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Une solution graphique du problème de Lagrange
en balistique intérieure

par M. le Dr P. DE HALLER, ingénieur en chef de la maison Sulzer Frères.1

La balistique intérieure classique admet, dans l'étude
du mouvement du projectile dans la bouche à feu, que
l'écoulement des gaz est quasi permanent. Ceci permet
de traiter le problème au moyen de la seule équation
d'énergie, en égalant à chaque instant l'énergie dégagée

par la combustion de l'explosif à l'énergie cinétique du
projectile et des gaz brûlés. Cette méthode a fait ses

preuves dans tous les cas où la vitesse initiale n'est pas
trop élevée, ou plus exactement lorsque le poids de la
charge propulsive est petit par rapport à celui du projectile.

Cette condition n'est plus remplie dans les armes à

feu modernes, et l'estimation de l'énergie cinétique des

gaz, qui représente alors une forte fraction de l'énergie
totale, devient difficile. Comme il s'agit d'un exemple
typique d'écoulement non permanent, la solution analytique

du problème se heurte à de grosses difficultés. La
première tentative remonte à Lagrange, qui a simplifié
la question en admettant que la combustion de l'explosif
est terminée avant la mise en mouvement du projectile.
Sous cette forme, la solution complète et exacte a été
donnée par Gossot et Liouville 2, et Love et Pidduck 3,

mais, indépendamment de l'hypothèse de Lagrange
beaucoup trop éloignée de la réalité, les calculs numériques
sont d'une telle complexité que l'oA rie peut guère faire

' Communication présentée au 6e Congrès international de mécanique
appliquée, Paris, septembre 1946.

* Balistique intérieure, Bailliôre, Paris, 1922.
» Phil. Trans. Roy. Soc. London A Vol. 222, 1922, p. 167-226.

usage de ces résultats. Le but de cette note est de montrer
comment le calcul graphique permet non seulement de
lever cette difficulté maif»«encore de s'affranchir de

toute hypothèse particuhèrealelative à l'allure de la
combustion en fonction du temps ou de la pression.

Je rappellerai tout d'abord rapidement le principe de
la méthode *.

Le mouvement ' varié d'un fluide élastique, contenu
dans un tube cylindrique rigide et isolé thérmiquement
est défini par deux équations, exprimant la continuité
et le théorème des quantités de mouvements :

?p dp

dt dx

du
Jt pu

(X

(lU

(X

'> I

t)x

0,

0.

(1)

(2)

A cause de l'hypothèse d'un écoulement adiabatique
jointe à l'équation d'état, la densité p est une fonction
de la pression (pour un gaz parfait p/p0 (p/po)1 *).

Introduisant un potentiel de vitesse <p tel que u
àx

dp
dp

on obtient

et la vitesse du son

<P«+ 2<p* 9« + (çl — a2) ç» 0.

4 Revue Technique Sulzer, 1945, N° 1, p. 6-24.

(3)
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Fia Construction graphique des caractéristiques dans les
diagrammes de position et d'état.

9

Fig. 2. — Relation d'orthogonalité entre les caractéristiques
correspondantes dans les deux plans.

C'est une équation aux dérivées partielles du type de

Monge-Ampère 1.

Hr + 2Ks + Lt 0 (4)

dz
où H, K, L, M sont des fonctions de x, y, p ^-,

71?

q |§ et dont les caractéristiques satisfont à l'équation
c'y

Hdy2 — 2Kdxdy + Ldx* 0 (5)

qui, résolue, donne dy Xj/fo; et dy X2 dx. Ces

relations correspondent chacune à l'un des deux systèmes

a et ß de caractéristiques, qui en outre obéissent aux

équations :

a) dy \ydx ; dp + \%dq 0 (6, 6a)

ß) dy K2dx ; dp + l-^dq 0 (7, 7a)

dont la signification est la suivante : si l'on se déplace

le long d'une caractéristique de la famille a pour laquelle

dy — \xdx, les différentielles totales dp -—~-> dy +

-r-s dx et dq -;—=- dx -\ %r^ dy sont liées entre elles
dx2 dx dy dy*

par l'équation différentielle ordinaire (6a). On déduit de

là un procédé d'intégration graphique dont le principe

a été indiqué par Massau 2 et qui correspond exactement

aux méthodes Prandtl-Busemann3 et Schnyder-Berge-

ron* :

Il ccpiiiste à construire simultanément un diagramme
de position y + x et un diagramme d'état p — q (fig. 1).

