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Etude des propriétés d'un réglage

automatique.
Essai de synthèse de différentes méthodes de calcul.

Application au réglage de vitesse d'un groupe
hydro -électrique,

par Michel CUENOD, ingénieur à la S. A. Brown-Boveri.
CD. 621.3.016.35

L'élude théorique d'un réglage automatique se propose de

déterminer ses conditions de stabilité, l'amplitude et la durée de

l'écart de la grandeur à régler par rapport à sa valeur de consigne.
Tout réglage automatique comporte un certain circuit de réglage,
formé par différents organes de réglage. Il y a trois façons de

déterminer leurs propriétés dynamiques :

1. Etablir l'équation différentielle reliant la grandeur d'entrée
à la grandeur de sortie de chaque organe de réglage.

2. Déterminer la courbe de réponse de la fonction de transfert
en faisant varier brusquement la grandeur d'entrée du
dispositif et en relevant les variations de la grandeur de sortie.

3. Déterminer la courbe d'allure à fréquence variable de la
fonction du transfert en faisant varier, selon une oscillation
harmonique la grandeur d'entrée et en mesurant l'amplitude
et la phase de la grandeur de sortie.

A ces trois modes « d"auscultation » des propriétés des organes
de réglage correspondent trois méthodes pour la détermination
des conditions de stabilité et des variations de la grandeur à

régler résultant d une perturbation agissant sur le dispositif à

régler.
1. La méthode classique conduit à résoudre un certain sys¬

tème d'équations différentielles et à appliquer le critère de

Hurwitz ou de Leonhard.

2. La méthode de Küpfmüller conduit à une équation intégrale
dont la résolution est facilitée en grande mesure par l'utilisation

du calcul opérationnel.
3. La méthode de Nyquist fait appel à des procédés purement

graphiques.
A l'aide de l'exemple du réglage de la vitesse d'un groupe

hydro-électrique, les développements auxquels ces trois méthodes

conduisent sont exposés en grandes lignes et comparés entre

eux; il est_montré que le mode d'étude lerplus avantageux est de

pouvoir passer d'une, méthode à l'autre, la formule clé étant la
transformation de Laplace.

L'étude de quelques cas particuliers tels que celui du réglage
de vitesse d'un groupe hydro-électrique en marche individuelle
ou accouplé à un réseau rigide, avec régulateur avec ou sans
amortissement, ou agissant avec retard, illustre les genres de

calcul auxquels conduisent ces différentes méthodes, et laisse

envisager le parti qu'elles offrent pour une étude plus approfondie

de la stabilité des groupes hydro-électriques, compte tenu
des phénomènes de coup de bélier et de l'influence du réseau

électrique.

I. Introduction.
La tendance actuelle de régler automatiquement des

complexes de plus en- plus importants nécessite de

prévoir des dispositifs de réglage toujours plus compliqués

dont l'étude devient toujours plus délicate ; il peut
sembler parfois intéressant de pouvoir confirmer sinon

compléter les résultats obtenus par intuition ou
empiriquement par une étude théorique, et d'être en mesure
d'apprécier qualitativement et quantitativement
l'influence des différents facteurs entrant en jeu.

Cette étude entreprise à l'aide de la méthode classique
de Hurwitz conduit ä des calculs pratiquement inextri-
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cables, dès que le dispositif de réglage est un peu
compliqué. Par contre elle devient plus aisée grâce aux
méthodes modernes de Küpfmüller et de Nyquist. La
démonstration rigoureuse de ces méthodes nécessite

l'emploi de mathématiques supérieures qui relèvent de

la théorie des fonctions et sortiraient du cadre de cet
article ; le but proposé est de décrire en quoi elles
consistent, d'établir le rapport qui existe entre elles, de

montrer qu'elles correspondent au ' même processus
mathématique sous des apparences différentes, de mettre
en évidence à l'aide d'un exemple concret le genre de

considérations auxquelles elles conduisent. Si leur
établissement fait appel à de hautes mathématiques, leur
application se servant de procédés graphiques ou semi-
graphiques diminue sinon supprime complètement tout
calcul ; c'est sur ce côté pratique, intéressant spécialement

l'ingénieur qu'il sera insisté.
Pour rendre plus concrètes les considérations

théoriques qui servent de base à l'étude des propriétés d'un
réglage automatique, nous considérons l'exemple du
réglage de vitesse d'un groupe hydro-électrique représenté

schématiquement par la figure 1 :

Fig. 1. — Représentation schématique du réglage de
vitesse d'une turbine hydraulique.

T Turbine. — G — Générateur. — ft Régulateur tachyr
métrique. — S Servomoteur. — V ~ Dispositif de vannage.
n Vitesse de rotation de la turbine. — r Course du régu¬

lateur. —¦ m Course du servomoteur.

Soit T la turbine entraînant le générateur G.

La vitesse n du groupe est mesurée par le régulateur
tachymétrique R dont la course r agit sur le
servomoteur S qui commande -à son tour le dispositif de

vannage V.' Les différents éléments dont un circuit de

réglage est toujours constitué sont facilement recon-
naissables, à savoir :

La grandeur à régler n vitesse angulaire du groupe.
L'objet à régler T + G groupe hydro-électrique.
Le régulateur R Tachymètre mesurant la grandeur

à régler et la comparant à la grandeur de consigne.
L'amplificateur S Servomoteur.
Le dispositif de commande V Vannage.

