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Etude des propriétés d'un réglage
automatique.

Essai de synthése de différentes méthodes de calcul.
Application au réglage de vitesse d'un groupe
: hydro -électrique,

par MicHEL CUENOD, ingénicur a la S. A. Brown-Boveri.
C.D. 621.3.016.35

Létude théorique d’un réglage automatique se propose de
déterminer ses conditions de stabilité, Uamplitude et la durée de
Uécart de la grandeur a régler par rapport a sa valeur de consigne.
Tout réglage automatique comporte un certain circuit de réglage,
formé par différents organes de réglage. Il y a trois facons de
déterminer leurs propriétés dynamiques :

1. Etablir I'équation différentielle reliant la grandeur d’entrée
a la grandeur de sortie de chaque organe de réglage.

2. Déterminer la courbe de réponse de la fonction de transfert
en faisant varier brusquement la grandeur d’entrée du dis-
positif et en relepant les variations de la grandeur de sortie.

3. Déterminer la courbe d’allure & fréquence variable de la
fonction du transfert en faisant garier, selon une oscillation
harmonique la grandeur d’entrée et en mesurant U'amplitude
et la phase de la grandeur de sortie.

A ces trots modes « d’ auscultation » des propriétés des organes
de réglage correspondent trois méthodes pour la détermination
des conditions de stabilité et des variations de la grandeur a
régler résultant d’une perturbation agissant sur le dispositif a
régler.

1. La méthode classique conduit a résoudre un certain sys-
teme d’équations différentielles et a appliquer le critere de
Hurwitz ou de Leonhard.

2. Laméthode de Kiipfmiiller conduit @ une équation intégrale
dont la résolution est facilitée en grande mesure par Uutili-
sation du calcul opérationnel.

La méthode de Nyquist fait appel a des procédés purement

o

graphiques.

A lUaide de Uexemple du réglage de la vitesse d’un groupe
hydro-électrique, les développements auxquels ces trois méthodes
conduisent sont exposés en grandes lignes et comparés entre
eux ; 1l est_ montré que le mode d’étude le Fplus avantageux est de
pousoir passer d’une méthode a Uautre, la formule clé étant la
transformation de Laplace.

L’étude de quelques cas particuliers tels que celut du réglage
de vitesse d’un groupe hydro-électrique en marche indigiduelle
ow accouplé a un réseaw rigide, avec régulateur avec ou sans
amortissement, ou agissant avec retard, illustre les genres de
calcul auxquels conduisent ces différentes méthodes, et laisse
envisager le parti qu’elles offrent pour une étude plus appro-
fondie de la stabilité des groupes hydro-électriques, compte tenw
des phénoménes de coup de bélier et de Uinfluence du réseau
électrique.

I. Introduction.

La tendance actuelle de régler automatiquement des
complexes de plus en plus importants nécessite de
prévoir des dispositifs de réglage toujours plus compli-
qués dont Pétude devient toujours plus délicate ; il peut
sembler parfois intéressant de pouvoir confirmer sinon
compléter les résultats obtenus par intuition ou empi-
riquement par une étude théorique, et d’étre en mesure
d’apprécier qualitativement et quantitativement l'in-
fluence des différents facteurs entrant en jeu.

Cette étude entreprise & I'aide de la méthode classique
de Hurwitz conduit & des calculs pratiquement inextri-
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cables, deés que le dispositif de réglage est un peu com-
pliqué. Par contre elle devient plus aisée grace aux
méthodes modernes de Kiipfmiiller et de Nyquist. La
démonstration rigoureuse de ces méthodes nécessite
I'emploi de mathématiques supérieures qui relevent de
la théorie des fonctions et sortiraient du cadre de cet
article ; le but proposé est de décrire en quoi elles con-
sistent, d’établir le rapport qui existe entre eclles, de
meéme

montrer qu’elles correspondent au

mathématique sous des apparences différentes, de mettre

processus

en évidence a Iaide d’un exemple concret le genre de
considérations auxquelles elles conduisent. Si leur éta-
blissement fait appel 4 de hautes mathématiques, leur
application se servant de procédés graphiques ou semi-
graphiques diminue sinon supprime complétement tout
calcul ; c’est sur ce coté pratique, intéressant spéciale-
ment l'ingénieur qu’il sera insisté.

Pour rendre plus concretes les considérations théo-
riques qui servent de base a I'étude des propriétés d’un
réglage automatique, nous considérons lexemple du
réglage de vitesse d’un groupe hydro-électrique repré-
senté schématiquement par la figure 1 :

|| |

Fig. 1. — Représentation schématique du réglage de
vitesse d'une turbine hydraulique.

T = Turbine. — G = Générateur. — R = Régulateur tachy-

métrique. — S = Servomoteur. — V' = Dispositif de vannage.

n = Vitesse de rotation de la turbine. — r = Course du régu-

lateur. — m = Course du servomoteur.

Soit 7' la turbine entrainant le générateur G.

La vitesse n du groupe est mesurée par le régulateur
tachymétrique R dont la
moteur S qui commande ‘&

course r agit sur le servo-
son tour le dispositif de
vannage V. Les différents éléments dont un circuit de
réglage est toujours constitué sont facilement recon-
naissables, & savoir :

La grandeur & régler = n = vitesse angulaire du groupe.
L’objet a régler = T + G = groupe hydro-électrique.
Le régulateur = R = Tachymeétre mesurant la grandeur

a régler et la comparant a la grandeur de consigne.
L’amplificateur = S = Servomoteur.