Si p et q sont donnés en deux points voisins 1 et 3 situés

sur des caractéristiques différentes du diagramme de

position, les coefficients angulaires \x et X2 sont connus

et on peut tracer les tronçons de caractéristiques passant

par ces points. Leurs intersections définissent deux

nouveaux points 2 et 4. Dans le diagramme d'état, les

points donnés 1' et 3' correspondent à 1 et 3. Passant

de 1 à 2, les coordonnées du point représentatif de l'état
varient de dp et dq, éléments liés par l'équation (6a),

1 Goursat, Cours d'Analyse Vol. III, p. 55, Gauthiers-Villars, Paris 1927.
2 Enzykl. der Math. Wissenschaften II, 3.1 p. 159.

' Stodola-Festschrift, Zurich, 1929, p. 499.
4 Mém. Soc. Ing. Civ. de France, Vol. 90, p. 407, 1937.

de même en passant de 3 à 2, les accroissements obéissent

à l'équation (7a). La construction graphique du point 2',
représentatif de l'état du gaz au point 2, se fait comme
suit :

Du point 1' on trace un tronçon de droite de coefficient

angulaire — Xj^. A partir de 3' on porte une droite
de coefficient angulaire — X3. Ces deux droites se

coupent au point cherché 2'. Les valeurs de x, y, p et q en

ce point définissent de nouveau les coefficients angulaires

Xx et X2, on peut ainsi^Éolonger les caractéristiques

au delà des points 2 et 2'. On procède de la même manière

pour obtenir les points 4 et 4'. rai partant de conditions

aux limites connues, on construira ainsi de proche en

proche le réseau complet des caractéristiques dans les

plans x ~- y et p ~ q et la cœrespondance point par
point de ces deux plans fournit la solution cherchée.

On peut aussi écrire les équations (6a) et (7a)

dq + t— dp 0
X*

et dq + .dp 0
Xi

et porter dans le diagramme d'état p en abscisse et q en

ordonnée. On voit immédiatement que dans ce diagramme

une caractéristique de la famille ot est perpendiculaire
1 dq*

à celle du réseau ß du plan y -f- x, puisque dp

îement. La construction(hg. 2), et reciproqu€

graphique en est grandemeä|j.facilitée.
Dans le problème particulier qui nous occupe, le

procédé se simplifie. On a en effet

L=l #=9* Jï=(<pi — a2)

d'où
K 9« + a K= <Çx — a

<fx est par définition la vitesse u du fluide. L'équation
de Bernoulli généralisée pour les gaz parfaits

1 /V a2

9. + 2^ -j7dp -/r=rî
permet d'éliminer la dérivée partielle 9< des équations (6a)

et (7a) qui deviennent

2 Idu
k — 1

da et du + Ar — l da. (8)
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L'état du fluide est alors défini par sa vitesse U et la
vitesse du son correspondante a. Dans le plan w -f- a,
les caractéristiques sont des droites de coefficient angulaire

2
constant dz j • Dans le plan x — t, ces mêmes

/c —- j.

caractéristiques ont pour expression

dx
dt

u zp a. (9)

Le coefficient angulaire de la tangente aux caractéristiques

peut donc être directement relevé sur le diagramme
d'état. Il y a pratiquement avantage à introduire des
grandeurs sans dimensions, obtenues en rapportant l'abscisse,
le temps et les vitesses à une longueur de référence L,
et à une vitesse de référence qui sera la vitesse du son a0
du fluide au repos dans son état initial. On aura donc :

