t), qui varie peu durant une période du

courant.

1 Voir y. Rocard, Dynamique générale, des vibrations, Masson, Parts 1943.

p. 242 et suiv. ; cet ouvrage étudie en particulier plusieurs problèmes très
intéressants de mécanique non linéaire. La méthode qu'emploie son auteur

pour traiter le problème qui nous occupe ici, ne paraît toutefois pas correcte.
Il convient de citer également les deux notes do M. Ch. Cassignol, G. R. de

l'Académie des Sciences, 224 (1947), p. 717-719 et 1754-1756.
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On intègre alors l'équation (12) par la méthode

développée plus haut ; on a ainsi le courant en fonction du
dx

temps, de x(t) et de x(t)= -=- ; on introduit la valeur

efficace de u(i) dans le second membre de l'équation (11) ;

on obtient ainsi une équation non linéaire, que l'on
discute par une des méthodes propres à ce genre d'équation.

L'équation (12) peut s'écrire aussi

du IdL
dt+\lt

pour calculer J, nous écrivons l'opérateur différentiel

adjoint, selon (3) :

L R Ey2 sin uu£

DV dt

L

Li-
dL
dt

R

dt
R<-

donc

J[s, t) Ls+R'
par quelques calculs très simples, et en tenant compte de

dL dL dx
dt dx dt

on a alors

9s
J-

d 1

\x(t),

\Rx {t)
dt J) (Ls

posons, pour simplifier l'écriture,
Li uj + R Ze'f

où Z et qp sont alors des fonctions de x(t) ; on obtient

par (10) l'admittance variable du circuit

Y(iu), 0 -g- 1^1 22

si l'on use de la notation complexe, le courant est donné

par

-y^r- ¦ * W

u (t) E il ¦
1 — \Re

xlt)

d'où la valeur efficace du carré
E2

Z2
1

2XÄ cos2cp .:,-¦¦, \2R2

z2 v; ' z4

nous introduisons alors cette fonction au second membre
de (11), qui devient, après groupement des termes

semblables,
E2\2R cos 2<p"] dx

(13)
d2x

dt2 f + Z*

-f- kx

E2\*R2 ldx\2
~lJZF~ \di)

X£2

2Z2

mouvement du penduleC'est l'équation du
Ions chercher les propriétés de ses intégrales.

§ 9. Conditions d'entretien

L'étude de l'équation (13) consiste principalement en

la recherche des solutions périodiques, à supposer qu'elle
en possède. Comme on ne peut pas écrire en termes finis

1 Ces considérations ont été introduites tout d'abord par H. Poincaiié
dans ses études sur les courbes définies par des équations différentielles. De

nombreux travaux ont été consacrés depuis lors à cette question. On trouvera
tootles renseignements utiles dans l'importante monographie de M. N. Minoh-

skv, Introduction to non-linear Meclianica, J. W. Edwards, Ann Arbor 1947.

l'intégrale générale par des fonctions élémentaires, on
utilise des considérations d'un tout autre ordre x. Remarquons

d'abord que l'équation (13) possède entre autres

pour intégrale la constante
\E2

X° ~ 2kZ2 ;

le pendule possède donc une position d'équilibre ; pour
étudier la stabilité de cette position, on écrit l'équation
aux variations, c'est-à-dire la proposée où on ne retient

que les termes linéaires ; cette équation aux variations
est ici

d2l
mdT2 + i

E2\2R cos 2cp

~^ZF~
dl
dt + té 0,

les valeurs de X, Z et q) étant prises pour x x0 ; la

stabilité dépend du signe du coefficient de -y, c'est-à-

dire du signe de

A f +
E2\2R cos 2cp

Z*
si A <^ 0, cette position est instable ; comme d'autre

part de grandes oscillations du pendule sont certainement

amorties, il doit exister au moins une intégrale
périodique ; pour la déterminer, on procède comme nous
le verrons plus loin. Remarquons que, par contre, si

A ^> 0, la position d'équilibre est stable, ce qui n'exclut
du reste pas a priori l'existence d'une intégrale périodique

stable. Pour l'instant, cherchons dans quelles
conditions nous aurons certainement un mouvement
périodique entretenu. La condition A <^ 0 peut s'écrire
aussi

-£*cos2cp>^(14)

elle exige donc :

1° que le circuit ait une impédance telle que cos 2q>

soit négatif, donc q) > 45° ;

2° que la tension d'alimentation soit supérieure à une
certaine valeur, d'autant plus grande que cos 2<p

est plus voisin de zéro.
Si l'on s'était borné à la première approximation Yj

de Y, on aurait trouvé pour la valeur efficace du courant
dx

une expression ne dépendant pas de -=- ce qui aurait

exclu l'existence d'une intégrale périodique : cette
première approximation ne rend donc pas compte de l'entretien

du pendule.
Il a été possible de procéder à des vérifications

expérimentales des résultats obtenus par le calcul8 ; pour les

valeurs assez grandes (en valeur absolue) de cos 2q>, qui
n'exigeaient par conséquent qu'une tension et un
courant peu élevés pour assurer l'entretien, les concordances

ont été très bonnes ; elles l'étaient moins dès que, cp se

rapprochant de 45°, on devait imposer une tension plus
grande aux bornes du circuit : la tension nécessaire à