Pour qu'un réglage automatique donne satisfaction,
il faut que les trois conditions suivantes soient remplies :

1. Le réglage doit être stable, c'est-à-dire, par exemple,

que les pcndulaisons de vitesse résultant d'une varia¬

tion de charge du générateur s'amortissent d'elles-
mêmes.

2. L'écart maximum de la grandeur à régler par rapport
à la valeur de consigne doit rester dans des valeurs
admissibles, par exemple, la survitesse du groupe ne
doit pas dépasser une valeur limite.

3. La durée de cet écart doit être la plus limitée possible.
L'examen des conditions 2 et 3 nécessite de pouvoir

déterminer en fonction du temps la variation de la
grandeur à régler résultant d'une perturbation
quelconque agissant sur l'objet à régler, soit par exemple
d'une variation brusque de la charge du générateur.

Les caractéristiques de l'objet à régler sont imposées

par des considérations tout autres que le réglage. Le
but de l'étude d'un réglage est de déterminer les
caractéristiques qu'il faut donner au régulateur et au
servomoteur pour assurer les conditions de marche aussi
satisfaisantes que possible définies ci-dessus.

Une première façon d'apprécier les propriétés des
différents éléments du circuit de réglage est d'établir
les équations différentielles auxquelles ils obéissent. '

Dans la pratique, l'établissement des équations
différentielles et leur résolution conduit à des calculs souvent
très fastidieux dès que le dispositif de réglage est un peu
compliqué et que les calculs doivent être faits sans
simplification inadmissible. La méthode moderne consiste
à considérer chaque élément de réglage de l'extérieur
et à déterminer expérimentalement la fonction de
transfert reliant les grandeurs à « l'entrée » ' et à « la
sortie » de l'organe de réglage.

Comme nous le montrons par la suite, deux genres
d'essais sont possibles permettant de relever :

la courbe de réponse de la fonction de transfert ou la
courbe d'allure à fréquence variable de la fonction de

transfert.
A ces trois façons d'« ausculter » un réglage correspondent

trois modes de résolution que nous mettrons en
parallèle.
1. Les équations différentielles ' conduisent à la méthode

classique de Hurwitz complétée par le critère de
Leonhard.

2. Les courbes de réponse conduisent à la méthode de

Küpfmüller.
3. Les courbes d'allure conduisent au critère de Nyquist

II. Etudes des propriétés dynamiques de
quelques organes de réglage.

Nous déterminons équations différentielles, courbe de

réponse et courbe d'allure des différents dispositifs
intervenant dans le réglage d'un groupe hydro-électrique.

A titre d'exemple, nous étudions en détail les

propriétés du servomoteur avec asservissement.

1. Servomoteur.

Comme chaque élément du circuit de réglage, le
servomoteur peut être représenté par un tripôle (voir fig. 2). La
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Fig. 2. — Représentation schématique d'un
servomoteur sous la forme d'un tripole.

borne 1 est formée par la carcasse du servomoteur ;

c'est le heu de référence par rapport auquel les courses

sont mesurées. La borne 2 est 1'« entrée » du servomoteur

sur laquelle agit la course, r du tachymètre, la borne 3

est la « sortie » du régulateur et agit sur le vannage ;

nous nous proposons de déterminer la relation entre r
et m. Le principe du fonctionnement d'un servomoteur
asservi se laisse reconnaître dans la figure 3.

B

-é±1

Fig. 3. — Principe d'un servomoteur avec asservissement.

1. Equation différentielle.

La vitesse de la course du servomoteur est en première

approximation proportionnelle à la course s du point B,
c'est-à-dire que le servomoteur n'est en équilibre que
lorsque s 0 sinon la dérivée de m est proportionnelle
à s.

Supposons que la tige d'asservissement soit supprimée
et que le point A soit tenu immobile, nous voyons
immédiatement que :

s r
a a + b

et que
dm
~dt k1s kxi a+ b

Supposons que le point C soit tenu immobile, nous
déterminons la relation entre la course u de A et m.

s u
b a + b

dm b
—r- K-, S K i U — j •

dt 1 a + b

Lorsque les points A et C se déplacent simultanément

nous obtenons la superposition de ces deux effets :

dm :•'¦?, a b

—r-~k,[r- —r + u - —rdt 1\ a+ b a -f- b

Lorsque la tige d'asservissement est rétablie, la course

de u est proportionnelle à celle de m, avec le signe négatif

si le statisme est positif : l'asservissement agit en

sens inverse à la course à l'entrée du servomoteur :

— k«.m.u — A2

L'équation différentielle devient

adm
ika

a -f- b a + b t

Nous choisissons k2, b et a de telle façon que, lorsque
le tachymètre parcourt toute sa course, le vannage
parcourt également toute sa course. Nous considérons les

variations mx et rx par rapport à leur valeur initiale m0

et r0.
Nous posons

m m0 -|- mx

r r0 + M

Nous tenons compte du fait que

dm0
~dT

0

et que r0a m0/c26.

Nous introduisons des valeurs relatives

m, r.
u

m
P

et posons :

T '£ m0{a + b)

o ro

constante de temps du servomoteur.
r0akx

L'équation différentielle prend alors la forme très simple
suivante :

Ts^+u p.