Le dispositif de commande — V = Vannage.

Pour qu’un réglage automatique donne satisfaction,
il faut que les trois conditions suivantes soient remplies :
1. Le réglage doit étre stable, ¢’est-a-dire, par exemple,

que les pendulaisons de vitesse résultant d’une varia-

tion de charge du générateur s’amortissent d’elles-
meémes.

2. L’écart maximum de la grandeur & régler par rapport
a la valeur de consigne doit rester dans des valeurs
admuissibles, par exemple, la survitesse du groupe ne
doit pas dépasser une valeur limite.

3. La durée de cet écart dott étre la plus limitée possible.

L’examen des conditions 2 et 3 nécessite de pouvoir

~déterminer en fonction du temps la variation de la

grandeur & régler résultant d’une perturbation quel-

conque agissant sur Pobjet & régler, soit par exemple

d’une variation brusque de la charge du générateur.

Les caractéristiques de I'objet & régler sont imposées
par des considérations tout autres que le réglage. Le
but de I’étude d’un réglage est de déterminer les carac-
téristiques qu’il faut donner au régulateur et au servo-
moteur pour assurer les conditions de marche aussi
satisfaisantes que possible définies ci-dessus.

Une premiére facon d’apprécier les propriétés des
différents éléments du circuit de réglage est d’établir
les équations différentielles auxquelles ils obéissent.

Dans la pratique, I’établissement des équations diffé-
rentielles et leur résolution conduit & des calculs souvent
tres fastidieux deés que le dispositif de réglage est un peu
compliqué et que les calculs doivent é&tre faits sans sim-
plification inadmissible. La méthode moderne consiste
a considérer chaque élément de réglage de lextérieur
et a déterminer expérimentalement la fonction de
transfert reliant les grandeurs a «lentrée» et a «la
sortie» de I'organe de réglage.

Comme nous le montrons par la suite, deux genres
d’essais sont possibles permettant de relever :
la courbe de réponse de la fonction de transfert ou la

courbe d’allure a fréquence variable de la fonction de

transfert.

A ces trois facons d’« ausculter » un réglage correspon-
dent trois modes de résolution que nous mettrons en
parallele.

1. Les équations différentielles conduisent & la méthode
classique de Hurwitz complétée par le critere de
Leonhard.

2. Les courbes de réponse conduisent a la méthode de
Kiipfmiiller.

3. Les courbes d’allure conduisent au critére de Nyquist

II. Etudes des propriétés dynamiques de
quelques organes de réglage.

Nous déterminons équations différentielles, courbe de
réponse et courbe d’allure des différents dispositifs
intervenant dans le réglage d’un groupe hydro-élec-
trique. A titre d’exemple, nous étudions en détail les
propriétés du servomoteur avec asservissement.

1. Servomoteur.

Comme chaque élément du circuit de réglage, le servo-
moteur peut étre représenté par un tripole (voir fig. 2). La
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3 g2
o S +—— o0
m r
1
Fig. 2. — Représentation schématique d’'un

servomoteur sous la forme d’un tripole.

borne 1 est formée par la carcasse du servomoteur;
c’est le lieu de référence par rapport auquel les courses
sont mesurées. La borne 2 est I'c entrée » du servomoteur
sur laquelle agit la course r du tachymetre, la borne 3
est la «sortie» du régulateur et agit sur le vannage ;
nous nous proposons de déterminer la relation entre r
et m. Le principe du fonctionnement d’un servomoteur
asservi se laisse reconnaitre dans la figure 3.

4 a B 4
u ls c lr
77
[ 1.
=
R
T
|
m| L
Fig. 3. — Principe d’un servomoteur avec asservissement.

1. Equation différentielle.

La vitesse de la course du servomoteur est en premiere
approximation proportionnelle & la course s du point B,
¢’est-a-dire que le servomoteur n’est en équilibre que
lorsque s = 0 sinon la dérivée de m est proportionnelle
as.

Supposons que la tige d’asservissement soit supprimée
et que le point A soit tenu immobile, nous voyons
immeédiatement que :

s r
e etah
et que
dm a
el o in

dt (17'—/)'

Supposons que le point C soit tenu immobile, nous
déterminons la relation entre la course u de A et m.
S u
b a-+ b
dm b

a+b

Lorsque les points A et € se déplacent sinnlllzm(’:mcnl‘,’

nous obtenons la superposition de ces deux effets :

dm R ,__,.'_,,
R EILE “a e

Lorsque la tige d’asservissement est rétablie, la course
de u est proportionnelle & celle de m, avec le signe néga-
tif si le statisme est positif : Iasservissement agit en
sens inverse & la course & l'entrée du servomoteur :

w = —kym.

L’équation différentielle devient :

dm ; a i b
— =kl r———mky ———}-
dt I aaelh a—+
Nous choisissons ks, b et a de telle facon que, lorsque
le tachymeétre parcourt toute sa course, le vannage par-
court également toute sa course. Nous considérons les
variations m, et r; par rapport a leur valeur initiale m,
et rg:
Nous posons
m = mg -+ my
B —Tos 1 M1
Nous tenons compte du fait que
dmy
dt

et que roa = mgkyb.

