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Sur les équations différentielles linéaires à coefficients
lentement variables

Application à l'étude de couplages non linéaires

par CH. BLANC,

professeur de mathématiques appliquées à l'Ecole polytechnique de l'Université de Lausanne.

§ 1. Introduction

L'étude mathématique de nombreux phénomènes se

ramène à l'intégration d'équations différentielles linéaires

à coefficients constants ; de plus, les seconds membres

de ces équations sont souvent des sommes d'exponentielles.

On étudie de cette façon, en particulier, les

phénomènes où les grandeurs, observées varient assez

peu (théorie des « petits mouvements »). Toutefois, on

peut facilement se persuader que cette approximation
ne suffit pas à expliquer certaines circonstances, notamment

certains phénomènes d'oscillations entretenues

d'amplitude finie. On a déjà beaucoup étudié la mécanique

non linéaire, en réunissant sous ce terme tous les

comportements (même électriques) dont la description
mathématique ne peut pas se faire par des équations
différentielles linéaires à coefficients constants.

Dès que l'on abandonne la linéarité, on se trouve en

face de problèmes singulièrement compliqués, difficiles à

grouper en théories générales satisfaisantes. Toutefois,

une catégorie assez importante de ces problèmes non
linéaires peut être abordée avec une précision suffisante

au moyen d'équations différentielles linéaires à

coefficients variables ; si les coefficients varient peu et

lentement, il est possible d'intégrer ces équations d'une façon

approchée au moyen de calculs analogues à ceux que
l'on fait pour les équations à coefficients constants.

Dans la première partie de cette étude (§§ 2 à 6), on
établira la méthode d'intégration des équations à coefficients

lentement variables. Le lecteur qui s'intéresse

plus particulièrement aux applications pourra se limiter
à la lecture des paragraphes 2 et 6 de cette première

partie ; dans la seconde, on trouvera des applications à

des problèmes de mécanique non linéaire, plus
particulièrement à des problèmes de couplage non linéaire entre
haute et basse fréquences.

§ 2. Enoncé du problème

On sait que l'intégration de l'équation différentielle
linéaire à coefficients constants

ax
dxu dN-*u
dty + a.v-i rgj^ï + • • • + a0u e>>

peut s'effectuer par des moyens élémentaires. Si l'on pose

Z(s) ax sy + +0^
et si Z(s) ^z£ 0, on a l'intégrale particulière

ut)
Z(s)
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si, de plus, toutes les racines de l'équation caractéristique

Z(s) 0 ont leur partie réelle négative, toute
intégrale de l'équation sans second membre tend vers zéro

lorsque t augmente indéfiniment ; l'intégrale particulière
écrite plus haut diffère donc de toute autre intégrale
d'une quantité qui tend vers zéro si t tend vers l'infini.
Cette circonstance se présente dans de nombreux cas ;

on dit alors que l'on a un phénomène amorti ; si, en

particulier, s i'uu, le second membre de l'équation est

• ¦ 2tt
périodique de période — l'intégrale

ut)
1

l'est aussi et constitue le régime permanent.
Nous allons voir comment on peut procéder lorsque

l'on doit intégrer une équation peu différente d'une
équation à coefficients constants. Considérons donc l'équation

dxu d'
(1) Du aN{t) 1-Sf + oj-ift) -7-^r + - 4- a0(t) u F{t) ;dt dt"

les coefficients sont supposés réels et bornés, la fonction

F(t) est réelle ou complexe, bornée en module ; si

u(t) mesure l'état d'un système linéaire amorti, soumis
à une action extérieure F(t), on peut prévoir par des

considérations physiques que cet état résultera de la

superposition des effets produits par cette action
extérieure jusqu'à l'instant considéré t ; on peut donc
s'attendre à avoir une solution de la forme

(2) »(*) =Çg (t, t) F(t) or,

où G(t, t) exprime l'effet, à l'instant t, d'une action
unité manifestée à l'instant antérieur T ; la fonction
G(t, t) est une fonction de Green. Moyennant des
hypothèses convenables faites sur les coefficients de l'équation

(1), il est possible de justifier rigoureusement la
relation (2) ; nous laissons de côté les démonstrations,
qui ont été publiées dans un autre recueil1. Nous nous
bornerons à énoncer quelques propriétés de la fonction
G(t, t) qui seront utilisées par la suite.