2. Courbe de réponse.

Nous donnons à r l'allure représentée par la figure 4,

c'est-à-dire que nous le déplaçons brusquement à r par

r

n>

\

n

ii 1

ti > 4 es t

0 2 4 6sf
Fig. 4. — Courbe de réponse du servomoteur asservi.
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rapport à r0 et le maintenons ensuite constant ; nous
relevons l'allure de m ; en résolvant l'équation
différentielle, nous pouvons calculer la courbe de réponse
<t> que nous obtiendrions, qui est représentée par la
courbe 1 de la figure 4 :

d>
pp

1

3. Courbe d'allure.
" Nous faisons osciller r selon une fonction sinusoïdale

d'amplitude rx et de pulsation t autour de sa valeur
moyenne r0 et enregistrons les variations résultant de m
qui sont en première approximation également une
fonction sinusoïdale caractérisée par une certaine amplitude

mx et un certain déphasage Y par rapport à l'oscillation

de rx.
Nous représentons ce résultat par un vecteyr dont

la grandeur absolue est égale au rapport - et de phase \\i.

Si nous refaisons le même essai pour d'autres pulsations,

nous obtenons d'autres amplitudes et déphasages
du dit vecteur. Si nous joignons l'extrémité de ces

vecteurs, nous obtenons la courbe d'allure 1 de la
figure 5.

Cette courbe d'allure peut être aisément calculée à

partir de l'équation différentielle.

Nous posons p | p | e^'

à l'état stationhaire jli |ue'3' avec /= y—1.
Nous introduisons ces deux valeurs dans l'équation

différentielle et obtenons :

Tsjl I u ,nt + MeÎV P«sßt

II résulte

jlTs 1

Nous voyons qu'il suffit de remplacer le signe de

différenciation -=- par it et de calculer le rapport \— •

dt r '
P

+J

-J0,4

S=i

1 -t- °°

7°°T04 0 s a 4 0 0,8 X,=o

0,20.2 W

0.50.4 0.2

0.6

0.5
0.8

Si nous donnons différentes valeurs à t, si nous portons
en abscisse la valeur réelle, en ordonnée la valeur
imaginaire de JpM nous obtenons dans le plan complexe
comme courbe d'allure un demi-cercle coté en fonction
de t, représenté par la courbe 1 de la figure 5. Si la
pulsation t est très faible, les variations de m suivent
sans déphasage les variations de r.

Si t tend vers l'infini, l'amplitude tend vers zéro
et son déphasage tend vers 90°, ce qui confirme ce dont
on se rend compte intuitivement.

2. Groupe turbo-générateur.

a) Marche individuelle.

1. Equation différentielle.

Nous supposons que le générateur est chargé sur une
charge purement ohmique. En première approximation,
le couple électrique est constant, indépendamment de
a vitesse du groupe ; à chaque charge du groupe
correspond une ouverture bien déterminée de la turbine.
Ce qui ressort de l'équation différentielle suivante :

du)
0

dt
Me M.

P
tu

O moment d'inertie polaire des masses tournantes du
groupe. Nous supposons que le nombre des pôles est
égal à 2.

Me couple électrique constant

P puissance active du groupe.
M couple moteur.
uj pulsation de la tension.

Nous voulons déterminer les variations de vitesse
résultant d'un changement de couple moteur.

Nous posons M M0+ Mx
uj u) -f- u)x.

¦ Nous tenons compte du fait que M0 Me et que
^? n
dt '

Il en résulte ep Mx.dt 1

Nous introduisons à nouveau les variations relatives
et supposons en première approximation que les variations

du couple moteur sont immédiatement
proportionnelles aux variations de l'ouverture de vannage ;
il en résulte :

M_x

Mn
M

tu.

et

avec

T,
dv_

a dt

—— temps de démarrage du groupe (3 -f-10 sec).

Courbe d'allure de servomoteur asservi.

2. Courbe de réponse.

Soit m l'ouverture de la turbine correspondant à une
charge donnée pour une pulsation ui0. Nous supposons
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fyiv

0,03
1

0,02 2

0.01

\c3

+
— 0,2 \c 4 À16 0, 8 \j y ts

0,01

0,02

0,03

Fig. 6. — Courbe de réponse du groupe électrogène.

que l'ouverture est déplacée brusquement de la grandeur

mx. Le couple moteur n'étant plus égal au couple
résistant, le groupe va s'accélérer, c'est-à-dire, la vitesse

va augmenter proportionnellement au temps, selon la
courbe de réponse représentée par la courbe 1 de la

figure 6 et dont l'équation se calcule en résolvant l'équation

différentielle ci-dessus établie

t
T^

3. Courbe d'allure.

Nous supposons que l'ouverture est variée sinusoïda-
lement avec la pulsation t autour de sa valeur moyenne m0
l'oscillation de vitesse est en quadrature, son amplitude

^ 10.4b
v.z-0,2

0,15- 0,15-

t-10.42

9.92

920.05 0.05

r.oo nos 10,46 0.15 +<*• 0,2S

005 005

0,1 10.52 -Q1

0.15- 9.15

' -a0.20.2
S-0

Fig. 7.
Courbe d'allure du
groupe électrogène.

i
i-10,46

est inversement proportionnelle à t, ce que l'on déduit
immédiatement de l'équation différentielle. La courbe
d'allure qui en résulte est représentée par la courbe 1

de la figure 7. Elle se confond avec le demi-axe
imaginaire négatif.

v 1
J„

Tajt

b) Marche en parallèle.