Nous introduisons des valeurs relatives

m r

il 1

= p=
my o

et posons :
mg(a + b)

Be—
roaky

— constante de temps du servomoteur.
[’équation différentielle prend alors la forme tres simple
sulvante :

du
Ts%”‘u—p-

2. Courbe de réponse.

Nous donnons & r Pallure représentée par la figure 4,
¢’est-d-dire que nous le déplacons brusquement & r par

i
1
)
; | L | |
0 2 4 6st
m _"7;[‘_
(AN
Mo 'my 2
A
1 4 | |
0 2 4 Bist

. — Courbe de I'(‘l)()l\SC du servomoteur asservi.
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rapport a r, et le maintenons ensuite constant ; nous
relevons lallure de m; en résolvant I'équation diffé-
rentielle, nous pouvons calculer la courbe de réponse
@, que nous obtiendrions, qui est représentée par la
4

courbe 1 de la figure 4 :

(0]

t
_— 5:1;6-@

3. Courbe d’allure.

Nous faisons osciller r selon une fonction sinusoidale
d’amplitude r; et de pulsation Z autour de sa valeur
moyenne 7, et enregistrons les variations résultant de m
qui sont en premiére approximation également une
fonction sinusoidale caractérisée par une certaine ampli-
tude m, et un certain déphasage ¥ par rapport a loscil-
lation de r;.

Nous représentons ce résultat par un vecteur dont

; L
la grandeur absolue est égale au rapport Bet de phase y.
p

Si nous refaisons le méme essai pour d’autres pulsa-
tions, nous obtenons d’autres amplitudes et déphasages
du dit vecteur. Si nous joignons l'extrémité de ces
vecteurs, nous obtenons la courbe d’allure 1 de la
figure 5.

Cette courbe d’allure peut étre aisément calculée &
partir de I'équation différentielle.

Nous posons p=|p|e

a létat stationnaire p= |uezt avec j = y—1.

Nous introduisons ces deux valeurs dans I’équation
différentielle et obtenons :

Tyt | u | eidt |u|e~m = Ip[em.
Il en résulte :
)
Jou = m ST |

Nous voyons qu’il suffit de remplacer le signe de

[

; NI ;
différenciation — par jZ et de calculer le rapport - — -

dt [p|

+ OO —&|

Iig. 5. — Courbe d’allure de servomoteur asservi,

DE LA SUISSE ROMANDE

Si nous donnons différentes valeurs & Z, si nous portons
en abscisse la valeur réelle, en ordonnée la valeur ima-
ginaire de J, nous obtenons dans le plan complexe
comme courbe d’allure un demi-cercle coté en fonction
de Z, représenté par la courbe 1 de la figure 5. Si la
pulsation Z est trés faible, les variations de m suivent
sans déphasage les variations de r.

Si Z tend vers Dinfini, Pamplitude tend vers zéro
et son déphasage tend vers 909, ce qui confirme ce dont
on se rend compte intuitivement.

2. Groupe turbo-générateur.
a) Marche individuelle.
1. Equation différentielle.

Nous supposons que le générateur est chargé sur une
charge purement ohmique. En premiére approximation,
le couple électrique est constant, indépendamment de
a vitesse du groupe; a chaque charge du groupe cor-
respond une ouverture bien déterminée de la turbine.
Ce qui ressort de Péquation différentielle suivante :

dt

© moment d’inertie polaire des masses tournantes du
groupe. Nous supposons que le nombre des poles est
égal a 2.

M, = couple électrique constant = —
w
P = puissance active du groupe.

M = couple moteur.
w = pulsation de la tension.

Nous voulons déterminer les variations de vitesse

résultant d’un changement de couple moteur.

M= M,+ M,
W= w + Wi

Nous posons

Nous tenons compte du fait que My= M. et que

dwy
Tt ;= 0.

0 ‘%’1 S

Il en résulte

Nous introduisons & nouveau les variations relatives
el supposons en premiére approximation que les varia-
tions du couple moteur sont immédiatement propor-
tionnelles aux variations de I'ouverture de vannage ;

il en résulte :

P Bl Wi Dy
WIS, Wy N
dv
et To—— =
di
avec
oo Ow
T,= —" = temps de démarrage du groupe (3 - 10 sec.).

M,

2. Courbe de réponse.

Soit m l'ouverture de la turbine correspondant d une
charge donnée pour une pulsation wy. Nous supposons
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Fig. 6. — Courbe de réponse du groupe électrogéne.

que l'ouverture est déplacée brusquement de la gran-
deur m,. Le couple moteur n’étant plus égal au couple
résistant, le groupe va s’accélérer, c’est-a-dire, la vitesse
va augmenter proportionnellement au temps, selon la
courbe de réponse représentée par la courbe 1 de la
figure 6 et dont I'équation se calcule en résolvant I'équa-
tion différentielle ci-dessus établie

[0) = — = — .

By

3. Courbe d’allure.

Nous supposons que 'ouverture est variée sinusoida-
lement avec la pulsation Z autour de sa valeur moyenne m
Poscillation de vitesse est en quadrature, son amplitude

+j 00 +joo 1§=7Q4b
0,2 0,2

075 0,154
014 Q1+ ¢=1042

—075 ~0,15

Fig. 7.
Courbe d’allure du
groupe électrogene.

-0247 l -02]
\2 -0 g =1046

est inversement proportionnelle & Z, ce que 'on déduit
mmmédiatement de I'équation différentielle. La courbe
d’allure qui en résulte est représentée par la courbe 1
de la figure 7. Elle se confond avec le demi-axe ima-
ginaire négatif.