8 Je tiens à remercier ici très vivement mon collègue le professeur R. Merrier,

directeur du laboratoire da* mécanique et de physique technique de

l'E. P. U. L. ; sans hésiter, il a accepté de nous fournir un montage; permettant

de faire ces essais ; je tiens à remercier également ses collaborateurs,
ainsi que M. P. Banderet, chef de travaux da Mathématiques ¦ appliquées,

pour l'importante contribution qu'il a apportée à ce travail.1
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l'entretien du mouvement apparaissait supérieure à la
valeur calculée. Un examen plus approfondi du
problème, au point de vue physique, montrerait qu'il s'agit
là d'un effet de la distorsion du courant et que l'équation
différentielle écrite ne peut pfus rendre compte du

phénomène. II est probable que des mesures faites avec

une tension alternative à une fréquence supérieure à

celle que nous avons utilisée (50 périodes par seconde)

donneraient de meilleurs résultats.

§ 10. Intégration graphique de l'équation (13)

L'équation (13) peut être intégrée graphiquement par
la construction des courbes intégrales dans le plan des

phases, c'est-à-dire le plan des variables x et x. Posons

m dx A E2\SR2

t=kJ> dx=V A1
fkr

B, 2mZ«

et déplaçons l'origine des x au point d'équilibre x0 ;

nous aurons simplement l'équation
du

(15)
dx A^ +B,v2,

où Ax et Bx sont des fonctions de la variable x. A chaque

état du pendule correspond un point du plan Oxv ; le

mouvement est représenté par une courbe, qui sera

fermée si le mouvement est périodique. L'origine constitue

un point particulier de la figure, puisqu'elle est à

elle seule une courbe intégrale dégénérée en un point.
Dans son voisinage, les courbes intégrales ont la forme
de spirales que l'on parcourt dans le sens des aiguilles
d'une montre lorsque le temps croît : en effet, la variable x
augmente alors nécessairement si v est positif et diminue
si v est négatif. Pour construire ces courbes intégrales,

nous utiliserons une propriété de leur normale ; soit en

effet M(x, v) un point d'une courbe intégrale, soit encore

N (E, 0) le point où la normale à la courbe intégrale par
M coupe l'axe Ox (fig. 1) ; on trouve facilement que
l'abscisse E de N est donnée par

g (*, v) — Aj [x) v + B1 {x) v2 ;

cela permet de construire
cette normale, d'où, par
des arcs successifs, la
courbe intégrale elle-même.

Il sera même utile
de tracer dans le plan
Oxv les courbes sur
lesquelles la fonction £ (x, v)

reste constante.
La considération de la

fonction E (x, v) permet
encore de discuter la

question de l'existence de courbes intégrales fermées,

donc de solutions périodiques. Considérons en effet un

arc PQ d'une courbe intégrale et soit r la distance d'un
de ses points à l'origine ; on a, en tenant compte de

l'équation (15),

Fig. 1

r dr v dv -f- x dx E (x, v) dx,

donc, le long d'un arc quelconque de courbe intégrale,

/ r dr / E (x, v) dx ;

supposons dès lors qu'il existe une courbe intégrale
fermée C ; l'intégrale curviligne de r dr le long de C est
nécessairement nulle, d'où

E (x, v) dx 0.

Or nous pouvons transformer cette intégrale curviligne
par la formule de Green-Riemann, d'où

dl
JJndv dx di- 0,

l'intégrale double étant étendue à l'intérieur D de la
courbe intégrale fermée C. On en conclut que la dérivée
31

y ne peut pas garder un signe constant dans D. Traçons

alors la courbe T, lieu des points pour lesquels on a

—- 0 ; cette courbe doit nécessairement couper la
(IV r
courbe intégrale fermée C ; dans notre exemple, la
courbe f* a l'équation

c= M.2B1{x)'
comme A1 et B^ sont des fonctions connues de x, il est

facile de construire la courbe T. Ces fonctions Ax et Bt

tendent respectivement vers --— et zéro lorsque x
y km

augmente en valeur absolue ; la courbe T aura donc

en gros l'allure d'une parabole ayant son sommet tourné
du côté des v négatifs ; si Ax ^> 0, le « sommet » est

situé en dessus de l'origine, la position d'équilibre est
stable et, si les caractéristiques du circuit varient assez

régulièrement avec x, il n'y aura pas de courbe
intégrale fermée ; par contre, si A-^ < 0, la courbe T a son
« sommet » placé en dessous de l'origine, qui correspond
à une position d'équilibre instable ; il y a alors une
courbe intégrale fermée entourant l'origine et dont
l'intérieur est divisé en deux parties par f" ; ces deux

parties sont du reste telles que l'intégrale double

JMTv
dx dv

calculée pour chacune d'elles donne des valeurs absolues

égales (fig. 2).