Nous admettons que le générateur est accouplé à un
réseau rigide de tension U. Nous faisons les suppositions
suivantes :

1. La constante de temps du circuit rotorique est nulle.
2. La résistance ohmique du stator et les pertes

mécaniques sont négligeables.
3. La reactance synchrone est constante, indépendamment

de la position du rotor par rapport à celle du
stator.

4. Le nombre des pôles est égal à 2.

1. Equation différentielle.

Du schéma de la figure 8a et du diagramme de la
figure 8b, nous tirons la relation suivante :

E sin 9 JiuL cos <p.

Nous en calculons la valeur du courant : J E sin 9

u)L cos cp

Puissance active débitée par le générateur :

UE sin 9
P UJ cos op

Couple électrique :

Me=-
UJ

uiL

UE sin 9

uj2L

Equation différentielle du générateur :

*= M.nd«e- eu

Nous tenons compte du fait que pour 9 petit
sin (90 + 9^ C^ sin 90 + 9X cos 90

et que, à l'état permanent

M„=^sin90.
Il en résulte que

0
d2Qx „ EU
~M" + 6i -Ï7 cos 9o Mi-
or urL

-Wööff^-x

a) Schéma équivalent d'un générateur
synchrone.

h) Diagramme des
tons!cms.

Fig. 8. — Schéma équivalent et diagramme des tensions
d'un générateur synchrone.
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Nous faisons quelques substitutions

uj, dQ, 1

UJn dt
Variation relative de la vitesse

~ /EU cos 9n M0 cotg 90

0 V
UJn COtgJ0

Q pulsation propre du générateur 2tc(0,5 -j—1,5)1 /sec.

L'équation différentielle prend alors la forme simplifiée
suivante :

2. Courbe de réponse.

Il est connu que le générateur synchrone est maintenu
dans la vitesse synchrone du réseau par les soins du
couple synchronisant ; en cas de brusque variation du
couple moteur, la vitesse oscille passagèrement autour
de la vitesse synchrone.

La courbe de réponse se déduit par la résolution de

l'équation différentielle que nous avons établie, c'est une
sinusoïdale représentée par le courbe 2 de la figure 6-

sin Qt '

0 —pv TaQ

Nous constatons que la pente initiale de la courbe de

réponse est la même, en marche libre ou en marche
parallèle. En effet :

dfypLV

dt
Q cos Qt

T„Q t:
L'amortissement que nous avons négligé en première

approximation a pour effet d'amortir l'oscillation selon
la courbe 3 de la figure 6.

3. Courbe d'allure.

En remplaçant -y- par jt et f dt par — dans l'équation

différentielle et en faisant le rapport - nous obtenons

l'équation de la courbe d'allure J\xv

J\x.v ji
Ta(Q*~t*)

Cette courbure d'allure est représentée par la courbe 2

de la figure 7 ; elle se confond avec l'axe imaginaire ;

pour une faible valeur de t, le vecteur de la courbe
d'allure est déphasé de 90° en avant, il est théoriquement
infini pour t Q et se déphase brusquement de —180°,
il tend vers —> jo pour de grandes valeurs de t.
L'amortissement que nous avons négligé a pour conséquence
de transformer cette courbe d'allure dans la boucle
représentée par la courbe 3 de la figure 7.

Etablie avec plus de rigueur, la courbe d'allure d'un
générateur a la forme suivante :

I"uv _

TAW— t2 + jtkl sin2 90Q2

cos90(V+(l
TR k)jl

90 angle entre rotor et champ tournant du stator.
k coefficient de couplage entre rotou et stator.
E coefficient d'excitation

(S <C 1 surexcitation)
(E > 1 sous-excitation).

Tr constante de temps du circuit rotorique.
Si au lieu d'agir sur l'ouverture de la turbine, on agit

sur la charge du générateur ou sur son excitation, sans

que le réglage n'intervienne, la vitesse du groupe varie
également et nous pouvons déterminer l'équation
différentielle, la courbe de réponse et la courbe d'allure
reliant la vitesse du groupe à la perturbation ; cette
équation et ces courbes sont les mêmes que celles que
nous venons d'établir, il suffit de remplacer u par 0",

O" étant la valeur relative de la perturbation.

3. Régulateur.

Nous englobons dans les caractéristiques du régulateur

tous les éléments qui interviennent dans la liaison
entre la vitesse n du groupe et la course r à l'entrée du
servomoteur. (Eventuellement générateur pilote, moteur
du régulateur, relais à pression d'huile.) Nous négligeons
l'influence des masses et ne considérons en première
approximation que celle de l'amortissement, ce qui
conduit au résultat suivant :

1. Equation différentielle.

v — b T dt^9
Tr constante de temps du régulateur,

b statisme du régulateur.

3 ts

20
Jt

Fig. 9. — Courbe de réponse du.régulateur statique.

+J

110
20

40

è-°A
oi s-

20 -15 -10

Fig. 10. — Courbe d'allure du régulateur statique.
I
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Le signe négatif signifie que par le jeu du régulateur,
la grandeur à régler est corrigée en sens inverse à sa

déviation due à une perturbation. Si par exemple la

vitesse diminue par suite d'une augmentation de charge,
le régulateur ouvre le vannage de façon à augmenter la

vitesse et la ramener à sa valeur de consigne.