A mm z=±t u-
JL/ JLa0 Ju JU a

et les relations fondamentales s'écrivent

2
dU

Si on choisit pour A une échelle

dA dX={UztA)dZ
2

k — 1

(11)

fois plus grande

que pour U, le diagramme d'état sera constitué par des

droites inclinées à 45°, ce qui simplifie beaucoup le dessin.
On peut retrouver de façon élémentaire les

formules (8) : il suffit d'admettre comme un fait d'expérience

que l'écoulement est constitué par une succession
d'ondes se déplaçant dans le fluide avec une vitesse a.
Pour un observateur se déplaçant avec le front d'une
onde, l'équation de continuité, appliquée à deux sections
de contrôle de part et d'autre du front de l'onde, s'écrit :

pa (p + dp) (a zL du)
c'est-à-dire

adp zfc p du et comme
dp

P 1~¥
2 da

k—l
on retrouve immédiatement du k=ïda-

Pour appliquer cette méthode au problème de Lagrange,
il faut préciser les conditions aux limites (fig. 3). On

Q
y///////////////^

s ^^^^,777777////////////^///^/^^/y/^^zzzzzz¦ "" -I

f-
Fig. 3. — Schéma de la bouche à feu et notations.

admettra tout d'abord que la combustion de la charge
est terminée au moment t 0 où le projectile se met
en mouvement. Soient M la masse du projectile, S la

section du tube, et p la pression sur le culot 1. Le
mouvement du projectile obéit à l'équation :

** dv „M -r- S -p.dt ^ (12)

Si L est la longueur de la chambre de charge, aQ et p0
la vitesse du son et la pression au temps t 0, on
pourra écrire :

P V=- Z=^--t
Po L

""ef

dZ ai.

i. P
2*

a \£=ï

donc

i2 kRT § k -5;
Po Po \ao

PqLS — m masse des gaz

dV__ dW_ jn_ *=ï
dZ ~ dZ? ~" kM (13)

Cette relation est indépendante de la pression et de la
température initiale ; seuls interviennent le rapport de
la masse du projectile à celle de la charge et l'exposant
adiabatique k.

Les conditions aux limites sont les suivantes :

pour 7^ 0, 17 0, A P l, V 0 ;

pour X 0, U est constamment nul,
pour X X (au culot du projectile), la vitesse U est
égale à celle V du projectile, donnée par l'équation (13)

que l'on intègre au fur et à mesure par différences ou
graphiquement par la méthode Meissner par exemple.

Au moment où le projectile se met en mouvement,
V est encore nul et l'équation (11) donne le coefficient
angulaire de la caractéristique de la famille a limitant
le domaine où U est nul (fig. 4). Au temps Z AZ,

mle projectile a acquis une vitesse V kM AZ et le

point représentatif de l'état du gaz au culot du projectile
se trouve sur la droite à 45° passant par le point initial 0.

1 Ne pas confondre avec la dérivée partielle p.

âZ

ûZ

1,0

I

0 v u

0.3
\Z-¦aZ

0,8
4 \Z-2AZ

/2\
Q.T

4

\a

Fig. 4.

1 X
Construction graphique pour le problème de Lagrange
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Fis Diagramme d'état. Fig. 6. — Diagramme de position.

A ce point 1 correspondent donc des valeurs de A et F
qui, introduites dans (11), donnent l'inclinaison des

caractéristiques a et ß. A la culasse, V — 0, le point représentatif

de l'état se trouve sur l'axe des A à l'intersection
de la droite à 45° passant par 1. On répète la construction

pour chaque nouvel intervalle de temps et on
construit ainsi la solution complète de proche en proche.

m
Dans l'exemple donné ici, on a choisi -=-r 0,666^ M

et k 1,4. Les figures 5 et 6 reproduisent les diagrammes
de position et d'état et les figures 7 et 8 les répartitions
des vitesses et pressions que l'on en déduit. On remarquera

la valeur considérable de la pression initiale, sans

aucun rapport avec les valeurs réelles. Sur la figure 7

on reconnaît clairement le caractère oscillatoire du
mouvement des gaz.