1

Vv
e ;
e Tyt

pv

b) Marche en paralléle.

Nous admettons que le générateur est accouplé & un
réseau rigide de tension U. Nous faisons les suppositions
suivantes :

1. La constante de temps du circuit rotorique est nulle.

2. La résistance ohmique du stator et les pertes méca-
niques sont négligeables.

3. La réactance synchrone est constante, indépendam-
ment de la position du rotor par rapport a celle du
stator.

4. Le nombre des poles est égal a 2.

1. Equation différentielle.

Du schéma de la figure 8a et du diagramme de la
figure 8b, nous tirons la relation suivante :

E sin 8 = JwL cos .

E sin 6
Nous en calculons la valeur du courant : J = 0> .
wL cos @
Puissance active débitée par le générateur :
UE sin 6
P = e s T
UJ cos @ ol
Couple électrique :
M YRS RUBsintg
SR TR T T
Equation différentielle du générateur :
(k|G D6
G) W + m S1n 61 — .

Nous tenons compte du fait que pour 6 petit
sin (0, 4 6,) ™ sin 8, + 6, cos 6,

et que, a I'état permanent

M= géEZ sin 8.

Il en résulte que

2
d?0 EU
& Q =
GW"{—GIUZ—ECOEGO—-Z‘II.
wl )
& U
a) Schéma équivalent d’'un générateur b) Diagramme des
synchrone. tensions.
Fig. 8. — Schéma équivalent et diagramme des tensions

d’un générateur synchrone.
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Nous faisons quelques substitutions :

w de, 1 A ) :
—1—"1_ — Variation relative de la vitesse
wy dt w,

i s EU cos 6 M cotg 8, __ . [Wocotg B
Qw2L C] T2

Q = pulsation propre du générateur = 2m(0,5 = 1,5) 1 /sec.
L’équation différentielle prend alors la forme simplifiée

dv £ u
W—I—Q/‘V(llﬁ T,

2. Courbe de réponse.

suivante :

Il est connu que le générateur synchrone est maintenu
dans la vitesse synchrone du réseau par les soins du
couple synchronisant; en cas de brusque variation du
couple moteur, la vitesse oscille passagérement autour
de la vitesse synchrone.

La courbe de réponse se déduit par la résolution de
I’équation différentielle que nous avons établie, ¢’est une
sinusoidale représentée par le courbe 2 de la figure 6.

e sin Qt
b TERY;

Nous constatons que la pente initiale de la courbe de
réponse est la méme, en marche libre ou en marche
parallele. En effet :

AP uye
dt

~ Qecos Q ol
e RO AT

=0 =0

L’amortissement que nous avons négligé en premiére
approximation a pour effet d’amortir Poscillation selon
la courbe 3 de la figure 6.

3. Courbe d’allure.

En remplacant % par jZ et‘/ dt par ]iz dans I'équation
a

différentielle et en faisant le rapport % nous obtenons
I'équation de la courbe d’allure Juy

JC
Ta(Q2 &= Zz)

Cette courbure d’allure est représentée par la courbe 2

Juy =

de la figure 7; elle se confond avec 'axe imaginaire ;
pour une faible valeur de Z, le vecteur de la courbe
d’allure est déphasé de 90° en avant, il est théoriquement
infini pour Z = Q et se déphase brusquement de —1800,
il tend vers — jo pour de grandes valeurs de Z. I.’amor-
tissement que nous avons négligé a pour conséquence
de transformer cette courbe d’allure dans la bhoucle
représentée par la courbe 3 de la figure 7.
Etablie avec plus de rigueur, la courbe d’allure d’un
générateur a la forme suivante :
g s jZ*'T"fz" 2
Tt JTKE sin® 0, Q

Ty

I .
vos 90(7‘;{ e /\')/Z>

8, = angle entre rotor et champ tournant du stator.

k= coeflicient de couplage entre rotor et stator.

£ = coeflicient d’excitation

(¢ << 1 surexcitation)
(¢ > 1 sous-excitation).

Tr = constante de temps du circuit rotorique.

Si au lieu d’agir sur Pouverture de la turbine, on agit
sur la charge du générateur ou sur son excitation, sans
que le réglage n’intervienne, la vitesse du groupe varie
également et nous pouvons déterminer I'équation diffé-
rentielle, la courbe de réponse et la courbe d’allure
reliant la vitesse du groupe a la perturbation ; cette
équation et ces courbes sont les mémes que celles que
nous venons d’établir, 1l suffit de remplacer u par o,
0 étant la valeur relative de la perturbation.

3. Régulateur.

Nous englobons dans les caractéristiques du régula-
teur tous les éléments qui interviennent dans la liaison
entre la vitesse n du groupe et la course r & I'entrée du
servomoteur. (Eventuellement générateur pilote, moteur
du régulateur, relais & pression d’huile.) Nous négligeons
Pinfluence des masses et ne considérons en premiére
approximation que celle de lamortissement, ce qui
conduit au résultat suivant :

1. Equation différentielle.
dp
V“*’(“% T")

T, = constante de temps du régulateur.
d = statisme du régulateur.
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Fig. 9. — Courbe de réponse du régulateur statique.
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Iig. 10. — Courbe d’allure du régulateur statique.
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Le signe négatif signifie que par le jeu du régulateur,
la grandeur A régler est corrigée en sens inverse & sa
déviation due a une perturbation. Si par exemple la
vitesse diminue par suite d’une augmentation de charge,
le régulateur ouvre le vannage de facon a augmenter la
vitesse et la ramener & sa valeur de consigne.