§ 3. Propriétés de la fonction G (t, t)

Remarquons tout d'abord que cette fonction n'a un
sens que pour T ^ t ; elle n'interviendra du reste dans
les calculs que pour ces valeurs.

La fonction G (x, t) satisfait aux relations

DtG z=z as

Glr, t)

(F G

~W

<)G
_It

«o G

d*-%G

pour T t.

0

0 pour t <^ t,

tV-^G 1

W ax(t)

1 Pour les démonstrations, voir Ch. Blanc, Sur lea équations différentielles
linéaires non homogènes, à coefficients variables. Annales do l'Université de

Grenoble, « Sciences mathématiques et physiques », lome 2'2, 19'if>, p. 119-1.'!'*

Pour le montrer, on remarque tout d'abord que les

relations a) et b) définissent parfaitement la fonction
G (t, t) ; si on pose alors

E

u(t) =/ G{r,t)F(T)di,

on a

Üu (r) /A G (t, t) F(t) d t -f F(t) F (t) ;

pour qu'il soit légitime de dériver sous le signe
d'intégration, donc pour qu'on puisse permuter l'intégration
et l'opération D, il faut faire des hypothèses convenables

sur la fonction G(r, t), donc sur les coefficients
de l'équation (1). Il suffit, par exemple, de supposer
qu'il existe deux nombres positifs p et A avec

1 >G
; A ¦ e-p<(—T> pour t < v 0,

ov
-V

on peut montrer que ces inégalités peuvent être
satisfaites si l'équation est à coefficients constants et que
cela est encore le cas pour certaines équations à
coefficients variables, qui correspondent à des systèmes que
l'on peut qualifier de stables.

Passons à une seconde propriété. Soit D* l'opérateur
différentiel adjoint à D, c'est-à-dire l'opérateur

(3) d*v (-i)-v £ (aA-P) + (-ip-i^ mmdt' dt*

anv ;

pour simplifier l'écriture, on posera (les coefficients cv(t)
étant définis par cette relation)

dxv dx-1v
(3') D^c.W^+Cv-tW^j c0(f) V.

On a D* G(t, t) 0 (l'indice indique toujours la
variable sur laquelle porte l'opérateur différentiel), c'est-

à-dire

ca- T)
,7-vG

IrW <*-iT
,>v-iG

on a en outre

dG_

ch
G(T, t)

r>v-2G
0,

c0(t) G(t, 0 0 ;

js-iG (—1)
ch-"-1 a.y(t)drv"2

pour t t.

On le démontre à partir de l'identité de Lagrange,
en reprenant les hypothèses faites sur le comportement
à l'infini de la fonction G(t, t) ; nous laissons de côté

cette démonstration, qui exige de longs calculs (on la

retrouvera dans le mémoire cité plus haut).
Remarquons que si l'on appelle G*(t, t) la fonction de

Green correspondant à l'opérateur adjoint D*, on a la

relation de symétrie

G*(t, t) G(t, t),

qui est classique, en tout cas dans les problèmes aux
limites avec un intervalle fini (alors que nous avons ici
un intervalle illimité dans un sens).
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Là relation (2) peut prendre une forme un peu
différente, qui sera commode par la suite ; en remplaçant T

par t — T, on a en effet

(2') u{t)= G(G(t—T,t) Fit — t) dT.

Remarque. —¦ La détermination effective de la fonction

G(t, t) ne peut se faire, en toute rigueur, qu'en
intégrant l'équation Du 0 ; elle ne peut donc se faire
en général en termes finis par des quadratures. Nous

allons voir cependant que, si les coefficients de l'équation

(1) varient assez lentement, il est possible de

remplacer la fonction G par une autre, dont la détermination
se fait facilement à partir des coefficients et qui est telle

que l'intégrale (2') donne une bonne approximation de

la fonction cherchée u(t).

§ 4. Définition de l'admittance variable

Posons, par définition,

(4) Y(s, t) =jG(t — t, t) e-»T dT;

cette intégrale converge, pour tout t, si 'la' partie réelle

'llppjg dépasse — p, le nombre positif p étant celui qui
figure dans les hypothèses faites sur G. Par cette défini-

•wpîn, la fonction Y(s, t) est la transformée de Laplace
en t de la fonction G(t —• T, t). Puisque l'intégrale (4)

converge uniformément en s, on peut dériver par
rapport à s, d'où, d'une façon générale,

d
l)s

2C (—1)-/t-- G (t-T,t).t -"dr.