Fig. 2
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Pour une valeur de la tension E dépassant de peu
celle qui est juste suffisante pour l'entretien du pendule,
les oscillations seront d'assez faible amplitude ; on peut
déterminer approximativement cette amplitude par une
évaluation approchée de l'intégrale curviligne vue ci-

dessus. Prenons en effet un cercle Cr ayant son centre
à l'origine et de rayon r ; l'intégrale curviligne

f(r) E (x, v) dx
Cr

sera négative si l'on est à l'intérieur de la courbe

intégrale fermée, et positive dans le cas contraire ; en
évaluant cette intégrale et en déterminant le zéro de f(r)
voisin de r 0, on aura une expression approchée de

l'amplitude des oscillations.
Calculons cette fonction f(r) pour le problème traité

ici. Il faut pour cela prendre des expressions approchées
des fonctions A-y (x) et B-, (x) ; remarquons que l'on a

Al{x) \/ ki f +E2
X2 R cos 2 q>

h- e2 gl

des considérations sur lesquelles nous n'insistons pas *

conduisent alors à poser
Al{x) /l — £2 («0 — «2 x*)

et
Bx(x) ^E2,

où /j, a,,, a2 et ß0 sont des constantes positives dans le

cas d'un régime entretenu. On a dès lors, en posant

x r cos q), v r sin cp

pour calculer l'intégrale curviligne f(r), et après quelques
calculs simples,

/ (r) (h-E2 Oo)r% +
1

a2 E2 r* TT ;

si E est assez grand pour que la parenthèse soit négative,

cette fonction f(r) est négative pour les petites
valeurs de r ; la position d'équilibre est instable, comme

on l'a vu, et il existe une courbe intégrale fermée peu
différente d'un cercle de rayon r0, où r0 est la plus petite
valeur de r annulant la fonction /(/•). On a, avec

l'approximation de nos calculs,

r
2

t A5'»»-/!

ce résultat ne peut évidemment donner une bonne

approximation que si la valeur de E ne dépasse pas
beaucoup la valeur minimum pour laquelle il y a entretien

du mouvement du pendule, donc la valeur » /tl
V «o

Disons encore que l'évaluation (au planimètre par
exemple) de l'intégrale curviligne f i dx le long de

courbes intégrales permet d'en contrôler le tracé : cette
r2

intégrale est en effet égale à la variation de _ sur

ces courbes.

§ 11. Un autre exemple de couplage

On peut imaginer de nombreux exemples de couplage

non linéaire du genre de celui qui a été étudié ci-dessus.

1 Se reporter à l'ouvrage cité de N. Minohskv, chap. VI.

Considérons ainsi un couplage par capacité : on lie d'une

façon élastique les armatures d'un condensateur, qui
joue alors le rôle joué dans l'autre exemple par le

pendule. Les mouvements du condensateur font varier les

caractéristiques du circuit et sa charge donne naissance

à une force qui modifie son mouvement. Ecrivons les

équations différentielles du problème, en appelant q(t)
la charge du condensateur et x(t) le paramètre fixant la
distance des armatures ; on a ainsi

d2x dx q2 d 1 '

+ fJt+kx=2dlc (cdt

LM+Rdt +Cq \J2Ei uj e"

on a donc ici

en posant

-^—- Ls2+Rs+^;
J (s, t) G

Liw +R +
1

Ci
Ze*9,

puis

ïW' À (L
dit: \C

on a, après quelques calculs,

e~ T, y(2Lùd +R)J (lU),l) ^s 1 + V

ya - «~
dx
m,

on introduit alors dans la première équation différentielle
la valeur moyenne de q2, ce qui donne, après groupement
des termes semblables,

d2x
-rmd? + E2i2

f— ~r—s (2Luj cos 2 q> + R sin 2 q>)
Zj tu

(4 L2uj2 + R2) I ^Sm-r-kx

dx
dt

fE2

dx
est

Cette équation se discute comme l'équation (13) ; il y
a une position d'équilibre

fE2
Xo~2kw2Z*'

cette position est instable si le coefficient de

négatif, soit si

E2 f2
/ *C wl—5 (2i> u) cos 2 cp -f- R sin 2 <p) ;

pour que le couplage considéré provoque un mouvement
entretenu des armatures du condensateur, donc une
modulation à basse fréquence du courant, il faut tout
d'abord que le second membre de cette inégalité soit

positif, ce qui entraîne l'inégalité

2LCi 0:

cette inégalité étant satisfaite, il faut encore que la
tension soit supérieure à une certaine valeur seuil,
donnée par notre inégalité.

Nous ne poursuivrons pas plus avant l'étude de ce

problème ; on peut toutefois présumer que ce couplage

présente un intérêt pratique dans certaines questions
de haute fréquence. En outre, il se prête peut-être mieux
à des mesures de contrôle que le couplage par induc-
tivité que nous avons étudié plus haut.
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