2. Courbe de réponse.

La figure 9 représente la courbe de réponse exponentielle

cD
vp m

poi et Tr

¦e' tt)

0,4 sec.

3. Courbe d'allure.

Lu figure 10 représente la courbe d'allure consistant

en un demi-cercle Jvp situé dans le deuxième quadrant."
1 1

d Vp bjtTT + 1

III. Etude des propriétés d'un réglage automatique.

1. Méthode classique.

Lorsque l'équation différentielle de chacun des

éléments de la chaîne de réglage est établie, on obtient
un système d'équations différentielles linéaires à coefficients

constants ; si l'on élimine toute les variables sauf

la grandeur à régler, il en résulte l'équation différentielle
du réglage dont l'ordre est égal à la somme de l'ordre
des équations différentielles partielles ; la résolution de

cette équation différentielle permet de calculer en fonction

du temps l'allure de la grandeur à régler à la suite

d'une perturbation ; si l'on veut seulement déterminer
les conditions de stabilité, le critère de Hurwitz établit
les conditions que les coefficients de l'équation
différentielle doivent remplir pour que le réglage soit stable ;

soit :

a0a*n> + axatn-V -f -f anx F (t)

l'équation différentielle et

«oP« + aiP"~1 + + ànp *=ï 0

son équation caractéristique.
Le réglage est stable si la partie réelle des racines

de l'équation caractéristique est négative.
Nous formons la suite des déterminants Dx, £>2, D3,...

tels que

Dx D, D, etc.

Hurwitz a établi que la condition de stabilité est

remplie si tous les déterminants de cette suite étaient

positifs. Les calculs deviennent très fastidieux dès que
l'ordre de l'équation est plus élevé que le quatrième ;

ils peuvent être alors avantageusement remplacés par
une méthode semi-graphique basée sur les considérations

suivantes : considérons le plan complexe de la

variable p et celui de la fonction complexe H (p) telle

que
H{p)= aoP" + axp<"-V + + an.

S

® m
f<*>

Fig. 11. Critèr e de Leonhard.

Au point 0 du pla n H (p) correspondent les différentes

racines du plan de p, il faut vérifier qu'elles se trouvent
toutes dans le demi-plan négatif (hachuré dans la fig. 11)

du plan p.
Nous cherchons la représentation de l'axe imaginaire

du plan p dans le plan H (p). Il suffit de poser p it,
de donner à t différentes valeurs et de calculer la courbe

H (jt) du plan complexe -H (p). La condition de stabilité

est remplie, si, lorsque l'on parcourt la courbe de

1=0 à £= + co, l'origine se trouve toujours à main

gauche. La figure 11 représente une telle courbe pour
une équation de. cinquième ordre ; ainsi que l'énonce le

critère de Leonhard, la courbe doit parcourir cinq
quadrants, c'est-à-dire faire une boucle autour de l'origine,
ce' qui se laisse aisément vérifier en calculant les

intersections de cette courbe avec les axes réels et imaginaires.

Application de la méthode classique à notre exemple.

Nous considérons le cas d'un générateur en marche

individuelle commandé par un régulateur infiniment
rapide. Le système d'équation différentielle est le

suivant :

du
J'-T,+ u

dt

dv_

dt u+ rj

v — pb

Sa résolution en fonction de la grandeur à régler donne

'équation suivante :

d2v dv
T°T*b-d¥ + hJ°-dl ba.

Le critère de Hurwitz donne comme condition nécessaire

et suffisante que les 3 coefficients soient positifs.
Le statisme b doit être positif.

La courbe de réponse du réglage fermé 4>a (t) ——

donne l'expression de la vitesse en fonction du temps
à la suite d'une perturbation ff à laquelle serait soumis

l'objet à régler.

<Mrt l__P2e-°«sin(ß(+T)
P

avec

a
2TS

ßo
v/TaT.b

ß v'ßS— a2 tgï;
ß

a
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<Î>b (t) est une sinusoïde amortie que représente la
figure 12 pour b 5 % Ta 5 sec Tä 1 sec.

1

0,5

" OJS 1 1.5 2 2,5 t s

Fig. 12. — Courbe de réponse du réglage fermé.

2. La méthode de Küpfmüller.
La figure 13 schématise -un circuit de réglage ouvert :

nous supposons par exemple que le régulateur n'est pas
entraîné par l'arbre du groupe, mais par un petit
moteur M dont on peut faire varier à volonté la vitesse :

-rrfl

Fig. 13. — Circuit de réglage ouvert.

soit v* la variation relative de la vitesse du moteur.
La courbe de réponse 0v*p décrit la course p du
régulateur pour une variation impulsive de v*, nous nous
proposons de déterminer la course p pour une variation
quelconque de v* (t). La figure 14 représente comment
la fonction v* (t) peut être considérée comme une
courbe en escalier, c'est-à-dire comme une superposition
de fonctions impulsives.

En chacun de ses points, la fonction v* (t) peut être
remplacée en première approximation par sa tangente

vit)

âvlt)

ai
Fig. 14.

Décomposition d'une
fonction quelconque

en une somme de '

fonctions impulsives.

en ce point. L'amplitude de la fonction impulsive
correspondant à la période s'étendant de t à t + At
s'obtient par l'équation suivante :

dv*Av* (t) v* (t + At) — v* (t) dt At.