2. Cowrbe de réponse.

La figure 9 représente la courbe de réponse exponen-
tielle

O = :;S(Pe—%

pour = et
3. Courbe d’allure.

La figure 10 représente la courbe d’allure consistant

T, ="0,4 sec:

en un demi-cercle J,, situé dans le deuxiéme quadrant.
1 1
ATt Sy

Il1I. Etude des propriétés d'un réglage automatique.
1. Méthode classique.

Lorsque Iéquation différentielle de chacun des élé-
ments de la chaine de réglage est établie, on obtient
un ‘systéme d’équations différentielles linéaires a coefli-
cients constants ; si on élimine toute les variables sauf
la grandeur a régler, il en résulte I'équation différentielle
du réglage dont lordre est égal 4 la somme de Pordre
des équations différentielles partielles ; la résolution de
cette équation différentielle permet de calculer en fonc-
tion du temps Pallure de la grandeur & régler a la suite
d’une perturbation ; si 'on veut seulement déterminer
les conditions de stabilité, le critéere de Hurwitz établit |
les conditions que les coeflicients de I’équation diffé-
rentielle doivent remplir pour que le réglage soit stable ;
soit :

S e s B R + anz = F (1)
I'équation différentielle et
1T o st e + anp=0
son équation caractéristique.

Le réglage est stable si la partie réelle des racines
de I'équation caractéristique est négative.

Nous formons la suite des déterminants Dy, Dy, Dy, ...
tels que

Uy (g s
ay Qg it
D= g D= ol s Dy = |aygasa, ete.
1o Ao
Ay ay ag
Hurwitz a établi que la condition de stabilité est

remplie si tous les déterminants de cette suite étaient |
positifs. Les caleuls deviennent trés fastidieux deés que
Pordre de I'équation est plus élevé que le quatrieme ;
ils peuvent étre alors avantageusement remplacés par
une méthode semi-graphique basée sur les considéra-
tions suivantes : considérons le plan complexe de la
variable p et celui de la fonction complexe I (p) telle

que

Hi(p) = agpl oy prPit-iis, 4 an.
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Fig. 11. — Critére de Leonhard.

Au point 0 du plan H (p) correspondent les différentes
racines du plan de p, il faut vérifier qu’elles se trouvent
toutes dans le demi-plan négatif (hachuré dans la fig. 11)
du plan p.

Nous cherchons la représentation de I'axe imaginaire
du plan p dans le plan H (p). 1l suffit de poser p = jz,
de donner a 7 différentes valeurs et de calculer la courbe
H (jZ) du plan complexe H (p). La condition de stabi-
lité est remplie, si, lorsque I'on parcourt la courbe de
=0 & L= -+ o, Porigine se trouve toujours & main
gauche. La figure 11 représente une telle courbe pour
une équation de cinquieme ordre; ainsi que I’énonce le
critere de Leonhard, la courbe doit parcourir cinq qua-
drants, c’est-a-dire faire une boucle autour de I'origine,
ce qui se laisse aisément vérifier en calculant les inter-
sections de cette courbe avec les axes réels et imaginaires.

Application de la méthode classique a notre exemple.

Nous considérons le cas d’un générateur en marche
individuelle commandé par un régulateur infiniment
rapide. Le systeme d’équation différentielle est le sui-
vant :

du 0
TsE+H—P
dv
Tu JZ_M+G
V.= —pd

Sa résolution en fonction de la grandeur a régler donne
I’équation suivante :
d?v dv
ToTd = + 8T, =
a

pTE -+ v = d0.

Le critéere de Hurwitz donne comme condition néces-
saire et suflisante que les 3 coeflicients soient positifs.
Le statisme d doit étre positif.

v (t)
0
donne Pexpression de la vitesse en fonction du temps

La courbe de réponse du réglage fermé @ (t) =

a la suite d’une perturbation ¢ & laquelle serait soumis
I'objet & régler.

O () = b( {is % o

avec
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®g (1) est une sinusoide amortie que représente la

figure 12 pour =59, T,=5sec T,= 1 sec.
(]
1 el
95—
4 05 75
) ] 2 25°ts
Fig. 12. — Courbe de réponse du réglage fermé.

2. La méthode de Kiipfmiiller.

La figure 13 schématise un circuit de réglage ouvert :
nous supposons par exemple que le régulateur n’est pas
entrainé par l'arbre du groupe, mais par un petit
moteur M dont on peut faire varier & volonté la vitesse :

v Z s

M
T G
Fig. 13. — Circuit de réglage ouvert.

soit v* la variation relative de la vitesse du moteur.
La courbe de réponse ®,., décrit la course p du régu-
lateur pour une variation impulsive de v*, nous nous
proposons de déterminer la course p pour une variation
quelconque de v* (¢). La figure 14 représente comment
la fonction v* (1) peut étre considérée comme une
courbe en escalier, ¢’est-a-dire comme une superposition
de fonctions impulsives.

En chacun de ses points, la fonction v* (1) peut &tre
remplacée en premiére approximation par sa tangente

bviit)

4v¥(t)

Fig. 14.
Décomposition d’une
fonction quelconque

en une somme de
fonctions impulsives.