L'hypothèse fondamentale que la combustion de la

charge est terminée avant le démarrage du projectile
limite considérablement l'intérêt pratique de ce calcul.
La méthode graphique permet de se libérer de cette
restriction. En effet, les équations (10), (11) et (13) qui
régissent le mouvement des gaz et du projectile sont
indépendantes de la température et de la pression ini¬

tiales. La construction graphique reste la même quels

que soient a0 et p0, la seule restriction est que l'entropie
doit être constante à chaque instant le long du tube.
Ceci revient à assimiler la combustion de la charge (sa

transformation de l'état solide à l'état gazeux) à

l'introduction continue et régulièrement répartie sur la longueur
du tube d'une certaine masse de gaz et d'une certaine

quantité de chaleur élevant la température initiale. La
vitesse du son de référence a0 sera donc une fonction
du temps définie par la loi de combustion de la charge.
Si nij est la masse totale de la charge, m0 la masse d'air
contenue dans la chambre de charge avant la déflagration,
et m la masse brûlée à l'instant t, on pourra poser en
première approximation :

1 +
Cr,

'0 '"o

C est la chaleur dégagée par la combustion de l'unité
de masse, Cv la chaleur spécifique des gaz et C0 celle de

l'air. Si m est une fonction connue du temps, la relation

dZ ° dt permet de passer de l'échelle des Z au temps
Au

réel t.

0 005

0 001

oaos

0002

0001

1» W

Fig. 7. — Répartition des vitesses.

sec

1005

'000 ata

0 003

ffi\sot

SO0O

0 001

Fig. 8. — Répartition des pressions.
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0.001

0 002

ÎS 0001
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Fig. 9. — Diagramme d'état pour
combustion progressive.

Fjg. 10. — Diagramme de position pour
combustion progressive

Fig. 11. Répartition des vitesses.

1000 ata

0.007

1.006

0.005

Wo
100>

0003

3000

ouï \y

0.001

^Effequation du mouvement du projectile devient alors

Fig. 12. — Répartition des pressions.

dV
dZ kM

¦ A
2k

k—î

et la construction graphique est exactement la même

que précédemment.
DarÄf exemple reproduit sur les figures 9 à 12 on a

admis une vitesse de combustion constante, indépendante
de la pressiln. La comparaison des répartitions de vitesse
et de pression avec les figures 7 et 8 montre que le caractère

oscillatoire a pratiquement disparu. La pression à

la culasse augmente progressivement pour passer par un
maximum, ce Npii correspond bien aux relevés
expérimentaux. Les reliefs de la figure 13 font ressortir la
différence essentielle entre les deux cas.

Il est clair que cette façon de tenir compte de la
combustion n'est pas rigoureuse. A cause de la variation de

l'entropie avec le temps, la densité n'est plus une fonction

de la pression seulement. Dans l'exemple traité les

variations d'entropie sont toutes proportions gardées
suffisamment lentes pour que l'erreur reste acceptable.

On a admis dans cet exposé que le projectile se déplace
dans le vide. Il serait aisé de tenir compte de la compression

de l'air devant le projectile ou du frottement dans
le tube ; la détermination du recul de la bouche à feu
ne présenterait pas de difficulté nouvelle. La méthode
s'appliquerait également bien au problème du canon
sans recul, traité analytiquement par J. Corner1.

Les valeurs numériques indiquées sur les diagrammes
5®a|Péspondent à un exemple choisi au hasard, le but de

ce travail étant la description d'une méthode de calcul
et non pas une étude de balistique.

Mon collaborateur M. Jutier a eu l'obligeance de tracer
les épures de ce travail. Je tiens à l'en remercier ici.

Fig. 13. — Relief des pressions ; à droite : combustion instantanée ;

à gauche : combustion progressive. Roy. ic. A Vol. 188, p. 237, 1947.
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