Ap sera la variation correspondant de la course du
régulateur

Ap(T) <Pv*p(f-T) Av*(t) ®vtp{t-T)~ At.

La fonction p (t) peut être considérée comme étant la
somme des variations dues à l'application de ces fonctions

impulsives différentielles

dv*p(t)=iAp(T)=v*(p)0v«p(t)+r*,.p(t- T) -3T dr-

En dérivant l'expression suivante, nous pouvons vérifier
qu'elle correspond bien à celle que nous venons d'établir

t

P(') ï/ t>V*p (t — T) V* (T) dT.

0

La même formule permet de calculer la course du
servomoteur dès que celle du régulateur est déterminée en
introduisant la fonction de transfert du servomoteur <t>

t

|/^(*-T)p(T)dT.
0

PU

M(0

Par intégrations successives peuvent se déterminer les
variations de la vitesse du groupe résultant d'une variation

de la vitesse du moteur M
t t

d /\ d
V (*)=5 /*n»(* —T)M(T)dT ^ /*»*,(*—T)V*(T) dT

0v*v= fonction de transfert du circuit de réglage
ouvert. Lorsque le circuit de réglage est fermé v* v.
Les perturbations dues à la perturbation viennent se

superposer aux corrections provoquées par le réglage,
ce qui permet de calculer les variations de la grandeur
à régler résultant d'une perturbation de la façon
suivante :

v( / ^ov (t — T) (T (t) dt + £ j 4VV («- t)v(t)«*t.

%+âz

Cette équation intégrale de Volterra peut être résolue

par un développement en série de Neuman ; nous
arrivons beaucoup plus aisément au même résultat en nous
servant du calcul opérationnel et en tenant compte
de la loi du produit opérationnel qui s'énonce de la
façon suivante : d'une façon générale, à la fonction

A(t) êAx(Z)Az(t-Z)dZ

dans le domaine temps correspond la fonction a ax • aa
dans le domaine opérationnel. L'équation intégrale prend
la forme suivante dans le domaine opérationnel

v(p) q>m/0-(p) + qp„v v(/>)
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dans laquelle cpCTV fonction de transfert de l'objet à

régler à l'égard de la perturbation, sous forme
opérationnelle,

9»» <Pvp ' <Ppii ' <Pnv fonction de transfert du réglage
ouvert sous forme opérationnelle.

Nous résolvons cette équation rapport à v (p)

î § - Éë
en passant du domaine opérateur au domaine temps,
nous calculons la fonction v (t).

D'une façon générale v (p) se présente sous la forme

d'un quotient v (p)
Y(p)
Z(P)

de Heaviside nous obtenons :

en appliquant la formule

y(t) Y(o)
Z(o) + ŷ Y(p)é»

dZ

fggf Fdp
Y(o) Y(P)\p^0 Z(o)=Z(p)\p 0

px...pn sont les racines de l'équation Z (p) 0.
Les fonctions de transfert rp se calculent soit à partir

des courbes de réponse, soit à partir des équations
différentielles dans lesquelles le signe de différenciation
d
-j- est à remplacer par 1 operateur p.

Application de la méthode de Küpfmüller à notre exemple.

Nous considérons à nouveau le cas d'un générateur
en marche individuelle commandé par un régulateur
infiniment rapide et nous proposons à nouveau de
calculer les variations de la vitesse résultant d'une variation

brusque de la- charge. Sous forme opérationnelle,
le système d'équations différentielles apparaît sous la
forme suivante :

T,pn+ »= P

Tapv u + a
v — pb

d'où nous tirons les fonctions de transferts opérationnelles

suivantes :

a 1
9o»

9vv — 9vp -<Ppu'Vu

v pTa
1 1 1

vP M-pp «ru» b pTf+ i pTa
Nous déterminons la fonction de transfert du réglage
fermé

v
9*=- 9a» PJ- a

"9»v
1

1

b [PT, + 1)

bp27yra+bpT0+i"
b(pTs+l)pTa

Il est aisé de vérifier qu'en appliquant la formule de
Heaviside nous obtenons la même fonction <t>n(t)
déterminée par la méthode classique (voir fig. 12).

En posant Z (p) 0 nous retrouvons l'équation
caractéristique de l'équation différentielle

PiPt

Pv Pz Racines de bp2TtTa + bpTa -f- 1 0.

3. La méthode de Nyquist.

Considérons à nouveau ' le circuit réglable ouvert
représenté par la figure 13.

Nous considérons les deux essais suivauts :

a) Nous supposons que nous faisons varier n* sinu-
soïdalement autour d'une valeur moyenne en laissant la
charge constante et que nous relevons l'amplitude et la

phase des variations résultant de la vitesse n. Exprimée
sous forme vectorielle, cette mesure donne la courbe
d'allure du réglage ouvert, en faisant le rapport des

valeurs relatives des deux oscillations :

J V*l
v

b) Nous supposons que la charge d varie sinusoïda-
lement et nous relevons amplitude et phase des variations

de la résultante de la vitesse v. Nous obtenons
la courbe d'allure de l'objet à régler par rapport à la

perturbation
v

a

Nous pouvons supposer que nous faisons varier v*
et ö simultanément' avec la même pulsation. Les variations

de vitesse qui résultent sont données par superposition

des oscillations

v v*Jv*v + aJav.