~

T T+47T

en ce point. L’amplitude de la fonction impulsive cor-
respondant & la période s’étendant de T a4 T + At
s’obtient par I’équation suivante :

Avi(ri—vii@ -k A — vl ai— % s

Ap sera la variation correspondant de la course du
régulateur

Ap (1) = Dpag(t—1) AV* (1) = Opup(t— o

T) 7 AT

La fonction p (f) peut étre considérée comme étant la
somme des variations dues a Papplication de ces fone-
tions impulsives différentielles

*

4
()= AP () =" (9) Byep (1) + [ Byeq (t—1) g,
0
En dérivant I'expression suivante, nous pouvons vérifier
qu’elle correspond bien & celle que nous venons d’établir

t

1
p(t) = [ Byuy (t—

*
= — T) V¥ (1) dT.
- ) V' (1)
0
La méme formule permet de calculer la course du servo-
moteur dés que celle du régulateur est déterminée en
introduisant la fonction de transfert du servomoteur O

w0 =2 (o, (t—vpmar

Par intégrations successives peuvent se déterminer les
variations de la vitesse du groupe résultant d’une varia-

tion de la vitesse du moteur M
t

t
o i -
v (t):[Tt/dbw(z—r) a(r)dr == / O,y (t—1)V*(1)dT
; i

®,,, = fonction de transfert du circuit de réglage

* ouvert. Lorsque le circuit de réglage est fermé v* = v.

Les perturbations dues & la perturbation viennent se
superposer aux corrections provoquées par le réglage,
ce qui permet de calculer les variations de la grandeur
a régler résultant d’une perturbation de la facon sui-
vante :

e

t t
: i
v(t)—ml/ ®gy (1—1) 0 (1) dr +- (;7/ Oy, (t—1)v (1) dr.

0

Cette équation intégrale de Volterra peut é&tre résolue
par un développement en série de Neuman ; nous arri-
vons beaucoup plus aisément au méme résultat en nous
servant du calcul opérationnel et en tenant compte
de la loi du produit opérationnel qui s’énonce de la
fagon suivante : d’une fagon générale, & la fonction

Ay /1‘41(2)/12@ B

e
8
0
dans le domaine temps correspond la fonction a = a;-ay

dans le domaine opérationnel. L’équation intégrale prend
la forme suivante dans le domaine opérationnel

vV (p) = Poy 0(p) + Py V(p)
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~ dans laquelle @, = fonction de transfert de I'objet &
régler & I'égard de la perturbation, sous forme opéra-
tionnelle,
Puy = Pyp - Py~ Py = fonction de transfert du réglage
ouvert sous forme opérationnelle.
Nous résolvons cette équation rapport & v (p)
_ Pov 9 (p)
vV
en passant du domaine opérateur au domaine temps,
nous calculons la fonction v (¢).
D’une facon générale v (p) se présente sous la forme

Y (p)

d’un quotient v (p) = - en appliquant la formule

Z (p)

de Heaviside nous obtenons :

Y (o ert
VU%:Z&;+p2712Z
B @

Y (o) =Y (p)lp=0 Z(0) =Z(p)|p-o
P1--- pn sont les racines de I'équation Z (p) = 0.
Les fonctions de transfert @ se calculent soit & partir

des courbes de réponse, soit a partir des équations
différentielles dans lesquelles le signe de différenciation
7 ot a remplacer par lopérateur p.

Application de la méthode de Kiipfmiiller & notre exemple.

Nous considérons & nouveau le cas d’un générateur
en marche individuelle commandé par un régulateur
infiniment rapide et nous proposons & nouveau de cal-
culer les variations de la vitesse résultant d’une varia-
tion brusque de la. charge. Sous forme opérationnelle,
le systeme d’équations différentielles apparait sous la
forme suivante :

Tspp+p=p
T.pv =u-+ o
Y = — pd

d’ott nous tirons les fonctions de transferts opération -
nelles suivantes :
G 1
DovReet PTa
A I 1
R L PR i

Nous déterminons la fonction de transfert du réglage

Pyy = Pyp * Pop Py

fermé

RO
T o A |

Prs
] IF| e B

o(pT's+1)pT,
Il est aisé de vérifier qu'en appliquant la formule de
Heaviside nous obtenons la méme fonction ®p(t) déter-
minée par la méthode classique (voir fig. 12).

En posant Z (p) = 0 nous retrouvons Iéquation
caractéristique de I'équation différentielle

o o pTs + 1
Dp(t) =0 +1%: ——2,}2 T.T, ‘F~P7‘a

e,}t

P ps = Racines de dp®7T,1T, + dpT, + 1 = 0.

3. La méthode de Nyquist.

N

Considérons & nouveau” le circuit réglable ouvert
représenté par la figure 13.

Nous considérons les deux essais suivants :

a) Nous supposons que nous faisons varier n* sinu-
soidalement autour d’une valeur moyenne en laissant la
charge constante et que nous relevons 'amplitude et la
phase des variations résultant de la vitesse n. Exprimée
sous forme vectorielle, cette mesure donne la courbe
d’allure du réglage ouvert, en faisant le rapport des
valeurs relatives des deux oscillations :

A
JV*V: v*

b) Nous supposons que la charge ¢ varie sinusoida-
lement et nous relevons amplitude et phase des varia-
tions de la résultante de la vitesse v. Nous obtenons
la courbe d’allure de I’objet a régler par rapport a la
perturbation ;

'Jov o X :
(o}

Nous pouvons supposer que nous faisons varier v*
et 0 simultanément avec la méme pulsation. Les varia-
tions de vitesse qui résultent sont données par superpo-
sition des oscillations

=it o e

Lorsque le réglage est fermé, la vitesse que mesure le
régulateur est celle du groupe, c’est-a-dire v* = v et
nous déterminons la courbe d’allure du réglage fermé J,
exprimant la variation de la vitesse résultant d’une

s

variation périodique de la charge du groupe a régler
V= is ooy

L= i Yat Hidoviia
o 1—J,

Les conditions de stabilité sont implicitement contenues
dans le dénominateur ; elles ne dépendent que de J,,
et sont indépendantes de Jg,; intuitivement, on pressent
que pour que le réglage soit stable, il faut que les oscil-
lations de v en phase avec celles de v* aient une plus
petite amplitude que celle de v* sinon le réglage s’excite
de lui-méme.