Faisons aussi une intégration par parties, en intégrant
tout d'abord le terme e~rx ; en tenant compte de la

valeur de G(t, t) pour t t, on obtient ainsi
00

sY(s, t).tfn—jG'(t — t, t) e-* dr,

o

où l'accent désigne la dérivation par rapport à la
première variable, remplacée ensuite par la différence t — T ;

en faisant ainsi plusieurs intégrations par parties, et en

tenant compte des valeurs de G et de ses dérivées pour

t t, on a d'une façon générale

(6)'

**Y(s, t) (—1)*/g<*> (t — T, t) e~" di, si k 1,

o .:.M JV-1,

s*Y(s, t) {-îyJGW (t - t, t) e~« dr+^y
Ces relations seront utiles pour l'évaluation de la

fonction Y(s, t). Voyons pour l'instant ce qui se passe
dans le cas particulier où l'équation donnée est à

coefficients constants. On a tout d'abord simplement

a* (— 1)* et,

d'où, en multipliant skY par û* et en sommant de 0 à N,

Y (s, t^ats* /e-"T y^ct G<*> (t — t, t) dt + 1 1,

car on a D* G 0, soit \ c* G<1'> 0 ; donc, si les coeffi-
i-=o

cients de l'équation différentielle donnée sont constants,
on a simplement

Y(s, t)
y«**** Z(s)'

dans ce cas (mais dans ce cas seulement), Y(s, t) ne

dépend pas de la variable t.

Ainsi, lorsque l'équation donnée est à coefficients

constants, la fonction Y(s, t) se réduit à l'inverse de Z(s),
donc à l'inverse de l'impédance dans le cas d'un circuit
électrique. Nous allons voir que cette fonction Y(st t)

joue encore le rôle d'une admittance dans le cas d'une

équation à coefficients variables. Si le second membre
de l'équation (1) est simplement l'exponentielle e*1,

s réel ou complexe, la relation (2') donne, en tenant

compte de la définition (4),

(7) u(t) Y(s, t) e* ;

cette relation sera fondamentale dans la suite ; elle

montre que Y(s, t) joue exactement le rôle d'une admittance,

variable lorsque les coefficients de l'équation
sont variables, et qui. se réduit à l'admittance au sens

habituel si les coefficients sont constants, ainsi qu'on
vient de le voir.

§ 5. Evaluation de l'admittance i (s, t)

Nous avons vu, au paragraphe précédent, que la

connaissance de l'admittance Y(s, t) permet d'écrire

une intégrale de l'équation (1) si le second membre est

une exponentielle. Elle permet également de le faire
dans des cas plus généraux que nous ne voulons pas
examiner ici1. Mais il faut remarquer que la détermination

exacte de Y(s, t) exigerait en somme l'intégration
de l'équation (1), au moins dans un cas particulier ;

c'est précisément ce que nous voulons éviter. Nous

obtiendrons alors une expression approchée de Y(s, t) en

supposant que les coefficients de l'équation (1) varient

peu et lentement ; on sera ainsi presque dans le cas ou
l'admittance est constante.

Posons pour commencer

(8) /(•, t) - -g- - ;

£(—i)*c»(l).r*
*-0

cette fonction se calcule à partir des coefficients de D*,
donc, par quelques dérivations, à partir de ceux de

l'équation (1). On remarque aussi qu'elle coïncide avec

Y(s, t), donc avec -f=-r-r si les coefficients de l'équa-
Z(s)

tion (1) sont constants.