Lorsque le réglage est fermé, la vitesse que mesure le
régulateur est celle du groupe, c'est-à-dire v* v et
nous déterminons la courbe d'allure du réglage fermé Jr
exprimant la variation de la vitesse résultant d'une
variation périodique de la charge du groupe à régler

v vJvv + aJav

'- Jav

a 1 — J„„Jt

Les conditions de stabilité sont implicitement contenues
dans le dénominateur ; elles ne dépendent que de Jvv

et sont indépendantes de Jgv ; intuitivement, on pressent
que pour que le réglage soit stable, il faut que les
oscillations de v en phase avec celles de v* aient une plus
petite amplitude que celle de v* sinon le réglage s'excite
de lui-même.

En langage mathématique, cela signifie que les parties
réelles des fréquences propres que l'on détermine en
annulant le dénominateur doivent être négatives. Nous
considérons à nouveau deux plans complexes,celui des

racines p et celui de la fonction complexe Jvv tels qu'ils
sont représentés par la figure 15.

Selon l'équation

au point (+1, jo) du plan Jvv, correspondent les racines

px, pz du plan p. Pour vérifier qu'elles sont situées dans
le demi-plan négatif, nous cherchons la représentation
de l'axe imaginaire du plan p dans le plan Jvv ce qui
n'est autre chose que la courbe d'allure du réglage
ouvert. Il faut vérifier que, si l'on parcourt cette courbe
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Fig. 15. Le critère Nyquist.

de la pulsation t — 00 à £ + °°, le point (-)- 1, /o)

se trouve toujours à main gauche, autrement dit, « le

réglage est stable si un vecteur partant du point (-f- 1, jo)
et dont l'extrémité rejoindrait successivement chaque

point de la courbe d'allure, balaye un angle plus petit
que 2 TT quand il parcourt toute la courbe d'allure. »

La courbé d'allure ne doit pas « entourer » le point
(-\-l, jo). Cette condition est suffisante mais n'est pas
nécessaire, en effet, ce critère est valable lorsque le

réglage est stable quand il est ouvert ; il est connu qu'un
réglage instable lorsqu'il est ouvert peut être rendu
stable par le réglage. Selon la théorie généralisée du

critère de Nyquist établie par M. Frey1, il faut pour
qu'un réglage soit stable, que la courbe entoure le

point (-f- 1, jo) dans le sens des aiguilles d'une montre
autant de fois que le- système ouvert a des racines

labiles, la courbe d'allure étant parcourue de t + 00

à t — co.

L'avantage de la méthode de Nyquist est qu'elle
• permet de travailler avec des courbes expérimentales,
sans l'artifice d'aucun calcul ; si la courbe d'allure a été

déterminée analytiquement, soit à partir d'équations
différentielles ou de courbe de réponse, il peut être

préférable d'employer les relations

1 1

T~
1 ou T 0

Cette dernière relation n'est pas autre chose que le
critère de Leonhard et prouve l'identité mathématique qui
existe entre ces deux méthodes.

Application de la méthode de Nyquist.

Nous avons déjà établi les courbes d'allures d'un
générateur en marche individuelle et celles d'un
servomoteur asservi commandé par un régulateur infiniment
rapide.

La courbe d'allure du réglage ouvert Jvv est égale au
produit des courbes d'allures des organes de réglage.

1 1 1

ï'jZT.+ l'Tjï<J V Jvp
' J pu ' " uv

Il est connu que le produit de deux vecteurs est égal
à un vecteur dont la phase est égale à la somme des

phases, la grandeur absolue au produit des grandeurs

absolues. La figure 16 représente la courbe d'allure du

réglage ouvert Jvv (courbe 1) établie pour b 5 %
Ts 1 sec Ta 5 sec. Le réglage ne peut être instable

quelle que soit la valeur des paramètres b, Ta, Ts puisque
la courbe d'allure ne coupe pas l'axe réel.

-ÖÖ4V^

Voir Revue Brown-Boveri, mars 1946.

*J

%,-Ofi

0.04

004 0,4 4 +<x=

04

1.2

Fig. 16. Représentation vectorielle de la courbe d'alli;
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Fig. 17. — Représentation cartésienne de la courbe
d'allure du réglage.
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En abaissant une perpendiculaire du point (+ 1, jo)

sur la courbe d'allure, on peut déterminer en première

approximation l'abscisse et l'ordonnée de la fréquence

propre dans le plan p, à savoir sa pulsation et son
amortissement. Cependant cette détermination n'est pas
possible si, comme dans la figure 16, on se sert d'une

échelle logarithmique pour reporter la grandeur absolue

des vecteurs.
Pour des raisons pratiques, il est plus commode de

travailler avec une représentation cartésienne de la

courbe d'allure. Si l'on porte |J| et M* en fonction de t
et si l'on a soin de se servir d'une échelle logarithmique

pour l'ordonnée de \J\, le produit se ramène à deux sommes,

il faut contrôler que lorsque l'angle 9=0 l'amplitude

\J\ soit <^0. La courbe 1 de la figure 17 prouve

que cette condition est toujours remplie.
(A suivre.)