En langage mathématique, cela signifie que les parties
réelles des fréquences propres que l'on détermine en
annulant le dénominateur doivent étre négatives. Nous
considérons & nouveau deux plans complexes,celui des
racines p et celui de la fonction complexe J,, tels qu’ils
sont représentés par la figure 15.

Selon I'équation

=ik
au point (4 1, jo) du plan J,,, correspondent les racines
P1 pe du plan p. Pour vérifier qu’elles sont situées dans
le demi-plan négatif, nous cherchons la représentation
de I’axe imaginaire du plan p dans le plan J,, ce qui
n’est autre chose que la courbe d’allure du réglage
ouvert. Il faut vérifier que, si 'on parcourt cette courbe
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Tig. 15. — Le critére Nyquist.
de la pulsation = -—o0 & T = + o, le point (+ 1, jo)

se trouve toujours a4 main gauche, autrement dit, «le
réglage est stable si un vecteur partant du point (4 1, jo)
et dont lextrémité rejoindrait successivement chaque
point de la courbe d’allure, balaye un angle plus petit
que 21 quand il parcourt toute la courbe d’allure.»

La courbe d’allure ne doit pas «entourer» le point
(+1, jo). Cette condition est suffisante mais n’est pas
nécessaire, en effet, ce critére est valable lorsque le
réglage est stable quand il est ouvert ; il est connu qu’un
réglage instable lorsqu’il est ouvert peut étre rendu
stable par le réglage. Selon la théorie généralisée du
critere de Nyquist établie par M. Frey?!, il faut pour
quun réglage soit stable, que la courbe entoure le
point (+ 1, jo) dans le sens des aiguilles d’une montre
autant de fois que le- systéme ouvert a des racines
labiles, la courbe d’allure étant parcourue de Z = + o
al=—on

[’avantage de la méthode de Nyquist est qu’elle

permet de travailler avec des courbes expérimentales,

sans Partifice d’aucun calcul ; si la courbe d’allure a été
déterminée analytiquement, soit & partir d’équations
différentielles ou de courbe de réponse, il peut @étre
préférable d’employer les relations

1 4

= ou

T G

Cette derniére relation n’est pas autre chose que le cri-
tere de Leonhard et prouve 'identité mathématique qui
existe entre ces deux méthodes.

Application de la méthode de Nyquist.

Nous avons déja établi les courbes d’allures d’un
générateur en marche individuelle et celles d’un servo-
moteur asservi commandé par un régulateur infiniment
rapide.

La courbe d’allure du réglage ouvert J,, est égale au
produit des courbes d’allures des organes de réglage.

1 1 1

Jp = e

==l —_— s
ke g2 o jiT,+1 Tyt

St

Il est connu que le produit de deux vecteurs est égal
a un vecteur dont la phase est égale & la somme des
phases, la grandeur absolue au produit des grandeurs

' Voir Revue Brown-Bovert, mars 1946,

absolues. La figure 16 représente la courbe d’allure du
réglage ouvert J,, (courbe 1) établie pour d =5 9,
Ty =1sec T, = 5sec. Le réglage ne peut é&tre instable
quelle que soit la valeur des paramétres d, 7', Ts puisque
la courbe d’allure ne coupe pas l'axe réel.
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Fig. 16. — Représentation vectorielle de la courbe d’allure
du réglage.
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Iig. 17. — Représentation cartésienne de la courbe
d’allure du réglage.
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En abaissant une perpendiculaire du point (4 1, jo)
sur la courbe d’allure, on peut déterminer en premiére
approximation Dlabscisse et ordonnée de la fréquence
propre dans le plan p, a savoir sa pulsation et son amor-
tissement. Cependant cette détermination n’est pas pos-
sible si, comme dans la figure 16, on se sert d’une
échelle logarithmique pour reporter la grandeur absolue
des vecteurs.

Pour des raisons pratiques, il est plus commode de
travailler avec une représentation cartésienne de la
courbe d’allure. Si I'on porte |J| et W en fonction de Z
et si Pon a soin de se servir d’une échelle logarithmique
pour I'ordonnée de |J|, le produit se raméne a deux som-
mes, il faut controler que lorsque I'angle ¥ = 0 ampli-
tude |J| soit <<0. La courbe 1 de la figure 17 prouve

que cette condition est toujours remplie.
(A suivre.)

ORGANISATION ET FORMATION
PROFESSIONNELLES

Formation des ingénieurs universitaires
9. .
en vue de I'industrie

Le numéro 1, 1946, des Mémoires de la Société royale belge
des ingénieurs et des industriels donne la publication inté-
grale du rapport d’une « commission de Uenseignement tech-
nique», créée par la société prénommée et la Fédération des
entreprises de I'industrie des fabrications métalliques.