1 Voir, à ce sujet, dans le cas d'une équation à coefficients constants, le

travail du même auteur: Le calcul des régimes quasi stotionnaires, «Bulletin
technique », 3 aoûl 1946.
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Or on a, par la définition de J(s, t),

v ' ' fr=0

puis, par les relations (6),

Y{s,t^ 2C* Wfe~" &k) (' — T, t) dr + 1 ;
J(s

or le second théorème du paragraphe 3 entraîne que
l'on a

K

£c* (I — t) G<*> (t — t, t) 0,
4=0

donc encore

7&| =ß~n 0$$ ~~ Ck {t - T)] Gm (< - T, t) dT + 1 ;

supposons que l'on puisse développer les fonctions

c* (t — t) de t en séries entières autour de t, donc de

T 0 * ; on aura alors par la formule de Taylor

c* (t) - Ck(t - t) - y (— i)» 5 c*B> w.

d'où

Y(*, 0
J(*, t) 1—22 (—i)" ^^p" e~" GW (*—t> *)rfT i

or, en faisant sur les intégrales (5) les intégrations par
parties analogues à celles qui ont donné les relations (6)
à partir de la définition (4), on obtient d'une façon
générale

Un g-n cm (t — t, t) dT (— 1)"+* j-n [s* Y(s, t)]

0

donc

Y(s, t)

J(s, t)

i-yh * *
ni dsn

°° j .Tn

l— V — —Zj n! Ps"

y(«, t) y (-i)* c?>(i)<*

V/ N ^ 1
Y(S' t} rT« J(M)

ou encore

(9) Y(s,t) J(s,t) JL n\ds«(
[ ' ' M J{s, t) j

on peut écrire également cette relation sous la forme
très condensée

<?" 1"
(9')

JZ. 1 ,)n
V — —2a n dsn dtn J

1.

Nous avons ainsi trouvé pour la fonction Y(s, t) une
équation différentielle en s d'ordre infini ; cette fonction
Y(«, t) en est une intégrale satisfaisant à des conditions

pour «-*•-)- oo ; remarquons que si les coefficients de
1 /./, polynôme en s, sont des polynômes en t, de degré p
au plus, l'équation (9) est d'ordre p ; en particulier, si

1 11 faudrait, en toute rigueur, prendre un développement limité et tenir
compte, cas échéant, des discontinuités des coefficients ; nous laissons ici de
côté toutes eus questions de convergence.

les coefficients de l'équation (1) sont linéaires en t,
l'équation (9) est simplement du premier ordre. A vrai
dire, cette remarque a un caractère purement formel,
car il n'est pas certain que les conditions de convergence
puissent être encore satisfaites dans ce cas. D'ailleurs,
si les coefficients de l'équation (1) varient lentement,
l'intégration approchée de l'équation (9) se fait par un
procédé très différent de celui que l'on donne en général

pour les équations différentielles linéaires du premier
ordre.

Nous allons supposer en effet que J(s, t) varie assez
lentement en t et en « pour qu'on puisse négliger les
dérivées secondes. On aura ainsi tout simplement

Y(s, t) J(s, t) m ar(h J

ou encore, puisque Y et J sont assez peu différentes,
et les dérivées relativement très petites,

I m i 1
ds \ ?t J(10) Y(s, t) J(s, t) 1

Si nous voulons interpréter ce résultat, nous dirons

que l'on peut remplacer l'équation (1) à coefficients
variables par une équation ayant d'autres coefficients,
également variables, mais que l'on intégrera formellement

comme une équation à coefficients constants.
Remarquons encore que le procédé d'intégration approchée

que nous avons donné, où nous avons remplacé la
dérivée de la fonction inconnue par celle d'une fonction
approchée, ne conduit probablement pas à des approximations

convergentes. La suite des approximations que
l'on formerait de cette façon est divergente, mais les

premières approximations donnent un résultat utilisable
dans les circonstances où l'on se trouve. La mécanique
céleste fournit des exemples analogues de suites
divergentes dont les premiers termes sont « pratiquement »

convergents.

§ 6. Résumé de la méthode

En résumé, si l'on a une équation (1) dont les coefficients

varient assez lentement et telle que les intégrales
de l'équation sans second membre tendent assez rapidement

vers zéro lorsque t augmente indéfiniment, il
existe une intégrale de la forme (2) ; si F(t) e*1, cette
intégrale devient simplement

u(t) Y(s,f)-<
où Y(s, t) est définie par la relation (4) ; cette fonction
Y(s, t) peut s'évaluer d'une façon approchée : on écrit
l'opérateur différentiel D* adjoint à D, d'après (3) et
(3') ; on introduit la fonction J(s, t) par la relation (8)
et on a

Y(s, t) ^ J(s, t)
as

J r
dt j

cette fonction Y(s, t) joue le rôle d'une admittance
variable. Nous verrons des applications de cette méthode
dans la seconde pari ic de cette étude.

(A suivre).
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