ORGANISATION ET FORMATION
PROFESSIONNELLES

Formation des ingénieurs universitaires

en vue de l'industrie

Le numéro 1, 1946, des Mémoires de la Société royale belge

des ingénieurs et des industriels donne la publication
intégrale du rapport d'une « commission de l'enseignement
technique », créée par la société prénommée et la Fédération des

entreprises de l'industrie des fabrications métalliques.
Ce volumineux rapport, du plus haut intérêt, traite de

l'enseignement technique dans son ensemble : apprentissage,
formation des ouvriers qualifiés, formation des techniciens et des

ingénieurs des écoles moyennes et supérieures.

Quoique les conditions du travail en Belgique ne soient pas

en tous points comparables à celles de Suisse, nous pensons

que nos lecteurs prendront connaissance avec grand intérêt des

quelques lignes suivantes, extraites du chapitre de ce rapport
intitulé : Formation des ingénieurs universitaires en vue de

l'industrie. Un très grand nombre de conclusions auxquelles

ont été conduits nos collègues belges dans l'examen de cette

importante question peuvent, nous semble-t-il, être acceptées par
nous aussi. Quiconque s'intéresse à ces problèmes trouvera à ce

document matière à d'utiles réflexions.
D. Brd.

Considérations générales.
Dans les conditions modernes de l'industrie et des affaires,

la formation des ingénieurs universitaires, appelés en
Belgique les ingénieurs civils, est un problème très complexe.

La complexité naît en grande partie de ce qu'il faut
préparer le jeune ingénieur civil en vue de tâches et de situations
extrêmement diverses, qu'il peut d'ailleurs éventuellement

remplir et occuper à des époques différentes de sa carrière.

Il faut assurément former l'ingénieur civil qui se destine

à la construction mécanique, comme à d'autres branches

industrielles, sur le plan scientifique et le plan technique, mais

aussi- sur le plan des affaires et le plan social.

Dans ces quatre directions, c'est toujours au degré supérieur

qu'il faut former l'ingénieur civil, afin qu'il puisse

suivre et contribuer à l'évolution et aux progrès tant tech¬

niques que sociaux, qui s'imposeront après cette guerre
plus que jamais.

Cela suppose que le jeune ingénieur universitaire ait acquis
les éléments qui lui permettent de rester réceptif aux
développements considérables que l'on pressent et de contribuer
éventuellement à ces développements avec tout le discernement

désirable.
Il faut aussi qu'il ait acquis l'esprit d'organisation et qu'il

ait constamment en vue la notion fondamentale du rendement

et des résultats économiques à atteindre.
De plus, appartenant à l'élite, intellectuelle de la Nation,

il faut qu'il ait une vue bien nette de la position de la
Belgique dans le monde, aux différents points de vue moral,
social, intellectuel, scientifique, économique, industriel et
financier.

Il faut que le jeune ingénieur belge ait la conviction
profonde qu'il est associé et participe à la vie d'une collectivité
nationale pleine d'activité, dont le labeur sain se développe
dans une large paix sociale et contribue à celle-ci.

Cette conviction, il faut qu'il ait la volonté de la répandre
et de la faire partager, et d'assumer toutes les responsabilités
qu'elle comporte. Il faut donc qu'il soit formé avec la perception

très nette qu'à côté de son rôle technique et d'affaires, il
aura à jouer un rôle social.

Au début dfe la carrière de l'ingénieur civil, ce rôle social

est souvent limité et peut ne pas apparaître nettement ;

mais ultérieurement ce rôle est susceptible de s'amplifier très

largement ; dans certains cas, il prend le caractère des

fonctions sociales tout à fait supérieures.

Conclusions de caractère général.
Il est indispensable, pour réaliser une amélioration très

sensible de la formation des jeunes ingénieurs civils, qu'en parallèle
avec l'effort que font et qu'accentueront les Facultés universitaires

des sciences appliquées, l'industrie apporte de son côté

un large esprit de compréhension et assume l'organisation
méthodique d'un complément d'éducation industrielle des jeunes

ingénieurs civils.
La Commission connaît les critiques que les industriels

formulent souvent au sujet de l'impréparation des jeunes

ingénieurs civils à la « vie des usines ».

Elle se garde bien d'épouser à priori toutes ces critiques,
elle connaît d'ailleurs la riposte à ces critiques. La Conv

mission pose très nettement l'affirmation que jamais
l'enseignement des ingénieurs civils ne prépara directement le jeune

ingénieur à la «vie des usines^», c'est-à-dire que jamais les

écoles universitaires ne seront organisées de telle façon que les

jeunes ingénieurs soient aptes immédiatement à rendre d'importants

services pratiques dès leur sortie de l'université. Un tel
résultat ne pourrait être espéré qu'au détriment de la
culture générale, cependant essentielle, et qu'au prix d'une

spécialisation excessive en cours d'études, dangereuse surtout
dans un pays comme la Belgique.

De plus en plus, avant de pouvoir attendre des jeunes
ingénieurs civils un concours plein d'efficacité, l'industrie devra

s'attacher d'une part à les accueillir avec faveur et à leur prévoir
une carrière en rapport avec leur préparation, ce qu'elle n'a

pas' toujours fait, d'autre part à parachever leur formation
technique, industrielle et sociale.

Ce que l'industrie est en droit d'espérer, et même d'exiger,
c'est que par l'enseignement qu'il a reçu et qui a dû accuser

son esprit de finesse, le jeune ingénieur civil soit à même

de s'initier aisément à l'entièjeté des complexes industriels, en

cherchant à agir avec intelligence et avec un large esprit
d'initiative.
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