Ce volumineux rapport, du plus haut intérét, traite de Uen-
seignement technique dans son ensemble : apprentissage, for-
mation des ousriers qualifiés, formation des techniciens et des
ingénieurs des écoles moyennes et supérieures.

Quoique les conditions du travail en Belgique ne soient pas
en tous points comparables  celles de Suisse, nous pensons
que nos lecteurs prendront connaissance agec grand inlérél des
quelques lignes suivantes, extrailes du chapitre de ce rapport
intitulé : Formation des ingénieurs universitaires en vue de
Pindustrie. Un trés grand nombre de conclusions auxquelles
ont été conduits nos collégues belges dans Uexamen de celle
importante question peuvent, nous semble-t-il, élre acceptées par
nous aussi. Quiconque s’inléresse a ces problemes trousera a ce

document matiére a d’utiles réflexions.
D. Bro.

Considérations générales.

Dans les conditions modernes de I'industrie et des affaires,
la formation des ingénieurs universitaires, appelés en Bel-
gique les ingénieurs civils, est un probléme trés complexe.

La complexité nait en grande partie de ce qu’il faut pré-
parer le jeune ingénieur civil en vue de taches et de situations
extrémement diverses, qu’il peut d’ailleurs éventuellement
remplir et occuper a des époques différentes de sa carriére.

[l faut assurément former Iingénieur civil qui se destine
4 la construction mécanique, comme a d’autres branches
industrielles, sur le plan scientifique et le plan technique, mais
aussi sur le plan des affaires et le plan social.

Dans ces quatre directions, ¢’est toujours au degré supé-
rieur qu’il faut former Iingénieur civil, afin qu’il puisse
suivre et contribuer a I'évolution et aux progrés tant tech-

niques que sociaux, qui s’imposeront apres cette guerre
plus que jamais. 3

Cela suppose que le jeune ingénieur universitaire ait acquis
les éléments qui lui permettent de rester réceptif aux déve-
loppements considérables que 'on pressent et de contribuer
éventuellement a ces développements avec tout le discerne-
ment désirable.

1l faut aussi qu’il ait acquis Uesprit d’organisation et qu’il
ait constamment en vue la notion fondamentale du rendement
et des résultats économiques a atteindre.

De plus, appartenant a I’élite intellectuelle de la Nation,
il faut qu’il ait une vue bien nette de la position de la Bel-
gique dans le monde, aux différents points de vue moral,
social, intellectuel, scientifique, économique, industriel et
financier.

Il faut que le jeune ingénieur belge ait la conviction pro-
fonde qu’il est associé et participe a la vie d’une collectivité
nationale pleine d’activité, dont le labeur sain se développe
dans une large paix sociale et contribue a celle-ci.

Cette conviction, il faut qu’il ait la volonté de la répandre
et de la faire partager, et d’assumer toutes les responsabilités
quelle comporte. Il faut done qu’il soit formé avec la percep-
tion trés nette qu’a coté de son réle technique et d’affaires, il
aura & jouer un réle social.

Au début de la carriére de I'ingénieur civil, ce role social
est souvent limité et peut ne pas apparaitre nettement ;
mais ultérieurement ce role est susceptible de s’amplifier trés
largement ; dans certains cas, il prend le caractére des
fonctions sociales tout a fait supérieures.

Conclusions de caractére général.

Il est indispensable, pour réaliser une amélioration trés sen-
sible de la formation des jeunes ingénieurs civils, qu’en paralléle
avec Deffort que font et qu’accentueront les Facultés unigerst-
taires des sciences appliquées, U'industrie apporte de son coté
un large esprit de compréhension et assume lorganisation
méthodique d’un complément d’éducation industrielle des jeunes
ingénieurs cietls.

La Commission connait les critiques que les industriels
formulent souvent au sujet de I'impréparation des jeunes
ingénieurs civils a la «vie des usines ».

Elle se garde bien d’épouser a priori toutes ces critiques,
elle connait d’ailleurs la riposte & ces critiques. La Com-
mission pose trés nettement lafliemation que jamais Uenset-
gnement des ingénieurs civils ne prépara directement le jeune
ingénieur a la «vie des usines», cest-d-dire que jamais les
écoles universitaires ne seront organisées de telle fagon que les
jeunes ingénieurs soient aples immédiatement a rendre d’impor-
tants services pratiques des leur sortie de Uuniversité. Un tel
résultat ne pourrait étre espéré qu’au détriment de la cul-
ture générale, cependant essentielle, et qu'au prix d'une
spécialisation excessive en cours d’études, dangereuse surtout
dans un pays comme la Belgique.

De plus en plus, avant de pousvoir attendre des jeunes ingé-
nieurs civils un concours plein defficactté, Uindustrie devra
sattacher d’une part & les accuetllir avec faveur et a leur prévoir
une carriére en rapport avec leur préparation, ce qu'elle n'a
pas toujours fait, d’autre part a parachever lewr formation
technique, industrielle et soctale.

Ce que lindustrie est en droit d’espérer, et méme d’exiger,
¢est que par enseignement qu’il a recu et qui a di accuser
son esprit de finesse, le jeune ingénieur civil soit &4 méme
de s'initier aisément & Uentiéreté des complexes industriels, en
cherchant & agir avec intelligence et avec un large esprit

d’initiative.
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